Highly Stable Co Single Atom Confined in Hierarchical Carbon Molecular Sieve as Efficient Electrocatalysts in Metal–Air Batteries
Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ord...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202103097 |
Cover
Loading…
Abstract | Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ordered pores of the carbon molecular sieve (CMS). Related theoretical and experimental methods prove that the microporous trapping and hydroxyl doping of CMS are favorable for synergistically stabilizing the precursor and contributing to the subsequent conversion of single atoms with strong interactions between Co, O, and N. The unique 3D spiral pore structure of CMS facilitates the mass transfer of reactants and the highly dispersed Co single atoms confined in CMS increase the active sites. These properties are ideal for oxygen reduction reaction catalysts. Benefiting from the above‐mentioned superiority, the Co‐CMS cathode exhibits superior performance in a rechargeable Zn–air battery with a lower charge–discharge voltage gap of 0.77 V and a power density of 219 mW cm−2. The applications of Co‐CMS catalysts are also extended to other metal–air batteries in this work, which further highlights the advantages of carbon molecular sieves in stabilizing SACs materials.
A new strategy for using the confinement effect of hierarchical carbon molecular sieves (CMS) to stabilize single atoms is deeply studied. This strategy enables the fabrication of a satisfactory oxygen reduction reaction catalyst. The synergistic effect of the micropore capture effect and the hydroxyl group of CMS produce excellent results. The Co‐CMS catalyst displays promising applications in the field of metal–air batteries. |
---|---|
AbstractList | Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ordered pores of the carbon molecular sieve (CMS). Related theoretical and experimental methods prove that the microporous trapping and hydroxyl doping of CMS are favorable for synergistically stabilizing the precursor and contributing to the subsequent conversion of single atoms with strong interactions between Co, O, and N. The unique 3D spiral pore structure of CMS facilitates the mass transfer of reactants and the highly dispersed Co single atoms confined in CMS increase the active sites. These properties are ideal for oxygen reduction reaction catalysts. Benefiting from the above‐mentioned superiority, the Co‐CMS cathode exhibits superior performance in a rechargeable Zn–air battery with a lower charge–discharge voltage gap of 0.77 V and a power density of 219 mW cm−2. The applications of Co‐CMS catalysts are also extended to other metal–air batteries in this work, which further highlights the advantages of carbon molecular sieves in stabilizing SACs materials. Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ordered pores of the carbon molecular sieve (CMS). Related theoretical and experimental methods prove that the microporous trapping and hydroxyl doping of CMS are favorable for synergistically stabilizing the precursor and contributing to the subsequent conversion of single atoms with strong interactions between Co, O, and N. The unique 3D spiral pore structure of CMS facilitates the mass transfer of reactants and the highly dispersed Co single atoms confined in CMS increase the active sites. These properties are ideal for oxygen reduction reaction catalysts. Benefiting from the above‐mentioned superiority, the Co‐CMS cathode exhibits superior performance in a rechargeable Zn–air battery with a lower charge–discharge voltage gap of 0.77 V and a power density of 219 mW cm−2. The applications of Co‐CMS catalysts are also extended to other metal–air batteries in this work, which further highlights the advantages of carbon molecular sieves in stabilizing SACs materials. A new strategy for using the confinement effect of hierarchical carbon molecular sieves (CMS) to stabilize single atoms is deeply studied. This strategy enables the fabrication of a satisfactory oxygen reduction reaction catalyst. The synergistic effect of the micropore capture effect and the hydroxyl group of CMS produce excellent results. The Co‐CMS catalyst displays promising applications in the field of metal–air batteries. Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their oxidation and agglomeration. To address this challenge, herein, a Co‐CMS composite material is synthesized by confining Co SACs into the highly ordered pores of the carbon molecular sieve (CMS). Related theoretical and experimental methods prove that the microporous trapping and hydroxyl doping of CMS are favorable for synergistically stabilizing the precursor and contributing to the subsequent conversion of single atoms with strong interactions between Co, O, and N. The unique 3D spiral pore structure of CMS facilitates the mass transfer of reactants and the highly dispersed Co single atoms confined in CMS increase the active sites. These properties are ideal for oxygen reduction reaction catalysts. Benefiting from the above‐mentioned superiority, the Co‐CMS cathode exhibits superior performance in a rechargeable Zn–air battery with a lower charge–discharge voltage gap of 0.77 V and a power density of 219 mW cm −2 . The applications of Co‐CMS catalysts are also extended to other metal–air batteries in this work, which further highlights the advantages of carbon molecular sieves in stabilizing SACs materials. |
Author | Zheng, Li‐Jun Liang, Shuang Zou, Lian‐Chun Wang, Xiao‐Xue Li, Fei Xu, Ji‐Jing Song, Li‐Na |
Author_xml | – sequence: 1 givenname: Shuang surname: Liang fullname: Liang, Shuang organization: Jilin University – sequence: 2 givenname: Lian‐Chun surname: Zou fullname: Zou, Lian‐Chun organization: Jilin University – sequence: 3 givenname: Li‐Jun surname: Zheng fullname: Zheng, Li‐Jun organization: Jilin University – sequence: 4 givenname: Fei surname: Li fullname: Li, Fei organization: Jilin University – sequence: 5 givenname: Xiao‐Xue surname: Wang fullname: Wang, Xiao‐Xue organization: Jilin University – sequence: 6 givenname: Li‐Na surname: Song fullname: Song, Li‐Na organization: Jilin University – sequence: 7 givenname: Ji‐Jing orcidid: 0000-0002-6212-8224 surname: Xu fullname: Xu, Ji‐Jing email: jijingxu@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkM1KQzEQhYMo-Lt1HXDdmr_23ruspVrB6kJdX5LciUbSRJNU6U7wEXxDn8SUioIgzmbOMOebgbOLNn3wgNAhJX1KCDuW4Od9RhglnDTVBtqhQyp6w1qQzW_N2TY6SOmBlBJNcfId9Da1d_duia-zVA7wOOBr6--KGuUwL6M31kOHrcdTC1FGfW-1dHgsowoez4IDvXAyFgqeAcuEJ8ZYbcFnPCm7HIOWWbplyml1ZAZl-Hh9H9mIT2TOEC2kfbRlpEtw8NX30O3p5GY87V1cnZ2PRxc9zWlV9bihpNIEunqghOKDTldMdMaIWokiFatYRxiroBMcjFLaiAGVEtSwprQTmu-ho_XdxxieFpBy-xAW0ZeXLRvyphGDuqmKq7926RhSimDax2jnMi5bStpV1u0q6_Y76wKIX4C2WWYbfI7Sur-xZo29WAfLf560o8nl7If9BObTmD0 |
CitedBy_id | crossref_primary_10_1002_smll_202202394 crossref_primary_10_1016_j_electacta_2024_145627 crossref_primary_10_1021_acs_energyfuels_4c01379 crossref_primary_10_1016_j_cej_2023_144618 crossref_primary_10_1039_D3QM00146F crossref_primary_10_1039_D2CS00931E crossref_primary_10_1002_adma_202307790 crossref_primary_10_1016_j_ces_2023_119304 crossref_primary_10_1021_acsnano_4c01342 crossref_primary_10_1002_adma_202311148 crossref_primary_10_1002_cey2_554 crossref_primary_10_1016_j_jcis_2024_06_059 crossref_primary_10_1002_aic_18751 crossref_primary_10_1016_j_apsusc_2023_157719 crossref_primary_10_1021_acs_nanolett_2c01713 crossref_primary_10_1016_j_micromeso_2024_113466 crossref_primary_10_1021_acs_est_3c04916 crossref_primary_10_1002_cjoc_202200488 crossref_primary_10_1007_s40843_023_2464_8 crossref_primary_10_1002_smll_202305782 crossref_primary_10_1002_smll_202308530 crossref_primary_10_1016_j_surfin_2023_103553 crossref_primary_10_1021_acsaem_3c01785 crossref_primary_10_1039_D4NA00847B crossref_primary_10_1016_j_colsurfa_2023_132112 crossref_primary_10_1007_s40843_023_2527_7 crossref_primary_10_1016_j_jpowsour_2024_234130 crossref_primary_10_1016_j_ensm_2023_102890 crossref_primary_10_1021_accountsmr_2c00119 crossref_primary_10_1016_j_indcrop_2023_117047 crossref_primary_10_1002_adma_202400508 crossref_primary_10_1039_D2NR03687H crossref_primary_10_1007_s12209_022_00353_8 crossref_primary_10_1016_j_micromeso_2024_113011 crossref_primary_10_1002_adfm_202315150 crossref_primary_10_1002_smll_202411184 crossref_primary_10_1039_D2CS00322H crossref_primary_10_1016_j_jallcom_2023_170789 crossref_primary_10_1039_D2TA04413G crossref_primary_10_1021_acsami_3c06886 crossref_primary_10_1002_smll_202409545 crossref_primary_10_1016_j_jallcom_2023_168782 crossref_primary_10_1021_acsnano_4c04479 crossref_primary_10_1039_D3TA02217J crossref_primary_10_1016_j_jpowsour_2024_234797 crossref_primary_10_1002_aenm_202400347 crossref_primary_10_1016_j_apcatb_2024_124903 crossref_primary_10_1002_cjoc_202300388 crossref_primary_10_1016_j_mcat_2023_113175 crossref_primary_10_1016_j_seppur_2024_126945 crossref_primary_10_1016_j_cej_2023_147022 crossref_primary_10_1002_advs_202203391 crossref_primary_10_1002_cnl2_133 crossref_primary_10_1039_D3TA04591A crossref_primary_10_1007_s12274_024_6700_8 crossref_primary_10_1039_D3NR04371A crossref_primary_10_1016_j_cej_2024_154477 crossref_primary_10_1039_D2TA06050G crossref_primary_10_1021_acscatal_4c02113 crossref_primary_10_1007_s12274_023_5501_9 crossref_primary_10_1002_adfm_202315376 crossref_primary_10_1016_j_cej_2022_141053 crossref_primary_10_1007_s11705_024_2427_z |
Cites_doi | 10.1038/s41467-019-09290-y 10.1039/C6TA03187K 10.1002/adma.201705369 10.1002/adma.201906548 10.1021/jp991673a 10.1002/anie.202004841 10.1021/acscatal.8b00398 10.1002/aenm.201801226 10.1002/adma.201706508 10.1038/s41467-019-14216-9 10.1002/advs.202001335 10.1021/jp0131875 10.1016/0021-9517(88)90297-7 10.1021/jacs.0c07317 10.1038/nature18284 10.1016/j.cplett.2011.06.072 10.1021/ac5043686 10.1002/aenm.202002992 10.1021/acscatal.8b02556 10.1002/adma.202003251 10.1016/j.carbon.2014.12.102 10.1002/anie.201912367 10.1021/acsnano.9b05913 10.1038/s41467-020-15712-z 10.1002/advs.201903089 10.1002/anie.201107391 10.1021/j100182a009 10.1038/s41467-019-09596-x 10.1126/science.aaf8800 10.1002/anie.202012936 10.1002/batt.201800093 10.1016/j.joule.2018.06.019 10.1039/a707677k 10.1002/smtd.201800450 10.1016/j.ccr.2018.04.018 10.1038/s41929-018-0146-x 10.1021/jacs.9b02936 10.1038/s41570-018-0010-1 10.1021/acs.chemrev.7b00776 10.1039/C5CC08170J 10.1021/jacs.9b11852 10.1038/s41565-021-00951-y 10.1002/anie.202003842 10.1002/adma.201705112 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202103097 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202103097 AENM202103097 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51771177; 51972141; 21835002; 21621001 – fundername: Fundamental Research Funds for the Central Universities – fundername: 111 Project funderid: B17020 – fundername: Jilin Province Science and Technology Development Program funderid: 20190303104SF |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3177-3f107c0ed85b4b35dc724dff48b4c72b272d0227ed43efbbcf451aaeb6811d4c3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:06:47 EDT 2025 Tue Jul 01 01:43:43 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Wed Jan 22 16:27:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3177-3f107c0ed85b4b35dc724dff48b4c72b272d0227ed43efbbcf451aaeb6811d4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6212-8224 |
PQID | 2639945897 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2639945897 crossref_primary_10_1002_aenm_202103097 crossref_citationtrail_10_1002_aenm_202103097 wiley_primary_10_1002_aenm_202103097_AENM202103097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 511 2019; 3 2018; 369 2020; 142 2019; 2 2019; 10 2019; 13 2019; 58 2020; 59 2016; 52 1999; 103 2020; 11 2020; 32 2020; 10 2019; 141 2012; 51 1992; 96 2016; 4 2020; 7 2021; 16 2018; 8 2021; 37 2018; 2 2018; 1 2018; 118 2015; 86 2015; 87 2002; 106 2016; 353 2018; 30 2016; 535 1988; 110 1998; 2 2021; 60 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Shi H. (e_1_2_7_39_1) 2021; 37 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 51 start-page: 5842 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 86 start-page: 108 year: 2015 publication-title: Carbon – volume: 2 start-page: 1242 year: 2018 publication-title: Joule – volume: 59 start-page: 9171 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 9305 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 369 start-page: 15 year: 2018 publication-title: Coord. Chem. Rev. – volume: 4 start-page: 9526 year: 2016 publication-title: J. Mater. Chem. A – volume: 103 start-page: 7743 year: 1999 publication-title: J. Phys. Chem. B – volume: 96 start-page: 1051 year: 1992 publication-title: J. Phys. Chem. – volume: 142 start-page: 2404 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 10 start-page: 1278 year: 2019 publication-title: Nat. Commun. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 511 start-page: 384 year: 2011 publication-title: Chem. Phys. Lett. – volume: 11 start-page: 1020 year: 2020 publication-title: Nat. Commun. – volume: 2 start-page: 259 year: 1998 publication-title: Chem. Commun. – volume: 87 start-page: 2033 year: 2015 publication-title: Anal. Chem. – volume: 37 year: 2021 publication-title: Acta Phys.‐Chim. Sin. – volume: 8 start-page: 3116 year: 2018 publication-title: ACS Catal. – volume: 1 start-page: 781 year: 2018 publication-title: Nat. Catal. – volume: 3 year: 2019 publication-title: Small Methods – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 535 start-page: 131 year: 2016 publication-title: Nature – volume: 8 start-page: 8961 year: 2018 publication-title: ACS Catal. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 272 year: 2019 publication-title: Batteries Supercaps – volume: 10 start-page: 1657 year: 2019 publication-title: Nat. Commun. – volume: 118 start-page: 4981 year: 2018 publication-title: Chem. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 353 start-page: 150 year: 2016 publication-title: Science – volume: 110 start-page: 58 year: 1988 publication-title: J. Catal. – volume: 2 start-page: 65 year: 2018 publication-title: Nat. Rev. Chem. – volume: 60 start-page: 1441 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 2191 year: 2020 publication-title: Nat. Commun. – volume: 106 start-page: 1256 year: 2002 publication-title: J. Phys. Chem. B – volume: 52 start-page: 72 year: 2016 publication-title: Chem. Commun. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 1141 year: 2021 publication-title: Nat. Nanotechnol. – ident: e_1_2_7_10_1 doi: 10.1038/s41467-019-09290-y – ident: e_1_2_7_45_1 doi: 10.1039/C6TA03187K – ident: e_1_2_7_15_1 doi: 10.1002/adma.201705369 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201906548 – ident: e_1_2_7_29_1 doi: 10.1021/jp991673a – ident: e_1_2_7_18_1 doi: 10.1002/anie.202004841 – ident: e_1_2_7_20_1 doi: 10.1021/acscatal.8b00398 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201801226 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201706508 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-019-14216-9 – ident: e_1_2_7_27_1 doi: 10.1002/advs.202001335 – volume: 37 start-page: 2008033 year: 2021 ident: e_1_2_7_39_1 publication-title: Acta Phys.‐Chim. Sin. – ident: e_1_2_7_31_1 doi: 10.1021/jp0131875 – ident: e_1_2_7_43_1 doi: 10.1016/0021-9517(88)90297-7 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.0c07317 – ident: e_1_2_7_28_1 doi: 10.1038/nature18284 – ident: e_1_2_7_37_1 doi: 10.1016/j.cplett.2011.06.072 – ident: e_1_2_7_34_1 doi: 10.1021/ac5043686 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.202002992 – ident: e_1_2_7_38_1 doi: 10.1021/acscatal.8b02556 – ident: e_1_2_7_41_1 doi: 10.1002/adma.202003251 – ident: e_1_2_7_35_1 doi: 10.1016/j.carbon.2014.12.102 – ident: e_1_2_7_3_1 doi: 10.1002/anie.201912367 – ident: e_1_2_7_5_1 doi: 10.1021/acsnano.9b05913 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-020-15712-z – ident: e_1_2_7_6_1 doi: 10.1002/advs.201903089 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201107391 – ident: e_1_2_7_42_1 doi: 10.1021/j100182a009 – ident: e_1_2_7_44_1 doi: 10.1038/s41467-019-09596-x – ident: e_1_2_7_8_1 doi: 10.1126/science.aaf8800 – ident: e_1_2_7_32_1 doi: 10.1002/anie.202012936 – ident: e_1_2_7_33_1 doi: 10.1002/batt.201800093 – ident: e_1_2_7_1_1 doi: 10.1016/j.joule.2018.06.019 – ident: e_1_2_7_30_1 doi: 10.1039/a707677k – ident: e_1_2_7_16_1 doi: 10.1002/smtd.201800450 – ident: e_1_2_7_26_1 doi: 10.1016/j.ccr.2018.04.018 – ident: e_1_2_7_7_1 doi: 10.1038/s41929-018-0146-x – ident: e_1_2_7_23_1 doi: 10.1021/jacs.9b02936 – ident: e_1_2_7_9_1 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.7b00776 – ident: e_1_2_7_36_1 doi: 10.1039/C5CC08170J – ident: e_1_2_7_17_1 doi: 10.1021/jacs.9b11852 – ident: e_1_2_7_25_1 doi: 10.1038/s41565-021-00951-y – ident: e_1_2_7_19_1 doi: 10.1002/anie.202003842 – ident: e_1_2_7_21_1 doi: 10.1002/adma.201705112 |
SSID | ssj0000491033 |
Score | 2.5894709 |
Snippet | Single atoms catalysts’ (SACs) applications in the energy storage field are hindered by their insufficient stability and poor recyclability due to their... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomic properties Carbon carbon molecular sieves Catalysts Composite materials confinement effects Electrocatalysts Energy storage Mass transfer Metal air batteries Molecular sieves ORR Oxidation Oxygen reduction reactions Rechargeable batteries Recyclability single atom catalysts Storage batteries Zinc-oxygen batteries |
Title | Highly Stable Co Single Atom Confined in Hierarchical Carbon Molecular Sieve as Efficient Electrocatalysts in Metal–Air Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103097 https://www.proquest.com/docview/2639945897 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wIHxK9YWJAPSByqQOM4aThWpatq1e5ld6UVl8h_USOVFG1bpOWExCPwCLwZT8KMHbvpqoiFS5Q4sdNmvsTj0TffEPI6YwZVtJJIxyaNuOirKJdlEmV9k77PucqFwHzn2Wk2ueAnl-llp_OzxVrarOVb9XVvXsn_WBXawK6YJfsPlg2DQgPsg31hCxaG7a1sjCSNxTU6jJj_NFr2zmAigr3hevnJ5vKBC4naSr1JhXnGtuzJAjkeEmw-84VxoZf5YrDgzNjqSSA7YOyq49jgzvVqbUmzMwMHnhyRDKurnhPn9DREr2XrWQXGpRWCS-yeReD-VD5GPd-IZuLE0PVy44IEog4MjNF8E8D7cW5ct2kVzp9sT08tLeHYVO04BiyBA5Gr-fSCoxBleRPtNO02J-gUvtesjct47zzgdGWFqVFsgGEpNccC3hXcvjERBnqik3JmBfYvQv875IDBWoR1ycHww2x6FkJ5sMiCK2wqh_8PXh60z97t_ohd92e7pmmvjKxrc_6A3G_WJHToAPaQdEz9iNxrKVU-Jt8d1KiDGh0tqYMaRahRDzVa1bQNNeqgRgPUqIUaFSsaoEZvQg0HsVD79e0HgIwGkD0hF8fj89Ekaup3RAq8Upi7yrg_UH2j81RymaRaDRjXZclzyWFXsgHTqGBpNE9MKaUqeRoLYWSWx7HmKnlKuvWyNs8IzTMTK43OrlBcw2i5GWQ6TaQQCc9KfUgi_1gL1YjbY42VRbHflofkTbj-s5N1-eOVR95KRfPqrwqGfj1PczzNrOX-MkoxHJ_OwtHzW9_9Bbm7fVeOSHd9tTEvwQtey1cNCn8D7cOvFA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stable+Co+Single+Atom+Confined+in+Hierarchical+Carbon+Molecular+Sieve+as+Efficient+Electrocatalysts+in+Metal%E2%80%93Air+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Liang%2C+Shuang&rft.au=Zou%2C+Lian%E2%80%90Chun&rft.au=Zheng%2C+Li%E2%80%90Jun&rft.au=Li%2C+Fei&rft.date=2022-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=11&rft_id=info:doi/10.1002%2Faenm.202103097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202103097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |