High‐Loading Co Single Atoms and Clusters Active Sites toward Enhanced Electrocatalysis of Oxygen Reduction Reaction for High‐Performance Zn–Air Battery

The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 4
Main Authors Zhang, Mengtian, Li, Hao, Chen, Junxiang, Ma, Fei‐Xiang, Zhen, Liang, Wen, Zhenhai, Xu, Cheng‐Yan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C3N4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co40SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential (E1/2 = 0.890 V) and robust long‐term stability. Moreover, the Co40SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm−2) and strong cycling stability, demonstrating great potential for energy storage applications. High‐loading Co single atoms and Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG) is constructed via a facile self‐sacrificing template strategy. The Co40SAs/AC@NG catalyst demonstrates remarkable performance with a half‐wave potential of 0.890 V for oxygen reduction reaction and a large power density of 221 mW cm−2 toward Zn–air battery.
AbstractList The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C3N4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co40SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential (E1/2 = 0.890 V) and robust long‐term stability. Moreover, the Co40SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm−2) and strong cycling stability, demonstrating great potential for energy storage applications. High‐loading Co single atoms and Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG) is constructed via a facile self‐sacrificing template strategy. The Co40SAs/AC@NG catalyst demonstrates remarkable performance with a half‐wave potential of 0.890 V for oxygen reduction reaction and a large power density of 221 mW cm−2 toward Zn–air battery.
The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C3N4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co40SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential (E1/2 = 0.890 V) and robust long‐term stability. Moreover, the Co40SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm−2) and strong cycling stability, demonstrating great potential for energy storage applications.
The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self‐sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co‐anchored on porous‐rich nitrogen‐doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g‐C 3 N 4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co‐existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co 40 SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state‐of‐the‐art Pt/C catalysts with presenting a high half‐wave potential ( E 1/2  = 0.890 V) and robust long‐term stability. Moreover, the Co 40 SAs/AC@NG presents excellent performance in Zn–air battery with a high‐peak power density (221 mW cm −2 ) and strong cycling stability, demonstrating great potential for energy storage applications.
Author Ma, Fei‐Xiang
Li, Hao
Chen, Junxiang
Zhen, Liang
Wen, Zhenhai
Xu, Cheng‐Yan
Zhang, Mengtian
Author_xml – sequence: 1
  givenname: Mengtian
  surname: Zhang
  fullname: Zhang, Mengtian
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 2
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Junxiang
  surname: Chen
  fullname: Chen, Junxiang
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Fei‐Xiang
  surname: Ma
  fullname: Ma, Fei‐Xiang
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 5
  givenname: Liang
  surname: Zhen
  fullname: Zhen, Liang
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Zhenhai
  orcidid: 0000-0002-2340-9525
  surname: Wen
  fullname: Wen, Zhenhai
  email: wen@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Cheng‐Yan
  orcidid: 0000-0002-7835-6635
  surname: Xu
  fullname: Xu, Cheng‐Yan
  email: cy_xu@hit.edu.cn
  organization: Harbin Institute of Technology
BookMark eNqFkVFrFDEUhYNUsK2--hzwedckM5uZPI5ra4WVSlUofRnuZG62KbNJTbKt89afIPjuj-svMcOWCgXx6Z6E890D9xyQPecdEvKaszlnTLyF3mzmggnBVCXkM7LPJZezgol671Hz8xfkIMYrxnhVFeU--X1i15f3dz9XHnrr1nTp6Zc8B6RN8ptIwfV0OWxjwhBpo5O9wWxIGGnytxB6euQuwWnMYkCdgteQYBijjdQbevpjXKOjZ9hvM-onBTthfKAP0Z8x5Ndm2kIv3P3dr8YG-g5SjhxfkucGhoivHuYh-XZ89HV5Mludfvi4bFYzXfBKzrRR2CkhhZKd6Mua16BM2Qkpi7rsGJR6ITqumOE9q-taIRqtoVzkjwXWIItD8ma39zr471uMqb3y2-ByZCsqWRVSMcmza75z6eBjDGja62A3EMaWs3bqoJ06aB87yED5BNA2wXSAFMAO_8bUDru1A47_CWmb98ef_rJ_AMU_oyE
CitedBy_id crossref_primary_10_1002_ange_202308344
crossref_primary_10_1002_aenm_202301737
crossref_primary_10_1021_acs_energyfuels_4c01379
crossref_primary_10_1016_j_jpowsour_2024_234659
crossref_primary_10_1002_smll_202407700
crossref_primary_10_1021_acsmaterialslett_4c01166
crossref_primary_10_1002_adma_202311148
crossref_primary_10_1002_cey2_477
crossref_primary_10_1002_smll_202307776
crossref_primary_10_1016_j_apcatb_2024_123991
crossref_primary_10_1002_adfm_202407121
crossref_primary_10_1016_j_jallcom_2024_177243
crossref_primary_10_1016_j_cej_2024_152909
crossref_primary_10_1002_cssc_202401713
crossref_primary_10_1002_smll_202308213
crossref_primary_10_1002_adma_202303488
crossref_primary_10_1021_acsnano_4c15035
crossref_primary_10_1002_smll_202309264
crossref_primary_10_1016_j_jcis_2023_06_016
crossref_primary_10_1016_j_jcis_2023_08_007
crossref_primary_10_1007_s40820_024_01463_9
crossref_primary_10_1039_D4TA04356A
crossref_primary_10_1016_j_apcatb_2023_123645
crossref_primary_10_1016_j_apcatb_2023_123009
crossref_primary_10_1021_acscatal_4c07421
crossref_primary_10_3390_molecules28155885
crossref_primary_10_1039_D4EE04465G
crossref_primary_10_1021_acsami_3c03775
crossref_primary_10_1002_aenm_202303935
crossref_primary_10_1021_acsami_3c06886
crossref_primary_10_1002_cey2_490
crossref_primary_10_1021_acsami_2c19713
crossref_primary_10_1002_cctc_202301392
crossref_primary_10_1002_adfm_202410700
crossref_primary_10_1039_D4TA02110J
crossref_primary_10_1002_smll_202300683
crossref_primary_10_1039_D4CP03161J
crossref_primary_10_1002_anie_202308344
crossref_primary_10_1002_smll_202300289
crossref_primary_10_1007_s12598_024_02676_y
crossref_primary_10_1002_cplu_202400368
crossref_primary_10_1002_adfm_202401027
crossref_primary_10_1002_adfm_202423552
crossref_primary_10_1016_j_carbon_2023_118723
crossref_primary_10_1002_smll_202207413
crossref_primary_10_1021_acs_nanolett_4c02820
crossref_primary_10_1016_j_mtphys_2023_101288
crossref_primary_10_1002_inf2_12649
crossref_primary_10_1002_aenm_202400143
crossref_primary_10_1002_smll_202401221
crossref_primary_10_1016_j_ccr_2023_215376
crossref_primary_10_1039_D2TA09776A
crossref_primary_10_1002_adma_202401454
crossref_primary_10_1021_acsnano_3c08054
crossref_primary_10_1002_adma_202211103
crossref_primary_10_1021_acsaem_3c02181
crossref_primary_10_1007_s12274_023_6404_5
crossref_primary_10_1002_smtd_202401278
crossref_primary_10_1016_j_cej_2023_145348
crossref_primary_10_1016_j_jcis_2024_03_112
crossref_primary_10_1039_D3QM00146F
crossref_primary_10_1002_smll_202405157
crossref_primary_10_1039_D4QI02213K
crossref_primary_10_1002_adfm_202303189
crossref_primary_10_1039_D4TA04577G
crossref_primary_10_1016_j_est_2023_109343
crossref_primary_10_1039_D4YA00551A
crossref_primary_10_1039_D3EE03274D
crossref_primary_10_1038_s41467_024_52517_w
crossref_primary_10_1002_adfm_202316037
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1016_j_ces_2025_121376
crossref_primary_10_1039_D4NJ01346H
crossref_primary_10_1002_smtd_202300100
crossref_primary_10_1002_ente_202300205
crossref_primary_10_1002_sstr_202300293
crossref_primary_10_1002_smll_202411678
crossref_primary_10_1073_pnas_2219923120
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1016_j_jcis_2024_07_029
crossref_primary_10_1021_acscatal_4c05569
crossref_primary_10_1016_j_cej_2023_142184
crossref_primary_10_1002_cctc_202301516
crossref_primary_10_1002_sus2_201
crossref_primary_10_1002_smll_202308080
crossref_primary_10_1021_acs_jpcc_4c00975
crossref_primary_10_1039_D4QI02430C
crossref_primary_10_1021_acsanm_4c05385
crossref_primary_10_1007_s12598_024_02727_4
crossref_primary_10_1002_smll_202409545
crossref_primary_10_1039_D3EE02474A
crossref_primary_10_20517_microstructures_2024_91
crossref_primary_10_1021_acs_inorgchem_4c03022
crossref_primary_10_1016_j_jallcom_2025_178835
crossref_primary_10_1016_j_jallcom_2023_173183
crossref_primary_10_1016_j_susmat_2024_e00958
crossref_primary_10_1021_acscatal_4c03990
crossref_primary_10_1039_D4CC00119B
crossref_primary_10_1002_adma_202304713
crossref_primary_10_1007_s12598_024_02969_2
crossref_primary_10_1039_D3TA00576C
crossref_primary_10_1016_j_est_2024_114168
crossref_primary_10_26599_NRE_2023_9120082
crossref_primary_10_1016_j_jcis_2023_09_132
crossref_primary_10_1002_smll_202411574
crossref_primary_10_1021_acs_langmuir_3c03260
Cites_doi 10.1002/aenm.202101242
10.1126/science.1168049
10.1016/j.joule.2018.06.019
10.1016/j.apcatb.2020.119411
10.1016/j.nanoen.2016.12.056
10.1007/s40820-020-00579-y
10.1002/adma.201801649
10.1002/adma.201802011
10.1021/jacs.7b06514
10.1016/j.nanoen.2018.06.023
10.1038/s41467-019-09290-y
10.1002/adfm.201906477
10.1002/ange.201502173
10.1016/j.ensm.2018.01.008
10.1021/acsnano.9b05913
10.1002/adma.201600398
10.1002/cssc.201501016
10.1002/asia.201901318
10.1039/C4CS00484A
10.1039/D0EE00477D
10.1021/jacs.0c01349
10.1021/acsenergylett.9b00804
10.1038/nmat4738
10.1039/C7CS00690J
10.1038/s41467-019-12510-0
10.1002/aenm.201901533
10.1021/acs.nanolett.0c02167
10.1126/science.aan2255
10.1002/anie.201811728
10.1039/D0TA09228B
10.1021/acscatal.0c00936
10.1002/adma.201805121
10.1021/jacs.7b09074
10.1002/smll.202005534
10.1021/jacs.9b09352
10.1002/anie.201902109
10.1016/S0360-0564(02)45013-4
10.1021/cr5003563
10.1002/advs.201802066
10.1038/ncomms10922
10.1016/j.jpowsour.2006.12.012
10.1002/adma.202004900
10.1038/s41467-018-07850-2
10.1002/adfm.202101797
10.1038/nmat4834
10.1038/s41570-018-0010-1
10.1002/aenm.201900149
10.1002/anie.201702473
10.1016/j.chempr.2017.12.005
10.1039/C7NR04349J
10.1038/s41929-019-0297-4
10.1038/nature11115
10.1002/smtd.202001165
10.1002/aenm.202002753
10.1039/c3ta14251e
10.1021/ar300361m
10.1002/smtd.201900540
10.1021/jp047349j
10.1126/science.aad0832
10.1126/science.aaa8765
10.1002/anie.202116068
10.1016/j.cej.2020.128359
10.1039/C7CY00881C
10.1021/acscatal.5b01835
10.1021/jacs.8b09834
10.1038/nchem.367
10.1021/acs.chemrev.5b00462
10.1039/C9TA11715F
10.1016/j.nanoen.2019.05.003
10.1002/adma.201400570
10.1002/adma.201905622
10.1021/cr500208k
10.1016/j.apcatb.2019.03.013
10.1002/asia.201700586
10.1016/j.nanoen.2019.01.009
10.1103/PhysRev.178.1123
10.1063/1.358255
10.1002/anie.201803262
10.1039/C5TA04355G
10.1002/anie.201703864
10.1038/ncomms2234
10.1016/j.nanoen.2018.08.003
10.1002/aenm.202000789
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202209726
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202209726
ADFM202209726
Genre article
GrantInformation_xml – fundername: Scientific Research and Equipment Development Project of CAS
  funderid: YJKYYQ20190007
– fundername: Shenzhen Science and Technology Innovation Committee
  funderid: JCYJ20200109113212238
– fundername: Joint Fund of the Yulin University
– fundername: Dalian National Laboratory for Clean Energy
  funderid: YLU‐DNL; 2021011
– fundername: CAS‐Commonwealth Scientific and Industrial Research Organization (CSIRO) Joint Research Projects
  funderid: 121835KYSB20200039
– fundername: National Key Research & Development Program of China
  funderid: 2021YFA1501500
– fundername: National Natural Science Foundation of China
  funderid: 21875253
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515111154
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-cf9eb926296b2d4818a9f4b266384b0a4c52b190f1d08889eefcca450f15e8a63
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:48:24 EDT 2025
Tue Jul 01 00:30:36 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jan 22 16:18:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-cf9eb926296b2d4818a9f4b266384b0a4c52b190f1d08889eefcca450f15e8a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2340-9525
0000-0002-7835-6635
PQID 2767369061
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2767369061
crossref_primary_10_1002_adfm_202209726
crossref_citationtrail_10_1002_adfm_202209726
wiley_primary_10_1002_adfm_202209726_ADFM202209726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2012; 486
2020; 20
2000; 45
2019; 10
2019; 57
2019; 13
2019; 58
2020; 16
2021; 280
2014; 26
2020; 15
2020; 13
2020; 11
2015; 348
2020; 10
2017; 357
2017; 9
2018; 47
2020; 8
2018; 9
2020; 4
2018; 2
2021; 31
2014; 2
2019; 61
2018; 4
2017; 32
2015; 44
2019; 29
2018; 30
2016; 116
2016; 351
2009; 323
1969; 178
1994; 76
2021; 9
2019; 9
2019; 4
2021; 5
2015; 5
2019; 6
2015; 3
2019; 31
2015; 127
2020; 142
2013; 46
2019; 2
2007; 165
2020; 32
2019; 141
2004; 108
2016; 16
2015; 8
2017; 139
2021; 13
2016; 7
2012; 3
2021; 11
2015; 115
2021; 410
2022; 61
2017; 56
2017; 12
2018; 52
2018; 50
2019; 250
2016; 28
2009; 1
2018; 57
2018; 13
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 357
  start-page: 479
  year: 2017
  publication-title: Science
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1619
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 13
  start-page: 2431
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 280
  year: 2021
  publication-title: Appl. Catal., B
– volume: 15
  start-page: 2282
  year: 2020
  publication-title: Chem Asian J
– volume: 2
  start-page: 4014
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 552
  year: 2009
  publication-title: Nat. Chem.
– volume: 127
  start-page: 8297
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 4505
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 16
  year: 2016
  publication-title: Nat. Mater.
– volume: 13
  start-page: 142
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 4259
  year: 2017
  publication-title: Catal. Sci. Technol.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1278
  year: 2019
  publication-title: Nat. Commun.
– volume: 26
  start-page: 4145
  year: 2014
  publication-title: Adv. Mater.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 6937
  year: 2017
  publication-title: Angew Chem Int Ed Engl
– volume: 52
  start-page: 307
  year: 2018
  publication-title: Nano Energy
– volume: 20
  start-page: 5522
  year: 2020
  publication-title: Nano Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 165
  start-page: 739
  year: 2007
  publication-title: J. Power Sources
– volume: 9
  start-page: 5422
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 46
  start-page: 1740
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 6190
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 65
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 410
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 10
  start-page: 4585
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1225
  year: 2012
  publication-title: Nat. Commun.
– volume: 250
  start-page: 143
  year: 2019
  publication-title: Appl. Catal., B
– volume: 4
  start-page: 285
  year: 2018
  publication-title: Chem
– volume: 2
  start-page: 1242
  year: 2018
  publication-title: Joule
– volume: 47
  start-page: 7628
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 71
  year: 2000
  publication-title: Adv. Catal.
– volume: 57
  start-page: 8525
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 1816
  year: 2017
  publication-title: Chem Asian J
– volume: 2
  start-page: 688
  year: 2019
  publication-title: Nat. Catal.
– volume: 8
  start-page: 4040
  year: 2015
  publication-title: ChemSusChem
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 50
  start-page: 691
  year: 2018
  publication-title: Nano Energy
– volume: 28
  start-page: 5080
  year: 2016
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv Funct Mater
– volume: 280
  year: 2021
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 6707
  year: 2015
  publication-title: ACS Catal.
– volume: 32
  start-page: 353
  year: 2017
  publication-title: Nano Energy
– volume: 61
  start-page: 428
  year: 2019
  publication-title: Nano Energy
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 58
  start-page: 7035
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 486
  start-page: 43
  year: 2012
  publication-title: Nature
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 7137
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 76
  start-page: 6325
  year: 1994
  publication-title: J. Appl. Phys.
– volume: 44
  start-page: 2168
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 348
  start-page: 1230
  year: 2015
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 10
  start-page: 5862
  year: 2020
  publication-title: ACS Catal.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 16
  start-page: 57
  year: 2016
  publication-title: Nat. Mater.
– volume: 58
  start-page: 2321
  year: 2019
  publication-title: Angew Chem Int Ed Engl
– volume: 178
  start-page: 1123
  year: 1969
  publication-title: Phys. Rev.
– volume: 13
  start-page: 65
  year: 2021
  publication-title: Nanomicro Lett
– volume: 142
  start-page: 7116
  year: 2020
  publication-title: J Am Chem Soc
– volume: 61
  year: 2022
  publication-title: Angew Chem Int Ed Engl
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 115
  start-page: 28
  year: 2015
  publication-title: Chem. Rev.
– volume: 57
  start-page: 728
  year: 2019
  publication-title: Nano Energy
– volume: 115
  start-page: 4823
  year: 2015
  publication-title: Chem. Rev.
– ident: e_1_2_7_45_1
  doi: 10.1002/aenm.202101242
– ident: e_1_2_7_38_1
  doi: 10.1126/science.1168049
– ident: e_1_2_7_15_1
  doi: 10.1016/j.joule.2018.06.019
– ident: e_1_2_7_56_1
  doi: 10.1016/j.apcatb.2020.119411
– ident: e_1_2_7_71_1
  doi: 10.1016/j.nanoen.2016.12.056
– ident: e_1_2_7_39_1
  doi: 10.1007/s40820-020-00579-y
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201801649
– ident: e_1_2_7_72_1
  doi: 10.1002/adma.201802011
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_7_75_1
  doi: 10.1016/j.nanoen.2018.06.023
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-019-09290-y
– ident: e_1_2_7_66_1
  doi: 10.1002/adfm.201906477
– ident: e_1_2_7_84_1
  doi: 10.1016/j.apcatb.2020.119411
– ident: e_1_2_7_12_1
  doi: 10.1002/ange.201502173
– ident: e_1_2_7_60_1
  doi: 10.1016/j.ensm.2018.01.008
– ident: e_1_2_7_77_1
  doi: 10.1021/acsnano.9b05913
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.201600398
– ident: e_1_2_7_58_1
  doi: 10.1002/cssc.201501016
– ident: e_1_2_7_40_1
  doi: 10.1002/asia.201901318
– ident: e_1_2_7_9_1
  doi: 10.1039/C4CS00484A
– ident: e_1_2_7_52_1
  doi: 10.1039/D0EE00477D
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.0c01349
– ident: e_1_2_7_24_1
  doi: 10.1021/acsenergylett.9b00804
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4738
– ident: e_1_2_7_54_1
  doi: 10.1039/C7CS00690J
– ident: e_1_2_7_36_1
  doi: 10.1038/s41467-019-12510-0
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201901533
– ident: e_1_2_7_61_1
  doi: 10.1021/acs.nanolett.0c02167
– ident: e_1_2_7_10_1
  doi: 10.1126/science.aan2255
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201811728
– ident: e_1_2_7_74_1
  doi: 10.1039/D0TA09228B
– ident: e_1_2_7_83_1
  doi: 10.1021/acscatal.0c00936
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201805121
– ident: e_1_2_7_70_1
  doi: 10.1021/jacs.7b09074
– ident: e_1_2_7_51_1
  doi: 10.1002/smll.202005534
– ident: e_1_2_7_76_1
  doi: 10.1021/jacs.9b09352
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.201902109
– ident: e_1_2_7_80_1
  doi: 10.1016/S0360-0564(02)45013-4
– ident: e_1_2_7_7_1
  doi: 10.1021/cr5003563
– ident: e_1_2_7_32_1
  doi: 10.1002/advs.201802066
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms10922
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jpowsour.2006.12.012
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.202004900
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-018-07850-2
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.202101797
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat4834
– ident: e_1_2_7_16_1
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201900149
– ident: e_1_2_7_67_1
  doi: 10.1002/anie.201702473
– ident: e_1_2_7_34_1
  doi: 10.1016/j.chempr.2017.12.005
– ident: e_1_2_7_42_1
  doi: 10.1039/C7NR04349J
– ident: e_1_2_7_43_1
  doi: 10.1038/s41929-019-0297-4
– ident: e_1_2_7_3_1
  doi: 10.1038/nature11115
– ident: e_1_2_7_53_1
  doi: 10.1002/smtd.202001165
– ident: e_1_2_7_82_1
  doi: 10.1002/aenm.202002753
– ident: e_1_2_7_11_1
  doi: 10.1039/c3ta14251e
– ident: e_1_2_7_17_1
  doi: 10.1021/ar300361m
– ident: e_1_2_7_28_1
  doi: 10.1002/smtd.201900540
– ident: e_1_2_7_78_1
  doi: 10.1021/jp047349j
– ident: e_1_2_7_37_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aaa8765
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.202116068
– ident: e_1_2_7_50_1
  doi: 10.1016/j.cej.2020.128359
– ident: e_1_2_7_19_1
  doi: 10.1039/C7CY00881C
– ident: e_1_2_7_55_1
  doi: 10.1021/acscatal.5b01835
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.8b09834
– ident: e_1_2_7_79_1
  doi: 10.1038/nchem.367
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_7_62_1
  doi: 10.1039/C9TA11715F
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nanoen.2019.05.003
– ident: e_1_2_7_59_1
  doi: 10.1002/adma.201400570
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201905622
– ident: e_1_2_7_20_1
  doi: 10.1021/cr500208k
– ident: e_1_2_7_14_1
  doi: 10.1016/j.apcatb.2019.03.013
– ident: e_1_2_7_48_1
  doi: 10.1002/asia.201700586
– ident: e_1_2_7_64_1
  doi: 10.1016/j.nanoen.2019.01.009
– ident: e_1_2_7_81_1
  doi: 10.1103/PhysRev.178.1123
– ident: e_1_2_7_68_1
  doi: 10.1063/1.358255
– ident: e_1_2_7_57_1
  doi: 10.1002/anie.201803262
– ident: e_1_2_7_69_1
  doi: 10.1039/C5TA04355G
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.201703864
– ident: e_1_2_7_73_1
  doi: 10.1038/ncomms2234
– ident: e_1_2_7_35_1
  doi: 10.1016/j.nanoen.2018.08.003
– ident: e_1_2_7_65_1
  doi: 10.1002/aenm.202000789
SSID ssj0017734
Score 2.6837347
Snippet The development of precious‐metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomic clusters
Carbon nitride
Chemical reduction
Co‐N 4
Density functional theory
Electrocatalysis
Electrocatalysts
Energy storage
Fuel cells
Graphene
Materials science
Metal air batteries
Nitrogen
nitrogen‐doped graphenes
Oxygen reduction reactions
Pyrolysis
Single atom catalysts
Stability
Zinc-oxygen batteries
Zn–air batteries
Title High‐Loading Co Single Atoms and Clusters Active Sites toward Enhanced Electrocatalysis of Oxygen Reduction Reaction for High‐Performance Zn–Air Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202209726
https://www.proquest.com/docview/2767369061
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NatwwEMdFSS7poU3TlG6bhjkEenKyluWvo9nsEko2LUkDSy5GkmVaurFD1gtNTnmEQO99uDxJZySvd1MohfZk2Wj8IY2kP_LoJ8b2dMxFFPLUi2UYegSg89Iy5ujLiTC68FVit2QZn0RH5-LDJJysrOJ3fIhuwo1ahu2vqYFLNTtYQkNlUdJKcs4JQEPMbQrYIlV02vGj_Dh2v5UjnwK8_MmC2tjnB4_NH49KS6m5KljtiDN6zuTiXV2gybf9eaP29e1vGMf_-ZhN9qyVo5A5_3nBnphqiz1dgRS-ZD8pFOTh7v64tuH2MKjhDI9TA1lTX85AVgUMpnMCLswgs90nZkAFC40NyYVh9cWGGcDQbbljZ4wIhAJ1CR-_36ALwykRZMlHMOWWWgCqaWgf_Wm5ugEuqoe7H9nXa3Bk0Jttdj4afh4cee2uDp5GrRJ5ukyNIkphGileCBQMMi2FQqEQJEL1pdAhVyhTSr_AHjBJjSnRy0SIF0KTyCh4xdaqujKvGaC4NTwK-qI0hdBBH42URmPto4VMkx7zFrWa6xZ5TjtvTHMHa-Y5lXvelXuPve_yXznYxx9z7iycJG8b_SznMQXJpaiQeozb2v7LXfLscDTuzt78i9FbtoHpwE0K7bC15npu3qFMatQuW88Ox8dnu7ZJ_AJu8w9A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKewAO0PIQCwXmUIlT2o3jvI7Rsqul7LaotFLFJYodR1RdEtTNSm1P_QlI3Plx_SXM2Em2RUJI9JTE8uThzNhfJjPfMLalQi4Cn8dOmPm-QwR0TlyEHHU5ElrlroxMSZbpXjA-ErvHfhtNSLkwlh-ic7iRZZj5mgycHNI7S9bQLC8olZxzYqAJ7rE1KuttvqoOOgYpNwztj-XApRAv97jlbezzndvyt9elJdi8CVnNmjN6zGR7tzbU5HR7UcttdfkHkeOdHmedPWoQKSRWhTbYii6fsIc3eAqfsl8UDXJ99WNSmYh7GFTwGbczDUldfZtDVuYwmC2Ic2EOiZlBsQOCWKhNVC4My68m0gCGtuqOcRoRFwpUBeyfX6AWwwGRyJKa4J7NtgAE1NBc-tMywQG-lNdXP5OTM7DkoBfP2NFoeDgYO01hB0chXAkcVcRaElFhHEieC8QMWVwIiVjBi4TsZ0L5XCJSKdwcJ8Eo1rpARRM-Nvg6ygLvOVstq1K_YID4VvPA64tC50J5fRSSCoWVixJZHPWY077WVDWs51R8Y5Zavmae0rin3bj32Luu_3fL9_HXnputlqSN3c9THlKcXIwgqce4ed3_OEuavB9Nu6OX_yP0lt0fH04n6eTD3sdX7AG2e9ZHtMlW67OFfo2oqZZvjF38BsGSEcc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIYtKBKiC8qt6kChZ4HEKm3iOE6yjOaiQi9UhUojNlHs2CpiSEadjERZ9RGQ2Pfh-iQc25nMFAkhwSqJ5ZOLfWz_co4_E_JaxpTxiKZeXESRZwB0Xqpjir6cMCXLQCR2S5ajY75_xt6No_HKKn7Hh-gm3EzLsP21aeDTUu8toaFFqc1KckoNgIbfJfcY9xPj14PTDiAVxLH7r8wDE-EVjBfYRp_u3ba_PSwtteaqYrVDzmiDFIuXdZEmX3bnjdiV33_jOP7P1zwiD1s9CplzoMfkjqqekPUVSuFTcm1iQW6ufhzWNt4e-jV8wONEQdbUX2dQVCX0J3NDXJhBZvtPzIASFhobkwvD6tzGGcDQ7bljp4wMCQVqDe-_XaIPw6lByBonwTO31gJQTkP76JPl8gb4VN1c_cw-X4BDg14-I2ej4cf-vtdu6-BJFCvckzpVwmAKUy5oyVAxFKlmApVCmDDhF0xGVKBO0UGJXWCSKqXRzViECZFKCh5ukrWqrtQWAVS3ivLQZ1qVTIY-GgmJxjJAiyJNesRb1GouW-a52XpjkjtaM81NuedduffImy7_1NE-_phze-EkedvqZzmNTZRcihKpR6it7b_cJc8Go6Pu6vm_GO2Q-yeDUX749vjgBXmAyaGbINoma83FXL1EydSIV7ZV_AKgZxB_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Loading+Co+Single+Atoms+and+Clusters+Active+Sites+toward+Enhanced+Electrocatalysis+of+Oxygen+Reduction+Reaction+for+High%E2%80%90Performance+Zn%E2%80%93Air+Battery&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Mengtian&rft.au=Li%2C+Hao&rft.au=Chen%2C+Junxiang&rft.au=Ma%2C+Fei%E2%80%90Xiang&rft.date=2023-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202209726&rft.externalDBID=10.1002%252Fadfm.202209726&rft.externalDocID=ADFM202209726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon