A Puncture‐Resistant and Self‐Healing Conductive Gel for Multifunctional Electronic Skin

Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the functions of human skin, e‐skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 49
Main Authors Hou, Ke‐Xin, Zhao, Shu‐Peng, Wang, Da‐Peng, Zhao, Pei‐Chen, Li, Cheng‐Hui, Zuo, Jing‐Lin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the functions of human skin, e‐skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to injury. However, both objectives are highly challenging. The fabrication of multifunctional e‐skins is difficult because of the complex lamination scheme and the integration of different sensors. The design of skin‐like materials is hindered by the trade‐off problem between flexibility, toughness, and self‐healing ability. Herein, flexible sodium methallyl sulfonate functionalized poly(thioctic acid) polymer chains are combined with rigid conductive polyaniline rods through ionic bonds to obtain a solvent‐free polymer conductive gel. The conductive gel has a modulus similar to that of skin, and shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, thus leading to multifunctional sensing performance. Based on these superior properties, a flexible e‐skin sensor is prepared, demonstrating its great potential in the wearable field and physiological signal detection. A new solvent‐free polymer conductive gel is obtained by combining flexible sulfonate‐containing poly(thioctic acid) polymer chains and rigid conductive polyaniline rods. The conductive gel shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, and thus can be used for multifunctional electronic skin.
AbstractList Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the functions of human skin, e‐skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to injury. However, both objectives are highly challenging. The fabrication of multifunctional e‐skins is difficult because of the complex lamination scheme and the integration of different sensors. The design of skin‐like materials is hindered by the trade‐off problem between flexibility, toughness, and self‐healing ability. Herein, flexible sodium methallyl sulfonate functionalized poly(thioctic acid) polymer chains are combined with rigid conductive polyaniline rods through ionic bonds to obtain a solvent‐free polymer conductive gel. The conductive gel has a modulus similar to that of skin, and shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, thus leading to multifunctional sensing performance. Based on these superior properties, a flexible e‐skin sensor is prepared, demonstrating its great potential in the wearable field and physiological signal detection.
Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the functions of human skin, e‐skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to injury. However, both objectives are highly challenging. The fabrication of multifunctional e‐skins is difficult because of the complex lamination scheme and the integration of different sensors. The design of skin‐like materials is hindered by the trade‐off problem between flexibility, toughness, and self‐healing ability. Herein, flexible sodium methallyl sulfonate functionalized poly(thioctic acid) polymer chains are combined with rigid conductive polyaniline rods through ionic bonds to obtain a solvent‐free polymer conductive gel. The conductive gel has a modulus similar to that of skin, and shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, thus leading to multifunctional sensing performance. Based on these superior properties, a flexible e‐skin sensor is prepared, demonstrating its great potential in the wearable field and physiological signal detection. A new solvent‐free polymer conductive gel is obtained by combining flexible sulfonate‐containing poly(thioctic acid) polymer chains and rigid conductive polyaniline rods. The conductive gel shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, and thus can be used for multifunctional electronic skin.
Author Zuo, Jing‐Lin
Zhao, Pei‐Chen
Li, Cheng‐Hui
Hou, Ke‐Xin
Zhao, Shu‐Peng
Wang, Da‐Peng
Author_xml – sequence: 1
  givenname: Ke‐Xin
  orcidid: 0000-0002-6510-7998
  surname: Hou
  fullname: Hou, Ke‐Xin
  organization: Nanjing University
– sequence: 2
  givenname: Shu‐Peng
  surname: Zhao
  fullname: Zhao, Shu‐Peng
  organization: Nanjing University
– sequence: 3
  givenname: Da‐Peng
  surname: Wang
  fullname: Wang, Da‐Peng
  organization: Nanjing University
– sequence: 4
  givenname: Pei‐Chen
  surname: Zhao
  fullname: Zhao, Pei‐Chen
  email: lemon_zhao@nju.edu.cn
  organization: Nanjing University
– sequence: 5
  givenname: Cheng‐Hui
  orcidid: 0000-0001-8982-5938
  surname: Li
  fullname: Li, Cheng‐Hui
  email: chli@nju.edu.cn
  organization: Nanjing University
– sequence: 6
  givenname: Jing‐Lin
  surname: Zuo
  fullname: Zuo, Jing‐Lin
  organization: Nanjing University
BookMark eNqFkE1LxDAQhoOsoK5ePQc87zpJ27Q9LusnrCh-gAehpOlEojFdk1TZmz_B3-gvscuKgiBeZoZhnpl53y0ycK1DQnYZjBkA35eNfhpz4AxyALFGNplgYpQALwbfNbvdIFshPACwPE_STXI3oRedU7Hz-PH2fonBhChdpNI19Aqt7psnKK1x93TauqZT0bwgPUZLdevpWWej0UvetE5aemhRRd86o-jVo3HbZF1LG3DnKw_JzdHh9fRkNDs_Pp1OZiOVsFyMapU1iU4RC6gz0UAhylqoRGay0JDXBccCmcK05kkfG2CZLNOigQxFoXTJkyHZW-2d-_a5wxCrh7bz_UOh4gIyznjZqx2S8WpK-TYEj7qae_Mk_aJiUC0drJYOVt8O9kD6C1AmyqXU6KWxf2PlCns1Fhf_HKkmB0dnP-wnwSaKew
CitedBy_id crossref_primary_10_1016_j_cej_2023_145544
crossref_primary_10_1016_j_nanoen_2025_110875
crossref_primary_10_1002_EXP_20220167
crossref_primary_10_1126_sciadv_adr9834
crossref_primary_10_1002_adma_202410572
crossref_primary_10_1016_j_ijbiomac_2023_125833
crossref_primary_10_1021_acs_chemmater_2c03330
crossref_primary_10_1016_j_apmt_2024_102244
crossref_primary_10_1039_D4SM00501E
crossref_primary_10_1002_smll_202408199
crossref_primary_10_1039_D2TA02559K
crossref_primary_10_3390_ijms23020622
crossref_primary_10_1039_D1TC03232A
crossref_primary_10_1021_acssensors_4c00307
crossref_primary_10_1002_mame_202300058
crossref_primary_10_1002_marc_202300182
crossref_primary_10_1016_j_polymer_2022_125266
crossref_primary_10_1016_j_mtphys_2022_100795
crossref_primary_10_1021_acsapm_2c00390
crossref_primary_10_1002_ange_202410834
crossref_primary_10_1021_acsapm_4c00611
crossref_primary_10_1002_adfm_202205708
crossref_primary_10_1039_D3TA06976A
crossref_primary_10_1021_acsami_2c14378
crossref_primary_10_1002_smll_202300857
crossref_primary_10_1016_j_indcrop_2022_115802
crossref_primary_10_1021_acscatal_3c05011
crossref_primary_10_1021_acsami_1c22602
crossref_primary_10_1016_j_cej_2023_146340
crossref_primary_10_1016_j_progpolymsci_2024_101920
crossref_primary_10_1021_acs_chemrev_2c00575
crossref_primary_10_1016_j_mtchem_2024_102365
crossref_primary_10_1002_pol_20220084
crossref_primary_10_1016_j_polymer_2024_127877
crossref_primary_10_1039_D3MH00481C
crossref_primary_10_1021_acs_analchem_2c05118
crossref_primary_10_1021_acsmaterialslett_3c00320
crossref_primary_10_1021_polymscitech_4c00022
crossref_primary_10_1002_admt_202201352
crossref_primary_10_1016_j_cej_2022_140796
crossref_primary_10_1016_j_nanoen_2023_108739
crossref_primary_10_1002_sstr_202200034
crossref_primary_10_1002_smll_202309931
crossref_primary_10_1038_s41528_023_00273_0
crossref_primary_10_1007_s40820_022_00980_9
crossref_primary_10_1007_s00289_024_05398_4
crossref_primary_10_1007_s40820_024_01387_4
crossref_primary_10_1016_j_compositesb_2024_111826
crossref_primary_10_1016_j_eurpolymj_2023_112034
crossref_primary_10_1021_acsami_4c19660
crossref_primary_10_1021_acsmaterialslett_5c00042
crossref_primary_10_1039_D4TB00581C
crossref_primary_10_1016_j_cej_2024_151896
crossref_primary_10_1021_acsami_3c07589
crossref_primary_10_1039_D4MH00543K
crossref_primary_10_1039_D3BM00174A
crossref_primary_10_1039_D3MH00056G
crossref_primary_10_1038_s41467_023_36920_3
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_1021_acs_macromol_3c02379
crossref_primary_10_1021_acsami_4c07045
crossref_primary_10_1016_j_carbpol_2023_120813
crossref_primary_10_1016_j_ijbiomac_2022_11_040
crossref_primary_10_1016_j_nanoen_2023_108989
crossref_primary_10_1002_adma_202405776
crossref_primary_10_1002_smm2_1147
crossref_primary_10_1002_adfm_202313397
crossref_primary_10_1016_j_cej_2023_144263
crossref_primary_10_1002_pol_20220184
crossref_primary_10_1016_j_jiec_2022_11_034
crossref_primary_10_1002_adfm_202212856
crossref_primary_10_1002_advs_202205485
crossref_primary_10_1016_j_cej_2022_139982
crossref_primary_10_1002_smll_202409365
crossref_primary_10_1021_acsapm_4c04109
crossref_primary_10_1039_D2TC03877C
crossref_primary_10_1016_j_cej_2024_154227
crossref_primary_10_1021_acs_macromol_3c01904
crossref_primary_10_1016_j_addma_2022_103343
crossref_primary_10_1016_j_coco_2022_101251
crossref_primary_10_1021_acsapm_3c00610
crossref_primary_10_1016_j_apmt_2024_102569
crossref_primary_10_1002_mame_202200248
crossref_primary_10_1039_D2TC05354C
crossref_primary_10_1016_j_nanoen_2024_109790
crossref_primary_10_1021_acs_chemmater_3c00368
crossref_primary_10_1002_adfm_202415694
crossref_primary_10_1021_acsapm_4c03914
crossref_primary_10_1021_acsami_3c09065
crossref_primary_10_1021_acs_chemmater_2c00934
crossref_primary_10_1002_app_54829
crossref_primary_10_1016_j_seppur_2025_131916
crossref_primary_10_1007_s40843_022_2286_5
crossref_primary_10_1039_D4TA02644F
crossref_primary_10_1039_D3TC02018E
crossref_primary_10_1002_admt_202300710
crossref_primary_10_1007_s10118_024_3210_9
crossref_primary_10_1016_j_nanoen_2023_108374
crossref_primary_10_1002_aelm_202300094
crossref_primary_10_1016_j_ijbiomac_2024_138376
crossref_primary_10_1021_acsapm_3c01884
crossref_primary_10_1016_j_sna_2022_113834
crossref_primary_10_1016_j_mtcomm_2025_111976
crossref_primary_10_1002_marc_202100885
crossref_primary_10_3390_polym14193941
crossref_primary_10_1021_acsmaterialslett_2c00783
crossref_primary_10_1016_j_eurpolymj_2022_111485
crossref_primary_10_1021_acsami_3c05802
crossref_primary_10_1016_j_ijbiomac_2022_12_168
crossref_primary_10_1002_anie_202410834
crossref_primary_10_1002_marc_202500072
crossref_primary_10_1007_s00396_022_05006_9
crossref_primary_10_1016_j_eurpolymj_2024_112934
crossref_primary_10_1016_j_jcis_2022_10_058
crossref_primary_10_1039_D2QM00343K
crossref_primary_10_1016_j_colsurfa_2024_133323
crossref_primary_10_1002_app_56468
crossref_primary_10_1016_j_nanoen_2023_109239
crossref_primary_10_1039_D2TB00541G
crossref_primary_10_1021_acsami_2c15968
crossref_primary_10_1039_D1TA10998G
Cites_doi 10.1021/acs.accounts.8b00448
10.1126/scitranslmed.aao3612
10.1016/j.nanoen.2020.105073
10.1016/j.nanoen.2017.05.024
10.1021/acs.nanolett.9b05217
10.1109/JPROC.2019.2907317
10.1038/s41587-019-0079-1
10.1021/acs.accounts.8b00500
10.1021/acsami.0c07727
10.1016/0305-4179(96)00038-1
10.1126/sciadv.aaq0508
10.1002/smll.202100542
10.1016/j.cej.2020.127960
10.1126/scirobotics.aau6914
10.1016/j.nanoen.2019.05.046
10.1016/j.progpolymsci.2018.06.001
10.1021/acs.macromol.7b00423
10.1002/adfm.202100940
10.1038/nm.3621
10.1021/acs.chemmater.6b01073
10.1021/acsami.7b13356
10.1016/j.nanoen.2021.106181
10.1038/nature16521
10.1021/acsnano.8b07392
10.1038/ncomms14997
10.1002/adma.202006111
10.1002/adhm.202100469
10.1039/C7NR01016H
10.1021/cm203216m
10.1016/j.nanoen.2020.104560
10.1073/pnas.0502392102
10.1002/app.1963.070070316
10.1039/C9TA09225K
10.1021/acsami.0c05119
10.1039/C9TA04248B
10.1002/adma.202000246
10.1002/adfm.201701513
10.1021/acsnano.0c04158
10.1021/acsomega.9b00207
10.1126/science.aah4496
10.1021/ma201653t
10.1039/C9TA10502F
10.1002/anie.202017303
10.1039/C7TA08233A
10.1038/s41467-020-14446-2
10.1038/nchem.2492
10.1016/j.cej.2020.128363
10.1016/j.talanta.2017.08.077
10.1021/jp301099r
10.1002/advs.202004377
10.1021/acsami.0c00443
10.1002/adfm.201909252
10.1039/D0TA09101D
10.1021/jp204422v
10.1038/s41467-017-02685-9
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202107006
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202107006
ADFM202107006
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21631006; 21771100
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-bc5d3f4ee80b56d0869b6c3a5a8f07b82e8e1ce4b23ce4d015a948d05e68cf923
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:34:14 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 04:12:36 EDT 2025
Wed Jan 22 16:26:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-bc5d3f4ee80b56d0869b6c3a5a8f07b82e8e1ce4b23ce4d015a948d05e68cf923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8982-5938
0000-0002-6510-7998
PQID 2605212977
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2605212977
crossref_primary_10_1002_adfm_202107006
crossref_citationtrail_10_1002_adfm_202107006
wiley_primary_10_1002_adfm_202107006_ADFM202107006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2021 2016; 20 04 12
2017; 5
2011; 115
2018 2021 2019; 9 407 62
2019; 4
2003; 14
2020; 12
2020; 32
2020 2020 2019; 14 12 7
2017 2021; 355 17
2019 2019 2018 2016; 107 52 177 529
2017; 9
2019 2020 2021; 7 12 10
2017; 50
2019 2018 2018 2019 2019; 37 10 3 52 10
2019; 40
2021; 33
2021; 410
2017; 38
1963; 7
2020 2021; 30 33
2011; 44
2021 2017 2018; 8 9 4
2005 2017 2021 2020 2021; 102 27 31 75 9
2020 2014 2017 2021; 70 20 8 87
2018 2019 2020; 83 7 11
2018; 12
2021; 60
2012; 24
2012; 116
2016; 8
1996; 22
e_1_2_8_28_1
e_1_2_8_26_1
e_1_2_8_9_3
e_1_2_8_7_4
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
Bu Y. (e_1_2_8_5_2) 2021; 04
Simha N. K. (e_1_2_8_24_1) 2003; 14
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_8_3
Iskarous M. M. (e_1_2_8_2_5) 2019; 10
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_16_1
Jiang Z. (e_1_2_8_15_1) 2019; 40
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_10_3
e_1_2_8_12_1
References_xml – volume: 102 27 31 75 9
  start-page: 963
  year: 2005 2017 2021 2020 2021
  publication-title: Proc. Natl. Acad. Sci. USA Adv. Funct. Mater. Adv. Funct. Mater. Nano Energy J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 8 9 4
  start-page: 6246
  year: 2021 2017 2018
  publication-title: Adv. Sci. Nanoscale Sci. Adv.
– volume: 37 10 3 52 10
  start-page: 382 277 107
  year: 2019 2018 2018 2019 2019
  publication-title: Nat. Biotechnol. Sci. Transl. Med. Sci. Rob. Acc. Chem. Res. Proc. IEEE
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20 04 12
  start-page: 2478 041 4278
  year: 2020 2021 2016
  publication-title: Nano Lett. Sci. Bull. Chem. Mater.
– volume: 14 12 7
  start-page: 9066
  year: 2020 2020 2019
  publication-title: ACS Nano ACS Appl. Mater. Interfaces J. Mater. Chem. A
– volume: 4
  start-page: 7400
  year: 2019
  publication-title: ACS Omega
– volume: 38
  start-page: 28
  year: 2017
  publication-title: Nano Energy
– volume: 60
  start-page: 7947
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 631
  year: 2003
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 83 7 11
  start-page: 97 1107
  year: 2018 2019 2020
  publication-title: Prog. Polym. Sci. J. Mater. Chem. A Nat. Commun.
– volume: 355 17
  start-page: 39
  year: 2017 2021
  publication-title: Science Small
– volume: 70 20 8 87
  start-page: 1074
  year: 2020 2014 2017 2021
  publication-title: Nano Energy Nat. Med. Nat. Commun. Nano Energy
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid. Commun.
– volume: 22
  start-page: 443
  year: 1996
  publication-title: Burns
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 3831
  year: 2017
  publication-title: Macromolecules
– volume: 24
  start-page: 373
  year: 2012
  publication-title: Chem. Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 115
  start-page: 8453
  year: 2011
  publication-title: J. Phys. Chem. B
– volume: 30 33
  year: 2020 2021
  publication-title: Adv. Funct. Mater. Adv. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 44
  start-page: 8916
  year: 2011
  publication-title: Macromolecules
– volume: 8
  start-page: 618
  year: 2016
  publication-title: Nat. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 9 407 62
  start-page: 244 164
  year: 2018 2021 2019
  publication-title: Nat. Commun. Chem. Eng. J. Nano Energy
– volume: 7 12 10
  year: 2019 2020 2021
  publication-title: J. Mater. Chem. A ACS Appl. Mater. Interfaces Adv. Healthcare Mater.
– volume: 410
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 993
  year: 1963
  publication-title: J. Appl. Poly. Sci.
– volume: 107 52 177 529
  start-page: 2155 523 163 509
  year: 2019 2019 2018 2016
  publication-title: Proc. IEEE Acc. Chem. Res. Talanta Nature
– ident: e_1_2_8_2_4
  doi: 10.1021/acs.accounts.8b00448
– ident: e_1_2_8_2_2
  doi: 10.1126/scitranslmed.aao3612
– volume: 10
  start-page: 107
  year: 2019
  ident: e_1_2_8_2_5
  publication-title: Proc. IEEE
– ident: e_1_2_8_1_4
  doi: 10.1016/j.nanoen.2020.105073
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nanoen.2017.05.024
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.nanolett.9b05217
– ident: e_1_2_8_7_1
  doi: 10.1109/JPROC.2019.2907317
– ident: e_1_2_8_2_1
  doi: 10.1038/s41587-019-0079-1
– ident: e_1_2_8_7_2
  doi: 10.1021/acs.accounts.8b00500
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.0c07727
– ident: e_1_2_8_22_1
  doi: 10.1016/0305-4179(96)00038-1
– ident: e_1_2_8_6_3
  doi: 10.1126/sciadv.aaq0508
– ident: e_1_2_8_31_2
  doi: 10.1002/smll.202100542
– ident: e_1_2_8_10_2
  doi: 10.1016/j.cej.2020.127960
– ident: e_1_2_8_2_3
  doi: 10.1126/scirobotics.aau6914
– ident: e_1_2_8_10_3
  doi: 10.1016/j.nanoen.2019.05.046
– ident: e_1_2_8_8_1
  doi: 10.1016/j.progpolymsci.2018.06.001
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.macromol.7b00423
– ident: e_1_2_8_1_3
  doi: 10.1002/adfm.202100940
– ident: e_1_2_8_3_2
  doi: 10.1038/nm.3621
– ident: e_1_2_8_5_3
  doi: 10.1021/acs.chemmater.6b01073
– ident: e_1_2_8_11_1
  doi: 10.1021/acsami.7b13356
– ident: e_1_2_8_3_4
  doi: 10.1016/j.nanoen.2021.106181
– ident: e_1_2_8_7_4
  doi: 10.1038/nature16521
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.8b07392
– ident: e_1_2_8_3_3
  doi: 10.1038/ncomms14997
– ident: e_1_2_8_23_2
  doi: 10.1002/adma.202006111
– ident: e_1_2_8_4_3
  doi: 10.1002/adhm.202100469
– ident: e_1_2_8_6_2
  doi: 10.1039/C7NR01016H
– ident: e_1_2_8_30_1
  doi: 10.1021/cm203216m
– ident: e_1_2_8_3_1
  doi: 10.1016/j.nanoen.2020.104560
– ident: e_1_2_8_1_1
  doi: 10.1073/pnas.0502392102
– ident: e_1_2_8_32_1
  doi: 10.1002/app.1963.070070316
– ident: e_1_2_8_4_1
  doi: 10.1039/C9TA09225K
– ident: e_1_2_8_4_2
  doi: 10.1021/acsami.0c05119
– ident: e_1_2_8_9_3
  doi: 10.1039/C9TA04248B
– volume: 40
  start-page: 19008
  year: 2019
  ident: e_1_2_8_15_1
  publication-title: Macromol. Rapid. Commun.
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202000246
– ident: e_1_2_8_1_2
  doi: 10.1002/adfm.201701513
– ident: e_1_2_8_9_1
  doi: 10.1021/acsnano.0c04158
– ident: e_1_2_8_20_1
  doi: 10.1021/acsomega.9b00207
– ident: e_1_2_8_31_1
  doi: 10.1126/science.aah4496
– ident: e_1_2_8_25_1
  doi: 10.1021/ma201653t
– ident: e_1_2_8_8_2
  doi: 10.1039/C9TA10502F
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.202017303
– ident: e_1_2_8_21_1
  doi: 10.1039/C7TA08233A
– ident: e_1_2_8_8_3
  doi: 10.1038/s41467-020-14446-2
– ident: e_1_2_8_26_1
  doi: 10.1038/nchem.2492
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cej.2020.128363
– ident: e_1_2_8_7_3
  doi: 10.1016/j.talanta.2017.08.077
– volume: 04
  start-page: 041
  year: 2021
  ident: e_1_2_8_5_2
  publication-title: Sci. Bull.
– ident: e_1_2_8_18_1
  doi: 10.1021/jp301099r
– ident: e_1_2_8_6_1
  doi: 10.1002/advs.202004377
– ident: e_1_2_8_9_2
  doi: 10.1021/acsami.0c00443
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.201909252
– ident: e_1_2_8_1_5
  doi: 10.1039/D0TA09101D
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.202006111
– volume: 14
  start-page: 631
  year: 2003
  ident: e_1_2_8_24_1
  publication-title: J. Mater. Sci.: Mater. Med.
– ident: e_1_2_8_19_1
  doi: 10.1021/jp204422v
– ident: e_1_2_8_10_1
  doi: 10.1038/s41467-017-02685-9
SSID ssj0017734
Score 2.6502895
Snippet Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms electronic‐skins
Flexibility
Healing
Materials science
Polyanilines
Polymers
puncture‐resistant
self‐healing
Signal detection
strain sensors
temperature sensors
Wearable technology
Title A Puncture‐Resistant and Self‐Healing Conductive Gel for Multifunctional Electronic Skin
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202107006
https://www.proquest.com/docview/2605212977
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9pk8z6WPixiRVoLPQhhX7lYUrHtxZM_wd_oL3Em26atIIJeQhJ2w2Z3Z-eb3ZlvCLmKPeaoECQtllJaXhpEVqR0YAGWEExJx3VSPNHt3QfdoXc78kdrUfyGH6LYcEPJyNdrFHAupvUVaShXKUaSg8kSGs5tdNhCVNQv-KOcMDTHyoGDDl7OaMnaaLP6ZvVNrbSCmuuANdc4nX3Cl201jibPtflM1OTbNxrH__zMAdlbwFHaMPPnkGzp7IjsrpEUHpOnBn0A5YcnDZ_vH309RcSZzSjPFB3ocQovMZYJytLmJEP6WFhA6Y0eU8DDNA_wReVp9hxpu0i7QzHv1wkZdtqPza61yMlgSUAagSWkr9zU0zqyhR8oMIhiEUiX-zxK7VBETEfakdoTzIWrArDBYy9Stq-DSKYwA05JKZtk-oxQltqO4gAghOAAG2UsdMyYVLHriVhpVSbWckwSuSAsx7wZ48RQLbMEey0peq1MrovyL4aq48eSleUQJwuRnSZo2IEeBzxcJiwfq1--kjRanV7xdP6XShdkB--Ne0yFlGavc30JIGcmqmS70erdDar5hP4C6833Nw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED-rBt1itugfBU9pk8z6WPqzaFqkt9CCE7CMXSyo2vXjyJ_gb_SXOJE3aCiLoJZBlNmQfs_Pt7sw3hFz5FjOkC5rmCyE0K3I8zZPK0QBLcCaFYRoR3uh2e057aN2N7NybEGNhMn6I4sANNSNdr1HB8UC6umANDWWEoeSwZ3FT0u0NTOuN9PmNfsEgZbhudrHsGOjiZYxy3kadVVfrr9qlBdhchqypzWntEp7_beZq8lyZJbwi3r4ROf6rOXtkZ45IaS2bQvtkTcUHZHuJp_CQPNXoA9g_vGz4fP_oqymCzjihYSzpoxpHUIjhTCBL65MYGWRhDaU3akwBEtM0xhftZ3bsSJtF5h2Kqb-OyLDVHNTb2jwtgyYAbDgaF7Y0I0spT-e2I2FP5HNHmKEdepHuco8pTxlCWZyZ8JSAN0Lf8qRuK8cTEUyCY7IeT2J1QiiLdEOGgCE4DwE5Cp8rnzEhfdPivlSyRLR8UAIx5yzH1BnjIGNbZgH2WlD0WolcF_IvGVvHj5LlfIyDudZOA9zbgSkHSFwiLB2sX74S1BqtbvF2-pdKl2SzPeh2gs5t7_6MbGF55i1TJuvJ60ydA-ZJ-EU6q78AlLr5vw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzidmgfBp25t2qbN49jF68aYDvYglOb24uiG21588if4G_0lnrRbtwki6EuhISlNck7Od5Kc7yB0yTziyAA0jQkhLE_T0AqlohZgCU6kcFxHmxPdVpve9Ly7vt9fiuLP-CHyDTejGel6bRR8JHVlQRoaS20iycFlCVLO7XWP2swkb6h3cwIpJwiyc2XqmBteTn9O22iTymr7VbO0wJrLiDU1Oc0dFM9_Nrtp8lKeTnhZvH3jcfxPb3bR9gyP4momQHtoTSX7aGuJpfAAPVdxB6yfOWr4fP_oqrGBnMkEx4nEj2qgodAEM0FdXBsmhj8WVlB8rQYYADFOI3yN9cw2HXEjz7uDTeKvQ9RrNp5qN9YsKYMlAGpQiwtfutpTKrS5TyV4RIxT4cZ-HGo74CFRoXKE8jhx4SkBbcTMC6XtKxoKDSJwhArJMFHHCBNtOzIGBMF5DLhRMK4YIUIy1-NMKllE1nxOIjFjLDeJMwZRxrVMIjNqUT5qRXSV1x9lXB0_1izNpzia6ew4Mp4dGHIAxEVE0rn65StRtd5s5W8nf2l0gTY69Wb0cNu-P0Wbpji7KlNChcnrVJ0B4Jnw81SmvwCtW_hu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Puncture%E2%80%90Resistant+and+Self%E2%80%90Healing+Conductive+Gel+for+Multifunctional+Electronic+Skin&rft.jtitle=Advanced+functional+materials&rft.au=Hou%2C+Ke%E2%80%90Xin&rft.au=Zhao%2C+Shu%E2%80%90Peng&rft.au=Wang%2C+Da%E2%80%90Peng&rft.au=Zhao%2C+Pei%E2%80%90Chen&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202107006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202107006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon