Polyamide Nanofilms through a Non‐Isothermal‐Controlled Interfacial Polymerization

Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isoth...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 18
Main Authors Zhao, Guang‐Jin, Li, Lu‐Lu, Gao, Hai‐Qi, Zhao, Zhi‐Jian, Pang, Zi‐Fan, Pei, Chun‐Lei, Qu, Zhou, Dong, Liang‐Liang, Rao, De‐Wei, Caro, Jürgen, Meng, Hong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m−2 h−1 bar−1) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane. A non‐isothermal‐controlled IP method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase to achieve synchronous control of heat and mass transfer in the interfacial region. The membrane exhibits ultrahigh water permeance and antibiotic desalination efficiency.
AbstractList Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m−2 h−1 bar−1) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane.
Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m −2 h −1 bar −1 ) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane.
Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m−2 h−1 bar−1) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane. A non‐isothermal‐controlled IP method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase to achieve synchronous control of heat and mass transfer in the interfacial region. The membrane exhibits ultrahigh water permeance and antibiotic desalination efficiency.
Author Zhao, Guang‐Jin
Dong, Liang‐Liang
Meng, Hong
Caro, Jürgen
Gao, Hai‐Qi
Pei, Chun‐Lei
Qu, Zhou
Li, Lu‐Lu
Rao, De‐Wei
Zhao, Zhi‐Jian
Pang, Zi‐Fan
Author_xml – sequence: 1
  givenname: Guang‐Jin
  surname: Zhao
  fullname: Zhao, Guang‐Jin
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Lu‐Lu
  surname: Li
  fullname: Li, Lu‐Lu
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 3
  givenname: Hai‐Qi
  surname: Gao
  fullname: Gao, Hai‐Qi
  organization: Xinjiang University
– sequence: 4
  givenname: Zhi‐Jian
  surname: Zhao
  fullname: Zhao, Zhi‐Jian
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 5
  givenname: Zi‐Fan
  surname: Pang
  fullname: Pang, Zi‐Fan
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 6
  givenname: Chun‐Lei
  surname: Pei
  fullname: Pei, Chun‐Lei
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 7
  givenname: Zhou
  surname: Qu
  fullname: Qu, Zhou
  organization: Beijing University of Chemical Technology
– sequence: 8
  givenname: Liang‐Liang
  orcidid: 0000-0003-4007-6715
  surname: Dong
  fullname: Dong, Liang‐Liang
  email: liangliangdong@jiangnan.edu.cn
  organization: Jiangnan University
– sequence: 9
  givenname: De‐Wei
  surname: Rao
  fullname: Rao, De‐Wei
  organization: Jiangsu University
– sequence: 10
  givenname: Jürgen
  surname: Caro
  fullname: Caro, Jürgen
  organization: Leibniz Universität Hannover
– sequence: 11
  givenname: Hong
  surname: Meng
  fullname: Meng, Hong
  email: menghong@xju.edu.cn
  organization: Xinjiang University
BookMark eNqFkMFKAzEQhoMo2Favnhc8tybZ3WT3WKrVQq0eVLyFbDaxKdmkJilSTz6Cz-iTuLVSQRBP8w_zfzPD3wX71lkJwAmCAwQhPuO1agYY4hSlEJM90EEEkX6ri_2dRo-HoBvCAkJEaZp1wMOtM2ve6FomM26d0qYJSZx7t3qaJzyZOfvx9j4JLs6lb7hpm5Gz0TtjZJ1MbJRecaG5STZ7Gun1K4_a2SNwoLgJ8vi79sD9-OJudNWf3lxORsNpX6SIkr6EkmaYZkoqyjEmBSJFJUVWqXacI1JxWghZ1WXOBa4JpQWVKYW5EFxBXBdpD5xu9y69e17JENnCrbxtT7IUZmVeYkzL1pVtXcK7ELxUTOj49Wf0XBuGINskyDYJsl2CLTb4hS29brhf_w2UW-BFG7n-x82G5-PrH_YTKVeJMA
CitedBy_id crossref_primary_10_1002_adfm_202412463
crossref_primary_10_1002_adfm_202416458
crossref_primary_10_1016_j_desal_2024_118393
crossref_primary_10_1016_j_memsci_2025_123901
crossref_primary_10_1016_j_seppur_2024_127732
crossref_primary_10_1021_acs_est_5c00916
crossref_primary_10_3390_polym16233240
crossref_primary_10_1021_acsami_4c00857
crossref_primary_10_1021_acs_nanolett_4c01997
crossref_primary_10_1021_acs_nanolett_4c04326
Cites_doi 10.1017/S0022112097006101
10.1016/j.memsci.2019.04.027
10.1038/s41893-022-00898-5
10.1039/C5TA06869J
10.1038/ncomms6772
10.1016/j.desal.2022.116091
10.1038/srep22069
10.1038/s41467-022-28183-1
10.1021/acs.estlett.8b00016
10.1002/adma.202001383
10.1021/acsapm.9b00973
10.1038/s41893-018-0046-8
10.1063/5.0038662
10.1126/science.1200488
10.1016/j.memsci.2018.09.011
10.1038/s41893-020-00619-w
10.1038/nmat4638
10.1039/D0TA12283A
10.1038/s41467-020-15070-w
10.1021/acsestengg.1c00237
10.1002/app.21338
10.1039/D0TA02150D
10.1016/j.desal.2011.04.039
10.1038/s41563-021-01168-z
10.1126/sciadv.abk1888
10.1038/natrevmats.2016.18
10.1126/science.aaa5058
10.1039/D0CC02555K
10.1021/j150579a011
10.1038/srep13562
10.1016/j.colsurfa.2021.127001
10.1002/adma.200500587
10.1038/s41467-020-19404-6
10.1021/ja0371754
10.1021/es049453k
10.1126/sciadv.abm4149
10.1002/adfm.202009430
10.1016/j.desal.2018.07.004
10.1126/science.aar2122
10.1126/science.aar6308
10.1002/anie.201916473
10.1002/jcc.22885
10.1126/science.1203771
10.1126/science.abe9741
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202313026
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202313026
ADFM202313026
Genre article
GrantInformation_xml – fundername: National Science Foundation of Jiangsu Province
  funderid: BK20230106
– fundername: Fundamental Research Funds for the Central Universities
  funderid: JUSRP622035
– fundername: National Natural Science Foundation of China
  funderid: U23A20688; 22278178
– fundername: National Key Research and Development Program of China
  funderid: 2021YFB3802600
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-e0e74274fef7a2268168bec4bf317516ba78cebd95ac2d67787e3705ccaf02d83
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:16:16 EDT 2025
Tue Jul 01 00:30:55 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Jan 22 17:20:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-e0e74274fef7a2268168bec4bf317516ba78cebd95ac2d67787e3705ccaf02d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4007-6715
PQID 3049592279
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_3049592279
crossref_citationtrail_10_1002_adfm_202313026
crossref_primary_10_1002_adfm_202313026
wiley_primary_10_1002_adfm_202313026_ADFM202313026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 626
2018; 361
1959; 63
2011; 333
2004; 126
2015; 5
2018; 360
2015; 11
2018; 566
2004; 9
2009; 452
2023; 545
2020; 59
2020; 56
2020; 11
2022; 21
2020; 32
2015; 348
2016; 15
2012; 33
2011; 332
2019; 582
2016; 4
2020; 8
1997; 345
2016; 6
2020; 4
2014; 5
2016; 1
2021; 31
2020; 2
2018; 5
2022; 5
2018; 1
2022; 8
2005; 95
2022; 13
2021; 371
2022; 2
2021; 154
2005; 17
2011; 282
2005; 39
1959; 34
2019; 451
e_1_2_9_30_1
e_1_2_9_31_1
Shannon M. A. (e_1_2_9_14_1) 2009; 452
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Wang Z. (e_1_2_9_18_1) 2004; 9
e_1_2_9_15_1
e_1_2_9_38_1
Liang Y. (e_1_2_9_21_1) 2015; 11
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
Morgan P. W. (e_1_2_9_1_1) 1959; 34
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 126
  start-page: 851
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 361
  start-page: 682
  year: 2018
  publication-title: Science
– volume: 56
  start-page: 7249
  year: 2020
  publication-title: Chem. Commun.
– volume: 332
  start-page: 674
  year: 2011
  publication-title: Science
– volume: 9
  start-page: 8470
  year: 2021
  publication-title: J. Mater. Chem.
– volume: 545
  year: 2023
  publication-title: Desalination
– volume: 4
  start-page: 138
  year: 2020
  publication-title: Nat. Sustain.
– volume: 11
  start-page: 5882
  year: 2020
  publication-title: Nat. Commun.
– volume: 371
  start-page: 31
  year: 2021
  publication-title: Science
– volume: 360
  start-page: 518
  year: 2018
  publication-title: Science
– volume: 154
  year: 2021
  publication-title: J. Chem. Phys.
– volume: 63
  start-page: 1381
  year: 1959
  publication-title: J. Phys. Chem.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 451
  start-page: 139
  year: 2019
  publication-title: Desalination
– volume: 333
  start-page: 712
  year: 2011
  publication-title: Science
– volume: 95
  start-page: 1251
  year: 2005
  publication-title: J. Appl. Polym. Sci.
– volume: 452
  start-page: 10
  year: 2009
  publication-title: Nanosci. Technol.
– volume: 13
  start-page: 500
  year: 2022
  publication-title: Nat. Commun.
– volume: 626
  year: 2021
  publication-title: Colloids Surf., A
– volume: 2
  start-page: 377
  year: 2022
  publication-title: ACS ES&T Eng
– volume: 1
  start-page: 166
  year: 2018
  publication-title: Nat. Sustain.
– volume: 15
  start-page: 760
  year: 2016
  publication-title: Nat. Mater.
– volume: 582
  start-page: 342
  year: 2019
  publication-title: J. Membr. Sci.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 11
  start-page: 2020
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 51
  year: 2016
  publication-title: J. Mater. Chem.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 9160
  year: 2020
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 123
  year: 2018
  publication-title: Environ. Sci. Technol. Lett.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 34
  start-page: 299
  year: 1959
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 21
  start-page: 463
  year: 2022
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2018
  year: 2004
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1198
  year: 2020
  publication-title: Nat. Commun.
– volume: 566
  start-page: 329
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 5
  start-page: 5772
  year: 2014
  publication-title: Nat. Commun.
– volume: 348
  start-page: 1347
  year: 2015
  publication-title: Science
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 39
  start-page: 1764
  year: 2005
  publication-title: Environ. Sci. Technol.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 2
  start-page: 585
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 345
  start-page: 45
  year: 1997
  publication-title: J. Fluid Mech.
– volume: 282
  start-page: 78
  year: 2011
  publication-title: Desalination
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 5
  start-page: 689
  year: 2022
  publication-title: Nat. Sustain.
– volume: 17
  start-page: 2082
  year: 2005
  publication-title: Adv. Mater.
– ident: e_1_2_9_28_1
  doi: 10.1017/S0022112097006101
– ident: e_1_2_9_32_1
  doi: 10.1016/j.memsci.2019.04.027
– ident: e_1_2_9_41_1
  doi: 10.1038/s41893-022-00898-5
– ident: e_1_2_9_26_1
  doi: 10.1039/C5TA06869J
– ident: e_1_2_9_5_1
  doi: 10.1038/ncomms6772
– ident: e_1_2_9_36_1
  doi: 10.1016/j.desal.2022.116091
– ident: e_1_2_9_37_1
  doi: 10.1038/srep22069
– volume: 34
  start-page: 299
  year: 1959
  ident: e_1_2_9_1_1
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– ident: e_1_2_9_15_1
  doi: 10.1038/s41467-022-28183-1
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.estlett.8b00016
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.202001383
– ident: e_1_2_9_20_1
  doi: 10.1021/acsapm.9b00973
– ident: e_1_2_9_43_1
  doi: 10.1038/s41893-018-0046-8
– ident: e_1_2_9_44_1
  doi: 10.1063/5.0038662
– ident: e_1_2_9_8_1
  doi: 10.1126/science.1200488
– ident: e_1_2_9_33_1
  doi: 10.1016/j.memsci.2018.09.011
– ident: e_1_2_9_2_1
  doi: 10.1038/s41893-020-00619-w
– volume: 11
  start-page: 2020
  year: 2015
  ident: e_1_2_9_21_1
  publication-title: Nat. Commun.
– ident: e_1_2_9_23_1
  doi: 10.1038/nmat4638
– ident: e_1_2_9_34_1
  doi: 10.1039/D0TA12283A
– ident: e_1_2_9_4_1
  doi: 10.1038/s41467-020-15070-w
– ident: e_1_2_9_42_1
  doi: 10.1021/acsestengg.1c00237
– ident: e_1_2_9_38_1
  doi: 10.1002/app.21338
– volume: 9
  start-page: 2018
  year: 2004
  ident: e_1_2_9_18_1
  publication-title: Nat. Commun.
– ident: e_1_2_9_48_1
  doi: 10.1039/D0TA02150D
– ident: e_1_2_9_39_1
  doi: 10.1016/j.desal.2011.04.039
– ident: e_1_2_9_24_1
  doi: 10.1038/s41563-021-01168-z
– ident: e_1_2_9_30_1
  doi: 10.1126/sciadv.abk1888
– ident: e_1_2_9_9_1
  doi: 10.1038/natrevmats.2016.18
– ident: e_1_2_9_16_1
  doi: 10.1126/science.aaa5058
– ident: e_1_2_9_35_1
  doi: 10.1039/D0CC02555K
– ident: e_1_2_9_46_1
  doi: 10.1021/j150579a011
– ident: e_1_2_9_47_1
  doi: 10.1038/srep13562
– ident: e_1_2_9_17_1
  doi: 10.1016/j.colsurfa.2021.127001
– ident: e_1_2_9_6_1
  doi: 10.1002/adma.200500587
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-020-19404-6
– ident: e_1_2_9_7_1
  doi: 10.1021/ja0371754
– ident: e_1_2_9_40_1
  doi: 10.1021/es049453k
– ident: e_1_2_9_27_1
  doi: 10.1126/sciadv.abm4149
– ident: e_1_2_9_10_1
  doi: 10.1002/adfm.202009430
– volume: 452
  start-page: 10
  year: 2009
  ident: e_1_2_9_14_1
  publication-title: Nanosci. Technol.
– ident: e_1_2_9_19_1
  doi: 10.1016/j.desal.2018.07.004
– ident: e_1_2_9_25_1
  doi: 10.1126/science.aar2122
– ident: e_1_2_9_22_1
  doi: 10.1126/science.aar6308
– ident: e_1_2_9_29_1
  doi: 10.1002/anie.201916473
– ident: e_1_2_9_45_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_9_13_1
  doi: 10.1126/science.1203771
– ident: e_1_2_9_12_1
  doi: 10.1126/science.abe9741
SSID ssj0017734
Score 2.5907342
Snippet Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms antibiotic desalination
Antibiotics
Aqueous solutions
Desalination
Heat transfer
interfacial polymerization
Mass transfer
membrane separation
Membranes
nanofiltration
Phase transitions
polyamide
Polyamide resins
Polymerization
Thin films
Title Polyamide Nanofilms through a Non‐Isothermal‐Controlled Interfacial Polymerization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202313026
https://www.proquest.com/docview/3049592279
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SL3rwLVZr2YPgKe2-s3ssraWKLaJWeluyeYC4bcVtD3ryJ_gb_SVmNrvbVhBBbxtIQjaZJN9MZr5B6MyzmWRK7cIsEAy7koeYmj7DsaWEh0lixRmZTn_g94bu1cgbLUXxa36I0uAGOyM7r2GD0zhtLkhDKZcQSa7wiaP0CHUIg8MWoKLbkj_KIkQ_K_sWOHhZo4K10bSbq81Xb6UF1FwGrNmN091GtBirdjR5asxncYO9faNx_M_P7KCtHI4aLS0_u2hNTPbQ5hJJ4T56uJkmr3T8yIWhjmLI8D1OjTy9j0GNwXTy-f5xmWaRXGOaqEJbu78nghuZwVFSsMsb0A-8D-nAzwM07F7ct3s4z8aAmcIYPhamUGo0caWQhCrQBgk7lAC4sQQIYvkxJQETMQ89ymwOvHREOMT0lIhI0-aBc4gqk-lEHCHDlaFrSk5lKAUQpNGQMifwfckdJqUVVhEuViNiOVU5ZMxIIk2ybEcwX1E5X1V0XtZ_1iQdP9asFYsb5Zs1jeCl0QuBSrGK7GyVfuklanW6_bJ0_JdGJ2hDfbvadbKGKrOXuThV8GYW19F6q9O_vqtnovwFp5D2nw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60HtSDb7FadQ-Kp2jeaQ4eirW0aouISm9xsw8Q-xBbET35E_wr_hV_gr_EnWwSHyCC4MFjwmbJ7szszOzMfAOw4dlMMuV2GawsmOFKHhrU9JkRW4p5mAysOAHTabb8-pl70PbaI_Cc1cJofIj8wg0lIzmvUcDxQnrnHTWUcoml5MpAcZQjkeZVHor7O-W1DXYbVUXiTduu7Z_u1Y20sYDBlLr0DWEK5REGrhQyoMr-wN4Tai1uLFGbWn5MgzITMQ89ymyOEGuBcALTU6uVps3Ljpp3FMawjTjC9VdPcsQqKwh0INu3MKXMamc4kaa98_l_P-vBd-P2o4mc6LjaNLxku6NTW662b4fxNnv4Ahz5r7ZvBqZSi5tUtIjMwojozcHkBxzGeTg_7nfuafeSC6K0DTYx7w5I2sGIUNLq914fnxqDpFitSzvqYU9n-HcEJ8mdqqQYeiA4D4bAdG3rApz9ycIWodDr98QSEFeGrik5laEUiAFHQ8qcsu9L7jAprbAIRkb-iKVo7NgUpBNpHGk7QvpEOX2KsJWPv9Y4JN-OLGXcFKXn0SDCYKoXIlpkEeyELX6YJapUa838afk3H63DeP20eRQdNVqHKzCh3rs6U7QEheHNrVhV1twwXkvkh8DFX3PcG8sIU6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NattAEB4cF0p76H-pG6fZQ0tOsvUv65CDsWvsujGh1ME3dbW7A6X-o7Yp7imP0Efpq-QV-iTZ0UrKD4RAIYccJVaLdmdmZ2Zn5huA94ErUGi3yxItJSwfZWxxOxRW6mjmERg5aQamczQK-2P_0ySYVOBvUQtj8CHKCzeSjOy8JgFfSmxegIZyiVRJru0TT_sReVrlUG1_aadtdTjoagp_cN3ex6-dvpX3FbCE1pahpWylHcLIR4UR1-YHtZ7QS_FTJGXqhCmPWkKlMg64cCUhrEXKi-xALxZtV7Y8Pe8OPPBDO6ZmEd0vJWCVE0Umjh06lFHmTAqYSNttXv3fq2rwwra9bCFnKq73FM6KzTGZLT8am3XaEL-v4Ubep917Bk9ye5u1jYA8h4qav4DHl1AYX8LJ8WK65bPvUjGta6iF-WzF8v5FjLPRYv7v9M9glZWqzfhUP3RMfv9USZbdqCKnwAOjeSgAZipbX8H4Thb2GqrzxVy9AeZj7NsoOcaoCAGOx1x4rTBE6QlEJ66BVVA_ETkWO7UEmSYGRdpNiD5JSZ8aHJTjlwaF5MaR9YKZkvw0WiUUSg1iwoqsgZtxxS2zJO1u76h8evs_H-3Dw-NuL_k8GA134ZF-7Zs00TpU1z83ak-bcuv0XSY9DL7dNcOdA2R0UlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyamide+Nanofilms+through+a+Non%E2%80%90Isothermal%E2%80%90Controlled+Interfacial+Polymerization&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Guang%E2%80%90Jin&rft.au=Li%2C+Lu%E2%80%90Lu&rft.au=Gao%2C+Hai%E2%80%90Qi&rft.au=Zhao%2C+Zhi%E2%80%90Jian&rft.date=2024-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202313026&rft.externalDBID=10.1002%252Fadfm.202313026&rft.externalDocID=ADFM202313026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon