Strategic Defect Engineering Enabled Efficient Oxygen Evolution Reaction in Reconstructed Metal‐Organic Frameworks
Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 4 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is a challenge. Here, a strategic defect engineering is used to promote the OER performance of reconstructed products. Briefly, modified linkers with monocarboxylic acids (ferrocene carboxylic acid, FcCA) are incorporated into MOF (NiBDC‐FcCA), leading to its stepwise reconstruction into Fe‐doped Ni(OH)2 and NiOOH during the OER process, with the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. Benefiting from the synergistic interaction of oxygen vacancies and Fe doping, NiBDC‐FcCA delivers the extremely enhanced current density at 1.6 V versus reversible hydrogen electrode by ≈9 times compared with that of NiBDC. Moreover, the optimized NiBDC‐FcCA/Fe foam exhibits excellent OER catalytic activity and stability with a low overpotential of 250 mV at 200 mA cm−2 and negligible activity decay after 1200 h at 1 A cm−2. Density function theory calculations reveal that Fe doping weakens the interaction of oxygen intermediate with Ni sites, favoring the formation of OOH* to accelerate the OER process.
Herein, a strategic defect engineering is proposed to obtain the expected reconstructed products that inherit the nature of the pre‐catalyst MOF, namely, the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. The electron structure and adsorption energy of the reconstructed products are adjusted, thus delivering excellent oxygen evolution reaction performance. |
---|---|
AbstractList | Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is a challenge. Here, a strategic defect engineering is used to promote the OER performance of reconstructed products. Briefly, modified linkers with monocarboxylic acids (ferrocene carboxylic acid, FcCA) are incorporated into MOF (NiBDC‐FcCA), leading to its stepwise reconstruction into Fe‐doped Ni(OH)2 and NiOOH during the OER process, with the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. Benefiting from the synergistic interaction of oxygen vacancies and Fe doping, NiBDC‐FcCA delivers the extremely enhanced current density at 1.6 V versus reversible hydrogen electrode by ≈9 times compared with that of NiBDC. Moreover, the optimized NiBDC‐FcCA/Fe foam exhibits excellent OER catalytic activity and stability with a low overpotential of 250 mV at 200 mA cm−2 and negligible activity decay after 1200 h at 1 A cm−2. Density function theory calculations reveal that Fe doping weakens the interaction of oxygen intermediate with Ni sites, favoring the formation of OOH* to accelerate the OER process. Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is a challenge. Here, a strategic defect engineering is used to promote the OER performance of reconstructed products. Briefly, modified linkers with monocarboxylic acids (ferrocene carboxylic acid, FcCA) are incorporated into MOF (NiBDC‐FcCA), leading to its stepwise reconstruction into Fe‐doped Ni(OH) 2 and NiOOH during the OER process, with the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. Benefiting from the synergistic interaction of oxygen vacancies and Fe doping, NiBDC‐FcCA delivers the extremely enhanced current density at 1.6 V versus reversible hydrogen electrode by ≈9 times compared with that of NiBDC. Moreover, the optimized NiBDC‐FcCA/Fe foam exhibits excellent OER catalytic activity and stability with a low overpotential of 250 mV at 200 mA cm −2 and negligible activity decay after 1200 h at 1 A cm −2 . Density function theory calculations reveal that Fe doping weakens the interaction of oxygen intermediate with Ni sites, favoring the formation of OOH* to accelerate the OER process. Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction process in strongly alkaline media. However, targeting design MOF structures to achieve excellent OER performance of reconstructed products is a challenge. Here, a strategic defect engineering is used to promote the OER performance of reconstructed products. Briefly, modified linkers with monocarboxylic acids (ferrocene carboxylic acid, FcCA) are incorporated into MOF (NiBDC‐FcCA), leading to its stepwise reconstruction into Fe‐doped Ni(OH)2 and NiOOH during the OER process, with the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. Benefiting from the synergistic interaction of oxygen vacancies and Fe doping, NiBDC‐FcCA delivers the extremely enhanced current density at 1.6 V versus reversible hydrogen electrode by ≈9 times compared with that of NiBDC. Moreover, the optimized NiBDC‐FcCA/Fe foam exhibits excellent OER catalytic activity and stability with a low overpotential of 250 mV at 200 mA cm−2 and negligible activity decay after 1200 h at 1 A cm−2. Density function theory calculations reveal that Fe doping weakens the interaction of oxygen intermediate with Ni sites, favoring the formation of OOH* to accelerate the OER process. Herein, a strategic defect engineering is proposed to obtain the expected reconstructed products that inherit the nature of the pre‐catalyst MOF, namely, the oxygen vacancy and strategic doping of metal Fe persisting throughout the multi‐step reconstruction. The electron structure and adsorption energy of the reconstructed products are adjusted, thus delivering excellent oxygen evolution reaction performance. |
Author | Zhang, Le‐Tian Li, Zhi‐Gang Lu, Nan Zhang, Yin‐Qiang Liu, Ming Zhang, Xing‐Hao Wang, Xuemin Li, Na Bu, Xian‐He |
Author_xml | – sequence: 1 givenname: Yin‐Qiang surname: Zhang fullname: Zhang, Yin‐Qiang organization: Nankai University – sequence: 2 givenname: Ming surname: Liu fullname: Liu, Ming organization: Nankai University – sequence: 3 givenname: Le‐Tian surname: Zhang fullname: Zhang, Le‐Tian organization: Nankai University – sequence: 4 givenname: Nan surname: Lu fullname: Lu, Nan organization: Nankai University – sequence: 5 givenname: Xuemin surname: Wang fullname: Wang, Xuemin organization: Nankai University – sequence: 6 givenname: Zhi‐Gang surname: Li fullname: Li, Zhi‐Gang organization: Nankai University – sequence: 7 givenname: Xing‐Hao surname: Zhang fullname: Zhang, Xing‐Hao organization: Nankai University – sequence: 8 givenname: Na surname: Li fullname: Li, Na email: lina@nankai.edu.cn organization: Nankai University – sequence: 9 givenname: Xian‐He orcidid: 0000-0002-2646-7974 surname: Bu fullname: Bu, Xian‐He email: buxh@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkE1LAzEQhoMoWD-unhc8t-Zrk92jaKuCpeAHeFvS7GRJ3WY1m7X25k_wN_pLTK1UEMTLzHuYZ4Z59tC2axwgdETwgGBMT1Rp5gOKKSeUY7GFekQQ0WeYZtubTB520V7bzjAmUjLeQ-E2eBWgsjo5BwM6JENXWQfgratiVtMaymRojNUWXEgmr8sKXDJ8aeou2MYlN6D0V7CrrBvXBt_pEKExBFV_vL1PfKVc3D_yag6Lxj-2B2jHqLqFw---j-5Hw7uzy_715OLq7PS6rxmRIlah-DRlnJQ8k1TnuSlBGGCGZ4IyPpUZm0olVSkpL8sUMiGpwlmagVAqJWwfHa_3PvnmuYM2FLOm8y6eLBhJ4_85Z1mcGqyntG_a1oMpnrydK78sCC5WZouV2WJjNgL8F6BtUCsJ0aWt_8byNbawNSz_OVKcno_GP-wnxFqSSA |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_4c06264 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1002_asia_202401522 |
Cites_doi | 10.1002/aenm.202203955 10.1016/j.elecom.2012.10.039 10.1021/acs.chemrev.1c00243 10.1002/anie.202110387 10.1038/s41560-023-01409-2 10.1039/D1CS00968K 10.1002/adfm.201801554 10.1002/adfm.202101792 10.1002/anie.202214794 10.1016/j.nanoen.2017.09.055 10.1021/ja405351s 10.1021/jacs.8b05294 10.1002/anie.201902588 10.1038/s41560-020-00709-1 10.1021/acs.nanolett.2c01124 10.1002/advs.202303321 10.1002/anie.202311909 10.1002/anie.202317220 10.1038/nature19763 10.1002/anie.202101878 10.1002/anie.202300507 10.1038/s41467-019-13051-2 10.1016/j.apcatb.2023.123448 10.1039/D1TA06370G 10.1002/anie.202004420 10.1007/s11426-023-1725-8 10.1002/smll.201903410 10.1002/anie.202104148 10.1021/jacs.1c01525 10.1038/nenergy.2016.184 10.1007/s12274-023-6088-x 10.1002/cey2.315 10.1002/aenm.202301391 10.1002/adma.202006784 10.1002/anie.202400323 10.1002/anie.202112447 10.1002/adfm.202301075 10.1002/adma.201901139 10.1002/ange.202216008 10.1126/science.1230444 10.1038/s41563-022-01199-0 10.1002/aenm.202200827 10.1002/ange.202214988 10.1021/acscatal.9b03790 10.1038/s41586-020-2908-2 10.1021/acsnano.2c02685 10.1016/j.cej.2021.132733 10.1002/anie.201916507 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202412406 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202412406 ADFM202412406 |
Genre | article |
GrantInformation_xml | – fundername: Programme of Introducing Talents of Discipline to Universities funderid: B18030 – fundername: National Natural Science Foundation of China funderid: 22371139; 22305130; 22035003 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-c36a4b5341d4872c99fde6fe3f486234b783b7a7ad724dd5e8672a0858e6aa513 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 06:47:14 EDT 2025 Tue Jul 01 04:15:44 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Tue Jan 21 09:50:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-c36a4b5341d4872c99fde6fe3f486234b783b7a7ad724dd5e8672a0858e6aa513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2646-7974 |
PQID | 3157349438 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3157349438 crossref_primary_10_1002_adfm_202412406 crossref_citationtrail_10_1002_adfm_202412406 wiley_primary_10_1002_adfm_202412406_ADFM202412406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021 2017 2020; 60 41 5 2023; 10 2019 2018 2019 2021 2018 2023; 10 28 31 60 140 66 2022 2019 2022; 135 10 21 2023 2019; 33 58 2020 2023 2022 2021 2016; 587 8 135 143 1 2022 2023 2023; 12 13 62 2022 2022; 430 16 2024; 63 2013; 135 2024 2023; 63 5 2024; 343 2021 2020 2023 2019 2020 2022; 31 59 62 15 59 61 2022; 22 2023 2020 2013; 13 32 27 2013 2022 2021 2021 2016; 341 51 121 60 539 2021; 60 2021 2023; 9 17 e_1_2_7_2_5 e_1_2_7_4_3 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_1_5 e_1_2_7_2_4 e_1_2_7_3_3 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_2_3 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_7_4 e_1_2_7_8_3 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_9_6 e_1_2_7_9_5 e_1_2_7_7_6 e_1_2_7_9_4 e_1_2_7_7_5 e_1_2_7_9_3 |
References_xml | – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 430 16 start-page: 9523 year: 2022 2022 publication-title: Chem. Eng. J. ACS Nano – volume: 587 8 135 143 1 start-page: 408 1418 5201 year: 2020 2023 2022 2021 2016 publication-title: Nature Nat. Energy Angew. Chem., Int. Ed. J. Am. Chem. Soc. Nat. Energy – volume: 13 32 27 start-page: 9 year: 2023 2020 2013 publication-title: Adv. Energy Mater. Adv. Mater. Electrochem. Commun. – volume: 22 start-page: 3832 year: 2022 publication-title: Nano Lett. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 63 5 year: 2024 2023 publication-title: Angew. Chem., Int. Ed. Carbon Energy – volume: 343 year: 2024 publication-title: Appl. Catal. B: Environ. – volume: 60 41 5 start-page: 417 881 year: 2021 2017 2020 publication-title: Angew. Chem., Int. Ed. Nano Energy Nat. Energy – volume: 135 10 21 start-page: 5048 673 year: 2022 2019 2022 publication-title: Angew. Chem., Int. Ed. Nat. Commun. Nat. Mater. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 10 28 31 60 140 66 start-page: 81 2754 year: 2019 2018 2019 2021 2018 2023 publication-title: ACS Catal. Adv. Funct. Mater. Adv. Mater. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Sci. China Chem. – volume: 12 13 62 year: 2022 2023 2023 publication-title: Adv. Energy Mater. Adv. Energy Mater. Angew. Chem., Int. Ed. – volume: 341 51 121 60 539 start-page: 1045 76 year: 2013 2022 2021 2021 2016 publication-title: Science Chem. Soc. Rev. Chem. Rev. Angew. Chem., Int. Ed. Nature – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 33 58 start-page: 7051 year: 2023 2019 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 31 59 62 15 59 61 start-page: 5837 year: 2021 2020 2023 2019 2020 2022 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Small Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 9 17 start-page: 2429 year: 2021 2023 publication-title: J. Mater. Chem. A Nano Res. – ident: e_1_2_7_10_1 doi: 10.1002/aenm.202203955 – ident: e_1_2_7_10_3 doi: 10.1016/j.elecom.2012.10.039 – ident: e_1_2_7_1_3 doi: 10.1021/acs.chemrev.1c00243 – ident: e_1_2_7_1_4 doi: 10.1002/anie.202110387 – ident: e_1_2_7_2_2 doi: 10.1038/s41560-023-01409-2 – ident: e_1_2_7_1_2 doi: 10.1039/D1CS00968K – ident: e_1_2_7_7_2 doi: 10.1002/adfm.201801554 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.202101792 – ident: e_1_2_7_9_6 doi: 10.1002/anie.202214794 – ident: e_1_2_7_4_2 doi: 10.1016/j.nanoen.2017.09.055 – ident: e_1_2_7_14_1 doi: 10.1021/ja405351s – ident: e_1_2_7_7_5 doi: 10.1021/jacs.8b05294 – ident: e_1_2_7_16_2 doi: 10.1002/anie.201902588 – ident: e_1_2_7_4_3 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_7_11_1 doi: 10.1021/acs.nanolett.2c01124 – ident: e_1_2_7_17_1 doi: 10.1002/advs.202303321 – ident: e_1_2_7_9_3 doi: 10.1002/anie.202311909 – ident: e_1_2_7_12_1 doi: 10.1002/anie.202317220 – ident: e_1_2_7_1_5 doi: 10.1038/nature19763 – ident: e_1_2_7_4_1 doi: 10.1002/anie.202101878 – ident: e_1_2_7_8_3 doi: 10.1002/anie.202300507 – ident: e_1_2_7_3_2 doi: 10.1038/s41467-019-13051-2 – ident: e_1_2_7_13_1 doi: 10.1016/j.apcatb.2023.123448 – ident: e_1_2_7_18_1 doi: 10.1039/D1TA06370G – ident: e_1_2_7_9_5 doi: 10.1002/anie.202004420 – ident: e_1_2_7_7_6 doi: 10.1007/s11426-023-1725-8 – ident: e_1_2_7_9_4 doi: 10.1002/smll.201903410 – ident: e_1_2_7_7_4 doi: 10.1002/anie.202104148 – ident: e_1_2_7_2_4 doi: 10.1021/jacs.1c01525 – ident: e_1_2_7_2_5 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_7_18_2 doi: 10.1007/s12274-023-6088-x – ident: e_1_2_7_6_2 doi: 10.1002/cey2.315 – ident: e_1_2_7_8_2 doi: 10.1002/aenm.202301391 – ident: e_1_2_7_10_2 doi: 10.1002/adma.202006784 – ident: e_1_2_7_6_1 doi: 10.1002/anie.202400323 – ident: e_1_2_7_15_1 doi: 10.1002/anie.202112447 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.202301075 – ident: e_1_2_7_7_3 doi: 10.1002/adma.201901139 – ident: e_1_2_7_3_1 doi: 10.1002/ange.202216008 – ident: e_1_2_7_1_1 doi: 10.1126/science.1230444 – ident: e_1_2_7_3_3 doi: 10.1038/s41563-022-01199-0 – ident: e_1_2_7_8_1 doi: 10.1002/aenm.202200827 – ident: e_1_2_7_2_3 doi: 10.1002/ange.202214988 – ident: e_1_2_7_7_1 doi: 10.1021/acscatal.9b03790 – ident: e_1_2_7_2_1 doi: 10.1038/s41586-020-2908-2 – ident: e_1_2_7_5_2 doi: 10.1021/acsnano.2c02685 – ident: e_1_2_7_5_1 doi: 10.1016/j.cej.2021.132733 – ident: e_1_2_7_9_2 doi: 10.1002/anie.201916507 |
SSID | ssj0017734 |
Score | 2.5297866 |
Snippet | Metal‐organic frameworks (MOFs) have emerged as promising pre‐catalysts for oxygen evolution reaction (OER) due to their marvelous structural reconstruction... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carboxylic acids Catalytic activity Defects Density functional theory Density functions Doping Iron Metal foams Metal-organic frameworks Nickel oxygen evolution reaction Oxygen evolution reactions oxygen vacancy Reconstruction structural reconstruction |
Title | Strategic Defect Engineering Enabled Efficient Oxygen Evolution Reaction in Reconstructed Metal‐Organic Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202412406 https://www.proquest.com/docview/3157349438 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4StvsJrvJsdiGIlShWOgt7CsgSiu0inryJ_gb_SXObh6Nggh6CRuyG5Kdmcy3m5lvEDozTPo6hK-fCKnxwOMpMKlYexHLDBHgMeLMBcheseEkuJyG01oWf84PUW24Wctw32tr4EIuOivSUKEzm0lObPlkx7ltA7YsKhpX_FE-5_lvZebbAC9_WrI2dknn6_CvXmkFNeuA1XmcZAuJ8lnzQJO79uNSttXrNxrH_7zMNtos4Cju5fqzg9bMbBdt1EgK99CyJLBVuG9s8AeuXYa2zb3SeOCoKMCD4evnF1BKPHgqlBqPTZ48gW9tW80LzloYNDIA_T_e3vOEUIWTMlJssY8myeDmYugVtRo8BQiEwZGJQIbgEzUsgYiK40wbkDfNAlgz0UDyiEouuNCcBFqHJmKcCMB7kWFChD49QI3ZfGYOEeZUqhg0ywhYKhoWyK4xAuZGCElDzkUTeaWsUlUQmdt6GvdpTsFMUjubaTWbTXRe9X_IKTx-7NkqRZ8WprxIqR9yy-FDoyYiToa_3CXt9ZNRdXb0l0HHaJ3YOsNuq6eFGiAWcwLgZylPnYJ_Aish_a0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kHtSDb7FadQ-Cp7TNJtlNjsU2VG0rlBZ6C_sKiNIKraKe_An-Rn-Js3m1FUTQS9iQ3bDZmdmZ2cx8g9C5psJWHux-3HO0BRpPgkgFyvJprAkHjRHESYBsj7aH7vXIy6MJTS5Mig9RHLgZyUj2ayPg5kC6NkcN5So2qeTE1E82oNurpqx34lX1CwQpm7H0xzK1TYiXPcpxG-uktjx-WS_Njc1FkzXROeEWEvls01CT--rTTFTl2zcgx399zjbazCxS3EhZaAet6PEu2ljAKdxDsxzDVuKmNvEfeOExtE36lcKtBI0ClBi-fXkFvsSt54yvcV-n-RP4zrTlJIOthUFdDdb_5_tHmhMqcZgHi0330TBsDS7bVlauwZJghFC4Uu4KD9SiAi-IyCCIlQaSO7ELbpPjCuY7gnHGFSOuUp72KSMcTD5fU86BdAeoNJ6M9SHCzBEyAObSHLxFTV1R15rD2nAuHI8xXkZWTqxIZljmpqTGQ5SiMJPIrGZUrGYZXRT9H1MUjx97VnLaR5k0TyPH9piB8XH8MiIJEX95S9Roht3i7ugvg87QWnvQ7USdq97NMVonpuxwcvJTQSUgkT4BW2gmThNu_wIDSAHX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EQfTgW6xW3YPgKbXZTXaTY7EN9dEqYqG3sK-AKG2hVdSTP8Hf6C9xNq9WQQS9hA3ZDcnOTObbzcw3CB0ZJl3tw9dP-NQ44PEUmFSonYAlhgjwGGGSBsh2Wbvnnff9_kwWf8YPUW64WctIv9fWwEc6OZmShgqd2ExyYssnW87tBY_VA6vXzZuSQMrlPPuvzFwb4eX2C9rGOjn5Ov6rW5pizVnEmrqcaBWJ4mGzSJP72uNE1tTrNx7H_7zNGlrJ8ShuZAq0jubMYAMtz7AUbqJJwWCrcNPY6A88cxnaNvlK41bKRQEuDF89v4BW4tZTrtX4xmTZE_jOttUwJ62FQR0D2P_j7T3LCFU4KkLFxluoF7VuT9tOXqzBUQBBGByZ8KQPTlHDGoioMEy0AYHTxINFE_UkD6jkggvNiae1bwLGiQDAFxgmhO_SbTQ_GA7MDsKcShWCahkBa0XDPFk3RsDcCCGpz7moIKeQVaxyJnNbUOMhzjiYSWxnMy5ns4KOy_6jjMPjx57VQvRxbsvjmLo-tyQ-NKggksrwl7vEjWbUKc92_zLoEC1eN6P48qx7sYeWiK05nG77VNE8SMjsAxCayINU1z8BF1kAjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategic+Defect+Engineering+Enabled+Efficient+Oxygen+Evolution+Reaction+in+Reconstructed+Metal%E2%80%90Organic+Frameworks&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Yin%E2%80%90Qiang&rft.au=Liu%2C+Ming&rft.au=Zhang%2C+Le%E2%80%90Tian&rft.au=Lu%2C+Nan&rft.date=2025-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202412406&rft.externalDBID=10.1002%252Fadfm.202412406&rft.externalDocID=ADFM202412406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |