Strategic Defect Engineering Enabled Efficient Oxygen Evolution Reaction in Reconstructed Metal‐Organic Frameworks

Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 4
Main Authors Zhang, Yin‐Qiang, Liu, Ming, Zhang, Le‐Tian, Lu, Nan, Wang, Xuemin, Li, Zhi‐Gang, Zhang, Xing‐Hao, Li, Na, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is a challenge. Here, a strategic defect engineering is used to promote the OER performance of reconstructed products. Briefly, modified linkers with monocarboxylic acids (ferrocene carboxylic acid, FcCA) are incorporated into MOF (NiBDC‐FcCA), leading to its stepwise reconstruction into Fe‐doped Ni(OH)2 and NiOOH during the OER process, with the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. Benefiting from the synergistic interaction of oxygen vacancies and Fe doping, NiBDC‐FcCA delivers the extremely enhanced current density at 1.6 V versus reversible hydrogen electrode by ≈9 times compared with that of NiBDC. Moreover, the optimized NiBDC‐FcCA/Fe foam exhibits excellent OER catalytic activity and stability with a low overpotential of 250 mV at 200 mA cm−2 and negligible activity decay after 1200 h at 1 A cm−2. Density function theory calculations reveal that Fe doping weakens the interaction of oxygen intermediate with Ni sites, favoring the formation of OOH* to accelerate the OER process. Herein, a strategic defect engineering is proposed to obtain the expected reconstructed products that inherit the nature of the pre‐catalyst MOF, namely, the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. The electron structure and adsorption energy of the reconstructed products are adjusted, thus delivering excellent oxygen evolution reaction performance.
AbstractList Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is a challenge. Here, a strategic defect engineering is used to promote the OER performance of reconstructed products. Briefly, modified linkers with monocarboxylic acids (ferrocene carboxylic acid, FcCA) are incorporated into MOF (NiBDC‐FcCA), leading to its stepwise reconstruction into Fe‐doped Ni(OH)2 and NiOOH during the OER process, with the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. Benefiting from the synergistic interaction of oxygen vacancies and Fe doping, NiBDC‐FcCA delivers the extremely enhanced current density at 1.6 V versus reversible hydrogen electrode by ≈9 times compared with that of NiBDC. Moreover, the optimized NiBDC‐FcCA/Fe foam exhibits excellent OER catalytic activity and stability with a low overpotential of 250 mV at 200 mA cm−2 and negligible activity decay after 1200 h at 1 A cm−2. Density function theory calculations reveal that Fe doping weakens the interaction of oxygen intermediate with Ni sites, favoring the formation of OOH* to accelerate the OER process.
Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is a challenge. Here, a strategic defect engineering is used to promote the OER performance of reconstructed products. Briefly, modified linkers with monocarboxylic acids (ferrocene carboxylic acid, FcCA) are incorporated into MOF (NiBDC‐FcCA), leading to its stepwise reconstruction into Fe‐doped Ni(OH) 2 and NiOOH during the OER process, with the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. Benefiting from the synergistic interaction of oxygen vacancies and Fe doping, NiBDC‐FcCA delivers the extremely enhanced current density at 1.6 V versus reversible hydrogen electrode by ≈9 times compared with that of NiBDC. Moreover, the optimized NiBDC‐FcCA/Fe foam exhibits excellent OER catalytic activity and stability with a low overpotential of 250 mV at 200 mA cm −2 and negligible activity decay after 1200 h at 1 A cm −2 . Density function theory calculations reveal that Fe doping weakens the interaction of oxygen intermediate with Ni sites, favoring the formation of OOH* to accelerate the OER process.
Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is a challenge. Here, a strategic defect engineering is used to promote the OER performance of reconstructed products. Briefly, modified linkers with monocarboxylic acids (ferrocene carboxylic acid, FcCA) are incorporated into MOF (NiBDC‐FcCA), leading to its stepwise reconstruction into Fe‐doped Ni(OH)2 and NiOOH during the OER process, with the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. Benefiting from the synergistic interaction of oxygen vacancies and Fe doping, NiBDC‐FcCA delivers the extremely enhanced current density at 1.6 V versus reversible hydrogen electrode by ≈9 times compared with that of NiBDC. Moreover, the optimized NiBDC‐FcCA/Fe foam exhibits excellent OER catalytic activity and stability with a low overpotential of 250 mV at 200 mA cm−2 and negligible activity decay after 1200 h at 1 A cm−2. Density function theory calculations reveal that Fe doping weakens the interaction of oxygen intermediate with Ni sites, favoring the formation of OOH* to accelerate the OER process. Herein, a strategic defect engineering is proposed to obtain the expected reconstructed products that inherit the nature of the pre‐catalyst MOF, namely, the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. The electron structure and adsorption energy of the reconstructed products are adjusted, thus delivering excellent oxygen evolution reaction performance.
Author Zhang, Le‐Tian
Li, Zhi‐Gang
Lu, Nan
Zhang, Yin‐Qiang
Liu, Ming
Zhang, Xing‐Hao
Wang, Xuemin
Li, Na
Bu, Xian‐He
Author_xml – sequence: 1
  givenname: Yin‐Qiang
  surname: Zhang
  fullname: Zhang, Yin‐Qiang
  organization: Nankai University
– sequence: 2
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Nankai University
– sequence: 3
  givenname: Le‐Tian
  surname: Zhang
  fullname: Zhang, Le‐Tian
  organization: Nankai University
– sequence: 4
  givenname: Nan
  surname: Lu
  fullname: Lu, Nan
  organization: Nankai University
– sequence: 5
  givenname: Xuemin
  surname: Wang
  fullname: Wang, Xuemin
  organization: Nankai University
– sequence: 6
  givenname: Zhi‐Gang
  surname: Li
  fullname: Li, Zhi‐Gang
  organization: Nankai University
– sequence: 7
  givenname: Xing‐Hao
  surname: Zhang
  fullname: Zhang, Xing‐Hao
  organization: Nankai University
– sequence: 8
  givenname: Na
  surname: Li
  fullname: Li, Na
  email: lina@nankai.edu.cn
  organization: Nankai University
– sequence: 9
  givenname: Xian‐He
  orcidid: 0000-0002-2646-7974
  surname: Bu
  fullname: Bu, Xian‐He
  email: buxh@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkE1LAzEQhoMoWD-unhc8t-Zrk92jaKuCpeAHeFvS7GRJ3WY1m7X25k_wN_pLTK1UEMTLzHuYZ4Z59tC2axwgdETwgGBMT1Rp5gOKKSeUY7GFekQQ0WeYZtubTB520V7bzjAmUjLeQ-E2eBWgsjo5BwM6JENXWQfgratiVtMaymRojNUWXEgmr8sKXDJ8aeou2MYlN6D0V7CrrBvXBt_pEKExBFV_vL1PfKVc3D_yag6Lxj-2B2jHqLqFw---j-5Hw7uzy_715OLq7PS6rxmRIlah-DRlnJQ8k1TnuSlBGGCGZ4IyPpUZm0olVSkpL8sUMiGpwlmagVAqJWwfHa_3PvnmuYM2FLOm8y6eLBhJ4_85Z1mcGqyntG_a1oMpnrydK78sCC5WZouV2WJjNgL8F6BtUCsJ0aWt_8byNbawNSz_OVKcno_GP-wnxFqSSA
CitedBy_id crossref_primary_10_1021_acs_energyfuels_4c06264
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1002_asia_202401522
Cites_doi 10.1002/aenm.202203955
10.1016/j.elecom.2012.10.039
10.1021/acs.chemrev.1c00243
10.1002/anie.202110387
10.1038/s41560-023-01409-2
10.1039/D1CS00968K
10.1002/adfm.201801554
10.1002/adfm.202101792
10.1002/anie.202214794
10.1016/j.nanoen.2017.09.055
10.1021/ja405351s
10.1021/jacs.8b05294
10.1002/anie.201902588
10.1038/s41560-020-00709-1
10.1021/acs.nanolett.2c01124
10.1002/advs.202303321
10.1002/anie.202311909
10.1002/anie.202317220
10.1038/nature19763
10.1002/anie.202101878
10.1002/anie.202300507
10.1038/s41467-019-13051-2
10.1016/j.apcatb.2023.123448
10.1039/D1TA06370G
10.1002/anie.202004420
10.1007/s11426-023-1725-8
10.1002/smll.201903410
10.1002/anie.202104148
10.1021/jacs.1c01525
10.1038/nenergy.2016.184
10.1007/s12274-023-6088-x
10.1002/cey2.315
10.1002/aenm.202301391
10.1002/adma.202006784
10.1002/anie.202400323
10.1002/anie.202112447
10.1002/adfm.202301075
10.1002/adma.201901139
10.1002/ange.202216008
10.1126/science.1230444
10.1038/s41563-022-01199-0
10.1002/aenm.202200827
10.1002/ange.202214988
10.1021/acscatal.9b03790
10.1038/s41586-020-2908-2
10.1021/acsnano.2c02685
10.1016/j.cej.2021.132733
10.1002/anie.201916507
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202412406
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202412406
ADFM202412406
Genre article
GrantInformation_xml – fundername: Programme of Introducing Talents of Discipline to Universities
  funderid: B18030
– fundername: National Natural Science Foundation of China
  funderid: 22371139; 22305130; 22035003
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-c36a4b5341d4872c99fde6fe3f486234b783b7a7ad724dd5e8672a0858e6aa513
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 06:47:14 EDT 2025
Tue Jul 01 04:15:44 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Tue Jan 21 09:50:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-c36a4b5341d4872c99fde6fe3f486234b783b7a7ad724dd5e8672a0858e6aa513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2646-7974
PQID 3157349438
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_3157349438
crossref_primary_10_1002_adfm_202412406
crossref_citationtrail_10_1002_adfm_202412406
wiley_primary_10_1002_adfm_202412406_ADFM202412406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021 2017 2020; 60 41 5
2023; 10
2019 2018 2019 2021 2018 2023; 10 28 31 60 140 66
2022 2019 2022; 135 10 21
2023 2019; 33 58
2020 2023 2022 2021 2016; 587 8 135 143 1
2022 2023 2023; 12 13 62
2022 2022; 430 16
2024; 63
2013; 135
2024 2023; 63 5
2024; 343
2021 2020 2023 2019 2020 2022; 31 59 62 15 59 61
2022; 22
2023 2020 2013; 13 32 27
2013 2022 2021 2021 2016; 341 51 121 60 539
2021; 60
2021 2023; 9 17
e_1_2_7_2_5
e_1_2_7_4_3
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_1_5
e_1_2_7_2_4
e_1_2_7_3_3
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_2_3
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_7_4
e_1_2_7_8_3
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_9_6
e_1_2_7_9_5
e_1_2_7_7_6
e_1_2_7_9_4
e_1_2_7_7_5
e_1_2_7_9_3
References_xml – volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 430 16
  start-page: 9523
  year: 2022 2022
  publication-title: Chem. Eng. J. ACS Nano
– volume: 587 8 135 143 1
  start-page: 408 1418 5201
  year: 2020 2023 2022 2021 2016
  publication-title: Nature Nat. Energy Angew. Chem., Int. Ed. J. Am. Chem. Soc. Nat. Energy
– volume: 13 32 27
  start-page: 9
  year: 2023 2020 2013
  publication-title: Adv. Energy Mater. Adv. Mater. Electrochem. Commun.
– volume: 22
  start-page: 3832
  year: 2022
  publication-title: Nano Lett.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 63 5
  year: 2024 2023
  publication-title: Angew. Chem., Int. Ed. Carbon Energy
– volume: 343
  year: 2024
  publication-title: Appl. Catal. B: Environ.
– volume: 60 41 5
  start-page: 417 881
  year: 2021 2017 2020
  publication-title: Angew. Chem., Int. Ed. Nano Energy Nat. Energy
– volume: 135 10 21
  start-page: 5048 673
  year: 2022 2019 2022
  publication-title: Angew. Chem., Int. Ed. Nat. Commun. Nat. Mater.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 10 28 31 60 140 66
  start-page: 81 2754
  year: 2019 2018 2019 2021 2018 2023
  publication-title: ACS Catal. Adv. Funct. Mater. Adv. Mater. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Sci. China Chem.
– volume: 12 13 62
  year: 2022 2023 2023
  publication-title: Adv. Energy Mater. Adv. Energy Mater. Angew. Chem., Int. Ed.
– volume: 341 51 121 60 539
  start-page: 1045 76
  year: 2013 2022 2021 2021 2016
  publication-title: Science Chem. Soc. Rev. Chem. Rev. Angew. Chem., Int. Ed. Nature
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 33 58
  start-page: 7051
  year: 2023 2019
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 31 59 62 15 59 61
  start-page: 5837
  year: 2021 2020 2023 2019 2020 2022
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Small Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 9 17
  start-page: 2429
  year: 2021 2023
  publication-title: J. Mater. Chem. A Nano Res.
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.202203955
– ident: e_1_2_7_10_3
  doi: 10.1016/j.elecom.2012.10.039
– ident: e_1_2_7_1_3
  doi: 10.1021/acs.chemrev.1c00243
– ident: e_1_2_7_1_4
  doi: 10.1002/anie.202110387
– ident: e_1_2_7_2_2
  doi: 10.1038/s41560-023-01409-2
– ident: e_1_2_7_1_2
  doi: 10.1039/D1CS00968K
– ident: e_1_2_7_7_2
  doi: 10.1002/adfm.201801554
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.202101792
– ident: e_1_2_7_9_6
  doi: 10.1002/anie.202214794
– ident: e_1_2_7_4_2
  doi: 10.1016/j.nanoen.2017.09.055
– ident: e_1_2_7_14_1
  doi: 10.1021/ja405351s
– ident: e_1_2_7_7_5
  doi: 10.1021/jacs.8b05294
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.201902588
– ident: e_1_2_7_4_3
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.nanolett.2c01124
– ident: e_1_2_7_17_1
  doi: 10.1002/advs.202303321
– ident: e_1_2_7_9_3
  doi: 10.1002/anie.202311909
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.202317220
– ident: e_1_2_7_1_5
  doi: 10.1038/nature19763
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.202101878
– ident: e_1_2_7_8_3
  doi: 10.1002/anie.202300507
– ident: e_1_2_7_3_2
  doi: 10.1038/s41467-019-13051-2
– ident: e_1_2_7_13_1
  doi: 10.1016/j.apcatb.2023.123448
– ident: e_1_2_7_18_1
  doi: 10.1039/D1TA06370G
– ident: e_1_2_7_9_5
  doi: 10.1002/anie.202004420
– ident: e_1_2_7_7_6
  doi: 10.1007/s11426-023-1725-8
– ident: e_1_2_7_9_4
  doi: 10.1002/smll.201903410
– ident: e_1_2_7_7_4
  doi: 10.1002/anie.202104148
– ident: e_1_2_7_2_4
  doi: 10.1021/jacs.1c01525
– ident: e_1_2_7_2_5
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_7_18_2
  doi: 10.1007/s12274-023-6088-x
– ident: e_1_2_7_6_2
  doi: 10.1002/cey2.315
– ident: e_1_2_7_8_2
  doi: 10.1002/aenm.202301391
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.202006784
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.202400323
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.202112447
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.202301075
– ident: e_1_2_7_7_3
  doi: 10.1002/adma.201901139
– ident: e_1_2_7_3_1
  doi: 10.1002/ange.202216008
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1230444
– ident: e_1_2_7_3_3
  doi: 10.1038/s41563-022-01199-0
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.202200827
– ident: e_1_2_7_2_3
  doi: 10.1002/ange.202214988
– ident: e_1_2_7_7_1
  doi: 10.1021/acscatal.9b03790
– ident: e_1_2_7_2_1
  doi: 10.1038/s41586-020-2908-2
– ident: e_1_2_7_5_2
  doi: 10.1021/acsnano.2c02685
– ident: e_1_2_7_5_1
  doi: 10.1016/j.cej.2021.132733
– ident: e_1_2_7_9_2
  doi: 10.1002/anie.201916507
SSID ssj0017734
Score 2.5297866
Snippet Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carboxylic acids
Catalytic activity
Defects
Density functional theory
Density functions
Doping
Iron
Metal foams
Metal-organic frameworks
Nickel
oxygen evolution reaction
Oxygen evolution reactions
oxygen vacancy
Reconstruction
structural reconstruction
Title Strategic Defect Engineering Enabled Efficient Oxygen Evolution Reaction in Reconstructed Metal‐Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202412406
https://www.proquest.com/docview/3157349438
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4StvsJrvJsdiGIlShWOgt7CsgSiu0inryJ_gb_SXObh6Nggh6CRuyG5Kdmcy3m5lvEDozTPo6hK-fCKnxwOMpMKlYexHLDBHgMeLMBcheseEkuJyG01oWf84PUW24Wctw32tr4EIuOivSUKEzm0lObPlkx7ltA7YsKhpX_FE-5_lvZebbAC9_WrI2dknn6_CvXmkFNeuA1XmcZAuJ8lnzQJO79uNSttXrNxrH_7zMNtos4Cju5fqzg9bMbBdt1EgK99CyJLBVuG9s8AeuXYa2zb3SeOCoKMCD4evnF1BKPHgqlBqPTZ48gW9tW80LzloYNDIA_T_e3vOEUIWTMlJssY8myeDmYugVtRo8BQiEwZGJQIbgEzUsgYiK40wbkDfNAlgz0UDyiEouuNCcBFqHJmKcCMB7kWFChD49QI3ZfGYOEeZUqhg0ywhYKhoWyK4xAuZGCElDzkUTeaWsUlUQmdt6GvdpTsFMUjubaTWbTXRe9X_IKTx-7NkqRZ8WprxIqR9yy-FDoyYiToa_3CXt9ZNRdXb0l0HHaJ3YOsNuq6eFGiAWcwLgZylPnYJ_Aish_a0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kHtSDb7FadQ-Cp7TNJtlNjsU2VG0rlBZ6C_sKiNIKraKe_An-Rn-Js3m1FUTQS9iQ3bDZmdmZ2cx8g9C5psJWHux-3HO0BRpPgkgFyvJprAkHjRHESYBsj7aH7vXIy6MJTS5Mig9RHLgZyUj2ayPg5kC6NkcN5So2qeTE1E82oNurpqx34lX1CwQpm7H0xzK1TYiXPcpxG-uktjx-WS_Njc1FkzXROeEWEvls01CT--rTTFTl2zcgx399zjbazCxS3EhZaAet6PEu2ljAKdxDsxzDVuKmNvEfeOExtE36lcKtBI0ClBi-fXkFvsSt54yvcV-n-RP4zrTlJIOthUFdDdb_5_tHmhMqcZgHi0330TBsDS7bVlauwZJghFC4Uu4KD9SiAi-IyCCIlQaSO7ELbpPjCuY7gnHGFSOuUp72KSMcTD5fU86BdAeoNJ6M9SHCzBEyAObSHLxFTV1R15rD2nAuHI8xXkZWTqxIZljmpqTGQ5SiMJPIrGZUrGYZXRT9H1MUjx97VnLaR5k0TyPH9piB8XH8MiIJEX95S9Roht3i7ugvg87QWnvQ7USdq97NMVonpuxwcvJTQSUgkT4BW2gmThNu_wIDSAHX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EQfTgW6xW3YPgKbXZTXaTY7EN9dEqYqG3sK-AKG2hVdSTP8Hf6C9xNq9WQQS9hA3ZDcnOTObbzcw3CB0ZJl3tw9dP-NQ44PEUmFSonYAlhgjwGGGSBsh2Wbvnnff9_kwWf8YPUW64WctIv9fWwEc6OZmShgqd2ExyYssnW87tBY_VA6vXzZuSQMrlPPuvzFwb4eX2C9rGOjn5Ov6rW5pizVnEmrqcaBWJ4mGzSJP72uNE1tTrNx7H_7zNGlrJ8ShuZAq0jubMYAMtz7AUbqJJwWCrcNPY6A88cxnaNvlK41bKRQEuDF89v4BW4tZTrtX4xmTZE_jOttUwJ62FQR0D2P_j7T3LCFU4KkLFxluoF7VuT9tOXqzBUQBBGByZ8KQPTlHDGoioMEy0AYHTxINFE_UkD6jkggvNiae1bwLGiQDAFxgmhO_SbTQ_GA7MDsKcShWCahkBa0XDPFk3RsDcCCGpz7moIKeQVaxyJnNbUOMhzjiYSWxnMy5ns4KOy_6jjMPjx57VQvRxbsvjmLo-tyQ-NKggksrwl7vEjWbUKc92_zLoEC1eN6P48qx7sYeWiK05nG77VNE8SMjsAxCayINU1z8BF1kAjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategic+Defect+Engineering+Enabled+Efficient+Oxygen+Evolution+Reaction+in+Reconstructed+Metal%E2%80%90Organic+Frameworks&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Yin%E2%80%90Qiang&rft.au=Liu%2C+Ming&rft.au=Zhang%2C+Le%E2%80%90Tian&rft.au=Lu%2C+Nan&rft.date=2025-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202412406&rft.externalDBID=10.1002%252Fadfm.202412406&rft.externalDocID=ADFM202412406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon