Low‐Dose Cu Ions Assisted by Mild Thermal Stimulus Inducing Bacterial Cuproptosis‐Like Death for Antibiosis and Biointegration
Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuprop...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic.
To explore whether cuproptosis‐like death can be induced in MRSA at low‐dose Cu ions, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK). PC with improved photothermal response and Cu release endows outstanding antibacterial activity and biointegration for PEEK, simultaneously. Mild photothermal stimulation by PC increases bacterial membrane permeability, accelerating Cu ions intake, and thus inducing cuproptosis‐like bacterial killing. |
---|---|
AbstractList | Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic. Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic. Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic. To explore whether cuproptosis‐like death can be induced in MRSA at low‐dose Cu ions, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK). PC with improved photothermal response and Cu release endows outstanding antibacterial activity and biointegration for PEEK, simultaneously. Mild photothermal stimulation by PC increases bacterial membrane permeability, accelerating Cu ions intake, and thus inducing cuproptosis‐like bacterial killing. |
Author | Chen, Jun Han, Yong Xue, Yang Zhou, Jianhong Zhang, Lan Ma, Yuwei |
Author_xml | – sequence: 1 givenname: Yang surname: Xue fullname: Xue, Yang organization: Xi'an Jiaotong University – sequence: 2 givenname: Lan orcidid: 0000-0002-2162-3333 surname: Zhang fullname: Zhang, Lan email: lan.zhang@mail.xjtu.edu.cn organization: Xi'an Jiaotong University – sequence: 3 givenname: Jianhong surname: Zhou fullname: Zhou, Jianhong organization: Baoji University of Arts and Science – sequence: 4 givenname: Jun surname: Chen fullname: Chen, Jun organization: Xi'an People's Hospital (Xi'an No. 4 Hospital) – sequence: 5 givenname: Yuwei surname: Ma fullname: Ma, Yuwei organization: Baoji University of Arts and Science – sequence: 6 givenname: Yong surname: Han fullname: Han, Yong email: yonghan@mail.xjtu.edu.cn organization: The First Affiliated Hospital of Xi’an Jiaotong University |
BookMark | eNqFkE1LAzEQhoNUsK1ePQc8t-Zjv3Lsh9VCxYMVvC1pdlZTt0lNspTexF_gb_SXuLWiIIinGXjnmXfm7aCWsQYQOqWkTwlh57IoV31GGCcZFekBatOEJj1OWNb67un9Eep4vySEpimP2uh1ZjfvL29j6wGPajy1xuOB99oHKPBii691VeD5I7iVrPBt0Ku6qj2emqJW2jzgoVQBnG60Ub12dh1sgzb7ZvoJ8BhkeMSldXhggl7onYalKfBQW20CPDgZtDXH6LCUlYeTr9pFd5OL-eiqN7u5nI4Gs57izbE9rliUUBJDyVUpVCKkAsW4SmScylJFLIsVEwXJ4phHqVBRDBArKZlQRQnRgnfR2X5vc-hzDT7kS1s701jmTJBMZFHchNdF_f2UctZ7B2W-dnol3TanJN_lnO9yzr9zboDoF6B0-HwsOKmrvzGxxza6gu0_JvlgPLn-YT8AmyyYww |
CitedBy_id | crossref_primary_10_1039_D4NR05003G crossref_primary_10_1002_adhm_202400851 crossref_primary_10_1016_j_compositesb_2024_111938 crossref_primary_10_1021_acsami_4c22546 crossref_primary_10_1002_adhm_202400652 crossref_primary_10_1016_j_actbio_2024_06_002 crossref_primary_10_1016_j_cej_2024_151789 crossref_primary_10_1002_advs_202410606 crossref_primary_10_1039_D4QM00935E crossref_primary_10_1002_advs_202407251 crossref_primary_10_1002_smll_202409824 crossref_primary_10_1002_advs_202408580 crossref_primary_10_1002_admi_202400146 crossref_primary_10_1016_j_fbio_2024_105705 crossref_primary_10_1002_advs_202401047 crossref_primary_10_1016_j_ijbiomac_2024_135509 crossref_primary_10_1002_adma_202403253 crossref_primary_10_1016_j_ijbiomac_2024_134518 crossref_primary_10_1016_j_cej_2024_155081 crossref_primary_10_1021_acs_langmuir_4c02683 crossref_primary_10_1021_acsmaterialslett_4c01165 crossref_primary_10_1007_s42765_024_00487_5 crossref_primary_10_1002_anbr_202400018 crossref_primary_10_1016_j_jcis_2024_12_120 crossref_primary_10_1016_j_ijbiomac_2024_139428 crossref_primary_10_1002_advs_202410621 crossref_primary_10_1002_adma_202405953 crossref_primary_10_1016_j_biomaterials_2025_123249 crossref_primary_10_3389_fphar_2024_1533964 |
Cites_doi | 10.1002/adfm.202105348 10.1016/j.biomaterials.2022.121663 10.1021/acsami.1c04895 10.1002/adhm.202200998 10.1002/adfm.202214873 10.1021/acsnano.1c03214 10.1016/j.ceramint.2018.12.158 10.1016/j.jhazmat.2021.126236 10.1016/j.biomaterials.2020.120634 10.1126/science.abf0529 10.1016/j.powtec.2022.118026 10.1016/j.jmst.2021.01.074 10.1021/acs.analchem.2c04603 10.1021/acsami.7b02380 10.1186/s12943-023-01752-8 10.1016/j.apmt.2022.101723 10.1016/j.actbio.2022.09.019 10.1038/s41467-021-23069-0 10.1002/adfm.202206863 10.1016/j.cis.2022.102686 10.1002/adfm.202302908 10.1002/adfm.202208024 10.1039/C5TB01679G 10.1016/j.bioactmat.2022.03.011 10.1002/smll.202206265 10.1021/acsami.2c20711 10.1038/s41467-022-29877-2 10.1002/adhm.202300054 10.1002/adma.202301664 10.1002/adfm.202104799 10.1016/j.bioactmat.2021.06.029 10.1007/s12274-022-4815-3 10.1126/sciadv.adf8645 10.1016/j.jhazmat.2022.130081 10.1016/j.biomaterials.2020.120593 10.1016/j.cej.2022.137881 10.1016/j.jhazmat.2020.123542 10.1016/j.mtchem.2023.101410 10.1002/adma.202303432 10.1002/adfm.202106978 10.1002/adfm.202304162 10.1002/smll.202205248 10.1021/acsami.9b19596 10.1016/j.cej.2022.134915 10.1002/adfm.202008054 10.1016/j.ceramint.2022.11.337 10.1016/j.bioactmat.2020.01.001 10.1021/acsami.2c13566 10.1021/acsnano.2c10960 10.1021/acsami.2c21672 10.1038/s41423-022-00866-1 10.1002/adfm.202112683 10.1002/adma.202106314 10.1111/prd.12418 10.1002/smll.202205682 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202308197 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202308197 ADFM202308197 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province funderid: 2021JC‐07; 2023‐JC‐ZD‐20 – fundername: National Natural Science Foundation of China funderid: 51771142; 51971171; 82072075 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-3c246105ef3cf9c69acec23c6a57afc4285c29d08553479c45ee5caa29cdfe4b3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 03:05:22 EDT 2025 Tue Jul 01 00:30:49 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:15:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-3c246105ef3cf9c69acec23c6a57afc4285c29d08553479c45ee5caa29cdfe4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2162-3333 |
PQID | 2908984502 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2908984502 crossref_primary_10_1002_adfm_202308197 crossref_citationtrail_10_1002_adfm_202308197 wiley_primary_10_1002_adfm_202308197_ADFM202308197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 375 2023 2023; 29 30 2023; 95 2023; 35 2023 2023; 33 2015; 3 2021; 88 2023; 12 2023; 17 2023; 15 2021; 268 2021 2021; 31 12 2023; 9 2021; 402 2023; 19 2021 2022 2022; 32 14 153 2020; 12 2022; 88 2017 2023 2022; 9 443 287 2022; 435 2021; 13 2020; 5 2021; 31 2023; 22 2023 2023; 49 2022; 8 2019; 45 2021; 416 2023 2021; 7 31 2022; 34 2022; 13 2023; 413 2022; 15 2022; 32 2022; 11 2022; 449 2021 2021; 269 15 2022; 305 2022; 18 2022; 19 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_36_2 e_1_2_8_19_3 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 Tian H. (e_1_2_8_36_1) 2023; 7 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_40_3 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 32 14 153 start-page: 573 year: 2021 2022 2022 publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces Acta Biomater. – volume: 88 start-page: 182 year: 2022 publication-title: Periodontol 2000 – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 402 year: 2021 publication-title: J. Hazard. Mater. – year: 2023 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 2711 year: 2023 publication-title: ACS Nano – volume: 305 year: 2022 publication-title: Adv. Colloid Interface Sci. – volume: 3 start-page: 8738 year: 2015 publication-title: J. Mater. Chem. B – volume: 12 year: 2023 publication-title: Adv. Healthcare Mater. – volume: 449 year: 2022 publication-title: Chem. Eng. J. – volume: 5 start-page: 116 year: 2020 publication-title: Bioact. Mater. – volume: 31 12 start-page: 3303 year: 2021 2021 publication-title: Adv. Funct. Mater. Nat. Commun. – volume: 33 year: 2023 2023 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. – volume: 88 start-page: 240 year: 2021 publication-title: J. Mater. Sci. Technol. – volume: 375 start-page: 1254 year: 2022 publication-title: Science – volume: 8 start-page: 1 year: 2022 publication-title: Bioact. Mater. – volume: 12 start-page: 361 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 19 start-page: 867 year: 2022 publication-title: Cell Mol. Immunol. – volume: 95 start-page: 6203 year: 2023 publication-title: Anal. Chem. – volume: 416 year: 2021 publication-title: J. Hazard. Mater. – volume: 18 start-page: 228 year: 2022 publication-title: Bioact. Mater. – volume: 413 year: 2023 publication-title: Powder Technol. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 269 15 year: 2021 2021 publication-title: Biomaterials ACS Nano – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 49 year: 2023 publication-title: Ceram. Int. – volume: 15 start-page: 9298 year: 2022 publication-title: Nano Res. – volume: 268 year: 2021 publication-title: Biomaterials – volume: 29 30 year: 2023 2023 publication-title: Mater. Today Chem. Appl. Mater. Today – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2477 year: 2022 publication-title: Nat. Commun. – volume: 7 31 start-page: 24 year: 2023 2021 publication-title: Acta Biomater. Adv. Funct. Mater. – volume: 45 start-page: 6693 year: 2019 publication-title: Ceram. Int. – volume: 19 year: 2023 publication-title: Small – volume: 22 start-page: 59 year: 2023 publication-title: Mol. Cancer – volume: 11 year: 2022 publication-title: Adv. Healthcare Mater. – volume: 9 443 287 year: 2017 2023 2022 publication-title: ACS Appl. Mater. Interfaces J. Hazard. Mater. Biomaterials – ident: e_1_2_8_15_1 doi: 10.1002/adfm.202105348 – ident: e_1_2_8_40_3 doi: 10.1016/j.biomaterials.2022.121663 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.1c04895 – ident: e_1_2_8_21_1 doi: 10.1002/adhm.202200998 – ident: e_1_2_8_11_2 doi: 10.1002/adfm.202214873 – ident: e_1_2_8_14_2 doi: 10.1021/acsnano.1c03214 – ident: e_1_2_8_25_1 doi: 10.1016/j.ceramint.2018.12.158 – ident: e_1_2_8_38_1 doi: 10.1016/j.jhazmat.2021.126236 – ident: e_1_2_8_14_1 doi: 10.1016/j.biomaterials.2020.120634 – ident: e_1_2_8_9_1 doi: 10.1126/science.abf0529 – ident: e_1_2_8_23_1 doi: 10.1016/j.powtec.2022.118026 – ident: e_1_2_8_28_1 doi: 10.1016/j.jmst.2021.01.074 – ident: e_1_2_8_45_1 doi: 10.1021/acs.analchem.2c04603 – ident: e_1_2_8_40_1 doi: 10.1021/acsami.7b02380 – ident: e_1_2_8_47_1 doi: 10.1186/s12943-023-01752-8 – ident: e_1_2_8_29_2 doi: 10.1016/j.apmt.2022.101723 – ident: e_1_2_8_19_3 doi: 10.1016/j.actbio.2022.09.019 – ident: e_1_2_8_1_2 doi: 10.1038/s41467-021-23069-0 – ident: e_1_2_8_5_1 doi: 10.1002/adfm.202206863 – ident: e_1_2_8_35_1 doi: 10.1016/j.cis.2022.102686 – ident: e_1_2_8_12_1 doi: 10.1002/adfm.202302908 – ident: e_1_2_8_7_1 doi: 10.1002/adfm.202208024 – ident: e_1_2_8_22_1 doi: 10.1039/C5TB01679G – ident: e_1_2_8_42_1 doi: 10.1016/j.bioactmat.2022.03.011 – ident: e_1_2_8_31_1 doi: 10.1002/smll.202206265 – ident: e_1_2_8_18_1 doi: 10.1021/acsami.2c20711 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-022-29877-2 – ident: e_1_2_8_33_1 doi: 10.1002/adhm.202300054 – ident: e_1_2_8_34_1 doi: 10.1002/adma.202301664 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.202104799 – ident: e_1_2_8_13_1 doi: 10.1016/j.bioactmat.2021.06.029 – volume: 7 start-page: 24 year: 2023 ident: e_1_2_8_36_1 publication-title: Acta Biomater. – ident: e_1_2_8_43_1 doi: 10.1007/s12274-022-4815-3 – ident: e_1_2_8_3_1 doi: 10.1126/sciadv.adf8645 – ident: e_1_2_8_40_2 doi: 10.1016/j.jhazmat.2022.130081 – ident: e_1_2_8_6_1 doi: 10.1016/j.biomaterials.2020.120593 – ident: e_1_2_8_16_1 doi: 10.1016/j.cej.2022.137881 – ident: e_1_2_8_46_1 doi: 10.1016/j.jhazmat.2020.123542 – ident: e_1_2_8_29_1 doi: 10.1016/j.mtchem.2023.101410 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202303432 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.202106978 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.202304162 – ident: e_1_2_8_39_1 doi: 10.1002/smll.202205248 – ident: e_1_2_8_44_1 doi: 10.1021/acsami.9b19596 – ident: e_1_2_8_8_1 doi: 10.1016/j.cej.2022.134915 – ident: e_1_2_8_36_2 doi: 10.1002/adfm.202008054 – ident: e_1_2_8_20_1 doi: 10.1016/j.ceramint.2022.11.337 – ident: e_1_2_8_17_1 doi: 10.1016/j.bioactmat.2020.01.001 – ident: e_1_2_8_19_2 doi: 10.1021/acsami.2c13566 – ident: e_1_2_8_26_1 doi: 10.1021/acsnano.2c10960 – ident: e_1_2_8_24_1 doi: 10.1021/acsami.2c21672 – ident: e_1_2_8_37_1 doi: 10.1038/s41423-022-00866-1 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.202112683 – ident: e_1_2_8_32_1 doi: 10.1002/adma.202106314 – ident: e_1_2_8_2_1 doi: 10.1111/prd.12418 – ident: e_1_2_8_41_1 doi: 10.1002/smll.202205682 |
SSID | ssj0017734 |
Score | 2.6031976 |
Snippet | Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target... Methicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | antibiosis biointegration Copper cuproptosis Cu‐doped hydroxyapatite Destabilization Glutathione Hydroxyapatite Irradiation Nanorods Near infrared radiation Peroxides photothermal Polyether ether ketones Proteins Staphylococcus infections |
Title | Low‐Dose Cu Ions Assisted by Mild Thermal Stimulus Inducing Bacterial Cuproptosis‐Like Death for Antibiosis and Biointegration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202308197 https://www.proquest.com/docview/2908984502 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRpSXPCAxFRLHdtqxtFQFtQw8pG6R49hSRUkQTYRgQvwCfiO_hLumSQsSQoItUXxWbN_5Ptt3nwk5dB3l10ToVhWD5So3LticBXOvhQ6zlvmh9THBuXcpO7f8oi_6M1n8OT9EueGGljGer9HAVTg6mZKGqshiJjlAaHBqmE6OAVuIiq5K_ijX9_NjZeligJfbL1gbHXbyVfyrV5pCzVnAOvY47RWiin_NA03ujrM0PNYv32gc_9OYVbI8gaO0kevPGpkz8TpZmiEp3CBv3eTp4_W9lYwMbWb0HNSUwqCiekQ0fKa9wTCioG0www_pdTq4z4bZiOKVIBrk6WlOBw3fmhk05SFNQBTq6w7uDG0hAKWAm2kjxuQV_EZVHNHTQVIQWYDibJLb9tlNs1Od3NxQ1YBHYNbSSFPnCGM9beta1pU2mnlaKuErq2HJIzSrRxgjh5msmgtjhFaK1XVkDQ-9LTIfJ7HZJlR5VkSSS8-THjdMKE_4xkjfcg4OWMoKqRYjF-gJrTnerjEMckJmFmDfBmXfVshRWf4hJ_T4seReoQjBxLBHAcNz0hoXDqsQNh7RX2oJGq12r3zb-YvQLlmEZ55v_OyR-fQxM_sAhdLwgCw0Wr3u9cFY7T8BSzgEdg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH8a7MA4wMaGKGObD5M4FRLHf9pjaanK1nLYQOIWOY4tVZQErYmm7YT4BPuM-yR7r2kCTEKTxjGJnxXb79k_2-_9HsDHMDC6I5OwbThuV4UL0eY8mnsnCbj3XCdeU4Dz5FSNzsWnC1l7E1IsTMUP0Ry4kWUs5msycDqQPrxjDTWpp1ByxNC4qukVeE5pvYk-f_ClYZAKta4ullVILl7hRc3bGPDDh_IP16U7sHkfsi7WnOEmJPXfVq4mlwdlkRzYn38ROT6pOS9hY4lIWa9SoVfwzGVbsH6Pp_A13I7z779vfg3yuWP9kp2gpjIcV9KQlCU_2GQ6SxkqHE7yM_a1mF6Vs3LOKCuIRXl2VDFC47d-iW25LnIUxfrG00vHBoRBGUJn1ssofoW-MZOl7Gia11wWqDtv4Hx4fNYftZfJG9oWIQlOXJaY6gLpfGR916qusc7yyCojtfEWdz3S8m5KbnIUzGqFdE5aY3jXpt6JJNqG1SzP3A4wE3mZKqGiSEXCcWkiqZ1T2guBa7BSLWjXQxfbJbM5JdiYxRUnM4-pb-Omb1uw35S_rjg9Hi25V2tCvLTteczpqrQjZMBbwBdD-o9a4t5gOGmedv9H6AOsjc4m43h8cvr5LbzA96I6B9qD1eJb6d4hMiqS9wvd_wNWKgb- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkRA98EYNFNgDEqe09nof8TGNiVpIKgRUys1ar3elqMGOiC0EJ8Qv4Df2l3Qmjt0UCSHB0fbOyrs7s_PtY74BeBUGRg9kFvYNx-WqcCHanEdzH2QB957rzGsKcJ6equMz8XYmZ1tR_A0_RLfhRpaxnq_JwJe5P7wiDTW5p0hyhNDo1PRNuCVUEFPyhuRDRyAVat2cK6uQbniFs5a2MeCH1-Wvu6UrrLmNWNcuZ3wPTPuzzU2T84O6yg7s9994HP-nNffh7gaPsmGjQA_ghisewu4WS-Ej-Dkpv178-JWUK8dGNTtBPWU4qqQfOcu-sel8kTNUN5ziF-xjNf9cL-oVo5wgFuXZUcMHjd9GNTZlWZUoivVN5ueOJYRAGQJnNiwoeoW-MVPk7GhetkwWqDmP4Wz85tPouL9J3dC3CEhw2rLEUxdI5yPrY6tiY53lkVVGauMtrnmk5XFOl-QolNUK6Zy0xvDY5t6JLHoCO0VZuD1gJvIyV0JFkYqE49JEUjuntBcCPbBSPei3I5faDa85pddYpA0jM0-pb9Oub3vwuiu_bBg9_lhyv1WEdGPZq5TTQelAyID3gK9H9C-1pMNkPO2env6L0Eu4_T4Zp5OT03fP4A6-Fs0m0D7sVF9q9xxhUZW9WGv-JT1QBa0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90Dose+Cu+Ions+Assisted+by+Mild+Thermal+Stimulus+Inducing+Bacterial+Cuproptosis%E2%80%90Like+Death+for+Antibiosis+and+Biointegration&rft.jtitle=Advanced+functional+materials&rft.au=Xue%2C+Yang&rft.au=Zhang%2C+Lan&rft.au=Zhou%2C+Jianhong&rft.au=Chen%2C+Jun&rft.date=2024-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202308197&rft.externalDBID=10.1002%252Fadfm.202308197&rft.externalDocID=ADFM202308197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |