Highly Stable Co Single Atom Confined in Hierarchical Carbon Molecular Sieve as Efficient Electrocatalysts in Metal–Air Batteries

Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ord...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 11
Main Authors Liang, Shuang, Zou, Lian‐Chun, Zheng, Li‐Jun, Li, Fei, Wang, Xiao‐Xue, Song, Li‐Na, Xu, Ji‐Jing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202103097

Cover

Loading…
Abstract Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ordered pores of the carbon molecular sieve (CMS). Related theoretical and experimental methods prove that the microporous trapping and hydroxyl doping of CMS are favorable for synergistically stabilizing the precursor and contributing to the subsequent conversion of single atoms with strong interactions between Co, O, and N. The unique 3D spiral pore structure of CMS facilitates the mass transfer of reactants and the highly dispersed Co single atoms confined in CMS increase the active sites. These properties are ideal for oxygen reduction reaction catalysts. Benefiting from the above‐mentioned superiority, the Co‐CMS cathode exhibits superior performance in a rechargeable Zn–air battery with a lower charge–discharge voltage gap of 0.77 V and a power density of 219 mW cm−2. The applications of Co‐CMS catalysts are also extended to other metal–air batteries in this work, which further highlights the advantages of carbon molecular sieves in stabilizing SACs materials. A new strategy for using the confinement effect of hierarchical carbon molecular sieves (CMS) to stabilize single atoms is deeply studied. This strategy enables the fabrication of a satisfactory oxygen reduction reaction catalyst. The synergistic effect of the micropore capture effect and the hydroxyl group of CMS produce excellent results. The Co‐CMS catalyst displays promising applications in the field of metal–air batteries.
AbstractList Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ordered pores of the carbon molecular sieve (CMS). Related theoretical and experimental methods prove that the microporous trapping and hydroxyl doping of CMS are favorable for synergistically stabilizing the precursor and contributing to the subsequent conversion of single atoms with strong interactions between Co, O, and N. The unique 3D spiral pore structure of CMS facilitates the mass transfer of reactants and the highly dispersed Co single atoms confined in CMS increase the active sites. These properties are ideal for oxygen reduction reaction catalysts. Benefiting from the above‐mentioned superiority, the Co‐CMS cathode exhibits superior performance in a rechargeable Zn–air battery with a lower charge–discharge voltage gap of 0.77 V and a power density of 219 mW cm−2. The applications of Co‐CMS catalysts are also extended to other metal–air batteries in this work, which further highlights the advantages of carbon molecular sieves in stabilizing SACs materials.
Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ordered pores of the carbon molecular sieve (CMS). Related theoretical and experimental methods prove that the microporous trapping and hydroxyl doping of CMS are favorable for synergistically stabilizing the precursor and contributing to the subsequent conversion of single atoms with strong interactions between Co, O, and N. The unique 3D spiral pore structure of CMS facilitates the mass transfer of reactants and the highly dispersed Co single atoms confined in CMS increase the active sites. These properties are ideal for oxygen reduction reaction catalysts. Benefiting from the above‐mentioned superiority, the Co‐CMS cathode exhibits superior performance in a rechargeable Zn–air battery with a lower charge–discharge voltage gap of 0.77 V and a power density of 219 mW cm−2. The applications of Co‐CMS catalysts are also extended to other metal–air batteries in this work, which further highlights the advantages of carbon molecular sieves in stabilizing SACs materials. A new strategy for using the confinement effect of hierarchical carbon molecular sieves (CMS) to stabilize single atoms is deeply studied. This strategy enables the fabrication of a satisfactory oxygen reduction reaction catalyst. The synergistic effect of the micropore capture effect and the hydroxyl group of CMS produce excellent results. The Co‐CMS catalyst displays promising applications in the field of metal–air batteries.
Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ordered pores of the carbon molecular sieve (CMS). Related theoretical and experimental methods prove that the microporous trapping and hydroxyl doping of CMS are favorable for synergistically stabilizing the precursor and contributing to the subsequent conversion of single atoms with strong interactions between Co, O, and N. The unique 3D spiral pore structure of CMS facilitates the mass transfer of reactants and the highly dispersed Co single atoms confined in CMS increase the active sites. These properties are ideal for oxygen reduction reaction catalysts. Benefiting from the above‐mentioned superiority, the Co‐CMS cathode exhibits superior performance in a rechargeable Zn–air battery with a lower charge–discharge voltage gap of 0.77 V and a power density of 219 mW cm −2 . The applications of Co‐CMS catalysts are also extended to other metal–air batteries in this work, which further highlights the advantages of carbon molecular sieves in stabilizing SACs materials.
Author Zheng, Li‐Jun
Liang, Shuang
Zou, Lian‐Chun
Wang, Xiao‐Xue
Li, Fei
Xu, Ji‐Jing
Song, Li‐Na
Author_xml – sequence: 1
  givenname: Shuang
  surname: Liang
  fullname: Liang, Shuang
  organization: Jilin University
– sequence: 2
  givenname: Lian‐Chun
  surname: Zou
  fullname: Zou, Lian‐Chun
  organization: Jilin University
– sequence: 3
  givenname: Li‐Jun
  surname: Zheng
  fullname: Zheng, Li‐Jun
  organization: Jilin University
– sequence: 4
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: Jilin University
– sequence: 5
  givenname: Xiao‐Xue
  surname: Wang
  fullname: Wang, Xiao‐Xue
  organization: Jilin University
– sequence: 6
  givenname: Li‐Na
  surname: Song
  fullname: Song, Li‐Na
  organization: Jilin University
– sequence: 7
  givenname: Ji‐Jing
  orcidid: 0000-0002-6212-8224
  surname: Xu
  fullname: Xu, Ji‐Jing
  email: jijingxu@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkM1KQzEQhYMo-Lt1HXDdmr_23ruspVrB6kJdX5LciUbSRJNU6U7wEXxDn8SUioIgzmbOMOebgbOLNn3wgNAhJX1KCDuW4Od9RhglnDTVBtqhQyp6w1qQzW_N2TY6SOmBlBJNcfId9Da1d_duia-zVA7wOOBr6--KGuUwL6M31kOHrcdTC1FGfW-1dHgsowoez4IDvXAyFgqeAcuEJ8ZYbcFnPCm7HIOWWbplyml1ZAZl-Hh9H9mIT2TOEC2kfbRlpEtw8NX30O3p5GY87V1cnZ2PRxc9zWlV9bihpNIEunqghOKDTldMdMaIWokiFatYRxiroBMcjFLaiAGVEtSwprQTmu-ho_XdxxieFpBy-xAW0ZeXLRvyphGDuqmKq7926RhSimDax2jnMi5bStpV1u0q6_Y76wKIX4C2WWYbfI7Sur-xZo29WAfLf560o8nl7If9BObTmD0
CitedBy_id crossref_primary_10_1002_smll_202202394
crossref_primary_10_1016_j_electacta_2024_145627
crossref_primary_10_1021_acs_energyfuels_4c01379
crossref_primary_10_1016_j_cej_2023_144618
crossref_primary_10_1039_D3QM00146F
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1002_adma_202307790
crossref_primary_10_1016_j_ces_2023_119304
crossref_primary_10_1021_acsnano_4c01342
crossref_primary_10_1002_adma_202311148
crossref_primary_10_1002_cey2_554
crossref_primary_10_1016_j_jcis_2024_06_059
crossref_primary_10_1002_aic_18751
crossref_primary_10_1016_j_apsusc_2023_157719
crossref_primary_10_1021_acs_nanolett_2c01713
crossref_primary_10_1016_j_micromeso_2024_113466
crossref_primary_10_1021_acs_est_3c04916
crossref_primary_10_1002_cjoc_202200488
crossref_primary_10_1007_s40843_023_2464_8
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1002_smll_202308530
crossref_primary_10_1016_j_surfin_2023_103553
crossref_primary_10_1021_acsaem_3c01785
crossref_primary_10_1039_D4NA00847B
crossref_primary_10_1016_j_colsurfa_2023_132112
crossref_primary_10_1007_s40843_023_2527_7
crossref_primary_10_1016_j_jpowsour_2024_234130
crossref_primary_10_1016_j_ensm_2023_102890
crossref_primary_10_1021_accountsmr_2c00119
crossref_primary_10_1016_j_indcrop_2023_117047
crossref_primary_10_1002_adma_202400508
crossref_primary_10_1039_D2NR03687H
crossref_primary_10_1007_s12209_022_00353_8
crossref_primary_10_1016_j_micromeso_2024_113011
crossref_primary_10_1002_adfm_202315150
crossref_primary_10_1002_smll_202411184
crossref_primary_10_1039_D2CS00322H
crossref_primary_10_1016_j_jallcom_2023_170789
crossref_primary_10_1039_D2TA04413G
crossref_primary_10_1021_acsami_3c06886
crossref_primary_10_1002_smll_202409545
crossref_primary_10_1016_j_jallcom_2023_168782
crossref_primary_10_1021_acsnano_4c04479
crossref_primary_10_1039_D3TA02217J
crossref_primary_10_1016_j_jpowsour_2024_234797
crossref_primary_10_1002_aenm_202400347
crossref_primary_10_1016_j_apcatb_2024_124903
crossref_primary_10_1002_cjoc_202300388
crossref_primary_10_1016_j_mcat_2023_113175
crossref_primary_10_1016_j_seppur_2024_126945
crossref_primary_10_1016_j_cej_2023_147022
crossref_primary_10_1002_advs_202203391
crossref_primary_10_1002_cnl2_133
crossref_primary_10_1039_D3TA04591A
crossref_primary_10_1007_s12274_024_6700_8
crossref_primary_10_1039_D3NR04371A
crossref_primary_10_1016_j_cej_2024_154477
crossref_primary_10_1039_D2TA06050G
crossref_primary_10_1021_acscatal_4c02113
crossref_primary_10_1007_s12274_023_5501_9
crossref_primary_10_1002_adfm_202315376
crossref_primary_10_1016_j_cej_2022_141053
crossref_primary_10_1007_s11705_024_2427_z
Cites_doi 10.1038/s41467-019-09290-y
10.1039/C6TA03187K
10.1002/adma.201705369
10.1002/adma.201906548
10.1021/jp991673a
10.1002/anie.202004841
10.1021/acscatal.8b00398
10.1002/aenm.201801226
10.1002/adma.201706508
10.1038/s41467-019-14216-9
10.1002/advs.202001335
10.1021/jp0131875
10.1016/0021-9517(88)90297-7
10.1021/jacs.0c07317
10.1038/nature18284
10.1016/j.cplett.2011.06.072
10.1021/ac5043686
10.1002/aenm.202002992
10.1021/acscatal.8b02556
10.1002/adma.202003251
10.1016/j.carbon.2014.12.102
10.1002/anie.201912367
10.1021/acsnano.9b05913
10.1038/s41467-020-15712-z
10.1002/advs.201903089
10.1002/anie.201107391
10.1021/j100182a009
10.1038/s41467-019-09596-x
10.1126/science.aaf8800
10.1002/anie.202012936
10.1002/batt.201800093
10.1016/j.joule.2018.06.019
10.1039/a707677k
10.1002/smtd.201800450
10.1016/j.ccr.2018.04.018
10.1038/s41929-018-0146-x
10.1021/jacs.9b02936
10.1038/s41570-018-0010-1
10.1021/acs.chemrev.7b00776
10.1039/C5CC08170J
10.1021/jacs.9b11852
10.1038/s41565-021-00951-y
10.1002/anie.202003842
10.1002/adma.201705112
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202103097
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202103097
AENM202103097
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51771177; 51972141; 21835002; 21621001
– fundername: Fundamental Research Funds for the Central Universities
– fundername: 111 Project
  funderid: B17020
– fundername: Jilin Province Science and Technology Development Program
  funderid: 20190303104SF
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3177-3f107c0ed85b4b35dc724dff48b4c72b272d0227ed43efbbcf451aaeb6811d4c3
ISSN 1614-6832
IngestDate Fri Jul 25 12:06:47 EDT 2025
Tue Jul 01 01:43:43 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Wed Jan 22 16:27:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3177-3f107c0ed85b4b35dc724dff48b4c72b272d0227ed43efbbcf451aaeb6811d4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6212-8224
PQID 2639945897
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2639945897
crossref_primary_10_1002_aenm_202103097
crossref_citationtrail_10_1002_aenm_202103097
wiley_primary_10_1002_aenm_202103097_AENM202103097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 511
2019; 3
2018; 369
2020; 142
2019; 2
2019; 10
2019; 13
2019; 58
2020; 59
2016; 52
1999; 103
2020; 11
2020; 32
2020; 10
2019; 141
2012; 51
1992; 96
2016; 4
2020; 7
2021; 16
2018; 8
2021; 37
2018; 2
2018; 1
2018; 118
2015; 86
2015; 87
2002; 106
2016; 353
2018; 30
2016; 535
1988; 110
1998; 2
2021; 60
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Shi H. (e_1_2_7_39_1) 2021; 37
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 51
  start-page: 5842
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 86
  start-page: 108
  year: 2015
  publication-title: Carbon
– volume: 2
  start-page: 1242
  year: 2018
  publication-title: Joule
– volume: 59
  start-page: 9171
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 9305
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 369
  start-page: 15
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 4
  start-page: 9526
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 103
  start-page: 7743
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 96
  start-page: 1051
  year: 1992
  publication-title: J. Phys. Chem.
– volume: 142
  start-page: 2404
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 10
  start-page: 1278
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 511
  start-page: 384
  year: 2011
  publication-title: Chem. Phys. Lett.
– volume: 11
  start-page: 1020
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  start-page: 259
  year: 1998
  publication-title: Chem. Commun.
– volume: 87
  start-page: 2033
  year: 2015
  publication-title: Anal. Chem.
– volume: 37
  year: 2021
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 8
  start-page: 3116
  year: 2018
  publication-title: ACS Catal.
– volume: 1
  start-page: 781
  year: 2018
  publication-title: Nat. Catal.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 535
  start-page: 131
  year: 2016
  publication-title: Nature
– volume: 8
  start-page: 8961
  year: 2018
  publication-title: ACS Catal.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 272
  year: 2019
  publication-title: Batteries Supercaps
– volume: 10
  start-page: 1657
  year: 2019
  publication-title: Nat. Commun.
– volume: 118
  start-page: 4981
  year: 2018
  publication-title: Chem. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 353
  start-page: 150
  year: 2016
  publication-title: Science
– volume: 110
  start-page: 58
  year: 1988
  publication-title: J. Catal.
– volume: 2
  start-page: 65
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 60
  start-page: 1441
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 2191
  year: 2020
  publication-title: Nat. Commun.
– volume: 106
  start-page: 1256
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 52
  start-page: 72
  year: 2016
  publication-title: Chem. Commun.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 1141
  year: 2021
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_7_10_1
  doi: 10.1038/s41467-019-09290-y
– ident: e_1_2_7_45_1
  doi: 10.1039/C6TA03187K
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201705369
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201906548
– ident: e_1_2_7_29_1
  doi: 10.1021/jp991673a
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202004841
– ident: e_1_2_7_20_1
  doi: 10.1021/acscatal.8b00398
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201801226
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201706508
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-019-14216-9
– ident: e_1_2_7_27_1
  doi: 10.1002/advs.202001335
– volume: 37
  start-page: 2008033
  year: 2021
  ident: e_1_2_7_39_1
  publication-title: Acta Phys.‐Chim. Sin.
– ident: e_1_2_7_31_1
  doi: 10.1021/jp0131875
– ident: e_1_2_7_43_1
  doi: 10.1016/0021-9517(88)90297-7
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.0c07317
– ident: e_1_2_7_28_1
  doi: 10.1038/nature18284
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cplett.2011.06.072
– ident: e_1_2_7_34_1
  doi: 10.1021/ac5043686
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.202002992
– ident: e_1_2_7_38_1
  doi: 10.1021/acscatal.8b02556
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.202003251
– ident: e_1_2_7_35_1
  doi: 10.1016/j.carbon.2014.12.102
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.201912367
– ident: e_1_2_7_5_1
  doi: 10.1021/acsnano.9b05913
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-020-15712-z
– ident: e_1_2_7_6_1
  doi: 10.1002/advs.201903089
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201107391
– ident: e_1_2_7_42_1
  doi: 10.1021/j100182a009
– ident: e_1_2_7_44_1
  doi: 10.1038/s41467-019-09596-x
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aaf8800
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.202012936
– ident: e_1_2_7_33_1
  doi: 10.1002/batt.201800093
– ident: e_1_2_7_1_1
  doi: 10.1016/j.joule.2018.06.019
– ident: e_1_2_7_30_1
  doi: 10.1039/a707677k
– ident: e_1_2_7_16_1
  doi: 10.1002/smtd.201800450
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ccr.2018.04.018
– ident: e_1_2_7_7_1
  doi: 10.1038/s41929-018-0146-x
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.9b02936
– ident: e_1_2_7_9_1
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.7b00776
– ident: e_1_2_7_36_1
  doi: 10.1039/C5CC08170J
– ident: e_1_2_7_17_1
  doi: 10.1021/jacs.9b11852
– ident: e_1_2_7_25_1
  doi: 10.1038/s41565-021-00951-y
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.202003842
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201705112
SSID ssj0000491033
Score 2.5894709
Snippet Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomic properties
Carbon
carbon molecular sieves
Catalysts
Composite materials
confinement effects
Electrocatalysts
Energy storage
Mass transfer
Metal air batteries
Molecular sieves
ORR
Oxidation
Oxygen reduction reactions
Rechargeable batteries
Recyclability
single atom catalysts
Storage batteries
Zinc-oxygen batteries
Title Highly Stable Co Single Atom Confined in Hierarchical Carbon Molecular Sieve as Efficient Electrocatalysts in Metal–Air Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103097
https://www.proquest.com/docview/2639945897
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wIHxK9YWJAPSByqQOM4aThWpatq1e5ld6UVl8h_USOVFG1bpOWExCPwCLwZT8KMHbvpqoiFS5Q4sdNmvsTj0TffEPI6YwZVtJJIxyaNuOirKJdlEmV9k77PucqFwHzn2Wk2ueAnl-llp_OzxVrarOVb9XVvXsn_WBXawK6YJfsPlg2DQgPsg31hCxaG7a1sjCSNxTU6jJj_NFr2zmAigr3hevnJ5vKBC4naSr1JhXnGtuzJAjkeEmw-84VxoZf5YrDgzNjqSSA7YOyq49jgzvVqbUmzMwMHnhyRDKurnhPn9DREr2XrWQXGpRWCS-yeReD-VD5GPd-IZuLE0PVy44IEog4MjNF8E8D7cW5ct2kVzp9sT08tLeHYVO04BiyBA5Gr-fSCoxBleRPtNO02J-gUvtesjct47zzgdGWFqVFsgGEpNccC3hXcvjERBnqik3JmBfYvQv875IDBWoR1ycHww2x6FkJ5sMiCK2wqh_8PXh60z97t_ohd92e7pmmvjKxrc_6A3G_WJHToAPaQdEz9iNxrKVU-Jt8d1KiDGh0tqYMaRahRDzVa1bQNNeqgRgPUqIUaFSsaoEZvQg0HsVD79e0HgIwGkD0hF8fj89Ekaup3RAq8Upi7yrg_UH2j81RymaRaDRjXZclzyWFXsgHTqGBpNE9MKaUqeRoLYWSWx7HmKnlKuvWyNs8IzTMTK43OrlBcw2i5GWQ6TaQQCc9KfUgi_1gL1YjbY42VRbHflofkTbj-s5N1-eOVR95KRfPqrwqGfj1PczzNrOX-MkoxHJ_OwtHzW9_9Bbm7fVeOSHd9tTEvwQtey1cNCn8D7cOvFA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stable+Co+Single+Atom+Confined+in+Hierarchical+Carbon+Molecular+Sieve+as+Efficient+Electrocatalysts+in+Metal%E2%80%93Air+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Liang%2C+Shuang&rft.au=Zou%2C+Lian%E2%80%90Chun&rft.au=Zheng%2C+Li%E2%80%90Jun&rft.au=Li%2C+Fei&rft.date=2022-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=11&rft_id=info:doi/10.1002%2Faenm.202103097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202103097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon