Polyamide Nanofilms through a Non‐Isothermal‐Controlled Interfacial Polymerization
Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isoth...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 18 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m−2 h−1 bar−1) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane.
A non‐isothermal‐controlled IP method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase to achieve synchronous control of heat and mass transfer in the interfacial region. The membrane exhibits ultrahigh water permeance and antibiotic desalination efficiency. |
---|---|
AbstractList | Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m−2 h−1 bar−1) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane. Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m −2 h −1 bar −1 ) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane. Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m−2 h−1 bar−1) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane. A non‐isothermal‐controlled IP method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase to achieve synchronous control of heat and mass transfer in the interfacial region. The membrane exhibits ultrahigh water permeance and antibiotic desalination efficiency. |
Author | Zhao, Guang‐Jin Dong, Liang‐Liang Meng, Hong Caro, Jürgen Gao, Hai‐Qi Pei, Chun‐Lei Qu, Zhou Li, Lu‐Lu Rao, De‐Wei Zhao, Zhi‐Jian Pang, Zi‐Fan |
Author_xml | – sequence: 1 givenname: Guang‐Jin surname: Zhao fullname: Zhao, Guang‐Jin organization: Beijing University of Chemical Technology – sequence: 2 givenname: Lu‐Lu surname: Li fullname: Li, Lu‐Lu organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 3 givenname: Hai‐Qi surname: Gao fullname: Gao, Hai‐Qi organization: Xinjiang University – sequence: 4 givenname: Zhi‐Jian surname: Zhao fullname: Zhao, Zhi‐Jian organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 5 givenname: Zi‐Fan surname: Pang fullname: Pang, Zi‐Fan organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 6 givenname: Chun‐Lei surname: Pei fullname: Pei, Chun‐Lei organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 7 givenname: Zhou surname: Qu fullname: Qu, Zhou organization: Beijing University of Chemical Technology – sequence: 8 givenname: Liang‐Liang orcidid: 0000-0003-4007-6715 surname: Dong fullname: Dong, Liang‐Liang email: liangliangdong@jiangnan.edu.cn organization: Jiangnan University – sequence: 9 givenname: De‐Wei surname: Rao fullname: Rao, De‐Wei organization: Jiangsu University – sequence: 10 givenname: Jürgen surname: Caro fullname: Caro, Jürgen organization: Leibniz Universität Hannover – sequence: 11 givenname: Hong surname: Meng fullname: Meng, Hong email: menghong@xju.edu.cn organization: Xinjiang University |
BookMark | eNqFkMFKAzEQhoMo2Favnhc8tybZ3WT3WKrVQq0eVLyFbDaxKdmkJilSTz6Cz-iTuLVSQRBP8w_zfzPD3wX71lkJwAmCAwQhPuO1agYY4hSlEJM90EEEkX6ri_2dRo-HoBvCAkJEaZp1wMOtM2ve6FomM26d0qYJSZx7t3qaJzyZOfvx9j4JLs6lb7hpm5Gz0TtjZJ1MbJRecaG5STZ7Gun1K4_a2SNwoLgJ8vi79sD9-OJudNWf3lxORsNpX6SIkr6EkmaYZkoqyjEmBSJFJUVWqXacI1JxWghZ1WXOBa4JpQWVKYW5EFxBXBdpD5xu9y69e17JENnCrbxtT7IUZmVeYkzL1pVtXcK7ELxUTOj49Wf0XBuGINskyDYJsl2CLTb4hS29brhf_w2UW-BFG7n-x82G5-PrH_YTKVeJMA |
CitedBy_id | crossref_primary_10_1002_adfm_202412463 crossref_primary_10_1002_adfm_202416458 crossref_primary_10_1016_j_desal_2024_118393 crossref_primary_10_1016_j_memsci_2025_123901 crossref_primary_10_1016_j_seppur_2024_127732 crossref_primary_10_1021_acs_est_5c00916 crossref_primary_10_3390_polym16233240 crossref_primary_10_1021_acsami_4c00857 crossref_primary_10_1021_acs_nanolett_4c01997 crossref_primary_10_1021_acs_nanolett_4c04326 |
Cites_doi | 10.1017/S0022112097006101 10.1016/j.memsci.2019.04.027 10.1038/s41893-022-00898-5 10.1039/C5TA06869J 10.1038/ncomms6772 10.1016/j.desal.2022.116091 10.1038/srep22069 10.1038/s41467-022-28183-1 10.1021/acs.estlett.8b00016 10.1002/adma.202001383 10.1021/acsapm.9b00973 10.1038/s41893-018-0046-8 10.1063/5.0038662 10.1126/science.1200488 10.1016/j.memsci.2018.09.011 10.1038/s41893-020-00619-w 10.1038/nmat4638 10.1039/D0TA12283A 10.1038/s41467-020-15070-w 10.1021/acsestengg.1c00237 10.1002/app.21338 10.1039/D0TA02150D 10.1016/j.desal.2011.04.039 10.1038/s41563-021-01168-z 10.1126/sciadv.abk1888 10.1038/natrevmats.2016.18 10.1126/science.aaa5058 10.1039/D0CC02555K 10.1021/j150579a011 10.1038/srep13562 10.1016/j.colsurfa.2021.127001 10.1002/adma.200500587 10.1038/s41467-020-19404-6 10.1021/ja0371754 10.1021/es049453k 10.1126/sciadv.abm4149 10.1002/adfm.202009430 10.1016/j.desal.2018.07.004 10.1126/science.aar2122 10.1126/science.aar6308 10.1002/anie.201916473 10.1002/jcc.22885 10.1126/science.1203771 10.1126/science.abe9741 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202313026 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202313026 ADFM202313026 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation of Jiangsu Province funderid: BK20230106 – fundername: Fundamental Research Funds for the Central Universities funderid: JUSRP622035 – fundername: National Natural Science Foundation of China funderid: U23A20688; 22278178 – fundername: National Key Research and Development Program of China funderid: 2021YFB3802600 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-e0e74274fef7a2268168bec4bf317516ba78cebd95ac2d67787e3705ccaf02d83 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:16:16 EDT 2025 Tue Jul 01 00:30:55 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Wed Jan 22 17:20:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-e0e74274fef7a2268168bec4bf317516ba78cebd95ac2d67787e3705ccaf02d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4007-6715 |
PQID | 3049592279 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3049592279 crossref_citationtrail_10_1002_adfm_202313026 crossref_primary_10_1002_adfm_202313026 wiley_primary_10_1002_adfm_202313026_ADFM202313026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021; 626 2018; 361 1959; 63 2011; 333 2004; 126 2015; 5 2018; 360 2015; 11 2018; 566 2004; 9 2009; 452 2023; 545 2020; 59 2020; 56 2020; 11 2022; 21 2020; 32 2015; 348 2016; 15 2012; 33 2011; 332 2019; 582 2016; 4 2020; 8 1997; 345 2016; 6 2020; 4 2014; 5 2016; 1 2021; 31 2020; 2 2018; 5 2022; 5 2018; 1 2022; 8 2005; 95 2022; 13 2021; 371 2022; 2 2021; 154 2005; 17 2011; 282 2005; 39 1959; 34 2019; 451 e_1_2_9_30_1 e_1_2_9_31_1 Shannon M. A. (e_1_2_9_14_1) 2009; 452 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Wang Z. (e_1_2_9_18_1) 2004; 9 e_1_2_9_15_1 e_1_2_9_38_1 Liang Y. (e_1_2_9_21_1) 2015; 11 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 Morgan P. W. (e_1_2_9_1_1) 1959; 34 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 126 start-page: 851 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 361 start-page: 682 year: 2018 publication-title: Science – volume: 56 start-page: 7249 year: 2020 publication-title: Chem. Commun. – volume: 332 start-page: 674 year: 2011 publication-title: Science – volume: 9 start-page: 8470 year: 2021 publication-title: J. Mater. Chem. – volume: 545 year: 2023 publication-title: Desalination – volume: 4 start-page: 138 year: 2020 publication-title: Nat. Sustain. – volume: 11 start-page: 5882 year: 2020 publication-title: Nat. Commun. – volume: 371 start-page: 31 year: 2021 publication-title: Science – volume: 360 start-page: 518 year: 2018 publication-title: Science – volume: 154 year: 2021 publication-title: J. Chem. Phys. – volume: 63 start-page: 1381 year: 1959 publication-title: J. Phys. Chem. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 451 start-page: 139 year: 2019 publication-title: Desalination – volume: 333 start-page: 712 year: 2011 publication-title: Science – volume: 95 start-page: 1251 year: 2005 publication-title: J. Appl. Polym. Sci. – volume: 452 start-page: 10 year: 2009 publication-title: Nanosci. Technol. – volume: 13 start-page: 500 year: 2022 publication-title: Nat. Commun. – volume: 626 year: 2021 publication-title: Colloids Surf., A – volume: 2 start-page: 377 year: 2022 publication-title: ACS ES&T Eng – volume: 1 start-page: 166 year: 2018 publication-title: Nat. Sustain. – volume: 15 start-page: 760 year: 2016 publication-title: Nat. Mater. – volume: 582 start-page: 342 year: 2019 publication-title: J. Membr. Sci. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 11 start-page: 2020 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 51 year: 2016 publication-title: J. Mater. Chem. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 9160 year: 2020 publication-title: J. Mater. Chem. – volume: 5 start-page: 123 year: 2018 publication-title: Environ. Sci. Technol. Lett. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 34 start-page: 299 year: 1959 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 21 start-page: 463 year: 2022 publication-title: Nat. Mater. – volume: 9 start-page: 2018 year: 2004 publication-title: Nat. Commun. – volume: 11 start-page: 1198 year: 2020 publication-title: Nat. Commun. – volume: 566 start-page: 329 year: 2018 publication-title: J. Membr. Sci. – volume: 5 start-page: 5772 year: 2014 publication-title: Nat. Commun. – volume: 348 start-page: 1347 year: 2015 publication-title: Science – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 39 start-page: 1764 year: 2005 publication-title: Environ. Sci. Technol. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 2 start-page: 585 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 345 start-page: 45 year: 1997 publication-title: J. Fluid Mech. – volume: 282 start-page: 78 year: 2011 publication-title: Desalination – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 5 start-page: 689 year: 2022 publication-title: Nat. Sustain. – volume: 17 start-page: 2082 year: 2005 publication-title: Adv. Mater. – ident: e_1_2_9_28_1 doi: 10.1017/S0022112097006101 – ident: e_1_2_9_32_1 doi: 10.1016/j.memsci.2019.04.027 – ident: e_1_2_9_41_1 doi: 10.1038/s41893-022-00898-5 – ident: e_1_2_9_26_1 doi: 10.1039/C5TA06869J – ident: e_1_2_9_5_1 doi: 10.1038/ncomms6772 – ident: e_1_2_9_36_1 doi: 10.1016/j.desal.2022.116091 – ident: e_1_2_9_37_1 doi: 10.1038/srep22069 – volume: 34 start-page: 299 year: 1959 ident: e_1_2_9_1_1 publication-title: J. Polym. Sci., Part A: Polym. Chem. – ident: e_1_2_9_15_1 doi: 10.1038/s41467-022-28183-1 – ident: e_1_2_9_31_1 doi: 10.1021/acs.estlett.8b00016 – ident: e_1_2_9_11_1 doi: 10.1002/adma.202001383 – ident: e_1_2_9_20_1 doi: 10.1021/acsapm.9b00973 – ident: e_1_2_9_43_1 doi: 10.1038/s41893-018-0046-8 – ident: e_1_2_9_44_1 doi: 10.1063/5.0038662 – ident: e_1_2_9_8_1 doi: 10.1126/science.1200488 – ident: e_1_2_9_33_1 doi: 10.1016/j.memsci.2018.09.011 – ident: e_1_2_9_2_1 doi: 10.1038/s41893-020-00619-w – volume: 11 start-page: 2020 year: 2015 ident: e_1_2_9_21_1 publication-title: Nat. Commun. – ident: e_1_2_9_23_1 doi: 10.1038/nmat4638 – ident: e_1_2_9_34_1 doi: 10.1039/D0TA12283A – ident: e_1_2_9_4_1 doi: 10.1038/s41467-020-15070-w – ident: e_1_2_9_42_1 doi: 10.1021/acsestengg.1c00237 – ident: e_1_2_9_38_1 doi: 10.1002/app.21338 – volume: 9 start-page: 2018 year: 2004 ident: e_1_2_9_18_1 publication-title: Nat. Commun. – ident: e_1_2_9_48_1 doi: 10.1039/D0TA02150D – ident: e_1_2_9_39_1 doi: 10.1016/j.desal.2011.04.039 – ident: e_1_2_9_24_1 doi: 10.1038/s41563-021-01168-z – ident: e_1_2_9_30_1 doi: 10.1126/sciadv.abk1888 – ident: e_1_2_9_9_1 doi: 10.1038/natrevmats.2016.18 – ident: e_1_2_9_16_1 doi: 10.1126/science.aaa5058 – ident: e_1_2_9_35_1 doi: 10.1039/D0CC02555K – ident: e_1_2_9_46_1 doi: 10.1021/j150579a011 – ident: e_1_2_9_47_1 doi: 10.1038/srep13562 – ident: e_1_2_9_17_1 doi: 10.1016/j.colsurfa.2021.127001 – ident: e_1_2_9_6_1 doi: 10.1002/adma.200500587 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-020-19404-6 – ident: e_1_2_9_7_1 doi: 10.1021/ja0371754 – ident: e_1_2_9_40_1 doi: 10.1021/es049453k – ident: e_1_2_9_27_1 doi: 10.1126/sciadv.abm4149 – ident: e_1_2_9_10_1 doi: 10.1002/adfm.202009430 – volume: 452 start-page: 10 year: 2009 ident: e_1_2_9_14_1 publication-title: Nanosci. Technol. – ident: e_1_2_9_19_1 doi: 10.1016/j.desal.2018.07.004 – ident: e_1_2_9_25_1 doi: 10.1126/science.aar2122 – ident: e_1_2_9_22_1 doi: 10.1126/science.aar6308 – ident: e_1_2_9_29_1 doi: 10.1002/anie.201916473 – ident: e_1_2_9_45_1 doi: 10.1002/jcc.22885 – ident: e_1_2_9_13_1 doi: 10.1126/science.1203771 – ident: e_1_2_9_12_1 doi: 10.1126/science.abe9741 |
SSID | ssj0017734 |
Score | 2.5907342 |
Snippet | Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | antibiotic desalination Antibiotics Aqueous solutions Desalination Heat transfer interfacial polymerization Mass transfer membrane separation Membranes nanofiltration Phase transitions polyamide Polyamide resins Polymerization Thin films |
Title | Polyamide Nanofilms through a Non‐Isothermal‐Controlled Interfacial Polymerization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202313026 https://www.proquest.com/docview/3049592279 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SL3rwLVZr2YPgKe2-s3ssraWKLaJWeluyeYC4bcVtD3ryJ_gb_SVmNrvbVhBBbxtIQjaZJN9MZr5B6MyzmWRK7cIsEAy7koeYmj7DsaWEh0lixRmZTn_g94bu1cgbLUXxa36I0uAGOyM7r2GD0zhtLkhDKZcQSa7wiaP0CHUIg8MWoKLbkj_KIkQ_K_sWOHhZo4K10bSbq81Xb6UF1FwGrNmN091GtBirdjR5asxncYO9faNx_M_P7KCtHI4aLS0_u2hNTPbQ5hJJ4T56uJkmr3T8yIWhjmLI8D1OjTy9j0GNwXTy-f5xmWaRXGOaqEJbu78nghuZwVFSsMsb0A-8D-nAzwM07F7ct3s4z8aAmcIYPhamUGo0caWQhCrQBgk7lAC4sQQIYvkxJQETMQ89ymwOvHREOMT0lIhI0-aBc4gqk-lEHCHDlaFrSk5lKAUQpNGQMifwfckdJqUVVhEuViNiOVU5ZMxIIk2ybEcwX1E5X1V0XtZ_1iQdP9asFYsb5Zs1jeCl0QuBSrGK7GyVfuklanW6_bJ0_JdGJ2hDfbvadbKGKrOXuThV8GYW19F6q9O_vqtnovwFp5D2nw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60HtSDb7FadQ-Kp2jeaQ4eirW0aouISm9xsw8Q-xBbET35E_wr_hV_gr_EnWwSHyCC4MFjwmbJ7szszOzMfAOw4dlMMuV2GawsmOFKHhrU9JkRW4p5mAysOAHTabb8-pl70PbaI_Cc1cJofIj8wg0lIzmvUcDxQnrnHTWUcoml5MpAcZQjkeZVHor7O-W1DXYbVUXiTduu7Z_u1Y20sYDBlLr0DWEK5REGrhQyoMr-wN4Tai1uLFGbWn5MgzITMQ89ymyOEGuBcALTU6uVps3Ljpp3FMawjTjC9VdPcsQqKwh0INu3MKXMamc4kaa98_l_P-vBd-P2o4mc6LjaNLxku6NTW662b4fxNnv4Ahz5r7ZvBqZSi5tUtIjMwojozcHkBxzGeTg_7nfuafeSC6K0DTYx7w5I2sGIUNLq914fnxqDpFitSzvqYU9n-HcEJ8mdqqQYeiA4D4bAdG3rApz9ycIWodDr98QSEFeGrik5laEUiAFHQ8qcsu9L7jAprbAIRkb-iKVo7NgUpBNpHGk7QvpEOX2KsJWPv9Y4JN-OLGXcFKXn0SDCYKoXIlpkEeyELX6YJapUa838afk3H63DeP20eRQdNVqHKzCh3rs6U7QEheHNrVhV1twwXkvkh8DFX3PcG8sIU6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NattAEB4cF0p76H-pG6fZQ0tOsvUv65CDsWvsujGh1ME3dbW7A6X-o7Yp7imP0Efpq-QV-iTZ0UrKD4RAIYccJVaLdmdmZ2Zn5huA94ErUGi3yxItJSwfZWxxOxRW6mjmERg5aQamczQK-2P_0ySYVOBvUQtj8CHKCzeSjOy8JgFfSmxegIZyiVRJru0TT_sReVrlUG1_aadtdTjoagp_cN3ex6-dvpX3FbCE1pahpWylHcLIR4UR1-YHtZ7QS_FTJGXqhCmPWkKlMg64cCUhrEXKi-xALxZtV7Y8Pe8OPPBDO6ZmEd0vJWCVE0Umjh06lFHmTAqYSNttXv3fq2rwwra9bCFnKq73FM6KzTGZLT8am3XaEL-v4Ubep917Bk9ye5u1jYA8h4qav4DHl1AYX8LJ8WK65bPvUjGta6iF-WzF8v5FjLPRYv7v9M9glZWqzfhUP3RMfv9USZbdqCKnwAOjeSgAZipbX8H4Thb2GqrzxVy9AeZj7NsoOcaoCAGOx1x4rTBE6QlEJ66BVVA_ETkWO7UEmSYGRdpNiD5JSZ8aHJTjlwaF5MaR9YKZkvw0WiUUSg1iwoqsgZtxxS2zJO1u76h8evs_H-3Dw-NuL_k8GA134ZF-7Zs00TpU1z83ak-bcuv0XSY9DL7dNcOdA2R0UlM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyamide+Nanofilms+through+a+Non%E2%80%90Isothermal%E2%80%90Controlled+Interfacial+Polymerization&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Guang%E2%80%90Jin&rft.au=Li%2C+Lu%E2%80%90Lu&rft.au=Gao%2C+Hai%E2%80%90Qi&rft.au=Zhao%2C+Zhi%E2%80%90Jian&rft.date=2024-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202313026&rft.externalDBID=10.1002%252Fadfm.202313026&rft.externalDocID=ADFM202313026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |