Triazacoronene‐Based 2D Conductive Metal–Organic Framework for High‐Capacity Lithium Storage

2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c‐MOF electr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 41
Main Authors Yin, Jia‐Cheng, Lian, Xin, Li, Zhi‐Gang, Cheng, Mingren, Liu, Ming, Xu, Jian, Li, Wei, Xu, Yunhua, Li, Na, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c‐MOF electrode materials with functionality remains a significant challenge because of the limited electroactive ligand motifs available. Herein, a hexahydroxy‐substituted triazacoronene ligand (6OH‐TAC) is deliberately designed and synthesized, which coordinates with Cu2+ ions to form an unprecedented 2D c‐MOF (Cu‐TAC) with functionality sites of efficient lithium storage. The synergistic effect of TAC and CuO4 enables Cu‐TAC as an anode for lithium‐ion batteries with a superior reversible capacity of 772.4 mAh g−1 at 300 mA g−1, remarkable rate performance, and outstanding long‐term cyclability (83% capacity retention at 300 mA g−1 for 600 cycles). These metrics outperform almost all 2D c‐MOF‐based electrodes, shedding light on new opportunities for energy storage devices. A new 2D conductive metal–organic framework (2D c‐MOF, Cu‐TAC) is synthesized via the coordination of a novel hexahydroxy‐substituted triazacoronene (6OH‐TAC) ligand with Cu2+ ions. The Cu‐TAC exhibits prominent lithium storage capability in lithium‐ion batteries with an exceptionally high reversible capacity, remarkable rate performance, and long‐term cycling stability due to its good conductivity, abundant active sites, and excellent stability.
AbstractList 2D conductive metal–organic frameworks (2D c ‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c ‐MOF electrode materials with functionality remains a significant challenge because of the limited electroactive ligand motifs available. Herein, a hexahydroxy‐substituted triazacoronene ligand (6OH‐TAC) is deliberately designed and synthesized, which coordinates with Cu 2+ ions to form an unprecedented 2D c ‐MOF (Cu‐TAC) with functionality sites of efficient lithium storage. The synergistic effect of TAC and CuO 4 enables Cu‐TAC as an anode for lithium‐ion batteries with a superior reversible capacity of 772.4 mAh g −1 at 300 mA g −1 , remarkable rate performance, and outstanding long‐term cyclability (83% capacity retention at 300 mA g −1 for 600 cycles). These metrics outperform almost all 2D c ‐MOF‐based electrodes, shedding light on new opportunities for energy storage devices.
2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c‐MOF electrode materials with functionality remains a significant challenge because of the limited electroactive ligand motifs available. Herein, a hexahydroxy‐substituted triazacoronene ligand (6OH‐TAC) is deliberately designed and synthesized, which coordinates with Cu2+ ions to form an unprecedented 2D c‐MOF (Cu‐TAC) with functionality sites of efficient lithium storage. The synergistic effect of TAC and CuO4 enables Cu‐TAC as an anode for lithium‐ion batteries with a superior reversible capacity of 772.4 mAh g−1 at 300 mA g−1, remarkable rate performance, and outstanding long‐term cyclability (83% capacity retention at 300 mA g−1 for 600 cycles). These metrics outperform almost all 2D c‐MOF‐based electrodes, shedding light on new opportunities for energy storage devices. A new 2D conductive metal–organic framework (2D c‐MOF, Cu‐TAC) is synthesized via the coordination of a novel hexahydroxy‐substituted triazacoronene (6OH‐TAC) ligand with Cu2+ ions. The Cu‐TAC exhibits prominent lithium storage capability in lithium‐ion batteries with an exceptionally high reversible capacity, remarkable rate performance, and long‐term cycling stability due to its good conductivity, abundant active sites, and excellent stability.
2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their designable periodic motifs, large specific surface areas, and prominent electrical conductivity. However, the development of 2D c‐MOF electrode materials with functionality remains a significant challenge because of the limited electroactive ligand motifs available. Herein, a hexahydroxy‐substituted triazacoronene ligand (6OH‐TAC) is deliberately designed and synthesized, which coordinates with Cu2+ ions to form an unprecedented 2D c‐MOF (Cu‐TAC) with functionality sites of efficient lithium storage. The synergistic effect of TAC and CuO4 enables Cu‐TAC as an anode for lithium‐ion batteries with a superior reversible capacity of 772.4 mAh g−1 at 300 mA g−1, remarkable rate performance, and outstanding long‐term cyclability (83% capacity retention at 300 mA g−1 for 600 cycles). These metrics outperform almost all 2D c‐MOF‐based electrodes, shedding light on new opportunities for energy storage devices.
Author Li, Zhi‐Gang
Liu, Ming
Yin, Jia‐Cheng
Lian, Xin
Xu, Jian
Xu, Yunhua
Cheng, Mingren
Li, Wei
Li, Na
Bu, Xian‐He
Author_xml – sequence: 1
  givenname: Jia‐Cheng
  surname: Yin
  fullname: Yin, Jia‐Cheng
  organization: Nankai University
– sequence: 2
  givenname: Xin
  surname: Lian
  fullname: Lian, Xin
  organization: Nankai University
– sequence: 3
  givenname: Zhi‐Gang
  surname: Li
  fullname: Li, Zhi‐Gang
  organization: Nankai University
– sequence: 4
  givenname: Mingren
  surname: Cheng
  fullname: Cheng, Mingren
  organization: Nankai University
– sequence: 5
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Nankai University
– sequence: 6
  givenname: Jian
  surname: Xu
  fullname: Xu, Jian
  organization: Nankai University
– sequence: 7
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Nankai University
– sequence: 8
  givenname: Yunhua
  surname: Xu
  fullname: Xu, Yunhua
  organization: Tianjin University
– sequence: 9
  givenname: Na
  surname: Li
  fullname: Li, Na
  email: lina@nankai.edu.cn
  organization: Nankai University
– sequence: 10
  givenname: Xian‐He
  orcidid: 0000-0002-2646-7974
  surname: Bu
  fullname: Bu, Xian‐He
  email: buxh@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkM1OwkAUhSdGEwHdum7iGpyfdqZdIoiYQFiIibvmMp2BwbaD01aCKx7BxDfkSSzBYGJiXN2zON85N6eJTnObK4SuCO4QjOkNJDrrUEx9zHjAT1CDcMLbDNPw9KjJ8zlqFsUSYyIE8xtoNnUG3kFaV4flarf9uIVCJR7tez2bJ5UszZvyxqqEdLf9nLg55EZ6AweZWlv34mnrvKGZL2qwByuQptx4I1MuTJV5j6V1MFcX6ExDWqjL79tCT4O7aW_YHk3uH3rdUVsyInhbz8JI8lr5QYQjEDKY4QAEUBCBJiFQiqUvCGfAkwiDYAEDHUCkBQ249jVroetD7srZ10oVZby0lcvrypgRwvyQRVFYu_yDSzpbFE7puP4ZSmPz0oFJY4Lj_Zrxfs34uGaNdX5hK2cycJu_gegArE2qNv-4425_MP5hvwC75IyQ
CitedBy_id crossref_primary_10_1002_ange_202500287
crossref_primary_10_1002_ange_202417493
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1002_anie_202500287
crossref_primary_10_1039_D4QI02314E
crossref_primary_10_3390_catal15010032
crossref_primary_10_1002_adfm_202418474
crossref_primary_10_1002_aenm_202402489
crossref_primary_10_1002_ange_202423186
crossref_primary_10_1039_D5SC00463B
crossref_primary_10_1002_anie_202423186
crossref_primary_10_1002_cphc_202400769
crossref_primary_10_1002_adfm_202408962
crossref_primary_10_1002_anie_202417493
Cites_doi 10.1021/jacs.8b11257
10.1039/D1TA09194H
10.1002/anie.201002369
10.1002/adfm.202211821
10.1002/anie.202208163
10.1002/anie.202300186
10.1002/adma.202004393
10.1002/aenm.202100172
10.1007/s12274-020-2874-x
10.1002/anie.202105966
10.1002/aenm.202002523
10.1038/s41560-017-0044-5
10.1039/C5SC00304K
10.1002/cey2.45
10.1002/anie.202117661
10.1002/adfm.202211950
10.1021/jacs.2c10509
10.1002/anie.202006102
10.1002/anie.202302143
10.1039/C8CC02871K
10.1126/sciadv.abq3445
10.1002/cjoc.202200819
10.1016/j.nanoen.2019.05.030
10.1002/anie.202104167
10.1002/adfm.202312636
10.1002/anie.201909096
10.1002/anie.202207043
10.1002/adsc.201901433
10.1016/j.ensm.2022.05.021
10.1021/acsnano.1c10544
10.1002/anie.201109187
10.1039/D0TA11648C
10.1038/ncomms8408
10.1038/nenergy.2017.74
10.1038/s41467-019-12857-4
10.1002/ejoc.201701386
10.1021/acsami.9b23416
10.1039/C5CC08853D
10.1038/s41467-019-13739-5
10.1002/anie.201912642
10.1039/D1TA06228J
10.1002/anie.202209458
10.1038/s41563-020-00847-7
10.1039/D0CS01160F
10.1021/jacs.2c03793
10.1002/anie.202008987
10.1039/c3cs60108k
10.1016/j.cej.2022.138052
10.1021/jacs.1c03039
10.1002/anie.202302645
10.1002/adma.202203605
10.1002/anie.202216450
10.1039/C7TC00314E
10.1002/anie.202110373
10.1038/s41467-020-15141-y
10.1002/anie.202103398
10.1007/s40843-023-2626-0
10.1016/j.chempr.2022.03.027
10.1021/jacs.3c07682
10.1002/aenm.201801515
10.1002/anie.202212339
10.1002/anie.201914395
10.1021/jacs.6b08511
10.1038/s41467-023-39384-7
10.1002/adfm.202112072
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202403656
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202403656
ADFM202403656
Genre article
GrantInformation_xml – fundername: Programme of Introducing Talents of Discipline to Universities
  funderid: B18030
– fundername: National Natural Science Foundation of China
  funderid: 22371139; 22305130; 22035003
– fundername: Postdoctoral Fellowship Program of CPSF
  funderid: GZC20231163
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-fb89c617645909a7c5b05a7a2a75f18a220c47163a6d90a7353af5a9f7256f4f3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 04:22:56 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 01 00:30:59 EDT 2025
Wed Jan 22 17:14:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-fb89c617645909a7c5b05a7a2a75f18a220c47163a6d90a7353af5a9f7256f4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2646-7974
PQID 3113483998
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_3113483998
crossref_citationtrail_10_1002_adfm_202403656
crossref_primary_10_1002_adfm_202403656
wiley_primary_10_1002_adfm_202403656_ADFM202403656
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2022 2020; 10 32 59
2018 2022; 8 10
2016 2021 2021; 52 60 20
2023; 33
2022 2023 2024; 450 62
2023; 145
2023 2022; 66 61
2021 2017 2021 2022; 60 2 11 12
2020; 12
2019 2020; 141 59
2023 2023; 62 62
2018 2020; 54 2
2020 2013 2017 2010; 362 42 5 49
2022; 144
2021; 14
2017 2015; 139 6
2022 2020 2021; 16 11 33
2022; 61
2022 2021 2021; 61 9 9
2015 2018; 6 2018
2012 2022; 51 50
2022 2023; 145 41
2021 2021 2022; 60 50 8
2021; 60
2019 2022; 62 61
2021 2018 2020; 143 3 59
2020 2023 2023 2023 2022; 59 62 33 14 8
2022 2020; 62 11
2021 2022; 60 34
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_28_3
e_1_2_7_9_4
e_1_2_7_9_3
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_20_5
e_1_2_7_24_1
e_1_2_7_20_4
e_1_2_7_22_2
e_1_2_7_20_3
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 60 2 11 12
  year: 2021 2017 2021 2022
  publication-title: Angew. Chem. Int. Ed. Nat. Energy Adv. Energy Mater. Adv. Energy Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 61 9 9
  start-page: 2700
  year: 2022 2021 2021
  publication-title: Angew. Chem. Int. Ed. J. Mater. Chem. A J. Mater. Chem. A
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 62 11
  start-page: 178
  year: 2022 2020
  publication-title: Angew. Chem. Int. Ed. Nat. Commun.
– volume: 10 32 59
  start-page: 4948 5273
  year: 2019 2022 2020
  publication-title: Nat. Commun Adv. Funct. Mater. Angew. Chem. Int. Ed.
– volume: 59 62 33 14 8
  start-page: 3701
  year: 2020 2023 2023 2023 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Adv. Funct. Mater. Nat. Commun. Sci. Adv.
– volume: 60 34
  year: 2021 2022
  publication-title: Angew. Chem. Int. Ed. Adv. Mater.
– volume: 14
  start-page: 369
  year: 2021
  publication-title: Nano Res.
– volume: 141 59
  start-page: 2046 172
  year: 2019 2020
  publication-title: J. Am. Chem. Soc. Angew. Chem. Int. Ed.
– volume: 139 6
  start-page: 1360 7408
  year: 2017 2015
  publication-title: J. Am. Chem. Soc. Nat. Commun.
– volume: 8 10
  start-page: 1808
  year: 2018 2022
  publication-title: Adv. Energy Mater. J. Mater. Chem. A
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 16 11 33
  start-page: 1759 1409
  year: 2022 2020 2021
  publication-title: ACS Nano Nat. Commun. Adv. Mater.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 6 2018
  start-page: 3180 869
  year: 2015 2018
  publication-title: Chem. Sci. Eur. J. Org. Chem.
– volume: 450 62
  year: 2022 2023 2024
  publication-title: Chem. Eng. J. Angew. Chem. Int. Ed. Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 52 60 20
  start-page: 537 222
  year: 2016 2021 2021
  publication-title: Chem. Commun. Angew. Chem. Int. Ed. Nat. Mater.
– volume: 62 62
  year: 2023 2023
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 62 61
  start-page: 154
  year: 2019 2022
  publication-title: Nano Energy Angew. Chem. Int. Ed.
– volume: 60 50 8
  start-page: 5612 2764 1822
  year: 2021 2021 2022
  publication-title: Angew. Chem. Int. Ed. Chem. Soc. Rev. Chem
– volume: 143 3 59
  start-page: 30 1081
  year: 2021 2018 2020
  publication-title: J. Am. Chem. Soc. Nat. Energy Angew. Chem. Int. Ed.
– volume: 51 50
  start-page: 5147 225
  year: 2012 2022
  publication-title: Angew. Chem. Int. Ed. Energy Storage Mater.
– volume: 54 2
  start-page: 7873 203
  year: 2018 2020
  publication-title: Chem. Commun. Carbon Energy
– volume: 145 41
  start-page: 1022 1691
  year: 2022 2023
  publication-title: J. Am. Chem. Soc. Chin. J. Chem.
– volume: 66 61
  start-page: 4566
  year: 2023 2022
  publication-title: Sci. China Mater. Angew. Chem. Int. Ed.
– volume: 362 42 5 49
  start-page: 1651 6113 4293 8209
  year: 2020 2013 2017 2010
  publication-title: Adv. Synth. Catal. Chem. Soc. Rev. J. Mater. Chem. C Angew. Chem. Int. Ed.
– volume: 12
  start-page: 7504
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.8b11257
– ident: e_1_2_7_21_2
  doi: 10.1039/D1TA09194H
– ident: e_1_2_7_9_4
  doi: 10.1002/anie.201002369
– ident: e_1_2_7_20_3
  doi: 10.1002/adfm.202211821
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.202208163
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202300186
– ident: e_1_2_7_4_3
  doi: 10.1002/adma.202004393
– ident: e_1_2_7_12_4
  doi: 10.1002/aenm.202100172
– ident: e_1_2_7_16_1
  doi: 10.1007/s12274-020-2874-x
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.202105966
– ident: e_1_2_7_12_3
  doi: 10.1002/aenm.202002523
– ident: e_1_2_7_3_2
  doi: 10.1038/s41560-017-0044-5
– ident: e_1_2_7_10_1
  doi: 10.1039/C5SC00304K
– ident: e_1_2_7_7_2
  doi: 10.1002/cey2.45
– ident: e_1_2_7_23_2
  doi: 10.1002/anie.202117661
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.202211950
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.2c10509
– ident: e_1_2_7_1_1
  doi: 10.1002/anie.202006102
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.202302143
– ident: e_1_2_7_7_1
  doi: 10.1039/C8CC02871K
– ident: e_1_2_7_20_5
  doi: 10.1126/sciadv.abq3445
– ident: e_1_2_7_27_2
  doi: 10.1002/cjoc.202200819
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nanoen.2019.05.030
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202104167
– ident: e_1_2_7_28_3
  doi: 10.1002/adfm.202312636
– ident: e_1_2_7_5_2
  doi: 10.1002/anie.201909096
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.202207043
– ident: e_1_2_7_9_1
  doi: 10.1002/adsc.201901433
– ident: e_1_2_7_13_2
  doi: 10.1016/j.ensm.2022.05.021
– ident: e_1_2_7_4_1
  doi: 10.1021/acsnano.1c10544
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201109187
– ident: e_1_2_7_24_2
  doi: 10.1039/D0TA11648C
– ident: e_1_2_7_6_2
  doi: 10.1038/ncomms8408
– ident: e_1_2_7_12_2
  doi: 10.1038/nenergy.2017.74
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-019-12857-4
– ident: e_1_2_7_10_2
  doi: 10.1002/ejoc.201701386
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.9b23416
– ident: e_1_2_7_11_1
  doi: 10.1039/C5CC08853D
– ident: e_1_2_7_25_2
  doi: 10.1038/s41467-019-13739-5
– ident: e_1_2_7_3_3
  doi: 10.1002/anie.201912642
– ident: e_1_2_7_24_3
  doi: 10.1039/D1TA06228J
– ident: e_1_2_7_29_2
  doi: 10.1002/anie.202209458
– ident: e_1_2_7_11_3
  doi: 10.1038/s41563-020-00847-7
– ident: e_1_2_7_1_2
  doi: 10.1039/D0CS01160F
– ident: e_1_2_7_8_1
  doi: 10.1021/jacs.2c03793
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202008987
– ident: e_1_2_7_9_2
  doi: 10.1039/c3cs60108k
– ident: e_1_2_7_28_1
  doi: 10.1016/j.cej.2022.138052
– ident: e_1_2_7_3_1
  doi: 10.1021/jacs.1c03039
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.202302645
– ident: e_1_2_7_22_2
  doi: 10.1002/adma.202203605
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.202216450
– ident: e_1_2_7_9_3
  doi: 10.1039/C7TC00314E
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.202110373
– ident: e_1_2_7_4_2
  doi: 10.1038/s41467-020-15141-y
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.202103398
– ident: e_1_2_7_29_1
  doi: 10.1007/s40843-023-2626-0
– ident: e_1_2_7_1_3
  doi: 10.1016/j.chempr.2022.03.027
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.3c07682
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.201801515
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202212339
– ident: e_1_2_7_2_3
  doi: 10.1002/anie.201914395
– ident: e_1_2_7_6_1
  doi: 10.1021/jacs.6b08511
– ident: e_1_2_7_20_4
  doi: 10.1038/s41467-023-39384-7
– ident: e_1_2_7_2_2
  doi: 10.1002/adfm.202112072
SSID ssj0017734
Score 2.5631216
Snippet 2D conductive metal–organic frameworks (2D c‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to their...
2D conductive metal–organic frameworks (2D c ‐MOFs) have attracted increasing attention as promising electrode materials for rechargeable batteries due to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chemical synthesis
conductive metal–organic frameworks
Electrical resistivity
Electrode materials
Electrodes
Ligands
Lithium-ion batteries
Metal-organic frameworks
Rechargeable batteries
redox‐active sites
Synergistic effect
triazacoronene
Title Triazacoronene‐Based 2D Conductive Metal–Organic Framework for High‐Capacity Lithium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202403656
https://www.proquest.com/docview/3113483998
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_jaiaHow8TRYu3VdjwgSYsSDQsJtaQuNRB2GHxdO_Akm_of8Jb5ubICJMdHblrRL176-9-32-ilCV74xISyPhSM8yRw_0NQRXFEHDEgRJYWmCWe79RA0O_5dl3XXdvGnfIj8g5udGYm_thNcqnFlBQ2VPWN3klueHGgScMI2YcuqosecH0U4T38rB8QmeJFuRm10aWWz-mZUWknNdcGaRJzGHpJZW9NEk5fydKLKevYN4_ifl9lHu0s5iqup_RygrX58iHbWIIVHSLXBRmfgOEfDGBzjYv5xA5Gvh2kd14axxcWCw8StPqj4xfwz3dupcSNL-sKgirHNJoGKNYjMGmQ_vh9MngfTN_wEK35waMeo07ht15rO8mQGR4PeCByjQqFB-1gSjSsk10y5THJJJWeGhJJSV0PUCzwZ9IQrucc8aZgUhoPCMr7xTlAhhkafIqwV67NAhYr7xreYXJ9wKKoU6BRJhCoiJxuZSC-x5fb0jNcoBS7TyPZdlPddEV3n5d9TYMePJUvZQEfLiTuOPEI8H0SjCIuIJiP2y1Oiar3Ryu_O_lLpHG3b6zRFsIQKk9G0fwFSZ6IuE3P-Ahij9vk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMdPUAZg4BtRPj0gMQViJ47jEVqqAi0DFIktst1aIKAgaBemPgISb8iTcE6atCAhJBgT2ZFjn-_-cc4_A-yG1sb4eSw9GSjuhZFhnhSaeWhAmmolDUs5283zqH4Vnl7zPJvQ7YXJ-BDFgpubGam_dhPcLUgfjKihqm3dVnIHlENRMglT7lhvh8-vXhQEKSpE9mM5oi7Fi17n3EafHXyt_zUujcTmuGRNY05tHnTe2izV5G6_39P75vUbyPFfr7MAc0NFSg4zE1qEiU53CWbHOIXLoFtopq_oO58fu-gbPwZvRxj82oRVSeWx64ix6DNJs4NC_mPwnm3vNKSW530RFMbEJZRgxQoGZ4PKnzRueze3_QdyiR_96NNW4Kp23KrUveHhDJ5ByRF5VsfSoPxxMBpfKmG49rkSiinBLY0VY77BwBcFKmpLX4mAB8pyJa1AkWVDG6xCqYuNXgNiNO_wSMdahDZ0pNyQCiyqNUoVRaUug5cPTWKG5HJ3gMZ9kjGXWeL6Lin6rgx7RfmnjNnxY8nNfKST4dx9SQJKgxB1o4zLwNIh--UpyWG11iyu1v9SaQem661mI2mcnJ9twIy7n2UMbkKp99zvbKHy6ent1LY_AYyH-xU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT-MwEMdHLEhoOfBYFlGePiDtKRA7dhwfS0vEqwjxkHqLbLcWCCgI2gunfgQkviGfhHHShIKEVto9JrIjxx7P_J2MfwbY4s4luDxWgYq0CHhsWaCkYQEakKFGK8tyznbrJN6_5Idt0R7bxV_wIaoPbn5m5P7aT_CHjtv5gIbqjvM7yT1PDjXJD5jicaj84Q3NswogRaUs_ivH1Gd40XaJbQzZzuf6n8PSh9YcV6x5yEnnQJeNLTJNbrYHfbNtn79wHP_nbeZhdqRHSb0woAWY6PZ-wcwYpXARzAUa6TN6zsf7HnrGt-HLLoa-DmFN0rjveV4sekzS6qKMfxu-Fps7LUnLrC-Cspj4dBKs2MDQbFH3k-Pr_tX14I6c45IfPdpvuEz3Lhr7wehohsCi4IgDZxJlUfx4FE2otLTChEJLzbQUjiaasdBi2IsjHXdUqGUkIu2EVk6ixHLcRUsw2cNGLwOxRnRFbBIjueOek8upxKLGoFDRVJkaBOXIZHbELffHZ9xmBXGZZb7vsqrvavCnKv9QEDu-LblWDnQ2mrlPWURpxFE1qqQGLB-xvzwlqzfTVnW18i-VNmH6tJlmxwcnR6vw098u0gXXYLL_OOiuo-zpm43cst8Bns_5xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triazacoronene%E2%80%90Based+2D+Conductive+Metal%E2%80%93Organic+Framework+for+High%E2%80%90Capacity+Lithium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Yin%2C+Jia%E2%80%90Cheng&rft.au=Lian%2C+Xin&rft.au=Li%2C+Zhi%E2%80%90Gang&rft.au=Cheng%2C+Mingren&rft.date=2024-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202403656&rft.externalDBID=10.1002%252Fadfm.202403656&rft.externalDocID=ADFM202403656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon