A Puncture‐Resistant and Self‐Healing Conductive Gel for Multifunctional Electronic Skin
Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the functions of human skin, e‐skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 49 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the functions of human skin, e‐skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to injury. However, both objectives are highly challenging. The fabrication of multifunctional e‐skins is difficult because of the complex lamination scheme and the integration of different sensors. The design of skin‐like materials is hindered by the trade‐off problem between flexibility, toughness, and self‐healing ability. Herein, flexible sodium methallyl sulfonate functionalized poly(thioctic acid) polymer chains are combined with rigid conductive polyaniline rods through ionic bonds to obtain a solvent‐free polymer conductive gel. The conductive gel has a modulus similar to that of skin, and shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, thus leading to multifunctional sensing performance. Based on these superior properties, a flexible e‐skin sensor is prepared, demonstrating its great potential in the wearable field and physiological signal detection.
A new solvent‐free polymer conductive gel is obtained by combining flexible sulfonate‐containing poly(thioctic acid) polymer chains and rigid conductive polyaniline rods. The conductive gel shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, and thus can be used for multifunctional electronic skin. |
---|---|
AbstractList | Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the functions of human skin, e‐skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to injury. However, both objectives are highly challenging. The fabrication of multifunctional e‐skins is difficult because of the complex lamination scheme and the integration of different sensors. The design of skin‐like materials is hindered by the trade‐off problem between flexibility, toughness, and self‐healing ability. Herein, flexible sodium methallyl sulfonate functionalized poly(thioctic acid) polymer chains are combined with rigid conductive polyaniline rods through ionic bonds to obtain a solvent‐free polymer conductive gel. The conductive gel has a modulus similar to that of skin, and shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, thus leading to multifunctional sensing performance. Based on these superior properties, a flexible e‐skin sensor is prepared, demonstrating its great potential in the wearable field and physiological signal detection. Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the functions of human skin, e‐skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to injury. However, both objectives are highly challenging. The fabrication of multifunctional e‐skins is difficult because of the complex lamination scheme and the integration of different sensors. The design of skin‐like materials is hindered by the trade‐off problem between flexibility, toughness, and self‐healing ability. Herein, flexible sodium methallyl sulfonate functionalized poly(thioctic acid) polymer chains are combined with rigid conductive polyaniline rods through ionic bonds to obtain a solvent‐free polymer conductive gel. The conductive gel has a modulus similar to that of skin, and shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, thus leading to multifunctional sensing performance. Based on these superior properties, a flexible e‐skin sensor is prepared, demonstrating its great potential in the wearable field and physiological signal detection. A new solvent‐free polymer conductive gel is obtained by combining flexible sulfonate‐containing poly(thioctic acid) polymer chains and rigid conductive polyaniline rods. The conductive gel shows good flexibility, puncture‐resistance, notch‐insensitivity, and fast self‐healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, and thus can be used for multifunctional electronic skin. |
Author | Zuo, Jing‐Lin Zhao, Pei‐Chen Li, Cheng‐Hui Hou, Ke‐Xin Zhao, Shu‐Peng Wang, Da‐Peng |
Author_xml | – sequence: 1 givenname: Ke‐Xin orcidid: 0000-0002-6510-7998 surname: Hou fullname: Hou, Ke‐Xin organization: Nanjing University – sequence: 2 givenname: Shu‐Peng surname: Zhao fullname: Zhao, Shu‐Peng organization: Nanjing University – sequence: 3 givenname: Da‐Peng surname: Wang fullname: Wang, Da‐Peng organization: Nanjing University – sequence: 4 givenname: Pei‐Chen surname: Zhao fullname: Zhao, Pei‐Chen email: lemon_zhao@nju.edu.cn organization: Nanjing University – sequence: 5 givenname: Cheng‐Hui orcidid: 0000-0001-8982-5938 surname: Li fullname: Li, Cheng‐Hui email: chli@nju.edu.cn organization: Nanjing University – sequence: 6 givenname: Jing‐Lin surname: Zuo fullname: Zuo, Jing‐Lin organization: Nanjing University |
BookMark | eNqFkE1LxDAQhoOsoK5ePQc87zpJ27Q9LusnrCh-gAehpOlEojFdk1TZmz_B3-gvscuKgiBeZoZhnpl53y0ycK1DQnYZjBkA35eNfhpz4AxyALFGNplgYpQALwbfNbvdIFshPACwPE_STXI3oRedU7Hz-PH2fonBhChdpNI19Aqt7psnKK1x93TauqZT0bwgPUZLdevpWWej0UvetE5aemhRRd86o-jVo3HbZF1LG3DnKw_JzdHh9fRkNDs_Pp1OZiOVsFyMapU1iU4RC6gz0UAhylqoRGay0JDXBccCmcK05kkfG2CZLNOigQxFoXTJkyHZW-2d-_a5wxCrh7bz_UOh4gIyznjZqx2S8WpK-TYEj7qae_Mk_aJiUC0drJYOVt8O9kD6C1AmyqXU6KWxf2PlCns1Fhf_HKkmB0dnP-wnwSaKew |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_145544 crossref_primary_10_1016_j_nanoen_2025_110875 crossref_primary_10_1002_EXP_20220167 crossref_primary_10_1126_sciadv_adr9834 crossref_primary_10_1002_adma_202410572 crossref_primary_10_1016_j_ijbiomac_2023_125833 crossref_primary_10_1021_acs_chemmater_2c03330 crossref_primary_10_1016_j_apmt_2024_102244 crossref_primary_10_1039_D4SM00501E crossref_primary_10_1002_smll_202408199 crossref_primary_10_1039_D2TA02559K crossref_primary_10_3390_ijms23020622 crossref_primary_10_1039_D1TC03232A crossref_primary_10_1021_acssensors_4c00307 crossref_primary_10_1002_mame_202300058 crossref_primary_10_1002_marc_202300182 crossref_primary_10_1016_j_polymer_2022_125266 crossref_primary_10_1016_j_mtphys_2022_100795 crossref_primary_10_1021_acsapm_2c00390 crossref_primary_10_1002_ange_202410834 crossref_primary_10_1021_acsapm_4c00611 crossref_primary_10_1002_adfm_202205708 crossref_primary_10_1039_D3TA06976A crossref_primary_10_1021_acsami_2c14378 crossref_primary_10_1002_smll_202300857 crossref_primary_10_1016_j_indcrop_2022_115802 crossref_primary_10_1021_acscatal_3c05011 crossref_primary_10_1021_acsami_1c22602 crossref_primary_10_1016_j_cej_2023_146340 crossref_primary_10_1016_j_progpolymsci_2024_101920 crossref_primary_10_1021_acs_chemrev_2c00575 crossref_primary_10_1016_j_mtchem_2024_102365 crossref_primary_10_1002_pol_20220084 crossref_primary_10_1016_j_polymer_2024_127877 crossref_primary_10_1039_D3MH00481C crossref_primary_10_1021_acs_analchem_2c05118 crossref_primary_10_1021_acsmaterialslett_3c00320 crossref_primary_10_1021_polymscitech_4c00022 crossref_primary_10_1002_admt_202201352 crossref_primary_10_1016_j_cej_2022_140796 crossref_primary_10_1016_j_nanoen_2023_108739 crossref_primary_10_1002_sstr_202200034 crossref_primary_10_1002_smll_202309931 crossref_primary_10_1038_s41528_023_00273_0 crossref_primary_10_1007_s40820_022_00980_9 crossref_primary_10_1007_s00289_024_05398_4 crossref_primary_10_1007_s40820_024_01387_4 crossref_primary_10_1016_j_compositesb_2024_111826 crossref_primary_10_1016_j_eurpolymj_2023_112034 crossref_primary_10_1021_acsami_4c19660 crossref_primary_10_1021_acsmaterialslett_5c00042 crossref_primary_10_1039_D4TB00581C crossref_primary_10_1016_j_cej_2024_151896 crossref_primary_10_1021_acsami_3c07589 crossref_primary_10_1039_D4MH00543K crossref_primary_10_1039_D3BM00174A crossref_primary_10_1039_D3MH00056G crossref_primary_10_1038_s41467_023_36920_3 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1021_acs_macromol_3c02379 crossref_primary_10_1021_acsami_4c07045 crossref_primary_10_1016_j_carbpol_2023_120813 crossref_primary_10_1016_j_ijbiomac_2022_11_040 crossref_primary_10_1016_j_nanoen_2023_108989 crossref_primary_10_1002_adma_202405776 crossref_primary_10_1002_smm2_1147 crossref_primary_10_1002_adfm_202313397 crossref_primary_10_1016_j_cej_2023_144263 crossref_primary_10_1002_pol_20220184 crossref_primary_10_1016_j_jiec_2022_11_034 crossref_primary_10_1002_adfm_202212856 crossref_primary_10_1002_advs_202205485 crossref_primary_10_1016_j_cej_2022_139982 crossref_primary_10_1002_smll_202409365 crossref_primary_10_1021_acsapm_4c04109 crossref_primary_10_1039_D2TC03877C crossref_primary_10_1016_j_cej_2024_154227 crossref_primary_10_1021_acs_macromol_3c01904 crossref_primary_10_1016_j_addma_2022_103343 crossref_primary_10_1016_j_coco_2022_101251 crossref_primary_10_1021_acsapm_3c00610 crossref_primary_10_1016_j_apmt_2024_102569 crossref_primary_10_1002_mame_202200248 crossref_primary_10_1039_D2TC05354C crossref_primary_10_1016_j_nanoen_2024_109790 crossref_primary_10_1021_acs_chemmater_3c00368 crossref_primary_10_1002_adfm_202415694 crossref_primary_10_1021_acsapm_4c03914 crossref_primary_10_1021_acsami_3c09065 crossref_primary_10_1021_acs_chemmater_2c00934 crossref_primary_10_1002_app_54829 crossref_primary_10_1016_j_seppur_2025_131916 crossref_primary_10_1007_s40843_022_2286_5 crossref_primary_10_1039_D4TA02644F crossref_primary_10_1039_D3TC02018E crossref_primary_10_1002_admt_202300710 crossref_primary_10_1007_s10118_024_3210_9 crossref_primary_10_1016_j_nanoen_2023_108374 crossref_primary_10_1002_aelm_202300094 crossref_primary_10_1016_j_ijbiomac_2024_138376 crossref_primary_10_1021_acsapm_3c01884 crossref_primary_10_1016_j_sna_2022_113834 crossref_primary_10_1016_j_mtcomm_2025_111976 crossref_primary_10_1002_marc_202100885 crossref_primary_10_3390_polym14193941 crossref_primary_10_1021_acsmaterialslett_2c00783 crossref_primary_10_1016_j_eurpolymj_2022_111485 crossref_primary_10_1021_acsami_3c05802 crossref_primary_10_1016_j_ijbiomac_2022_12_168 crossref_primary_10_1002_anie_202410834 crossref_primary_10_1002_marc_202500072 crossref_primary_10_1007_s00396_022_05006_9 crossref_primary_10_1016_j_eurpolymj_2024_112934 crossref_primary_10_1016_j_jcis_2022_10_058 crossref_primary_10_1039_D2QM00343K crossref_primary_10_1016_j_colsurfa_2024_133323 crossref_primary_10_1002_app_56468 crossref_primary_10_1016_j_nanoen_2023_109239 crossref_primary_10_1039_D2TB00541G crossref_primary_10_1021_acsami_2c15968 crossref_primary_10_1039_D1TA10998G |
Cites_doi | 10.1021/acs.accounts.8b00448 10.1126/scitranslmed.aao3612 10.1016/j.nanoen.2020.105073 10.1016/j.nanoen.2017.05.024 10.1021/acs.nanolett.9b05217 10.1109/JPROC.2019.2907317 10.1038/s41587-019-0079-1 10.1021/acs.accounts.8b00500 10.1021/acsami.0c07727 10.1016/0305-4179(96)00038-1 10.1126/sciadv.aaq0508 10.1002/smll.202100542 10.1016/j.cej.2020.127960 10.1126/scirobotics.aau6914 10.1016/j.nanoen.2019.05.046 10.1016/j.progpolymsci.2018.06.001 10.1021/acs.macromol.7b00423 10.1002/adfm.202100940 10.1038/nm.3621 10.1021/acs.chemmater.6b01073 10.1021/acsami.7b13356 10.1016/j.nanoen.2021.106181 10.1038/nature16521 10.1021/acsnano.8b07392 10.1038/ncomms14997 10.1002/adma.202006111 10.1002/adhm.202100469 10.1039/C7NR01016H 10.1021/cm203216m 10.1016/j.nanoen.2020.104560 10.1073/pnas.0502392102 10.1002/app.1963.070070316 10.1039/C9TA09225K 10.1021/acsami.0c05119 10.1039/C9TA04248B 10.1002/adma.202000246 10.1002/adfm.201701513 10.1021/acsnano.0c04158 10.1021/acsomega.9b00207 10.1126/science.aah4496 10.1021/ma201653t 10.1039/C9TA10502F 10.1002/anie.202017303 10.1039/C7TA08233A 10.1038/s41467-020-14446-2 10.1038/nchem.2492 10.1016/j.cej.2020.128363 10.1016/j.talanta.2017.08.077 10.1021/jp301099r 10.1002/advs.202004377 10.1021/acsami.0c00443 10.1002/adfm.201909252 10.1039/D0TA09101D 10.1021/jp204422v 10.1038/s41467-017-02685-9 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202107006 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202107006 ADFM202107006 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21631006; 21771100 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-bc5d3f4ee80b56d0869b6c3a5a8f07b82e8e1ce4b23ce4d015a948d05e68cf923 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:34:14 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 04:12:36 EDT 2025 Wed Jan 22 16:26:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-bc5d3f4ee80b56d0869b6c3a5a8f07b82e8e1ce4b23ce4d015a948d05e68cf923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8982-5938 0000-0002-6510-7998 |
PQID | 2605212977 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2605212977 crossref_primary_10_1002_adfm_202107006 crossref_citationtrail_10_1002_adfm_202107006 wiley_primary_10_1002_adfm_202107006_ADFM202107006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 2021 2016; 20 04 12 2017; 5 2011; 115 2018 2021 2019; 9 407 62 2019; 4 2003; 14 2020; 12 2020; 32 2020 2020 2019; 14 12 7 2017 2021; 355 17 2019 2019 2018 2016; 107 52 177 529 2017; 9 2019 2020 2021; 7 12 10 2017; 50 2019 2018 2018 2019 2019; 37 10 3 52 10 2019; 40 2021; 33 2021; 410 2017; 38 1963; 7 2020 2021; 30 33 2011; 44 2021 2017 2018; 8 9 4 2005 2017 2021 2020 2021; 102 27 31 75 9 2020 2014 2017 2021; 70 20 8 87 2018 2019 2020; 83 7 11 2018; 12 2021; 60 2012; 24 2012; 116 2016; 8 1996; 22 e_1_2_8_28_1 e_1_2_8_26_1 e_1_2_8_9_3 e_1_2_8_7_4 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 Bu Y. (e_1_2_8_5_2) 2021; 04 Simha N. K. (e_1_2_8_24_1) 2003; 14 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_8_3 Iskarous M. M. (e_1_2_8_2_5) 2019; 10 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_16_1 Jiang Z. (e_1_2_8_15_1) 2019; 40 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_10_3 e_1_2_8_12_1 |
References_xml | – volume: 102 27 31 75 9 start-page: 963 year: 2005 2017 2021 2020 2021 publication-title: Proc. Natl. Acad. Sci. USA Adv. Funct. Mater. Adv. Funct. Mater. Nano Energy J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 8 9 4 start-page: 6246 year: 2021 2017 2018 publication-title: Adv. Sci. Nanoscale Sci. Adv. – volume: 37 10 3 52 10 start-page: 382 277 107 year: 2019 2018 2018 2019 2019 publication-title: Nat. Biotechnol. Sci. Transl. Med. Sci. Rob. Acc. Chem. Res. Proc. IEEE – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 20 04 12 start-page: 2478 041 4278 year: 2020 2021 2016 publication-title: Nano Lett. Sci. Bull. Chem. Mater. – volume: 14 12 7 start-page: 9066 year: 2020 2020 2019 publication-title: ACS Nano ACS Appl. Mater. Interfaces J. Mater. Chem. A – volume: 4 start-page: 7400 year: 2019 publication-title: ACS Omega – volume: 38 start-page: 28 year: 2017 publication-title: Nano Energy – volume: 60 start-page: 7947 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 631 year: 2003 publication-title: J. Mater. Sci.: Mater. Med. – volume: 83 7 11 start-page: 97 1107 year: 2018 2019 2020 publication-title: Prog. Polym. Sci. J. Mater. Chem. A Nat. Commun. – volume: 355 17 start-page: 39 year: 2017 2021 publication-title: Science Small – volume: 70 20 8 87 start-page: 1074 year: 2020 2014 2017 2021 publication-title: Nano Energy Nat. Med. Nat. Commun. Nano Energy – volume: 40 year: 2019 publication-title: Macromol. Rapid. Commun. – volume: 22 start-page: 443 year: 1996 publication-title: Burns – volume: 12 year: 2018 publication-title: ACS Nano – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 50 start-page: 3831 year: 2017 publication-title: Macromolecules – volume: 24 start-page: 373 year: 2012 publication-title: Chem. Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 115 start-page: 8453 year: 2011 publication-title: J. Phys. Chem. B – volume: 30 33 year: 2020 2021 publication-title: Adv. Funct. Mater. Adv. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 44 start-page: 8916 year: 2011 publication-title: Macromolecules – volume: 8 start-page: 618 year: 2016 publication-title: Nat. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 9 407 62 start-page: 244 164 year: 2018 2021 2019 publication-title: Nat. Commun. Chem. Eng. J. Nano Energy – volume: 7 12 10 year: 2019 2020 2021 publication-title: J. Mater. Chem. A ACS Appl. Mater. Interfaces Adv. Healthcare Mater. – volume: 410 year: 2021 publication-title: Chem. Eng. J. – volume: 7 start-page: 993 year: 1963 publication-title: J. Appl. Poly. Sci. – volume: 107 52 177 529 start-page: 2155 523 163 509 year: 2019 2019 2018 2016 publication-title: Proc. IEEE Acc. Chem. Res. Talanta Nature – ident: e_1_2_8_2_4 doi: 10.1021/acs.accounts.8b00448 – ident: e_1_2_8_2_2 doi: 10.1126/scitranslmed.aao3612 – volume: 10 start-page: 107 year: 2019 ident: e_1_2_8_2_5 publication-title: Proc. IEEE – ident: e_1_2_8_1_4 doi: 10.1016/j.nanoen.2020.105073 – ident: e_1_2_8_12_1 doi: 10.1016/j.nanoen.2017.05.024 – ident: e_1_2_8_5_1 doi: 10.1021/acs.nanolett.9b05217 – ident: e_1_2_8_7_1 doi: 10.1109/JPROC.2019.2907317 – ident: e_1_2_8_2_1 doi: 10.1038/s41587-019-0079-1 – ident: e_1_2_8_7_2 doi: 10.1021/acs.accounts.8b00500 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.0c07727 – ident: e_1_2_8_22_1 doi: 10.1016/0305-4179(96)00038-1 – ident: e_1_2_8_6_3 doi: 10.1126/sciadv.aaq0508 – ident: e_1_2_8_31_2 doi: 10.1002/smll.202100542 – ident: e_1_2_8_10_2 doi: 10.1016/j.cej.2020.127960 – ident: e_1_2_8_2_3 doi: 10.1126/scirobotics.aau6914 – ident: e_1_2_8_10_3 doi: 10.1016/j.nanoen.2019.05.046 – ident: e_1_2_8_8_1 doi: 10.1016/j.progpolymsci.2018.06.001 – ident: e_1_2_8_28_1 doi: 10.1021/acs.macromol.7b00423 – ident: e_1_2_8_1_3 doi: 10.1002/adfm.202100940 – ident: e_1_2_8_3_2 doi: 10.1038/nm.3621 – ident: e_1_2_8_5_3 doi: 10.1021/acs.chemmater.6b01073 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.7b13356 – ident: e_1_2_8_3_4 doi: 10.1016/j.nanoen.2021.106181 – ident: e_1_2_8_7_4 doi: 10.1038/nature16521 – ident: e_1_2_8_16_1 doi: 10.1021/acsnano.8b07392 – ident: e_1_2_8_3_3 doi: 10.1038/ncomms14997 – ident: e_1_2_8_23_2 doi: 10.1002/adma.202006111 – ident: e_1_2_8_4_3 doi: 10.1002/adhm.202100469 – ident: e_1_2_8_6_2 doi: 10.1039/C7NR01016H – ident: e_1_2_8_30_1 doi: 10.1021/cm203216m – ident: e_1_2_8_3_1 doi: 10.1016/j.nanoen.2020.104560 – ident: e_1_2_8_1_1 doi: 10.1073/pnas.0502392102 – ident: e_1_2_8_32_1 doi: 10.1002/app.1963.070070316 – ident: e_1_2_8_4_1 doi: 10.1039/C9TA09225K – ident: e_1_2_8_4_2 doi: 10.1021/acsami.0c05119 – ident: e_1_2_8_9_3 doi: 10.1039/C9TA04248B – volume: 40 start-page: 19008 year: 2019 ident: e_1_2_8_15_1 publication-title: Macromol. Rapid. Commun. – ident: e_1_2_8_13_1 doi: 10.1002/adma.202000246 – ident: e_1_2_8_1_2 doi: 10.1002/adfm.201701513 – ident: e_1_2_8_9_1 doi: 10.1021/acsnano.0c04158 – ident: e_1_2_8_20_1 doi: 10.1021/acsomega.9b00207 – ident: e_1_2_8_31_1 doi: 10.1126/science.aah4496 – ident: e_1_2_8_25_1 doi: 10.1021/ma201653t – ident: e_1_2_8_8_2 doi: 10.1039/C9TA10502F – ident: e_1_2_8_17_1 doi: 10.1002/anie.202017303 – ident: e_1_2_8_21_1 doi: 10.1039/C7TA08233A – ident: e_1_2_8_8_3 doi: 10.1038/s41467-020-14446-2 – ident: e_1_2_8_26_1 doi: 10.1038/nchem.2492 – ident: e_1_2_8_14_1 doi: 10.1016/j.cej.2020.128363 – ident: e_1_2_8_7_3 doi: 10.1016/j.talanta.2017.08.077 – volume: 04 start-page: 041 year: 2021 ident: e_1_2_8_5_2 publication-title: Sci. Bull. – ident: e_1_2_8_18_1 doi: 10.1021/jp301099r – ident: e_1_2_8_6_1 doi: 10.1002/advs.202004377 – ident: e_1_2_8_9_2 doi: 10.1021/acsami.0c00443 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201909252 – ident: e_1_2_8_1_5 doi: 10.1039/D0TA09101D – ident: e_1_2_8_29_1 doi: 10.1002/adma.202006111 – volume: 14 start-page: 631 year: 2003 ident: e_1_2_8_24_1 publication-title: J. Mater. Sci.: Mater. Med. – ident: e_1_2_8_19_1 doi: 10.1021/jp204422v – ident: e_1_2_8_10_1 doi: 10.1038/s41467-017-02685-9 |
SSID | ssj0017734 |
Score | 2.6502895 |
Snippet | Flexible electronic skins (e‐skins) play a very important role in the development of human–machine interaction and wearable devices. To fully mimic the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | electronic‐skins Flexibility Healing Materials science Polyanilines Polymers puncture‐resistant self‐healing Signal detection strain sensors temperature sensors Wearable technology |
Title | A Puncture‐Resistant and Self‐Healing Conductive Gel for Multifunctional Electronic Skin |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202107006 https://www.proquest.com/docview/2605212977 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9pk8z6WPixiRVoLPQhhX7lYUrHtxZM_wd_oL3Em26atIIJeQhJ2w2Z3Z-eb3ZlvCLmKPeaoECQtllJaXhpEVqR0YAGWEExJx3VSPNHt3QfdoXc78kdrUfyGH6LYcEPJyNdrFHAupvUVaShXKUaSg8kSGs5tdNhCVNQv-KOcMDTHyoGDDl7OaMnaaLP6ZvVNrbSCmuuANdc4nX3Cl201jibPtflM1OTbNxrH__zMAdlbwFHaMPPnkGzp7IjsrpEUHpOnBn0A5YcnDZ_vH309RcSZzSjPFB3ocQovMZYJytLmJEP6WFhA6Y0eU8DDNA_wReVp9hxpu0i7QzHv1wkZdtqPza61yMlgSUAagSWkr9zU0zqyhR8oMIhiEUiX-zxK7VBETEfakdoTzIWrArDBYy9Stq-DSKYwA05JKZtk-oxQltqO4gAghOAAG2UsdMyYVLHriVhpVSbWckwSuSAsx7wZ48RQLbMEey0peq1MrovyL4aq48eSleUQJwuRnSZo2IEeBzxcJiwfq1--kjRanV7xdP6XShdkB--Ne0yFlGavc30JIGcmqmS70erdDar5hP4C6833Nw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED-rBt1itugfBU9pk8z6WPqzaFqkt9CCE7CMXSyo2vXjyJ_gb_SXOJE3aCiLoJZBlNmQfs_Pt7sw3hFz5FjOkC5rmCyE0K3I8zZPK0QBLcCaFYRoR3uh2e057aN2N7NybEGNhMn6I4sANNSNdr1HB8UC6umANDWWEoeSwZ3FT0u0NTOuN9PmNfsEgZbhudrHsGOjiZYxy3kadVVfrr9qlBdhchqypzWntEp7_beZq8lyZJbwi3r4ROf6rOXtkZ45IaS2bQvtkTcUHZHuJp_CQPNXoA9g_vGz4fP_oqymCzjihYSzpoxpHUIjhTCBL65MYGWRhDaU3akwBEtM0xhftZ3bsSJtF5h2Kqb-OyLDVHNTb2jwtgyYAbDgaF7Y0I0spT-e2I2FP5HNHmKEdepHuco8pTxlCWZyZ8JSAN0Lf8qRuK8cTEUyCY7IeT2J1QiiLdEOGgCE4DwE5Cp8rnzEhfdPivlSyRLR8UAIx5yzH1BnjIGNbZgH2WlD0WolcF_IvGVvHj5LlfIyDudZOA9zbgSkHSFwiLB2sX74S1BqtbvF2-pdKl2SzPeh2gs5t7_6MbGF55i1TJuvJ60ydA-ZJ-EU6q78AlLr5vw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzidmgfBp25t2qbN49jF68aYDvYglOb24uiG21588if4G_0lnrRbtwki6EuhISlNck7Od5Kc7yB0yTziyAA0jQkhLE_T0AqlohZgCU6kcFxHmxPdVpve9Ly7vt9fiuLP-CHyDTejGel6bRR8JHVlQRoaS20iycFlCVLO7XWP2swkb6h3cwIpJwiyc2XqmBteTn9O22iTymr7VbO0wJrLiDU1Oc0dFM9_Nrtp8lKeTnhZvH3jcfxPb3bR9gyP4momQHtoTSX7aGuJpfAAPVdxB6yfOWr4fP_oqrGBnMkEx4nEj2qgodAEM0FdXBsmhj8WVlB8rQYYADFOI3yN9cw2HXEjz7uDTeKvQ9RrNp5qN9YsKYMlAGpQiwtfutpTKrS5TyV4RIxT4cZ-HGo74CFRoXKE8jhx4SkBbcTMC6XtKxoKDSJwhArJMFHHCBNtOzIGBMF5DLhRMK4YIUIy1-NMKllE1nxOIjFjLDeJMwZRxrVMIjNqUT5qRXSV1x9lXB0_1izNpzia6ew4Mp4dGHIAxEVE0rn65StRtd5s5W8nf2l0gTY69Wb0cNu-P0Wbpji7KlNChcnrVJ0B4Jnw81SmvwCtW_hu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Puncture%E2%80%90Resistant+and+Self%E2%80%90Healing+Conductive+Gel+for+Multifunctional+Electronic+Skin&rft.jtitle=Advanced+functional+materials&rft.au=Hou%2C+Ke%E2%80%90Xin&rft.au=Zhao%2C+Shu%E2%80%90Peng&rft.au=Wang%2C+Da%E2%80%90Peng&rft.au=Zhao%2C+Pei%E2%80%90Chen&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202107006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202107006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |