Numerical study of an electrically conducting hybrid nanofluid over a linearly extended sheet

The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes (CNTs) and iron ferrite (Fe3O4) nanoparticles (nps) passes through a linearly expanded sheet with the slip velocity. The non‐Newtonian fluid models provi...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Mechanik Vol. 103; no. 5
Main Authors Bilal, Muhammad, Ali, Aatif, Hejazi, Hala A., Mahmuod, Samy Refahy
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes (CNTs) and iron ferrite (Fe3O4) nanoparticles (nps) passes through a linearly expanded sheet with the slip velocity. The non‐Newtonian fluid models provide a better insight of the flow and heat allocation properties of nanofluids. For this purpose, we have used a Maxwell nanoliquid as the basis fluid in our experiment, with an inclined magnetic field applied to the flow direction. The flow regulating equations are turned into a system of non‐dimensional differential equations via resemblance substitutions. The computational procedure “parametric continuation method” (PCM) has been used to compute the velocity, energy, and mass of the HNF. The statistical results are displayed through graphs and tables. Maxwell parameter, porosity, and velocity slip tend to minimize HNF velocity, while its temperature rises with the action of thermal radiation, inclined magnetic field, unsteadiness variable, and viscous dissipation. Furthermore, the porous medium's penetration has a greater influence on the reduction of nanofluid velocity. The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes (CNTs) and iron ferrite (Fe3O4) nanoparticles (nps) passes through a linearly expanded sheet with the slip velocity. The non‐Newtonian fluid models provide a better insight of the flow and heat allocation properties of nanofluids. For this purpose, we have used a Maxwell nanoliquid as the basis fluid in our experiment, with an inclined magnetic field applied to the flow direction.…
AbstractList The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes (CNTs) and iron ferrite (Fe3O4) nanoparticles (nps) passes through a linearly expanded sheet with the slip velocity. The non‐Newtonian fluid models provide a better insight of the flow and heat allocation properties of nanofluids. For this purpose, we have used a Maxwell nanoliquid as the basis fluid in our experiment, with an inclined magnetic field applied to the flow direction. The flow regulating equations are turned into a system of non‐dimensional differential equations via resemblance substitutions. The computational procedure “parametric continuation method” (PCM) has been used to compute the velocity, energy, and mass of the HNF. The statistical results are displayed through graphs and tables. Maxwell parameter, porosity, and velocity slip tend to minimize HNF velocity, while its temperature rises with the action of thermal radiation, inclined magnetic field, unsteadiness variable, and viscous dissipation. Furthermore, the porous medium's penetration has a greater influence on the reduction of nanofluid velocity.
The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes (CNTs) and iron ferrite (Fe3O4) nanoparticles (nps) passes through a linearly expanded sheet with the slip velocity. The non‐Newtonian fluid models provide a better insight of the flow and heat allocation properties of nanofluids. For this purpose, we have used a Maxwell nanoliquid as the basis fluid in our experiment, with an inclined magnetic field applied to the flow direction. The flow regulating equations are turned into a system of non‐dimensional differential equations via resemblance substitutions. The computational procedure “parametric continuation method” (PCM) has been used to compute the velocity, energy, and mass of the HNF. The statistical results are displayed through graphs and tables. Maxwell parameter, porosity, and velocity slip tend to minimize HNF velocity, while its temperature rises with the action of thermal radiation, inclined magnetic field, unsteadiness variable, and viscous dissipation. Furthermore, the porous medium's penetration has a greater influence on the reduction of nanofluid velocity. The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes (CNTs) and iron ferrite (Fe3O4) nanoparticles (nps) passes through a linearly expanded sheet with the slip velocity. The non‐Newtonian fluid models provide a better insight of the flow and heat allocation properties of nanofluids. For this purpose, we have used a Maxwell nanoliquid as the basis fluid in our experiment, with an inclined magnetic field applied to the flow direction.…
Abstract The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes (CNTs) and iron ferrite (Fe 3 O 4 ) nanoparticles (nps) passes through a linearly expanded sheet with the slip velocity. The non‐Newtonian fluid models provide a better insight of the flow and heat allocation properties of nanofluids. For this purpose, we have used a Maxwell nanoliquid as the basis fluid in our experiment, with an inclined magnetic field applied to the flow direction. The flow regulating equations are turned into a system of non‐dimensional differential equations via resemblance substitutions. The computational procedure “parametric continuation method” (PCM) has been used to compute the velocity, energy, and mass of the HNF. The statistical results are displayed through graphs and tables. Maxwell parameter, porosity, and velocity slip tend to minimize HNF velocity, while its temperature rises with the action of thermal radiation, inclined magnetic field, unsteadiness variable, and viscous dissipation. Furthermore, the porous medium's penetration has a greater influence on the reduction of nanofluid velocity.
Author Ali, Aatif
Hejazi, Hala A.
Bilal, Muhammad
Mahmuod, Samy Refahy
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Bilal
  fullname: Bilal, Muhammad
  organization: University of Peshawar
– sequence: 2
  givenname: Aatif
  surname: Ali
  fullname: Ali, Aatif
  email: atifkh98@gmail.com
  organization: Abdul Wali Khan University Mardan
– sequence: 3
  givenname: Hala A.
  surname: Hejazi
  fullname: Hejazi, Hala A.
  organization: Umm Al‐Qura University
– sequence: 4
  givenname: Samy Refahy
  surname: Mahmuod
  fullname: Mahmuod, Samy Refahy
  organization: King Abdulaziz University
BookMark eNqFkM1PwzAMxSM0JMbgyjkS5w4n6fpxnCa-pA0ucEFCUZq4rFObjLQFyl9PxhAckQ-2n37Plt4xGVlnkZAzBlMGwC8-VdNMOXAeFp4ekDGbcRbFAGxExgBxHHGepEfkuG03ENSciTF5vusb9JVWNW273gzUlVRZijXq7luuB6qdNb3uKvtC10PhK0Otsq6s-zC5N_RU0bqyqHxg8aNDa9DQdo3YnZDDUtUtnv70CXm8unxY3ETL--vbxXwZacHSNOKsUBoLpcokFbOScwGFQVUUUAADlrHEgMBMAddoEpWHEnmqIUmUYHGcigk539_devfaY9vJjeu9DS8lzxiIjPN4FqjpntLeta3HUm591Sg_SAZyF6HcRSh_IwyGfG94r2oc_qHl03y1-vN-ATILeGs
CitedBy_id crossref_primary_10_3390_app13148086
crossref_primary_10_1063_5_0141532
crossref_primary_10_1007_s10973_023_12548_9
crossref_primary_10_1002_zamm_202300188
crossref_primary_10_3934_math_2023813
crossref_primary_10_1038_s41598_023_33520_5
crossref_primary_10_1063_5_0141498
crossref_primary_10_1142_S0217984924504517
crossref_primary_10_1021_acsomega_3c01903
crossref_primary_10_1007_s10973_023_12611_5
Cites_doi 10.3390/mi12040374
10.1177/1687814020936385
10.1016/j.aca.2018.08.058
10.1007/s42452-019-1838-9
10.3390/sym14091759
10.1063/5.0023747
10.1088/1402-4896/abcce2
10.1016/j.chaos.2021.111428
10.1515/nleng-2020-0004
10.1063/5.0010181
10.1016/j.cjph.2021.09.015
10.1016/j.csite.2021.101301
10.1016/j.icheatmasstransfer.2021.105562
10.1016/j.aej.2016.03.001
10.3390/math9243291
10.1016/j.nantod.2020.101022
10.1063/5.0033503
10.1016/j.csite.2021.101581
10.1021/acsami.1c02919
10.1038/s41598-021-88269-6
10.1016/j.cjph.2021.07.018
10.1088/0031-8949/89/12/125003
10.1038/s41598-018-26056-6
10.1063/5.0060683
10.1088/1402-4896/ac2af3
10.1016/j.colsurfa.2021.128077
10.1177/0954408918809612
10.1016/j.jmmm.2017.05.014
10.1155/2019/7392459
10.1016/j.ces.2010.07.003
10.1002/htj.22616
10.1371/journal.pone.0254457
10.1080/17455030.2022.2072537
10.1038/s41598-020-65298-1
10.1002/zamm.202000146
10.1016/j.physe.2016.06.015
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH.
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/zamm.202200227
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1521-4001
EndPage n/a
ExternalDocumentID 10_1002_zamm_202200227
ZAMM202200227
Genre article
GrantInformation_xml – fundername: Deanship of Scientific Research at King Khalid University
  funderid: 2/160/43
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCQX
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RJQFR
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3177-21bacebaaf6735f2230bdeabb0b0101816d03e8a02ced6a9a9a397c066a314473
IEDL.DBID DR2
ISSN 0044-2267
IngestDate Wed Sep 25 01:02:31 EDT 2024
Thu Sep 26 16:01:41 EDT 2024
Sat Aug 24 00:56:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-21bacebaaf6735f2230bdeabb0b0101816d03e8a02ced6a9a9a397c066a314473
PQID 2810382245
PQPubID 2032056
PageCount 11
ParticipantIDs proquest_journals_2810382245
crossref_primary_10_1002_zamm_202200227
wiley_primary_10_1002_zamm_202200227_ZAMM202200227
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Zeitschrift für angewandte Mathematik und Mechanik
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2017; 439
2021; 27
2019; 2019
2021; 101
2021; 127
2021; 28
2020; 13
2020; 123
2020; 12
2020; 10
2020; 32
2021; 96
2019; 1045
2021; 73
2022; 635
2014; 89
2016; 55
2021; 36
2021; 13
2021; 16
2010; 65
2018; 8
2021; 12
2020; 2
2021; 11
2021; 33
2020; 96
2022
2021
2020
2020; 9
2022; 14
2016; 84
2021; 152
2022; 77
2019; 233
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
Raza J. (e_1_2_8_8_1) 2021
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
Yashkun U. (e_1_2_8_41_1) 2020
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
Ali A. (e_1_2_8_32_1) 2022
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Aziz A. (e_1_2_8_40_1) 2020; 13
Shuaib M. (e_1_2_8_7_1) 2020; 123
Sun T.C. (e_1_2_8_38_1) 2022
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 635
  year: 2022
  article-title: Irreversibility analysis of hybrid nanofluid flow over a rotating disk: effect of thermal radiation and magnetic field
  publication-title: Colloids Surf. A
– volume: 32
  issue: 12
  year: 2020
  article-title: A review of the state‐of‐the‐art nanofluid spray and jet impingement cooling
  publication-title: Phys. Fluids
– year: 2020
  article-title: Hybrid nanofluid flow through an exponentially stretching/shrinking sheet with mixed convection and Joule heating
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  article-title: Numerical approach towards gyrotactic microorganisms hybrid nanoliquid flow with the hall current and magnetic field over a spinning disk
  publication-title: Sci. Rep.
– start-page: 1
  year: 2022
  end-page: 14
  article-title: The study of Darcy‐Forchheimer hybrid nanofluid flow with the thermal slip and dissipation effect using parametric continuation approach over a rotating disk
  publication-title: Waves Random Complex Media
– year: 2022
  article-title: Numerical study of Williamson hybrid nanofluid flow with thermal characteristics past over an extending surface
  publication-title: Heat Trans.
– volume: 55
  start-page: 1347
  issue: 2
  year: 2016
  end-page: 1358
  article-title: Review of magnetohydrodynamic pump applications
  publication-title: Alex. Eng. J.
– volume: 32
  issue: 10
  year: 2020
  article-title: Unsteady electro‐osmotic flow of couple stress fluid in a rotating microchannel: an analytical solution
  publication-title: Phys. Fluids
– volume: 65
  start-page: 5411
  issue: 19
  year: 2010
  end-page: 5414
  article-title: The application of the parametric continuation method for determining steady state diagrams in chemical engineering
  publication-title: Chem. Eng. Sci.
– year: 2021
  article-title: Duality and stability of MHD Darcy–Forchheimer porous medium flow of rotating nanofluid on a linear shrinking/stretching sheet: Buongiorno model
  publication-title: Int. J. Numer. Methods Heat Fluid Flow.
– start-page: 1175
  year: 2022
  article-title: MHD Williamson nanofluid flow in the rheology of thermal radiation, Joule heating, and chemical reaction using Levenberg‐Marquardt neural networks algorithm
  publication-title: Front. Energy Res.
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 16
  article-title: Softness induced enhancement in net throughput of non‐linear bio‐fluids in nanofluidic channel under EDL phenomenon
  publication-title: Sci. Rep.
– volume: 27
  year: 2021
  article-title: Comparative numerical analysis of Maxwell's time‐dependent thermo‐diffusive flow through a stretching cylinder
  publication-title: Case Stud. Therm. Eng.
– volume: 28
  year: 2021
  article-title: A case study of MHD driven Prandtl‐Eyring hybrid nanofluid flow over a stretching sheet with thermal jump conditions
  publication-title: Case Stud. Therm. Eng.
– volume: 12
  issue: 6
  year: 2020
  article-title: Variable thickness flow over a rotating disk under the influence of variable magnetic field: an application to parametric continuation method
  publication-title: Adv. Mech. Eng.
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  article-title: Magnetic dipole impact on the hybrid nanofluid flow over an extending surface
  publication-title: Sci. Rep.
– volume: 13
  start-page: 2667
  issue: 10
  year: 2020
  article-title: Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation
  publication-title: Discrete Contin. Dyn. Syst.–S
– volume: 9
  start-page: 145
  issue: 1
  year: 2020
  end-page: 155
  article-title: Study of differential transform technique for transient hydromagnetic Jeffrey fluid flow from a stretching sheet
  publication-title: Int. J. Nonlinear Modell. Sci. Eng.
– volume: 16
  issue: 8
  year: 2021
  article-title: The parametric study of hybrid nanofluid flow with heat transition characteristics over a fluctuating spinning disk
  publication-title: PLoS ONE
– volume: 36
  year: 2021
  article-title: Ultrasound‐enhanced precision tumor theranostics using cell membrane‐coated and pH‐responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles
  publication-title: Nano Today
– volume: 1045
  start-page: 85
  year: 2019
  end-page: 97
  article-title: Irreversibility analysis in a slip aided electroosmotic flow through an asymmetrically heated microchannel: the effects of joule heating and the conjugate heat transfer
  publication-title: Anal. Chim. Acta
– volume: 123
  start-page: 377
  issue: 1
  year: 2020
  end-page: 400
  article-title: Fractional analysis of viscous fluid flow with heat and mass transfer over a flexible rotating disk
  publication-title: Comput. Model. Eng. Sci.
– volume: 152
  year: 2021
  article-title: Three dimensional mixed convection flow of hybrid casson nanofluid past a non‐linear stretching surface: a modified Buongiorno's model aspects
  publication-title: Chaos Solitons Fractals.
– volume: 9
  start-page: 3291
  issue: 24
  year: 2021
  article-title: Magnetohydrodynamic hybrid nanofluid flow past an exponentially stretching sheet with slip conditions
  publication-title: Mathematics
– volume: 77
  start-page: 1278
  year: 2022
  end-page: 1290
  article-title: A numerical and statistical approach to capture the flow characteristics of Maxwell hybrid nanofluid containing copper and graphene nanoparticles
  publication-title: Chin. J. Phys.
– volume: 2019
  year: 2019
  article-title: Unsteady MHD flow of nanofluid with variable properties over a stretching sheet in the presence of thermal radiation and chemical reaction
  publication-title: Int. J. Math. Math. Sci.
– volume: 2
  start-page: 1
  issue: 5
  year: 2020
  end-page: 11
  article-title: Effect of magnetite nanoparticles on couple stress fluid between two parallel squeezing and expanding surfaces
  publication-title: SN Appl. Sci.
– volume: 96
  issue: 12
  year: 2021
  article-title: Buoyancy driven flow of a couple stress fluid from an isothermal vertical plate: the role of spatially periodic magnetic field
  publication-title: Phys. Scr.
– volume: 96
  issue: 2
  year: 2020
  article-title: Numerical study of hydrodynamic molecular nanoliquid flow with heat and mass transmission between two spinning parallel plates
  publication-title: Phys. Scr.
– volume: 10
  issue: 5
  year: 2020
  article-title: Heat and mass transfer together with hybrid nanofluid flow over a rotating disk
  publication-title: AIP Adv.
– volume: 12
  start-page: 374
  issue: 4
  year: 2021
  article-title: Numerical scrutinization of Darcy‐Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by nonlinear stretching surface in the perspective of heat and mass transfer
  publication-title: Micromachines
– volume: 13
  start-page: 20830
  issue: 17
  year: 2021
  end-page: 20844
  article-title: Magnetically induced aggregation of iron oxide nanoparticles for carrier flotation strategies
  publication-title: ACS Appl. Mater. Interfaces
– volume: 89
  issue: 12
  year: 2014
  article-title: Entropy analysis for the Couette flow of non‐Newtonian fluids between asymmetrically heated parallel plates: effect of applied pressure gradient
  publication-title: Phys. Scr.
– volume: 84
  start-page: 564
  year: 2016
  end-page: 570
  article-title: Effects of temperature and particles concentration on the dynamic viscosity of MgO‐MWCNT/ethylene glycol hybrid nanofluid: experimental study
  publication-title: Phys. E
– volume: 14
  start-page: 1759
  issue: 9
  year: 2022
  article-title: Computational study of MHD Darcy–Forchheimer hybrid nanofluid flow under the influence of chemical reaction and activation energy over a stretching surface
  publication-title: Symmetry
– volume: 101
  issue: 11
  year: 2021
  article-title: Axisymmetric hybrid nanofluid flow with heat and mass transfer amongst the two gyrating plates
  publication-title: ZAMM
– volume: 73
  start-page: 442
  year: 2021
  end-page: 461
  article-title: Numerical duality of MHD stagnation point flow and heat transfer of nanofluid past a shrinking/stretching sheet: metaheuristic approach
  publication-title: Chin. J. Phys.
– volume: 127
  year: 2021
  article-title: Electromagnetic couple stress film flow of hybrid nanofluid over an unsteady rotating disc
  publication-title: Int. Commun. Heat Mass Transfer.
– volume: 33
  issue: 9
  year: 2021
  article-title: Bejan's flow visualization of buoyancy‐driven flow of a hydromagnetic Casson fluid from an isothermal wavy surface
  publication-title: Phys. Fluids
– volume: 439
  start-page: 358
  year: 2017
  end-page: 372
  article-title: Applications of magnetohydrodynamics in biological systems – a review on the numerical studies
  publication-title: J. Magn. Magn. Mater.
– volume: 233
  start-page: 871
  issue: 4
  year: 2019
  end-page: 879
  article-title: Analysis of the effects of Joule heating and viscous dissipation on combined pressure‐driven and electrokinetic flows in a two‐parallel plate channel with unequal constant temperatures
  publication-title: Proc. Inst. Mech. Eng. E: J. Process Mech. Eng.
– ident: e_1_2_8_10_1
  doi: 10.3390/mi12040374
– ident: e_1_2_8_39_1
  doi: 10.1177/1687814020936385
– ident: e_1_2_8_36_1
  doi: 10.1016/j.aca.2018.08.058
– ident: e_1_2_8_11_1
  doi: 10.1007/s42452-019-1838-9
– ident: e_1_2_8_6_1
  doi: 10.3390/sym14091759
– ident: e_1_2_8_13_1
  doi: 10.1063/5.0023747
– ident: e_1_2_8_25_1
  doi: 10.1088/1402-4896/abcce2
– ident: e_1_2_8_5_1
  doi: 10.1016/j.chaos.2021.111428
– ident: e_1_2_8_12_1
  doi: 10.1515/nleng-2020-0004
– ident: e_1_2_8_18_1
  doi: 10.1063/5.0010181
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cjph.2021.09.015
– year: 2020
  ident: e_1_2_8_41_1
  article-title: Hybrid nanofluid flow through an exponentially stretching/shrinking sheet with mixed convection and Joule heating
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  contributor:
    fullname: Yashkun U.
– ident: e_1_2_8_4_1
  doi: 10.1016/j.csite.2021.101301
– ident: e_1_2_8_22_1
  doi: 10.1016/j.icheatmasstransfer.2021.105562
– ident: e_1_2_8_28_1
  doi: 10.1016/j.aej.2016.03.001
– ident: e_1_2_8_33_1
  doi: 10.3390/math9243291
– ident: e_1_2_8_15_1
  doi: 10.1016/j.nantod.2020.101022
– ident: e_1_2_8_24_1
  doi: 10.1063/5.0033503
– ident: e_1_2_8_31_1
  doi: 10.1016/j.csite.2021.101581
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.1c02919
– volume: 13
  start-page: 2667
  issue: 10
  year: 2020
  ident: e_1_2_8_40_1
  article-title: Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation
  publication-title: Discrete Contin. Dyn. Syst.–S
  contributor:
    fullname: Aziz A.
– ident: e_1_2_8_17_1
  doi: 10.1038/s41598-021-88269-6
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cjph.2021.07.018
– ident: e_1_2_8_20_1
  doi: 10.1088/0031-8949/89/12/125003
– ident: e_1_2_8_26_1
  doi: 10.1038/s41598-018-26056-6
– ident: e_1_2_8_34_1
  doi: 10.1063/5.0060683
– year: 2021
  ident: e_1_2_8_8_1
  article-title: Duality and stability of MHD Darcy–Forchheimer porous medium flow of rotating nanofluid on a linear shrinking/stretching sheet: Buongiorno model
  publication-title: Int. J. Numer. Methods Heat Fluid Flow.
  contributor:
    fullname: Raza J.
– volume: 123
  start-page: 377
  issue: 1
  year: 2020
  ident: e_1_2_8_7_1
  article-title: Fractional analysis of viscous fluid flow with heat and mass transfer over a flexible rotating disk
  publication-title: Comput. Model. Eng. Sci.
  contributor:
    fullname: Shuaib M.
– ident: e_1_2_8_35_1
  doi: 10.1088/1402-4896/ac2af3
– start-page: 1175
  year: 2022
  ident: e_1_2_8_32_1
  article-title: MHD Williamson nanofluid flow in the rheology of thermal radiation, Joule heating, and chemical reaction using Levenberg‐Marquardt neural networks algorithm
  publication-title: Front. Energy Res.
  contributor:
    fullname: Ali A.
– ident: e_1_2_8_27_1
  doi: 10.1016/j.colsurfa.2021.128077
– ident: e_1_2_8_14_1
  doi: 10.1177/0954408918809612
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jmmm.2017.05.014
– ident: e_1_2_8_2_1
  doi: 10.1155/2019/7392459
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ces.2010.07.003
– ident: e_1_2_8_30_1
  doi: 10.1002/htj.22616
– ident: e_1_2_8_23_1
  doi: 10.1371/journal.pone.0254457
– start-page: 1
  year: 2022
  ident: e_1_2_8_38_1
  article-title: The study of Darcy‐Forchheimer hybrid nanofluid flow with the thermal slip and dissipation effect using parametric continuation approach over a rotating disk
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2022.2072537
  contributor:
    fullname: Sun T.C.
– ident: e_1_2_8_3_1
  doi: 10.1038/s41598-020-65298-1
– ident: e_1_2_8_19_1
  doi: 10.1002/zamm.202000146
– ident: e_1_2_8_21_1
  doi: 10.1016/j.physe.2016.06.015
SSID ssj0001913
Score 2.435779
Snippet The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes (CNTs) and...
Abstract The major purpose of this study is to observe the flow properties of an electrically conducting hybrid nanofluid (HNF) consist of carbon nanotubes...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon nanotubes
Continuation methods
Differential equations
Iron oxides
Magnetic fields
Nanofluids
Nanoparticles
Newtonian fluids
Porous media
Slip velocity
Thermal radiation
Velocity
Title Numerical study of an electrically conducting hybrid nanofluid over a linearly extended sheet
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.202200227
https://www.proquest.com/docview/2810382245/abstract/
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf4vTKTkInrq16e_jEMcQuoM4GIKUJE0ZODux7WH7632vabvNi6D00pSmpPn5fS_JJ4Tchb5gvmVJQwWKGY6XSCOwpWW43JfQIbqpUujviCbeeOo8zdzZ1i5-zYdoHW7YMqr-Ghs4F_lgAw1d8w_cSc5YRcGDThhpeqiKnjf8KDBG6ilmxwCd4TfURpMNdqPvjkobqbktWKsRZ3REeJNWvdDkvV8Woi_XPzCO__mZY3JYy1E61PXnhOyp7JQcbEEKIRS1ZNf8jLxNSj3Hs6AVmZYuU8ozqk_TwceLFQUTGymyEJvOV7gjjGY8W6aLEu5wxSjlFFOMaGXaOOFpPleqOCfT0ePLw9ioj2gwJAgP32CW4FIJzlPPt90UtIYpEsWFQP8qssC8xLRVwE0mVeLxEC4QQBJ0DrfBlPPtC9LJlpm6JDSxlAhFIkHRBI7r-vCqAO2Zhq4SjvREl9w3RRR_ahJHrJnLLMbsi9vs65JeU4Jx3SLzmAWIggfB4nYJq4ril6_Er8MoakNXf4l0TfbxdHq9PrJHOsVXqW5AwxTitqqn3xQM6mw
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8MwHMd_-DioB9_ifOYgeOq2pk3bHUUcU9cdZAMRpCRpysDZiesO86_392vXPbwISi9NaUqa5_f3S_IJwFXDV9y3bW2ZwHDL9WJtBY62LSF9jR2iSIwhf0fY8Vo99-FZlKsJaS9MwYeYOdyoZeT9NTVwckjX5tTQL_lOW8k5zzF4q7CObV7kVtXTnCCF5sh0ktm1UGn4JbexzmvL8ZfHpbnYXJSs-ZjT3AFVprZYavJWHWeqqr9-gBz_9Tu7sD1VpOymqEJ7sGLSfdha4BRiKJzBXUcH8NoZF9M8A5bDadkwYTJlxYE69HgwYWhlE0gWY7P-hDaFsVSmw2QwxjtaNMokoyQTXZmVfng26huTHUKvede9bVnTUxosjdrDt7itpDZKysTzHZGg3Kir2EilyMVKODAvrjsmkHWuTezJBl6ogTRKHemgNec7R7CWDlNzDCy2jWqoWKOoCVwhfHxVofxMGsIoV3uqAtdlGUUfBYwjKrDLPKLsi2bZV4GzsgijaaMcRTwgGjxqFlEBnpfFL1-JXm7CcBY6-UukS9hodcN21L7vPJ7CJh1WXyyXPIO17HNszlHSZOoir7Tf1L_ujg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4nZoHwafONW16eRzOMS8bIg6GICVJUwbObrj2Yfv0nrTrLr4ISl-a0pQ01_85SX4BuPJdQV3TlIbyFDVsJ5SGZ0nTYNyV2CGySCnt72h3nFbXfuix3tIu_pwPMXe46ZaR9de6gY_C6GYBDZ3yT72TnNKMgrcOG7ZjUV2vGy8LgBRaI7M5ZttAoeEW2MYavVmNvzosLbTmsmLNhpzmLvAisflKk49qmoiqnP7gOP7nb_ZgZ6ZHST2vQPuwpuID2F6iFGKoPUe7jg_hvZPmkzwDkqFpyTAiPCb5cTr68WBC0MbWGFmMTfoTvSWMxDweRoMU7_SSUcKJTrFmK5PCC0_GfaWSI-g2715vW8bsjAZDovJwDWoKLpXgPHJci0UoNmoiVFwI7WDVMDAnrFnK4zUqVehwHy9UQBKFDrfQlnOtYyjFw1idAAlNJXwRSpQ0ns2Yi68KFJ-Rz5SwpSPKcF0UUTDKURxBDl2mgc6-YJ59ZagUJRjMmuQ4oJ5mwaNiYWWgWVH88pXgrd5uz0Onf4l0CZvPjWbwdN95PIMtfVJ9vlayAqXkK1XnqGcScZFV2W8Xvu09
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+an+electrically+conducting+hybrid+nanofluid+over+a+linearly+extended+sheet&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Bilal%2C+Muhammad&rft.au=Ali%2C+Aatif&rft.au=Hejazi%2C+Hala+A&rft.au=Mahmuod%2C+Samy+Refahy&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=103&rft.issue=5&rft_id=info:doi/10.1002%2Fzamm.202200227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon