Low‐Dose Cu Ions Assisted by Mild Thermal Stimulus Inducing Bacterial Cuproptosis‐Like Death for Antibiosis and Biointegration

Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuprop...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 1
Main Authors Xue, Yang, Zhang, Lan, Zhou, Jianhong, Chen, Jun, Ma, Yuwei, Han, Yong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic. To explore whether cuproptosis‐like death can be induced in MRSA at low‐dose Cu ions, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK). PC with improved photothermal response and Cu release endows outstanding antibacterial activity and biointegration for PEEK, simultaneously. Mild photothermal stimulation by PC increases bacterial membrane permeability, accelerating Cu ions intake, and thus inducing cuproptosis‐like bacterial killing.
AbstractList Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic.
Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic.
Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic. To explore whether cuproptosis‐like death can be induced in MRSA at low‐dose Cu ions, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK). PC with improved photothermal response and Cu release endows outstanding antibacterial activity and biointegration for PEEK, simultaneously. Mild photothermal stimulation by PC increases bacterial membrane permeability, accelerating Cu ions intake, and thus inducing cuproptosis‐like bacterial killing.
Author Chen, Jun
Han, Yong
Xue, Yang
Zhou, Jianhong
Zhang, Lan
Ma, Yuwei
Author_xml – sequence: 1
  givenname: Yang
  surname: Xue
  fullname: Xue, Yang
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Lan
  orcidid: 0000-0002-2162-3333
  surname: Zhang
  fullname: Zhang, Lan
  email: lan.zhang@mail.xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Jianhong
  surname: Zhou
  fullname: Zhou, Jianhong
  organization: Baoji University of Arts and Science
– sequence: 4
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: Xi'an People's Hospital (Xi'an No. 4 Hospital)
– sequence: 5
  givenname: Yuwei
  surname: Ma
  fullname: Ma, Yuwei
  organization: Baoji University of Arts and Science
– sequence: 6
  givenname: Yong
  surname: Han
  fullname: Han, Yong
  email: yonghan@mail.xjtu.edu.cn
  organization: The First Affiliated Hospital of Xi’an Jiaotong University
BookMark eNqFkE1LAzEQhoNUsK1ePQc8t-Zjv3Lsh9VCxYMVvC1pdlZTt0lNspTexF_gb_SXuLWiIIinGXjnmXfm7aCWsQYQOqWkTwlh57IoV31GGCcZFekBatOEJj1OWNb67un9Eep4vySEpimP2uh1ZjfvL29j6wGPajy1xuOB99oHKPBii691VeD5I7iVrPBt0Ku6qj2emqJW2jzgoVQBnG60Ub12dh1sgzb7ZvoJ8BhkeMSldXhggl7onYalKfBQW20CPDgZtDXH6LCUlYeTr9pFd5OL-eiqN7u5nI4Gs57izbE9rliUUBJDyVUpVCKkAsW4SmScylJFLIsVEwXJ4phHqVBRDBArKZlQRQnRgnfR2X5vc-hzDT7kS1s701jmTJBMZFHchNdF_f2UctZ7B2W-dnol3TanJN_lnO9yzr9zboDoF6B0-HwsOKmrvzGxxza6gu0_JvlgPLn-YT8AmyyYww
CitedBy_id crossref_primary_10_1039_D4NR05003G
crossref_primary_10_1002_adhm_202400851
crossref_primary_10_1016_j_compositesb_2024_111938
crossref_primary_10_1021_acsami_4c22546
crossref_primary_10_1002_adhm_202400652
crossref_primary_10_1016_j_actbio_2024_06_002
crossref_primary_10_1016_j_cej_2024_151789
crossref_primary_10_1002_advs_202410606
crossref_primary_10_1039_D4QM00935E
crossref_primary_10_1002_advs_202407251
crossref_primary_10_1002_smll_202409824
crossref_primary_10_1002_advs_202408580
crossref_primary_10_1002_admi_202400146
crossref_primary_10_1016_j_fbio_2024_105705
crossref_primary_10_1002_advs_202401047
crossref_primary_10_1016_j_ijbiomac_2024_135509
crossref_primary_10_1002_adma_202403253
crossref_primary_10_1016_j_ijbiomac_2024_134518
crossref_primary_10_1016_j_cej_2024_155081
crossref_primary_10_1021_acs_langmuir_4c02683
crossref_primary_10_1021_acsmaterialslett_4c01165
crossref_primary_10_1007_s42765_024_00487_5
crossref_primary_10_1002_anbr_202400018
crossref_primary_10_1016_j_jcis_2024_12_120
crossref_primary_10_1016_j_ijbiomac_2024_139428
crossref_primary_10_1002_advs_202410621
crossref_primary_10_1002_adma_202405953
crossref_primary_10_1016_j_biomaterials_2025_123249
crossref_primary_10_3389_fphar_2024_1533964
Cites_doi 10.1002/adfm.202105348
10.1016/j.biomaterials.2022.121663
10.1021/acsami.1c04895
10.1002/adhm.202200998
10.1002/adfm.202214873
10.1021/acsnano.1c03214
10.1016/j.ceramint.2018.12.158
10.1016/j.jhazmat.2021.126236
10.1016/j.biomaterials.2020.120634
10.1126/science.abf0529
10.1016/j.powtec.2022.118026
10.1016/j.jmst.2021.01.074
10.1021/acs.analchem.2c04603
10.1021/acsami.7b02380
10.1186/s12943-023-01752-8
10.1016/j.apmt.2022.101723
10.1016/j.actbio.2022.09.019
10.1038/s41467-021-23069-0
10.1002/adfm.202206863
10.1016/j.cis.2022.102686
10.1002/adfm.202302908
10.1002/adfm.202208024
10.1039/C5TB01679G
10.1016/j.bioactmat.2022.03.011
10.1002/smll.202206265
10.1021/acsami.2c20711
10.1038/s41467-022-29877-2
10.1002/adhm.202300054
10.1002/adma.202301664
10.1002/adfm.202104799
10.1016/j.bioactmat.2021.06.029
10.1007/s12274-022-4815-3
10.1126/sciadv.adf8645
10.1016/j.jhazmat.2022.130081
10.1016/j.biomaterials.2020.120593
10.1016/j.cej.2022.137881
10.1016/j.jhazmat.2020.123542
10.1016/j.mtchem.2023.101410
10.1002/adma.202303432
10.1002/adfm.202106978
10.1002/adfm.202304162
10.1002/smll.202205248
10.1021/acsami.9b19596
10.1016/j.cej.2022.134915
10.1002/adfm.202008054
10.1016/j.ceramint.2022.11.337
10.1016/j.bioactmat.2020.01.001
10.1021/acsami.2c13566
10.1021/acsnano.2c10960
10.1021/acsami.2c21672
10.1038/s41423-022-00866-1
10.1002/adfm.202112683
10.1002/adma.202106314
10.1111/prd.12418
10.1002/smll.202205682
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202308197
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202308197
ADFM202308197
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province
  funderid: 2021JC‐07; 2023‐JC‐ZD‐20
– fundername: National Natural Science Foundation of China
  funderid: 51771142; 51971171; 82072075
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-3c246105ef3cf9c69acec23c6a57afc4285c29d08553479c45ee5caa29cdfe4b3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 03:05:22 EDT 2025
Tue Jul 01 00:30:49 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:15:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-3c246105ef3cf9c69acec23c6a57afc4285c29d08553479c45ee5caa29cdfe4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2162-3333
PQID 2908984502
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_journals_2908984502
crossref_primary_10_1002_adfm_202308197
crossref_citationtrail_10_1002_adfm_202308197
wiley_primary_10_1002_adfm_202308197_ADFM202308197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2023 2023; 29 30
2023; 95
2023; 35
2023 2023; 33
2015; 3
2021; 88
2023; 12
2023; 17
2023; 15
2021; 268
2021 2021; 31 12
2023; 9
2021; 402
2023; 19
2021 2022 2022; 32 14 153
2020; 12
2022; 88
2017 2023 2022; 9 443 287
2022; 435
2021; 13
2020; 5
2021; 31
2023; 22
2023
2023; 49
2022; 8
2019; 45
2021; 416
2023 2021; 7 31
2022; 34
2022; 13
2023; 413
2022; 15
2022; 32
2022; 11
2022; 449
2021 2021; 269 15
2022; 305
2022; 18
2022; 19
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_36_2
e_1_2_8_19_3
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
Tian H. (e_1_2_8_36_1) 2023; 7
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_40_3
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_2
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 32 14 153
  start-page: 573
  year: 2021 2022 2022
  publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces Acta Biomater.
– volume: 88
  start-page: 182
  year: 2022
  publication-title: Periodontol 2000
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 402
  year: 2021
  publication-title: J. Hazard. Mater.
– year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 2711
  year: 2023
  publication-title: ACS Nano
– volume: 305
  year: 2022
  publication-title: Adv. Colloid Interface Sci.
– volume: 3
  start-page: 8738
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 12
  year: 2023
  publication-title: Adv. Healthcare Mater.
– volume: 449
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 116
  year: 2020
  publication-title: Bioact. Mater.
– volume: 31 12
  start-page: 3303
  year: 2021 2021
  publication-title: Adv. Funct. Mater. Nat. Commun.
– volume: 33
  year: 2023 2023
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 88
  start-page: 240
  year: 2021
  publication-title: J. Mater. Sci. Technol.
– volume: 375
  start-page: 1254
  year: 2022
  publication-title: Science
– volume: 8
  start-page: 1
  year: 2022
  publication-title: Bioact. Mater.
– volume: 12
  start-page: 361
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 19
  start-page: 867
  year: 2022
  publication-title: Cell Mol. Immunol.
– volume: 95
  start-page: 6203
  year: 2023
  publication-title: Anal. Chem.
– volume: 416
  year: 2021
  publication-title: J. Hazard. Mater.
– volume: 18
  start-page: 228
  year: 2022
  publication-title: Bioact. Mater.
– volume: 413
  year: 2023
  publication-title: Powder Technol.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 269 15
  year: 2021 2021
  publication-title: Biomaterials ACS Nano
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 49
  year: 2023
  publication-title: Ceram. Int.
– volume: 15
  start-page: 9298
  year: 2022
  publication-title: Nano Res.
– volume: 268
  year: 2021
  publication-title: Biomaterials
– volume: 29 30
  year: 2023 2023
  publication-title: Mater. Today Chem. Appl. Mater. Today
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 2477
  year: 2022
  publication-title: Nat. Commun.
– volume: 7 31
  start-page: 24
  year: 2023 2021
  publication-title: Acta Biomater. Adv. Funct. Mater.
– volume: 45
  start-page: 6693
  year: 2019
  publication-title: Ceram. Int.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 22
  start-page: 59
  year: 2023
  publication-title: Mol. Cancer
– volume: 11
  year: 2022
  publication-title: Adv. Healthcare Mater.
– volume: 9 443 287
  year: 2017 2023 2022
  publication-title: ACS Appl. Mater. Interfaces J. Hazard. Mater. Biomaterials
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.202105348
– ident: e_1_2_8_40_3
  doi: 10.1016/j.biomaterials.2022.121663
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.1c04895
– ident: e_1_2_8_21_1
  doi: 10.1002/adhm.202200998
– ident: e_1_2_8_11_2
  doi: 10.1002/adfm.202214873
– ident: e_1_2_8_14_2
  doi: 10.1021/acsnano.1c03214
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ceramint.2018.12.158
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jhazmat.2021.126236
– ident: e_1_2_8_14_1
  doi: 10.1016/j.biomaterials.2020.120634
– ident: e_1_2_8_9_1
  doi: 10.1126/science.abf0529
– ident: e_1_2_8_23_1
  doi: 10.1016/j.powtec.2022.118026
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jmst.2021.01.074
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.analchem.2c04603
– ident: e_1_2_8_40_1
  doi: 10.1021/acsami.7b02380
– ident: e_1_2_8_47_1
  doi: 10.1186/s12943-023-01752-8
– ident: e_1_2_8_29_2
  doi: 10.1016/j.apmt.2022.101723
– ident: e_1_2_8_19_3
  doi: 10.1016/j.actbio.2022.09.019
– ident: e_1_2_8_1_2
  doi: 10.1038/s41467-021-23069-0
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.202206863
– ident: e_1_2_8_35_1
  doi: 10.1016/j.cis.2022.102686
– ident: e_1_2_8_12_1
  doi: 10.1002/adfm.202302908
– ident: e_1_2_8_7_1
  doi: 10.1002/adfm.202208024
– ident: e_1_2_8_22_1
  doi: 10.1039/C5TB01679G
– ident: e_1_2_8_42_1
  doi: 10.1016/j.bioactmat.2022.03.011
– ident: e_1_2_8_31_1
  doi: 10.1002/smll.202206265
– ident: e_1_2_8_18_1
  doi: 10.1021/acsami.2c20711
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-022-29877-2
– ident: e_1_2_8_33_1
  doi: 10.1002/adhm.202300054
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.202301664
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.202104799
– ident: e_1_2_8_13_1
  doi: 10.1016/j.bioactmat.2021.06.029
– volume: 7
  start-page: 24
  year: 2023
  ident: e_1_2_8_36_1
  publication-title: Acta Biomater.
– ident: e_1_2_8_43_1
  doi: 10.1007/s12274-022-4815-3
– ident: e_1_2_8_3_1
  doi: 10.1126/sciadv.adf8645
– ident: e_1_2_8_40_2
  doi: 10.1016/j.jhazmat.2022.130081
– ident: e_1_2_8_6_1
  doi: 10.1016/j.biomaterials.2020.120593
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cej.2022.137881
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jhazmat.2020.123542
– ident: e_1_2_8_29_1
  doi: 10.1016/j.mtchem.2023.101410
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202303432
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202106978
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.202304162
– ident: e_1_2_8_39_1
  doi: 10.1002/smll.202205248
– ident: e_1_2_8_44_1
  doi: 10.1021/acsami.9b19596
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cej.2022.134915
– ident: e_1_2_8_36_2
  doi: 10.1002/adfm.202008054
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ceramint.2022.11.337
– ident: e_1_2_8_17_1
  doi: 10.1016/j.bioactmat.2020.01.001
– ident: e_1_2_8_19_2
  doi: 10.1021/acsami.2c13566
– ident: e_1_2_8_26_1
  doi: 10.1021/acsnano.2c10960
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.2c21672
– ident: e_1_2_8_37_1
  doi: 10.1038/s41423-022-00866-1
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.202112683
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.202106314
– ident: e_1_2_8_2_1
  doi: 10.1111/prd.12418
– ident: e_1_2_8_41_1
  doi: 10.1002/smll.202205682
SSID ssj0017734
Score 2.6031976
Snippet Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target...
Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms antibiosis
biointegration
Copper
cuproptosis
Cu‐doped hydroxyapatite
Destabilization
Glutathione
Hydroxyapatite
Irradiation
Nanorods
Near infrared radiation
Peroxides
photothermal
Polyether ether ketones
Proteins
Staphylococcus infections
Title Low‐Dose Cu Ions Assisted by Mild Thermal Stimulus Inducing Bacterial Cuproptosis‐Like Death for Antibiosis and Biointegration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202308197
https://www.proquest.com/docview/2908984502
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRpSXPCAxFRLHdtqxtFQFtQw8pG6R49hSRUkQTYRgQvwCfiO_hLumSQsSQoItUXxWbN_5Ptt3nwk5dB3l10ToVhWD5So3LticBXOvhQ6zlvmh9THBuXcpO7f8oi_6M1n8OT9EueGGljGer9HAVTg6mZKGqshiJjlAaHBqmE6OAVuIiq5K_ijX9_NjZeligJfbL1gbHXbyVfyrV5pCzVnAOvY47RWiin_NA03ujrM0PNYv32gc_9OYVbI8gaO0kevPGpkz8TpZmiEp3CBv3eTp4_W9lYwMbWb0HNSUwqCiekQ0fKa9wTCioG0www_pdTq4z4bZiOKVIBrk6WlOBw3fmhk05SFNQBTq6w7uDG0hAKWAm2kjxuQV_EZVHNHTQVIQWYDibJLb9tlNs1Od3NxQ1YBHYNbSSFPnCGM9beta1pU2mnlaKuErq2HJIzSrRxgjh5msmgtjhFaK1XVkDQ-9LTIfJ7HZJlR5VkSSS8-THjdMKE_4xkjfcg4OWMoKqRYjF-gJrTnerjEMckJmFmDfBmXfVshRWf4hJ_T4seReoQjBxLBHAcNz0hoXDqsQNh7RX2oJGq12r3zb-YvQLlmEZ55v_OyR-fQxM_sAhdLwgCw0Wr3u9cFY7T8BSzgEdg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH8a7MA4wMaGKGObD5M4FRLHf9pjaanK1nLYQOIWOY4tVZQErYmm7YT4BPuM-yR7r2kCTEKTxjGJnxXb79k_2-_9HsDHMDC6I5OwbThuV4UL0eY8mnsnCbj3XCdeU4Dz5FSNzsWnC1l7E1IsTMUP0Ry4kWUs5msycDqQPrxjDTWpp1ByxNC4qukVeE5pvYk-f_ClYZAKta4ullVILl7hRc3bGPDDh_IP16U7sHkfsi7WnOEmJPXfVq4mlwdlkRzYn38ROT6pOS9hY4lIWa9SoVfwzGVbsH6Pp_A13I7z779vfg3yuWP9kp2gpjIcV9KQlCU_2GQ6SxkqHE7yM_a1mF6Vs3LOKCuIRXl2VDFC47d-iW25LnIUxfrG00vHBoRBGUJn1ssofoW-MZOl7Gia11wWqDtv4Hx4fNYftZfJG9oWIQlOXJaY6gLpfGR916qusc7yyCojtfEWdz3S8m5KbnIUzGqFdE5aY3jXpt6JJNqG1SzP3A4wE3mZKqGiSEXCcWkiqZ1T2guBa7BSLWjXQxfbJbM5JdiYxRUnM4-pb-Omb1uw35S_rjg9Hi25V2tCvLTteczpqrQjZMBbwBdD-o9a4t5gOGmedv9H6AOsjc4m43h8cvr5LbzA96I6B9qD1eJb6d4hMiqS9wvd_wNWKgb-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkRA98EYNFNgDEqe09nof8TGNiVpIKgRUys1ar3elqMGOiC0EJ8Qv4Df2l3Qmjt0UCSHB0fbOyrs7s_PtY74BeBUGRg9kFvYNx-WqcCHanEdzH2QB957rzGsKcJ6equMz8XYmZ1tR_A0_RLfhRpaxnq_JwJe5P7wiDTW5p0hyhNDo1PRNuCVUEFPyhuRDRyAVat2cK6uQbniFs5a2MeCH1-Wvu6UrrLmNWNcuZ3wPTPuzzU2T84O6yg7s9994HP-nNffh7gaPsmGjQA_ghisewu4WS-Ej-Dkpv178-JWUK8dGNTtBPWU4qqQfOcu-sel8kTNUN5ziF-xjNf9cL-oVo5wgFuXZUcMHjd9GNTZlWZUoivVN5ueOJYRAGQJnNiwoeoW-MVPk7GhetkwWqDmP4Wz85tPouL9J3dC3CEhw2rLEUxdI5yPrY6tiY53lkVVGauMtrnmk5XFOl-QolNUK6Zy0xvDY5t6JLHoCO0VZuD1gJvIyV0JFkYqE49JEUjuntBcCPbBSPei3I5faDa85pddYpA0jM0-pb9Oub3vwuiu_bBg9_lhyv1WEdGPZq5TTQelAyID3gK9H9C-1pMNkPO2env6L0Eu4_T4Zp5OT03fP4A6-Fs0m0D7sVF9q9xxhUZW9WGv-JT1QBa0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90Dose+Cu+Ions+Assisted+by+Mild+Thermal+Stimulus+Inducing+Bacterial+Cuproptosis%E2%80%90Like+Death+for+Antibiosis+and+Biointegration&rft.jtitle=Advanced+functional+materials&rft.au=Xue%2C+Yang&rft.au=Zhang%2C+Lan&rft.au=Zhou%2C+Jianhong&rft.au=Chen%2C+Jun&rft.date=2024-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202308197&rft.externalDBID=10.1002%252Fadfm.202308197&rft.externalDocID=ADFM202308197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon