High‐Loading Co Single Atoms and Clusters Active Sites toward Enhanced Electrocatalysis of Oxygen Reduction Reaction for High‐Performance Zn–Air Battery
The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 4 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C3N4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co40SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential (E1/2 = 0.890 V) and robust long‐term stability. Moreover, the Co40SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm−2) and strong cycling stability, demonstrating great potential for energy storage applications.
High‐loading Co single atoms and Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG) is constructed via a facile self‐sacrificing template strategy. The Co40SAs/AC@NG catalyst demonstrates remarkable performance with a half‐wave potential of 0.890 V for oxygen reduction reaction and a large power density of 221 mW cm−2 toward Zn–air battery. |
---|---|
AbstractList | The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C3N4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co40SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential (E1/2 = 0.890 V) and robust long‐term stability. Moreover, the Co40SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm−2) and strong cycling stability, demonstrating great potential for energy storage applications.
High‐loading Co single atoms and Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG) is constructed via a facile self‐sacrificing template strategy. The Co40SAs/AC@NG catalyst demonstrates remarkable performance with a half‐wave potential of 0.890 V for oxygen reduction reaction and a large power density of 221 mW cm−2 toward Zn–air battery. The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C3N4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co40SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential (E1/2 = 0.890 V) and robust long‐term stability. Moreover, the Co40SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm−2) and strong cycling stability, demonstrating great potential for energy storage applications. The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C 3 N 4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co 40 SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential ( E 1/2 = 0.890 V) and robust long‐term stability. Moreover, the Co 40 SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm −2 ) and strong cycling stability, demonstrating great potential for energy storage applications. |
Author | Ma, Fei‐Xiang Li, Hao Chen, Junxiang Zhen, Liang Wen, Zhenhai Xu, Cheng‐Yan Zhang, Mengtian |
Author_xml | – sequence: 1 givenname: Mengtian surname: Zhang fullname: Zhang, Mengtian organization: Harbin Institute of Technology (Shenzhen) – sequence: 2 givenname: Hao surname: Li fullname: Li, Hao organization: Chinese Academy of Sciences – sequence: 3 givenname: Junxiang surname: Chen fullname: Chen, Junxiang organization: Chinese Academy of Sciences – sequence: 4 givenname: Fei‐Xiang surname: Ma fullname: Ma, Fei‐Xiang organization: Harbin Institute of Technology (Shenzhen) – sequence: 5 givenname: Liang surname: Zhen fullname: Zhen, Liang organization: Harbin Institute of Technology – sequence: 6 givenname: Zhenhai orcidid: 0000-0002-2340-9525 surname: Wen fullname: Wen, Zhenhai email: wen@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 7 givenname: Cheng‐Yan orcidid: 0000-0002-7835-6635 surname: Xu fullname: Xu, Cheng‐Yan email: cy_xu@hit.edu.cn organization: Harbin Institute of Technology |
BookMark | eNqFkVFrFDEUhYNUsK2--hzwedckM5uZPI5ra4WVSlUofRnuZG62KbNJTbKt89afIPjuj-svMcOWCgXx6Z6E890D9xyQPecdEvKaszlnTLyF3mzmggnBVCXkM7LPJZezgol671Hz8xfkIMYrxnhVFeU--X1i15f3dz9XHnrr1nTp6Zc8B6RN8ptIwfV0OWxjwhBpo5O9wWxIGGnytxB6euQuwWnMYkCdgteQYBijjdQbevpjXKOjZ9hvM-onBTthfKAP0Z8x5Ndm2kIv3P3dr8YG-g5SjhxfkucGhoivHuYh-XZ89HV5Mludfvi4bFYzXfBKzrRR2CkhhZKd6Mua16BM2Qkpi7rsGJR6ITqumOE9q-taIRqtoVzkjwXWIItD8ma39zr471uMqb3y2-ByZCsqWRVSMcmza75z6eBjDGja62A3EMaWs3bqoJ06aB87yED5BNA2wXSAFMAO_8bUDru1A47_CWmb98ef_rJ_AMU_oyE |
CitedBy_id | crossref_primary_10_1002_ange_202308344 crossref_primary_10_1002_aenm_202301737 crossref_primary_10_1021_acs_energyfuels_4c01379 crossref_primary_10_1016_j_jpowsour_2024_234659 crossref_primary_10_1002_smll_202407700 crossref_primary_10_1021_acsmaterialslett_4c01166 crossref_primary_10_1002_adma_202311148 crossref_primary_10_1002_cey2_477 crossref_primary_10_1002_smll_202307776 crossref_primary_10_1016_j_apcatb_2024_123991 crossref_primary_10_1002_adfm_202407121 crossref_primary_10_1016_j_jallcom_2024_177243 crossref_primary_10_1016_j_cej_2024_152909 crossref_primary_10_1002_cssc_202401713 crossref_primary_10_1002_smll_202308213 crossref_primary_10_1002_adma_202303488 crossref_primary_10_1021_acsnano_4c15035 crossref_primary_10_1002_smll_202309264 crossref_primary_10_1016_j_jcis_2023_06_016 crossref_primary_10_1016_j_jcis_2023_08_007 crossref_primary_10_1007_s40820_024_01463_9 crossref_primary_10_1039_D4TA04356A crossref_primary_10_1016_j_apcatb_2023_123645 crossref_primary_10_1016_j_apcatb_2023_123009 crossref_primary_10_1021_acscatal_4c07421 crossref_primary_10_3390_molecules28155885 crossref_primary_10_1039_D4EE04465G crossref_primary_10_1021_acsami_3c03775 crossref_primary_10_1002_aenm_202303935 crossref_primary_10_1021_acsami_3c06886 crossref_primary_10_1002_cey2_490 crossref_primary_10_1021_acsami_2c19713 crossref_primary_10_1002_cctc_202301392 crossref_primary_10_1002_adfm_202410700 crossref_primary_10_1039_D4TA02110J crossref_primary_10_1002_smll_202300683 crossref_primary_10_1039_D4CP03161J crossref_primary_10_1002_anie_202308344 crossref_primary_10_1002_smll_202300289 crossref_primary_10_1007_s12598_024_02676_y crossref_primary_10_1002_cplu_202400368 crossref_primary_10_1002_adfm_202401027 crossref_primary_10_1002_adfm_202423552 crossref_primary_10_1016_j_carbon_2023_118723 crossref_primary_10_1002_smll_202207413 crossref_primary_10_1021_acs_nanolett_4c02820 crossref_primary_10_1016_j_mtphys_2023_101288 crossref_primary_10_1002_inf2_12649 crossref_primary_10_1002_aenm_202400143 crossref_primary_10_1002_smll_202401221 crossref_primary_10_1016_j_ccr_2023_215376 crossref_primary_10_1039_D2TA09776A crossref_primary_10_1002_adma_202401454 crossref_primary_10_1021_acsnano_3c08054 crossref_primary_10_1002_adma_202211103 crossref_primary_10_1021_acsaem_3c02181 crossref_primary_10_1007_s12274_023_6404_5 crossref_primary_10_1002_smtd_202401278 crossref_primary_10_1016_j_cej_2023_145348 crossref_primary_10_1016_j_jcis_2024_03_112 crossref_primary_10_1039_D3QM00146F crossref_primary_10_1002_smll_202405157 crossref_primary_10_1039_D4QI02213K crossref_primary_10_1002_adfm_202303189 crossref_primary_10_1039_D4TA04577G crossref_primary_10_1016_j_est_2023_109343 crossref_primary_10_1039_D4YA00551A crossref_primary_10_1039_D3EE03274D crossref_primary_10_1038_s41467_024_52517_w crossref_primary_10_1002_adfm_202316037 crossref_primary_10_1002_smll_202305782 crossref_primary_10_1016_j_ces_2025_121376 crossref_primary_10_1039_D4NJ01346H crossref_primary_10_1002_smtd_202300100 crossref_primary_10_1002_ente_202300205 crossref_primary_10_1002_sstr_202300293 crossref_primary_10_1002_smll_202411678 crossref_primary_10_1073_pnas_2219923120 crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1016_j_jcis_2024_07_029 crossref_primary_10_1021_acscatal_4c05569 crossref_primary_10_1016_j_cej_2023_142184 crossref_primary_10_1002_cctc_202301516 crossref_primary_10_1002_sus2_201 crossref_primary_10_1002_smll_202308080 crossref_primary_10_1021_acs_jpcc_4c00975 crossref_primary_10_1039_D4QI02430C crossref_primary_10_1021_acsanm_4c05385 crossref_primary_10_1007_s12598_024_02727_4 crossref_primary_10_1002_smll_202409545 crossref_primary_10_1039_D3EE02474A crossref_primary_10_20517_microstructures_2024_91 crossref_primary_10_1021_acs_inorgchem_4c03022 crossref_primary_10_1016_j_jallcom_2025_178835 crossref_primary_10_1016_j_jallcom_2023_173183 crossref_primary_10_1016_j_susmat_2024_e00958 crossref_primary_10_1021_acscatal_4c03990 crossref_primary_10_1039_D4CC00119B crossref_primary_10_1002_adma_202304713 crossref_primary_10_1007_s12598_024_02969_2 crossref_primary_10_1039_D3TA00576C crossref_primary_10_1016_j_est_2024_114168 crossref_primary_10_26599_NRE_2023_9120082 crossref_primary_10_1016_j_jcis_2023_09_132 crossref_primary_10_1002_smll_202411574 crossref_primary_10_1021_acs_langmuir_3c03260 |
Cites_doi | 10.1002/aenm.202101242 10.1126/science.1168049 10.1016/j.joule.2018.06.019 10.1016/j.apcatb.2020.119411 10.1016/j.nanoen.2016.12.056 10.1007/s40820-020-00579-y 10.1002/adma.201801649 10.1002/adma.201802011 10.1021/jacs.7b06514 10.1016/j.nanoen.2018.06.023 10.1038/s41467-019-09290-y 10.1002/adfm.201906477 10.1002/ange.201502173 10.1016/j.ensm.2018.01.008 10.1021/acsnano.9b05913 10.1002/adma.201600398 10.1002/cssc.201501016 10.1002/asia.201901318 10.1039/C4CS00484A 10.1039/D0EE00477D 10.1021/jacs.0c01349 10.1021/acsenergylett.9b00804 10.1038/nmat4738 10.1039/C7CS00690J 10.1038/s41467-019-12510-0 10.1002/aenm.201901533 10.1021/acs.nanolett.0c02167 10.1126/science.aan2255 10.1002/anie.201811728 10.1039/D0TA09228B 10.1021/acscatal.0c00936 10.1002/adma.201805121 10.1021/jacs.7b09074 10.1002/smll.202005534 10.1021/jacs.9b09352 10.1002/anie.201902109 10.1016/S0360-0564(02)45013-4 10.1021/cr5003563 10.1002/advs.201802066 10.1038/ncomms10922 10.1016/j.jpowsour.2006.12.012 10.1002/adma.202004900 10.1038/s41467-018-07850-2 10.1002/adfm.202101797 10.1038/nmat4834 10.1038/s41570-018-0010-1 10.1002/aenm.201900149 10.1002/anie.201702473 10.1016/j.chempr.2017.12.005 10.1039/C7NR04349J 10.1038/s41929-019-0297-4 10.1038/nature11115 10.1002/smtd.202001165 10.1002/aenm.202002753 10.1039/c3ta14251e 10.1021/ar300361m 10.1002/smtd.201900540 10.1021/jp047349j 10.1126/science.aad0832 10.1126/science.aaa8765 10.1002/anie.202116068 10.1016/j.cej.2020.128359 10.1039/C7CY00881C 10.1021/acscatal.5b01835 10.1021/jacs.8b09834 10.1038/nchem.367 10.1021/acs.chemrev.5b00462 10.1039/C9TA11715F 10.1016/j.nanoen.2019.05.003 10.1002/adma.201400570 10.1002/adma.201905622 10.1021/cr500208k 10.1016/j.apcatb.2019.03.013 10.1002/asia.201700586 10.1016/j.nanoen.2019.01.009 10.1103/PhysRev.178.1123 10.1063/1.358255 10.1002/anie.201803262 10.1039/C5TA04355G 10.1002/anie.201703864 10.1038/ncomms2234 10.1016/j.nanoen.2018.08.003 10.1002/aenm.202000789 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202209726 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202209726 ADFM202209726 |
Genre | article |
GrantInformation_xml | – fundername: Scientific Research and Equipment Development Project of CAS funderid: YJKYYQ20190007 – fundername: Shenzhen Science and Technology Innovation Committee funderid: JCYJ20200109113212238 – fundername: Joint Fund of the Yulin University – fundername: Dalian National Laboratory for Clean Energy funderid: YLU‐DNL; 2021011 – fundername: CAS‐Commonwealth Scientific and Industrial Research Organization (CSIRO) Joint Research Projects funderid: 121835KYSB20200039 – fundername: National Key Research & Development Program of China funderid: 2021YFA1501500 – fundername: National Natural Science Foundation of China funderid: 21875253 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515111154 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-cf9eb926296b2d4818a9f4b266384b0a4c52b190f1d08889eefcca450f15e8a63 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:48:24 EDT 2025 Tue Jul 01 00:30:36 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:18:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-cf9eb926296b2d4818a9f4b266384b0a4c52b190f1d08889eefcca450f15e8a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2340-9525 0000-0002-7835-6635 |
PQID | 2767369061 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2767369061 crossref_primary_10_1002_adfm_202209726 crossref_citationtrail_10_1002_adfm_202209726 wiley_primary_10_1002_adfm_202209726_ADFM202209726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2012; 486 2020; 20 2000; 45 2019; 10 2019; 57 2019; 13 2019; 58 2020; 16 2021; 280 2014; 26 2020; 15 2020; 13 2020; 11 2015; 348 2020; 10 2017; 357 2017; 9 2018; 47 2020; 8 2018; 9 2020; 4 2018; 2 2021; 31 2014; 2 2019; 61 2018; 4 2017; 32 2015; 44 2019; 29 2018; 30 2016; 116 2016; 351 2009; 323 1969; 178 1994; 76 2021; 9 2019; 9 2019; 4 2021; 5 2015; 5 2019; 6 2015; 3 2019; 31 2015; 127 2020; 142 2013; 46 2019; 2 2007; 165 2020; 32 2019; 141 2004; 108 2016; 16 2015; 8 2017; 139 2021; 13 2016; 7 2012; 3 2021; 11 2015; 115 2021; 410 2022; 61 2017; 56 2017; 12 2018; 52 2018; 50 2019; 250 2016; 28 2009; 1 2018; 57 2018; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 357 start-page: 479 year: 2017 publication-title: Science – volume: 11 year: 2020 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1619 year: 2019 publication-title: ACS Energy Lett. – volume: 116 start-page: 3594 year: 2016 publication-title: Chem. Rev. – volume: 13 start-page: 2431 year: 2020 publication-title: Energy Environ. Sci. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 280 year: 2021 publication-title: Appl. Catal., B – volume: 15 start-page: 2282 year: 2020 publication-title: Chem Asian J – volume: 2 start-page: 4014 year: 2014 publication-title: J. Mater. Chem. A – volume: 1 start-page: 552 year: 2009 publication-title: Nat. Chem. – volume: 127 start-page: 8297 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 4505 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 16 year: 2016 publication-title: Nat. Mater. – volume: 13 start-page: 142 year: 2018 publication-title: Energy Storage Mater. – volume: 7 start-page: 4259 year: 2017 publication-title: Catal. Sci. Technol. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1278 year: 2019 publication-title: Nat. Commun. – volume: 26 start-page: 4145 year: 2014 publication-title: Adv. Mater. – volume: 16 year: 2020 publication-title: Small – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 56 start-page: 6937 year: 2017 publication-title: Angew Chem Int Ed Engl – volume: 52 start-page: 307 year: 2018 publication-title: Nano Energy – volume: 20 start-page: 5522 year: 2020 publication-title: Nano Lett. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 165 start-page: 739 year: 2007 publication-title: J. Power Sources – volume: 9 start-page: 5422 year: 2018 publication-title: Nat. Commun. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 46 start-page: 1740 year: 2013 publication-title: Acc. Chem. Res. – volume: 8 start-page: 6190 year: 2020 publication-title: J. Mater. Chem. A – volume: 2 start-page: 65 year: 2018 publication-title: Nat. Rev. Chem. – volume: 410 year: 2021 publication-title: Chem. Eng. J. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 10 start-page: 4585 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 1225 year: 2012 publication-title: Nat. Commun. – volume: 250 start-page: 143 year: 2019 publication-title: Appl. Catal., B – volume: 4 start-page: 285 year: 2018 publication-title: Chem – volume: 2 start-page: 1242 year: 2018 publication-title: Joule – volume: 47 start-page: 7628 year: 2018 publication-title: Chem. Soc. Rev. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 45 start-page: 71 year: 2000 publication-title: Adv. Catal. – volume: 57 start-page: 8525 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 1816 year: 2017 publication-title: Chem Asian J – volume: 2 start-page: 688 year: 2019 publication-title: Nat. Catal. – volume: 8 start-page: 4040 year: 2015 publication-title: ChemSusChem – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 50 start-page: 691 year: 2018 publication-title: Nano Energy – volume: 28 start-page: 5080 year: 2016 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv Funct Mater – volume: 280 year: 2021 publication-title: Appl. Catal. B – volume: 5 start-page: 6707 year: 2015 publication-title: ACS Catal. – volume: 32 start-page: 353 year: 2017 publication-title: Nano Energy – volume: 61 start-page: 428 year: 2019 publication-title: Nano Energy – volume: 13 year: 2019 publication-title: ACS Nano – volume: 58 start-page: 7035 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 486 start-page: 43 year: 2012 publication-title: Nature – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 7137 year: 2021 publication-title: J. Mater. Chem. A – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 76 start-page: 6325 year: 1994 publication-title: J. Appl. Phys. – volume: 44 start-page: 2168 year: 2015 publication-title: Chem. Soc. Rev. – volume: 348 start-page: 1230 year: 2015 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 10 start-page: 5862 year: 2020 publication-title: ACS Catal. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 year: 2021 publication-title: Small Methods – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 16 start-page: 57 year: 2016 publication-title: Nat. Mater. – volume: 58 start-page: 2321 year: 2019 publication-title: Angew Chem Int Ed Engl – volume: 178 start-page: 1123 year: 1969 publication-title: Phys. Rev. – volume: 13 start-page: 65 year: 2021 publication-title: Nanomicro Lett – volume: 142 start-page: 7116 year: 2020 publication-title: J Am Chem Soc – volume: 61 year: 2022 publication-title: Angew Chem Int Ed Engl – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 115 start-page: 28 year: 2015 publication-title: Chem. Rev. – volume: 57 start-page: 728 year: 2019 publication-title: Nano Energy – volume: 115 start-page: 4823 year: 2015 publication-title: Chem. Rev. – ident: e_1_2_7_45_1 doi: 10.1002/aenm.202101242 – ident: e_1_2_7_38_1 doi: 10.1126/science.1168049 – ident: e_1_2_7_15_1 doi: 10.1016/j.joule.2018.06.019 – ident: e_1_2_7_56_1 doi: 10.1016/j.apcatb.2020.119411 – ident: e_1_2_7_71_1 doi: 10.1016/j.nanoen.2016.12.056 – ident: e_1_2_7_39_1 doi: 10.1007/s40820-020-00579-y – ident: e_1_2_7_26_1 doi: 10.1002/adma.201801649 – ident: e_1_2_7_72_1 doi: 10.1002/adma.201802011 – ident: e_1_2_7_25_1 doi: 10.1021/jacs.7b06514 – ident: e_1_2_7_75_1 doi: 10.1016/j.nanoen.2018.06.023 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-019-09290-y – ident: e_1_2_7_66_1 doi: 10.1002/adfm.201906477 – ident: e_1_2_7_84_1 doi: 10.1016/j.apcatb.2020.119411 – ident: e_1_2_7_12_1 doi: 10.1002/ange.201502173 – ident: e_1_2_7_60_1 doi: 10.1016/j.ensm.2018.01.008 – ident: e_1_2_7_77_1 doi: 10.1021/acsnano.9b05913 – ident: e_1_2_7_47_1 doi: 10.1002/adma.201600398 – ident: e_1_2_7_58_1 doi: 10.1002/cssc.201501016 – ident: e_1_2_7_40_1 doi: 10.1002/asia.201901318 – ident: e_1_2_7_9_1 doi: 10.1039/C4CS00484A – ident: e_1_2_7_52_1 doi: 10.1039/D0EE00477D – ident: e_1_2_7_13_1 doi: 10.1021/jacs.0c01349 – ident: e_1_2_7_24_1 doi: 10.1021/acsenergylett.9b00804 – ident: e_1_2_7_1_1 doi: 10.1038/nmat4738 – ident: e_1_2_7_54_1 doi: 10.1039/C7CS00690J – ident: e_1_2_7_36_1 doi: 10.1038/s41467-019-12510-0 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201901533 – ident: e_1_2_7_61_1 doi: 10.1021/acs.nanolett.0c02167 – ident: e_1_2_7_10_1 doi: 10.1126/science.aan2255 – ident: e_1_2_7_31_1 doi: 10.1002/anie.201811728 – ident: e_1_2_7_74_1 doi: 10.1039/D0TA09228B – ident: e_1_2_7_83_1 doi: 10.1021/acscatal.0c00936 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201805121 – ident: e_1_2_7_70_1 doi: 10.1021/jacs.7b09074 – ident: e_1_2_7_51_1 doi: 10.1002/smll.202005534 – ident: e_1_2_7_76_1 doi: 10.1021/jacs.9b09352 – ident: e_1_2_7_63_1 doi: 10.1002/anie.201902109 – ident: e_1_2_7_80_1 doi: 10.1016/S0360-0564(02)45013-4 – ident: e_1_2_7_7_1 doi: 10.1021/cr5003563 – ident: e_1_2_7_32_1 doi: 10.1002/advs.201802066 – ident: e_1_2_7_30_1 doi: 10.1038/ncomms10922 – ident: e_1_2_7_4_1 doi: 10.1016/j.jpowsour.2006.12.012 – ident: e_1_2_7_22_1 doi: 10.1002/adma.202004900 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-018-07850-2 – ident: e_1_2_7_33_1 doi: 10.1002/adfm.202101797 – ident: e_1_2_7_2_1 doi: 10.1038/nmat4834 – ident: e_1_2_7_16_1 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201900149 – ident: e_1_2_7_67_1 doi: 10.1002/anie.201702473 – ident: e_1_2_7_34_1 doi: 10.1016/j.chempr.2017.12.005 – ident: e_1_2_7_42_1 doi: 10.1039/C7NR04349J – ident: e_1_2_7_43_1 doi: 10.1038/s41929-019-0297-4 – ident: e_1_2_7_3_1 doi: 10.1038/nature11115 – ident: e_1_2_7_53_1 doi: 10.1002/smtd.202001165 – ident: e_1_2_7_82_1 doi: 10.1002/aenm.202002753 – ident: e_1_2_7_11_1 doi: 10.1039/c3ta14251e – ident: e_1_2_7_17_1 doi: 10.1021/ar300361m – ident: e_1_2_7_28_1 doi: 10.1002/smtd.201900540 – ident: e_1_2_7_78_1 doi: 10.1021/jp047349j – ident: e_1_2_7_37_1 doi: 10.1126/science.aad0832 – ident: e_1_2_7_8_1 doi: 10.1126/science.aaa8765 – ident: e_1_2_7_44_1 doi: 10.1002/anie.202116068 – ident: e_1_2_7_50_1 doi: 10.1016/j.cej.2020.128359 – ident: e_1_2_7_19_1 doi: 10.1039/C7CY00881C – ident: e_1_2_7_55_1 doi: 10.1021/acscatal.5b01835 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.8b09834 – ident: e_1_2_7_79_1 doi: 10.1038/nchem.367 – ident: e_1_2_7_6_1 doi: 10.1021/acs.chemrev.5b00462 – ident: e_1_2_7_62_1 doi: 10.1039/C9TA11715F – ident: e_1_2_7_23_1 doi: 10.1016/j.nanoen.2019.05.003 – ident: e_1_2_7_59_1 doi: 10.1002/adma.201400570 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201905622 – ident: e_1_2_7_20_1 doi: 10.1021/cr500208k – ident: e_1_2_7_14_1 doi: 10.1016/j.apcatb.2019.03.013 – ident: e_1_2_7_48_1 doi: 10.1002/asia.201700586 – ident: e_1_2_7_64_1 doi: 10.1016/j.nanoen.2019.01.009 – ident: e_1_2_7_81_1 doi: 10.1103/PhysRev.178.1123 – ident: e_1_2_7_68_1 doi: 10.1063/1.358255 – ident: e_1_2_7_57_1 doi: 10.1002/anie.201803262 – ident: e_1_2_7_69_1 doi: 10.1039/C5TA04355G – ident: e_1_2_7_18_1 doi: 10.1002/anie.201703864 – ident: e_1_2_7_73_1 doi: 10.1038/ncomms2234 – ident: e_1_2_7_35_1 doi: 10.1016/j.nanoen.2018.08.003 – ident: e_1_2_7_65_1 doi: 10.1002/aenm.202000789 |
SSID | ssj0017734 |
Score | 2.6837347 |
Snippet | The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomic clusters Carbon nitride Chemical reduction Co‐N 4 Density functional theory Electrocatalysis Electrocatalysts Energy storage Fuel cells Graphene Materials science Metal air batteries Nitrogen nitrogen‐doped graphenes Oxygen reduction reactions Pyrolysis Single atom catalysts Stability Zinc-oxygen batteries Zn–air batteries |
Title | High‐Loading Co Single Atoms and Clusters Active Sites toward Enhanced Electrocatalysis of Oxygen Reduction Reaction for High‐Performance Zn–Air Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202209726 https://www.proquest.com/docview/2767369061 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NatwwEMdFSS7poU3TlG6bhjkEenKyluWvo9nsEko2LUkDSy5GkmVaurFD1gtNTnmEQO99uDxJZySvd1MohfZk2Wj8IY2kP_LoJ8b2dMxFFPLUi2UYegSg89Iy5ujLiTC68FVit2QZn0RH5-LDJJysrOJ3fIhuwo1ahu2vqYFLNTtYQkNlUdJKcs4JQEPMbQrYIlV02vGj_Dh2v5UjnwK8_MmC2tjnB4_NH49KS6m5KljtiDN6zuTiXV2gybf9eaP29e1vGMf_-ZhN9qyVo5A5_3nBnphqiz1dgRS-ZD8pFOTh7v64tuH2MKjhDI9TA1lTX85AVgUMpnMCLswgs90nZkAFC40NyYVh9cWGGcDQbbljZ4wIhAJ1CR-_36ALwykRZMlHMOWWWgCqaWgf_Wm5ugEuqoe7H9nXa3Bk0Jttdj4afh4cee2uDp5GrRJ5ukyNIkphGileCBQMMi2FQqEQJEL1pdAhVyhTSr_AHjBJjSnRy0SIF0KTyCh4xdaqujKvGaC4NTwK-qI0hdBBH42URmPto4VMkx7zFrWa6xZ5TjtvTHMHa-Y5lXvelXuPve_yXznYxx9z7iycJG8b_SznMQXJpaiQeozb2v7LXfLscDTuzt78i9FbtoHpwE0K7bC15npu3qFMatQuW88Ox8dnu7ZJ_AJu8w9A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKewAO0PIQCwXmUIlT2o3jvI7Rsqul7LaotFLFJYodR1RdEtTNSm1P_QlI3Plx_SXM2Em2RUJI9JTE8uThzNhfJjPfMLalQi4Cn8dOmPm-QwR0TlyEHHU5ElrlroxMSZbpXjA-ErvHfhtNSLkwlh-ic7iRZZj5mgycHNI7S9bQLC8olZxzYqAJ7rE1KuttvqoOOgYpNwztj-XApRAv97jlbezzndvyt9elJdi8CVnNmjN6zGR7tzbU5HR7UcttdfkHkeOdHmedPWoQKSRWhTbYii6fsIc3eAqfsl8UDXJ99WNSmYh7GFTwGbczDUldfZtDVuYwmC2Ic2EOiZlBsQOCWKhNVC4My68m0gCGtuqOcRoRFwpUBeyfX6AWwwGRyJKa4J7NtgAE1NBc-tMywQG-lNdXP5OTM7DkoBfP2NFoeDgYO01hB0chXAkcVcRaElFhHEieC8QMWVwIiVjBi4TsZ0L5XCJSKdwcJ8Eo1rpARRM-Nvg6ygLvOVstq1K_YID4VvPA64tC50J5fRSSCoWVixJZHPWY077WVDWs51R8Y5Zavmae0rin3bj32Luu_3fL9_HXnputlqSN3c9THlKcXIwgqce4ed3_OEuavB9Nu6OX_yP0lt0fH04n6eTD3sdX7AG2e9ZHtMlW67OFfo2oqZZvjF38BsGSEcc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIYtKBKiC8qt6kChZ4HEKm3iOE6yjOaiQi9UhUojNlHs2CpiSEadjERZ9RGQ2Pfh-iQc25nMFAkhwSqJ5ZOLfWz_co4_E_JaxpTxiKZeXESRZwB0Xqpjir6cMCXLQCR2S5ajY75_xt6No_HKKn7Hh-gm3EzLsP21aeDTUu8toaFFqc1KckoNgIbfJfcY9xPj14PTDiAVxLH7r8wDE-EVjBfYRp_u3ba_PSwtteaqYrVDzmiDFIuXdZEmX3bnjdiV33_jOP7P1zwiD1s9CplzoMfkjqqekPUVSuFTcm1iQW6ufhzWNt4e-jV8wONEQdbUX2dQVCX0J3NDXJhBZvtPzIASFhobkwvD6tzGGcDQ7bljp4wMCQVqDe-_XaIPw6lByBonwTO31gJQTkP76JPl8gb4VN1c_cw-X4BDg14-I2ej4cf-vtdu6-BJFCvckzpVwmAKUy5oyVAxFKlmApVCmDDhF0xGVKBO0UGJXWCSKqXRzViECZFKCh5ukrWqrtQWAVS3ivLQZ1qVTIY-GgmJxjJAiyJNesRb1GouW-a52XpjkjtaM81NuedduffImy7_1NE-_phze-EkedvqZzmNTZRcihKpR6it7b_cJc8Go6Pu6vm_GO2Q-yeDUX749vjgBXmAyaGbINoma83FXL1EydSIV7ZV_AKgZxB_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Loading+Co+Single+Atoms+and+Clusters+Active+Sites+toward+Enhanced+Electrocatalysis+of+Oxygen+Reduction+Reaction+for+High%E2%80%90Performance+Zn%E2%80%93Air+Battery&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Mengtian&rft.au=Li%2C+Hao&rft.au=Chen%2C+Junxiang&rft.au=Ma%2C+Fei%E2%80%90Xiang&rft.date=2023-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202209726&rft.externalDBID=10.1002%252Fadfm.202209726&rft.externalDocID=ADFM202209726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |