Triazacoronene‐Based 2D Conductive Metal–Organic Framework for High‐Capacity Lithium Storage
2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c‐MOF electr...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 41 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c‐MOF electrode materials with functionality remains a significant challenge because of the limited electroactive ligand motifs available. Herein, a hexahydroxy‐substituted triazacoronene ligand (6OH‐TAC) is deliberately designed and synthesized, which coordinates with Cu2+ ions to form an unprecedented 2D c‐MOF (Cu‐TAC) with functionality sites of efficient lithium storage. The synergistic effect of TAC and CuO4 enables Cu‐TAC as an anode for lithium‐ion batteries with a superior reversible capacity of 772.4 mAh g−1 at 300 mA g−1, remarkable rate performance, and outstanding long‐term cyclability (83% capacity retention at 300 mA g−1 for 600 cycles). These metrics outperform almost all 2D c‐MOF‐based electrodes, shedding light on new opportunities for energy storage devices.
A new 2D conductive metal–organic framework (2D c‐MOF, Cu‐TAC) is synthesized via the coordination of a novel hexahydroxy‐substituted triazacoronene (6OH‐TAC) ligand with Cu2+ ions. The Cu‐TAC exhibits prominent lithium storage capability in lithium‐ion batteries with an exceptionally high reversible capacity, remarkable rate performance, and long‐term cycling stability due to its good conductivity, abundant active sites, and excellent stability. |
---|---|
AbstractList | 2D conductive metal–organic frameworks (2D
c
‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D
c
‐MOF electrode materials with functionality remains a significant challenge because of the limited electroactive ligand motifs available. Herein, a hexahydroxy‐substituted triazacoronene ligand (6OH‐TAC) is deliberately designed and synthesized, which coordinates with Cu
2+
ions to form an unprecedented 2D
c
‐MOF (Cu‐TAC) with functionality sites of efficient lithium storage. The synergistic effect of TAC and CuO
4
enables Cu‐TAC as an anode for lithium‐ion batteries with a superior reversible capacity of 772.4 mAh g
−1
at 300 mA g
−1
, remarkable rate performance, and outstanding long‐term cyclability (83% capacity retention at 300 mA g
−1
for 600 cycles). These metrics outperform almost all 2D
c
‐MOF‐based electrodes, shedding light on new opportunities for energy storage devices. 2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c‐MOF electrode materials with functionality remains a significant challenge because of the limited electroactive ligand motifs available. Herein, a hexahydroxy‐substituted triazacoronene ligand (6OH‐TAC) is deliberately designed and synthesized, which coordinates with Cu2+ ions to form an unprecedented 2D c‐MOF (Cu‐TAC) with functionality sites of efficient lithium storage. The synergistic effect of TAC and CuO4 enables Cu‐TAC as an anode for lithium‐ion batteries with a superior reversible capacity of 772.4 mAh g−1 at 300 mA g−1, remarkable rate performance, and outstanding long‐term cyclability (83% capacity retention at 300 mA g−1 for 600 cycles). These metrics outperform almost all 2D c‐MOF‐based electrodes, shedding light on new opportunities for energy storage devices. A new 2D conductive metal–organic framework (2D c‐MOF, Cu‐TAC) is synthesized via the coordination of a novel hexahydroxy‐substituted triazacoronene (6OH‐TAC) ligand with Cu2+ ions. The Cu‐TAC exhibits prominent lithium storage capability in lithium‐ion batteries with an exceptionally high reversible capacity, remarkable rate performance, and long‐term cycling stability due to its good conductivity, abundant active sites, and excellent stability. 2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c‐MOF electrode materials with functionality remains a significant challenge because of the limited electroactive ligand motifs available. Herein, a hexahydroxy‐substituted triazacoronene ligand (6OH‐TAC) is deliberately designed and synthesized, which coordinates with Cu2+ ions to form an unprecedented 2D c‐MOF (Cu‐TAC) with functionality sites of efficient lithium storage. The synergistic effect of TAC and CuO4 enables Cu‐TAC as an anode for lithium‐ion batteries with a superior reversible capacity of 772.4 mAh g−1 at 300 mA g−1, remarkable rate performance, and outstanding long‐term cyclability (83% capacity retention at 300 mA g−1 for 600 cycles). These metrics outperform almost all 2D c‐MOF‐based electrodes, shedding light on new opportunities for energy storage devices. |
Author | Li, Zhi‐Gang Liu, Ming Yin, Jia‐Cheng Lian, Xin Xu, Jian Xu, Yunhua Cheng, Mingren Li, Wei Li, Na Bu, Xian‐He |
Author_xml | – sequence: 1 givenname: Jia‐Cheng surname: Yin fullname: Yin, Jia‐Cheng organization: Nankai University – sequence: 2 givenname: Xin surname: Lian fullname: Lian, Xin organization: Nankai University – sequence: 3 givenname: Zhi‐Gang surname: Li fullname: Li, Zhi‐Gang organization: Nankai University – sequence: 4 givenname: Mingren surname: Cheng fullname: Cheng, Mingren organization: Nankai University – sequence: 5 givenname: Ming surname: Liu fullname: Liu, Ming organization: Nankai University – sequence: 6 givenname: Jian surname: Xu fullname: Xu, Jian organization: Nankai University – sequence: 7 givenname: Wei surname: Li fullname: Li, Wei organization: Nankai University – sequence: 8 givenname: Yunhua surname: Xu fullname: Xu, Yunhua organization: Tianjin University – sequence: 9 givenname: Na surname: Li fullname: Li, Na email: lina@nankai.edu.cn organization: Nankai University – sequence: 10 givenname: Xian‐He orcidid: 0000-0002-2646-7974 surname: Bu fullname: Bu, Xian‐He email: buxh@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkM1OwkAUhSdGEwHdum7iGpyfdqZdIoiYQFiIibvmMp2BwbaD01aCKx7BxDfkSSzBYGJiXN2zON85N6eJTnObK4SuCO4QjOkNJDrrUEx9zHjAT1CDcMLbDNPw9KjJ8zlqFsUSYyIE8xtoNnUG3kFaV4flarf9uIVCJR7tez2bJ5UszZvyxqqEdLf9nLg55EZ6AweZWlv34mnrvKGZL2qwByuQptx4I1MuTJV5j6V1MFcX6ExDWqjL79tCT4O7aW_YHk3uH3rdUVsyInhbz8JI8lr5QYQjEDKY4QAEUBCBJiFQiqUvCGfAkwiDYAEDHUCkBQ249jVroetD7srZ10oVZby0lcvrypgRwvyQRVFYu_yDSzpbFE7puP4ZSmPz0oFJY4Lj_Zrxfs34uGaNdX5hK2cycJu_gegArE2qNv-4425_MP5hvwC75IyQ |
CitedBy_id | crossref_primary_10_1002_ange_202500287 crossref_primary_10_1002_ange_202417493 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1002_anie_202500287 crossref_primary_10_1039_D4QI02314E crossref_primary_10_3390_catal15010032 crossref_primary_10_1002_adfm_202418474 crossref_primary_10_1002_aenm_202402489 crossref_primary_10_1002_ange_202423186 crossref_primary_10_1039_D5SC00463B crossref_primary_10_1002_anie_202423186 crossref_primary_10_1002_cphc_202400769 crossref_primary_10_1002_adfm_202408962 crossref_primary_10_1002_anie_202417493 |
Cites_doi | 10.1021/jacs.8b11257 10.1039/D1TA09194H 10.1002/anie.201002369 10.1002/adfm.202211821 10.1002/anie.202208163 10.1002/anie.202300186 10.1002/adma.202004393 10.1002/aenm.202100172 10.1007/s12274-020-2874-x 10.1002/anie.202105966 10.1002/aenm.202002523 10.1038/s41560-017-0044-5 10.1039/C5SC00304K 10.1002/cey2.45 10.1002/anie.202117661 10.1002/adfm.202211950 10.1021/jacs.2c10509 10.1002/anie.202006102 10.1002/anie.202302143 10.1039/C8CC02871K 10.1126/sciadv.abq3445 10.1002/cjoc.202200819 10.1016/j.nanoen.2019.05.030 10.1002/anie.202104167 10.1002/adfm.202312636 10.1002/anie.201909096 10.1002/anie.202207043 10.1002/adsc.201901433 10.1016/j.ensm.2022.05.021 10.1021/acsnano.1c10544 10.1002/anie.201109187 10.1039/D0TA11648C 10.1038/ncomms8408 10.1038/nenergy.2017.74 10.1038/s41467-019-12857-4 10.1002/ejoc.201701386 10.1021/acsami.9b23416 10.1039/C5CC08853D 10.1038/s41467-019-13739-5 10.1002/anie.201912642 10.1039/D1TA06228J 10.1002/anie.202209458 10.1038/s41563-020-00847-7 10.1039/D0CS01160F 10.1021/jacs.2c03793 10.1002/anie.202008987 10.1039/c3cs60108k 10.1016/j.cej.2022.138052 10.1021/jacs.1c03039 10.1002/anie.202302645 10.1002/adma.202203605 10.1002/anie.202216450 10.1039/C7TC00314E 10.1002/anie.202110373 10.1038/s41467-020-15141-y 10.1002/anie.202103398 10.1007/s40843-023-2626-0 10.1016/j.chempr.2022.03.027 10.1021/jacs.3c07682 10.1002/aenm.201801515 10.1002/anie.202212339 10.1002/anie.201914395 10.1021/jacs.6b08511 10.1038/s41467-023-39384-7 10.1002/adfm.202112072 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202403656 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202403656 ADFM202403656 |
Genre | article |
GrantInformation_xml | – fundername: Programme of Introducing Talents of Discipline to Universities funderid: B18030 – fundername: National Natural Science Foundation of China funderid: 22371139; 22305130; 22035003 – fundername: Postdoctoral Fellowship Program of CPSF funderid: GZC20231163 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-fb89c617645909a7c5b05a7a2a75f18a220c47163a6d90a7353af5a9f7256f4f3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 04:22:56 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Jul 01 00:30:59 EDT 2025 Wed Jan 22 17:14:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-fb89c617645909a7c5b05a7a2a75f18a220c47163a6d90a7353af5a9f7256f4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2646-7974 |
PQID | 3113483998 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3113483998 crossref_citationtrail_10_1002_adfm_202403656 crossref_primary_10_1002_adfm_202403656 wiley_primary_10_1002_adfm_202403656_ADFM202403656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2022 2020; 10 32 59 2018 2022; 8 10 2016 2021 2021; 52 60 20 2023; 33 2022 2023 2024; 450 62 2023; 145 2023 2022; 66 61 2021 2017 2021 2022; 60 2 11 12 2020; 12 2019 2020; 141 59 2023 2023; 62 62 2018 2020; 54 2 2020 2013 2017 2010; 362 42 5 49 2022; 144 2021; 14 2017 2015; 139 6 2022 2020 2021; 16 11 33 2022; 61 2022 2021 2021; 61 9 9 2015 2018; 6 2018 2012 2022; 51 50 2022 2023; 145 41 2021 2021 2022; 60 50 8 2021; 60 2019 2022; 62 61 2021 2018 2020; 143 3 59 2020 2023 2023 2023 2022; 59 62 33 14 8 2022 2020; 62 11 2021 2022; 60 34 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_9_4 e_1_2_7_9_3 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_20_5 e_1_2_7_24_1 e_1_2_7_20_4 e_1_2_7_22_2 e_1_2_7_20_3 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 60 2 11 12 year: 2021 2017 2021 2022 publication-title: Angew. Chem. Int. Ed. Nat. Energy Adv. Energy Mater. Adv. Energy Mater. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 61 9 9 start-page: 2700 year: 2022 2021 2021 publication-title: Angew. Chem. Int. Ed. J. Mater. Chem. A J. Mater. Chem. A – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 62 11 start-page: 178 year: 2022 2020 publication-title: Angew. Chem. Int. Ed. Nat. Commun. – volume: 10 32 59 start-page: 4948 5273 year: 2019 2022 2020 publication-title: Nat. Commun Adv. Funct. Mater. Angew. Chem. Int. Ed. – volume: 59 62 33 14 8 start-page: 3701 year: 2020 2023 2023 2023 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Adv. Funct. Mater. Nat. Commun. Sci. Adv. – volume: 60 34 year: 2021 2022 publication-title: Angew. Chem. Int. Ed. Adv. Mater. – volume: 14 start-page: 369 year: 2021 publication-title: Nano Res. – volume: 141 59 start-page: 2046 172 year: 2019 2020 publication-title: J. Am. Chem. Soc. Angew. Chem. Int. Ed. – volume: 139 6 start-page: 1360 7408 year: 2017 2015 publication-title: J. Am. Chem. Soc. Nat. Commun. – volume: 8 10 start-page: 1808 year: 2018 2022 publication-title: Adv. Energy Mater. J. Mater. Chem. A – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 16 11 33 start-page: 1759 1409 year: 2022 2020 2021 publication-title: ACS Nano Nat. Commun. Adv. Mater. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 6 2018 start-page: 3180 869 year: 2015 2018 publication-title: Chem. Sci. Eur. J. Org. Chem. – volume: 450 62 year: 2022 2023 2024 publication-title: Chem. Eng. J. Angew. Chem. Int. Ed. Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 52 60 20 start-page: 537 222 year: 2016 2021 2021 publication-title: Chem. Commun. Angew. Chem. Int. Ed. Nat. Mater. – volume: 62 62 year: 2023 2023 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. – volume: 62 61 start-page: 154 year: 2019 2022 publication-title: Nano Energy Angew. Chem. Int. Ed. – volume: 60 50 8 start-page: 5612 2764 1822 year: 2021 2021 2022 publication-title: Angew. Chem. Int. Ed. Chem. Soc. Rev. Chem – volume: 143 3 59 start-page: 30 1081 year: 2021 2018 2020 publication-title: J. Am. Chem. Soc. Nat. Energy Angew. Chem. Int. Ed. – volume: 51 50 start-page: 5147 225 year: 2012 2022 publication-title: Angew. Chem. Int. Ed. Energy Storage Mater. – volume: 54 2 start-page: 7873 203 year: 2018 2020 publication-title: Chem. Commun. Carbon Energy – volume: 145 41 start-page: 1022 1691 year: 2022 2023 publication-title: J. Am. Chem. Soc. Chin. J. Chem. – volume: 66 61 start-page: 4566 year: 2023 2022 publication-title: Sci. China Mater. Angew. Chem. Int. Ed. – volume: 362 42 5 49 start-page: 1651 6113 4293 8209 year: 2020 2013 2017 2010 publication-title: Adv. Synth. Catal. Chem. Soc. Rev. J. Mater. Chem. C Angew. Chem. Int. Ed. – volume: 12 start-page: 7504 year: 2020 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_5_1 doi: 10.1021/jacs.8b11257 – ident: e_1_2_7_21_2 doi: 10.1039/D1TA09194H – ident: e_1_2_7_9_4 doi: 10.1002/anie.201002369 – ident: e_1_2_7_20_3 doi: 10.1002/adfm.202211821 – ident: e_1_2_7_14_1 doi: 10.1002/anie.202208163 – ident: e_1_2_7_18_1 doi: 10.1002/anie.202300186 – ident: e_1_2_7_4_3 doi: 10.1002/adma.202004393 – ident: e_1_2_7_12_4 doi: 10.1002/aenm.202100172 – ident: e_1_2_7_16_1 doi: 10.1007/s12274-020-2874-x – ident: e_1_2_7_11_2 doi: 10.1002/anie.202105966 – ident: e_1_2_7_12_3 doi: 10.1002/aenm.202002523 – ident: e_1_2_7_3_2 doi: 10.1038/s41560-017-0044-5 – ident: e_1_2_7_10_1 doi: 10.1039/C5SC00304K – ident: e_1_2_7_7_2 doi: 10.1002/cey2.45 – ident: e_1_2_7_23_2 doi: 10.1002/anie.202117661 – ident: e_1_2_7_26_1 doi: 10.1002/adfm.202211950 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.2c10509 – ident: e_1_2_7_1_1 doi: 10.1002/anie.202006102 – ident: e_1_2_7_28_2 doi: 10.1002/anie.202302143 – ident: e_1_2_7_7_1 doi: 10.1039/C8CC02871K – ident: e_1_2_7_20_5 doi: 10.1126/sciadv.abq3445 – ident: e_1_2_7_27_2 doi: 10.1002/cjoc.202200819 – ident: e_1_2_7_23_1 doi: 10.1016/j.nanoen.2019.05.030 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202104167 – ident: e_1_2_7_28_3 doi: 10.1002/adfm.202312636 – ident: e_1_2_7_5_2 doi: 10.1002/anie.201909096 – ident: e_1_2_7_24_1 doi: 10.1002/anie.202207043 – ident: e_1_2_7_9_1 doi: 10.1002/adsc.201901433 – ident: e_1_2_7_13_2 doi: 10.1016/j.ensm.2022.05.021 – ident: e_1_2_7_4_1 doi: 10.1021/acsnano.1c10544 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201109187 – ident: e_1_2_7_24_2 doi: 10.1039/D0TA11648C – ident: e_1_2_7_6_2 doi: 10.1038/ncomms8408 – ident: e_1_2_7_12_2 doi: 10.1038/nenergy.2017.74 – ident: e_1_2_7_2_1 doi: 10.1038/s41467-019-12857-4 – ident: e_1_2_7_10_2 doi: 10.1002/ejoc.201701386 – ident: e_1_2_7_17_1 doi: 10.1021/acsami.9b23416 – ident: e_1_2_7_11_1 doi: 10.1039/C5CC08853D – ident: e_1_2_7_25_2 doi: 10.1038/s41467-019-13739-5 – ident: e_1_2_7_3_3 doi: 10.1002/anie.201912642 – ident: e_1_2_7_24_3 doi: 10.1039/D1TA06228J – ident: e_1_2_7_29_2 doi: 10.1002/anie.202209458 – ident: e_1_2_7_11_3 doi: 10.1038/s41563-020-00847-7 – ident: e_1_2_7_1_2 doi: 10.1039/D0CS01160F – ident: e_1_2_7_8_1 doi: 10.1021/jacs.2c03793 – ident: e_1_2_7_20_1 doi: 10.1002/anie.202008987 – ident: e_1_2_7_9_2 doi: 10.1039/c3cs60108k – ident: e_1_2_7_28_1 doi: 10.1016/j.cej.2022.138052 – ident: e_1_2_7_3_1 doi: 10.1021/jacs.1c03039 – ident: e_1_2_7_18_2 doi: 10.1002/anie.202302645 – ident: e_1_2_7_22_2 doi: 10.1002/adma.202203605 – ident: e_1_2_7_20_2 doi: 10.1002/anie.202216450 – ident: e_1_2_7_9_3 doi: 10.1039/C7TC00314E – ident: e_1_2_7_12_1 doi: 10.1002/anie.202110373 – ident: e_1_2_7_4_2 doi: 10.1038/s41467-020-15141-y – ident: e_1_2_7_15_1 doi: 10.1002/anie.202103398 – ident: e_1_2_7_29_1 doi: 10.1007/s40843-023-2626-0 – ident: e_1_2_7_1_3 doi: 10.1016/j.chempr.2022.03.027 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.3c07682 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.201801515 – ident: e_1_2_7_25_1 doi: 10.1002/anie.202212339 – ident: e_1_2_7_2_3 doi: 10.1002/anie.201914395 – ident: e_1_2_7_6_1 doi: 10.1021/jacs.6b08511 – ident: e_1_2_7_20_4 doi: 10.1038/s41467-023-39384-7 – ident: e_1_2_7_2_2 doi: 10.1002/adfm.202112072 |
SSID | ssj0017734 |
Score | 2.5631216 |
Snippet | 2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their... 2D conductive metal–organic frameworks (2D c ‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chemical synthesis conductive metal–organic frameworks Electrical resistivity Electrode materials Electrodes Ligands Lithium-ion batteries Metal-organic frameworks Rechargeable batteries redox‐active sites Synergistic effect triazacoronene |
Title | Triazacoronene‐Based 2D Conductive Metal–Organic Framework for High‐Capacity Lithium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202403656 https://www.proquest.com/docview/3113483998 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_jaiaHow8TRYu3VdjwgSYsSDQsJtaQuNRB2GHxdO_Akm_of8Jb5ubICJMdHblrRL176-9-32-ilCV74xISyPhSM8yRw_0NQRXFEHDEgRJYWmCWe79RA0O_5dl3XXdvGnfIj8g5udGYm_thNcqnFlBQ2VPWN3klueHGgScMI2YcuqosecH0U4T38rB8QmeJFuRm10aWWz-mZUWknNdcGaRJzGHpJZW9NEk5fydKLKevYN4_ifl9lHu0s5iqup_RygrX58iHbWIIVHSLXBRmfgOEfDGBzjYv5xA5Gvh2kd14axxcWCw8StPqj4xfwz3dupcSNL-sKgirHNJoGKNYjMGmQ_vh9MngfTN_wEK35waMeo07ht15rO8mQGR4PeCByjQqFB-1gSjSsk10y5THJJJWeGhJJSV0PUCzwZ9IQrucc8aZgUhoPCMr7xTlAhhkafIqwV67NAhYr7xreYXJ9wKKoU6BRJhCoiJxuZSC-x5fb0jNcoBS7TyPZdlPddEV3n5d9TYMePJUvZQEfLiTuOPEI8H0SjCIuIJiP2y1Oiar3Ryu_O_lLpHG3b6zRFsIQKk9G0fwFSZ6IuE3P-Ahij9vk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMdPUAZg4BtRPj0gMQViJ47jEVqqAi0DFIktst1aIKAgaBemPgISb8iTcE6atCAhJBgT2ZFjn-_-cc4_A-yG1sb4eSw9GSjuhZFhnhSaeWhAmmolDUs5283zqH4Vnl7zPJvQ7YXJ-BDFgpubGam_dhPcLUgfjKihqm3dVnIHlENRMglT7lhvh8-vXhQEKSpE9mM5oi7Fi17n3EafHXyt_zUujcTmuGRNY05tHnTe2izV5G6_39P75vUbyPFfr7MAc0NFSg4zE1qEiU53CWbHOIXLoFtopq_oO58fu-gbPwZvRxj82oRVSeWx64ix6DNJs4NC_mPwnm3vNKSW530RFMbEJZRgxQoGZ4PKnzRueze3_QdyiR_96NNW4Kp23KrUveHhDJ5ByRF5VsfSoPxxMBpfKmG49rkSiinBLY0VY77BwBcFKmpLX4mAB8pyJa1AkWVDG6xCqYuNXgNiNO_wSMdahDZ0pNyQCiyqNUoVRaUug5cPTWKG5HJ3gMZ9kjGXWeL6Lin6rgx7RfmnjNnxY8nNfKST4dx9SQJKgxB1o4zLwNIh--UpyWG11iyu1v9SaQem661mI2mcnJ9twIy7n2UMbkKp99zvbKHy6ent1LY_AYyH-xU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT-MwEMdHLEhoOfBYFlGePiDtKRA7dhwfS0vEqwjxkHqLbLcWCCgI2gunfgQkviGfhHHShIKEVto9JrIjxx7P_J2MfwbY4s4luDxWgYq0CHhsWaCkYQEakKFGK8tyznbrJN6_5Idt0R7bxV_wIaoPbn5m5P7aT_CHjtv5gIbqjvM7yT1PDjXJD5jicaj84Q3NswogRaUs_ivH1Gd40XaJbQzZzuf6n8PSh9YcV6x5yEnnQJeNLTJNbrYHfbNtn79wHP_nbeZhdqRHSb0woAWY6PZ-wcwYpXARzAUa6TN6zsf7HnrGt-HLLoa-DmFN0rjveV4sekzS6qKMfxu-Fps7LUnLrC-Cspj4dBKs2MDQbFH3k-Pr_tX14I6c45IfPdpvuEz3Lhr7wehohsCi4IgDZxJlUfx4FE2otLTChEJLzbQUjiaasdBi2IsjHXdUqGUkIu2EVk6ixHLcRUsw2cNGLwOxRnRFbBIjueOek8upxKLGoFDRVJkaBOXIZHbELffHZ9xmBXGZZb7vsqrvavCnKv9QEDu-LblWDnQ2mrlPWURpxFE1qqQGLB-xvzwlqzfTVnW18i-VNmH6tJlmxwcnR6vw098u0gXXYLL_OOiuo-zpm43cst8Bns_5xA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triazacoronene%E2%80%90Based+2D+Conductive+Metal%E2%80%93Organic+Framework+for+High%E2%80%90Capacity+Lithium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Yin%2C+Jia%E2%80%90Cheng&rft.au=Lian%2C+Xin&rft.au=Li%2C+Zhi%E2%80%90Gang&rft.au=Cheng%2C+Mingren&rft.date=2024-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202403656&rft.externalDBID=10.1002%252Fadfm.202403656&rft.externalDocID=ADFM202403656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |