A Highly Tolerant Printing for Scalable and Flexible Perovskite Solar Cells
Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 50 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron‐scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron‐scale defects of pinholes and intergranular cracking. Concurrently, 4‐chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nano‐scale. Finally, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi‐scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs.
The multi‐scale defect repair strategy is developed to fabricate scalable and flexible perovskite solar cells. By inhibiting the aggregation behavior of colloidal particles to avoid pinholes and intergranular cracking in the perovskite film, along with repairing the deep defects at the interface, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability. |
---|---|
AbstractList | Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron‐scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron‐scale defects of pinholes and intergranular cracking. Concurrently, 4‐chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nano‐scale. Finally, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi‐scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs. Abstract Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron‐scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron‐scale defects of pinholes and intergranular cracking. Concurrently, 4‐chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nano‐scale. Finally, the target flexible devices (1.01 cm 2 ) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi‐scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs. Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron‐scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron‐scale defects of pinholes and intergranular cracking. Concurrently, 4‐chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nano‐scale. Finally, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi‐scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs. The multi‐scale defect repair strategy is developed to fabricate scalable and flexible perovskite solar cells. By inhibiting the aggregation behavior of colloidal particles to avoid pinholes and intergranular cracking in the perovskite film, along with repairing the deep defects at the interface, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability. |
Author | Li, Dengxue Hu, Ting Xing, Zhi Meng, Xiangchuan Cui, Yongjie Chen, Yiwang Li, Fengyu Hu, Xiaotian Lin, Suyu Fan, Baojin |
Author_xml | – sequence: 1 givenname: Zhi surname: Xing fullname: Xing, Zhi organization: Nanchang University – sequence: 2 givenname: Suyu surname: Lin fullname: Lin, Suyu organization: Jinan University – sequence: 3 givenname: Xiangchuan surname: Meng fullname: Meng, Xiangchuan organization: Nanchang University – sequence: 4 givenname: Ting surname: Hu fullname: Hu, Ting email: huting@ncu.edu.cn organization: Nanchang University – sequence: 5 givenname: Dengxue surname: Li fullname: Li, Dengxue organization: Nanchang University – sequence: 6 givenname: Baojin surname: Fan fullname: Fan, Baojin organization: Nanchang University – sequence: 7 givenname: Yongjie surname: Cui fullname: Cui, Yongjie organization: Jiangxi Normal University – sequence: 8 givenname: Fengyu surname: Li fullname: Li, Fengyu email: lifengyu@jnu.edu.cn organization: Jinan University – sequence: 9 givenname: Xiaotian surname: Hu fullname: Hu, Xiaotian organization: Nanchang University – sequence: 10 givenname: Yiwang orcidid: 0000-0003-4709-7623 surname: Chen fullname: Chen, Yiwang email: ywchen@ncu.edu.cn organization: Jiangxi Normal University |
BookMark | eNqFkM1PAjEQxRujiYBePTfxvDjtfrQ9EhQxYiQBE29Nd9vFxbLFdlH5790NBo-eZibzfvMyr49Oa1cbhK4IDAkAvVG63AwpUAKM0ewE9UhGsigGyk-PPXk9R_0Q1gCEsTjpoccRnlarN7vHS2eNV3WD576qm6pe4dJ5vCiUVbk1WNUaT6z5rrphbrz7DO9VY_DCWeXx2FgbLtBZqWwwl791gF4md8vxNJo93z-MR7OoiAnLolykmgngOtE5UzrLCElEKXRRAI9NDpAUIi14SZMURPtZt00E0zQnaRozFQ_Q9eHu1ruPnQmNXLudr1tLSTNgKeeCx61qeFAV3oXgTSm3vtoov5cEZBeY7AKTx8BaQByAr8qa_T9qObqdPP2xPzn4b0g |
CitedBy_id | crossref_primary_10_1002_aenm_202300168 crossref_primary_10_1021_acsaem_3c01495 crossref_primary_10_1007_s11426_022_1426_x crossref_primary_10_1021_acsami_3c08746 crossref_primary_10_1016_j_foodcont_2023_109983 crossref_primary_10_1016_j_isci_2023_107248 crossref_primary_10_1039_D2TA04502H crossref_primary_10_1002_solr_202400172 crossref_primary_10_1021_acsaem_3c02723 crossref_primary_10_1002_adma_202201840 crossref_primary_10_1039_D2EE00966H crossref_primary_10_1002_solr_202300803 crossref_primary_10_1039_D2MA00431C crossref_primary_10_1039_D2QM01149B crossref_primary_10_1002_aenm_202200417 crossref_primary_10_1002_aenm_202200975 crossref_primary_10_1002_aenm_202401463 crossref_primary_10_1002_solr_202200284 crossref_primary_10_26599_EMD_2024_9370030 crossref_primary_10_1002_aenm_202204144 crossref_primary_10_1039_D2EE01326F crossref_primary_10_1088_2752_5724_ad37cf crossref_primary_10_1002_smll_202301630 crossref_primary_10_1002_smll_202305732 crossref_primary_10_1021_acsaem_3c01580 crossref_primary_10_1016_j_surfin_2023_103530 crossref_primary_10_1002_aesr_202200133 crossref_primary_10_1038_s41570_023_00492_z crossref_primary_10_1002_aenm_202303946 crossref_primary_10_1002_aenm_202201436 crossref_primary_10_1002_solr_202200210 crossref_primary_10_1002_aenm_202103674 crossref_primary_10_1021_acsenergylett_1c02768 crossref_primary_10_1021_acsami_3c06098 crossref_primary_10_1002_sstr_202200338 crossref_primary_10_1002_adma_202200320 crossref_primary_10_34133_energymatadv_0002 crossref_primary_10_1002_adma_202203430 crossref_primary_10_1002_adma_202311473 crossref_primary_10_1016_j_cej_2022_137851 crossref_primary_10_1016_j_solmat_2022_111861 crossref_primary_10_1002_adfm_202314349 crossref_primary_10_1002_solr_202300860 crossref_primary_10_1002_aenm_202303210 crossref_primary_10_1002_cssc_202102474 crossref_primary_10_1002_adfm_202206412 crossref_primary_10_1039_D3TA00493G |
Cites_doi | 10.1126/science.aay7044 10.1039/D1TA01763B 10.1126/science.abf7652 10.1039/C6EE00413J 10.1021/ic401215x 10.1002/anie.202003813 10.1002/smll.201002022 10.1126/science.aba0893 10.1039/C8NR08344D 10.1002/adma.201806095 10.1016/j.joule.2018.04.011 10.1021/acsenergylett.8b01556 10.1038/s41560-020-00721-5 10.1021/acsenergylett.8b02262 10.1038/s41467-020-16831-3 10.1002/aenm.201702915 10.1038/s41560-018-0153-9 10.1038/s41467-019-09093-1 10.1126/science.abh1035 10.1038/s41467-020-18940-5 10.1002/adma.201907396 10.1002/aenm.201701757 10.1002/anie.202004256 10.1038/nature14133 10.1039/C6EE02373H 10.1002/adma.201901090 10.1002/adma.201607039 10.1021/acs.nanolett.9b02721 10.1016/S0376-7388(97)00142-7 10.1021/jacs.0c00411 10.1016/j.joule.2020.04.001 10.1021/jz501510v 10.1021/jacs.5b00321 10.1002/cphc.201600575 10.1016/j.chempr.2019.02.025 10.1038/nenergy.2017.102 10.1021/jacs.8b13091 10.1038/s41578-019-0176-2 10.1039/C9CS00711C 10.1021/acsenergylett.7b00923 10.1016/j.joule.2018.10.025 10.1021/acs.nanolett.0c01689 10.1126/science.aaf8060 10.1002/aenm.201803699 10.1126/science.1254050 10.1002/adfm.201900092 10.1002/aenm.202001185 10.1021/acsenergylett.8b01212 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202107726 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202107726 ADFM202107726 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51803085; 51833004; 22005131; and U20A20128 – fundername: National Natural Science Foundation of China (NSFC) funderid: 51803085; 51833004; 22005131; 52163019; 52173169; U20A20128 – fundername: Postdoctoral Innovative Talents funderid: BX2021117 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AASGY AAYXX ACBWZ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3176-b95d7908d4db7ad661149f9dcc083eb004c95c8f24509100149f497d2b15537a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 15:34:32 EDT 2024 Fri Aug 23 02:46:24 EDT 2024 Sat Aug 24 01:03:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-b95d7908d4db7ad661149f9dcc083eb004c95c8f24509100149f497d2b15537a3 |
ORCID | 0000-0003-4709-7623 |
PQID | 2607588983 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2607588983 crossref_primary_10_1002_adfm_202107726 wiley_primary_10_1002_adfm_202107726_ADFM202107726 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1997; 135 2021; 9 2021; 6 2019; 9 2019; 4 2019; 3 2017; 2 2019; 5 2020; 20 2019; 31 2020; 142 2019; 11 2019; 10 2019; 366 2020; 59 2019; 19 2017; 29 2020; 11 2020; 367 2020; 10 2020; 32 2016; 17 2019; 141 2011; 7 2020; 5 2018; 8 2018; 3 2020; 4 2014; 5 2018; 2 2015; 137 2021 2017; 10 2013; 52 2020; 49 2016; 353 2021; 371 2015; 517 2019; 29 2021; 372 2014; 345 2016; 9 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 353 start-page: 58 year: 2016 publication-title: Science – volume: 4 start-page: 358 year: 2019 publication-title: ACS Energy Lett. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 137 start-page: 4460 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2685 year: 2011 publication-title: Small – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 560 year: 2018 publication-title: Nat. Energy – volume: 9 start-page: 1752 year: 2016 publication-title: Energy Environ. Sci. – volume: 345 start-page: 542 year: 2014 publication-title: Science – year: 2021 – volume: 5 start-page: 995 year: 2019 publication-title: Chem – volume: 371 start-page: 1359 year: 2021 publication-title: Science – volume: 367 start-page: 1352 year: 2020 publication-title: Science – volume: 6 start-page: 38 year: 2021 publication-title: Nat. Energy – volume: 141 start-page: 5781 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 1313 year: 2018 publication-title: Joule – volume: 19 start-page: 6498 year: 2019 publication-title: Nano Lett. – volume: 5 start-page: 2903 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 2206 year: 2018 publication-title: ACS Energy Lett. – volume: 49 start-page: 1653 year: 2020 publication-title: Chem. Soc. Rev. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 3 start-page: 2558 year: 2018 publication-title: ACS Energy Lett. – volume: 10 start-page: 145 year: 2017 publication-title: Energy Environ. Sci. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 17 start-page: 2795 year: 2016 publication-title: ChemPhysChem – volume: 5 start-page: 333 year: 2020 publication-title: Nat. Rev. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1248 year: 2020 publication-title: Joule – volume: 135 start-page: 147 year: 1997 publication-title: J. Membr. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 372 start-page: 1327 year: 2021 publication-title: Science – volume: 11 start-page: 170 year: 2019 publication-title: Nanoscale – volume: 142 start-page: 6251 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 402 year: 2019 publication-title: Joule – volume: 11 start-page: 5146 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 1112 year: 2019 publication-title: Nat. Commun. – volume: 2 start-page: 2616 year: 2017 publication-title: ACS Energy Lett. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 11 start-page: 3016 year: 2020 publication-title: Nat. Commun. – volume: 366 start-page: 749 year: 2019 publication-title: Science – volume: 20 start-page: 5799 year: 2020 publication-title: Nano Lett. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – ident: e_1_2_8_1_1 doi: 10.1126/science.aay7044 – ident: e_1_2_8_28_1 doi: 10.1039/D1TA01763B – ident: e_1_2_8_27_1 doi: 10.1126/science.abf7652 – ident: e_1_2_8_29_1 doi: 10.1039/C6EE00413J – ident: e_1_2_8_42_1 doi: 10.1021/ic401215x – ident: e_1_2_8_33_1 doi: 10.1002/anie.202003813 – ident: e_1_2_8_15_1 doi: 10.1002/smll.201002022 – ident: e_1_2_8_30_1 doi: 10.1126/science.aba0893 – ident: e_1_2_8_37_1 doi: 10.1039/C8NR08344D – ident: e_1_2_8_46_1 doi: 10.1002/adma.201806095 – ident: e_1_2_8_11_1 doi: 10.1016/j.joule.2018.04.011 – ident: e_1_2_8_13_1 doi: 10.1021/acsenergylett.8b01556 – ident: e_1_2_8_31_1 doi: 10.1038/s41560-020-00721-5 – ident: e_1_2_8_22_1 doi: 10.1021/acsenergylett.8b02262 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-020-16831-3 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201702915 – ident: e_1_2_8_5_1 doi: 10.1038/s41560-018-0153-9 – ident: e_1_2_8_47_1 doi: 10.1038/s41467-019-09093-1 – ident: e_1_2_8_34_1 doi: 10.1126/science.abh1035 – ident: e_1_2_8_7_1 doi: 10.1038/s41467-020-18940-5 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201907396 – ident: e_1_2_8_48_1 doi: 10.1002/aenm.201701757 – ident: e_1_2_8_26_1 doi: 10.1002/anie.202004256 – ident: e_1_2_8_2_1 doi: 10.1038/nature14133 – ident: e_1_2_8_12_1 doi: 10.1039/C6EE02373H – ident: e_1_2_8_40_1 doi: 10.1002/adma.201901090 – ident: e_1_2_8_6_1 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201607039 – ident: e_1_2_8_36_1 doi: 10.1021/acs.nanolett.9b02721 – ident: e_1_2_8_17_1 doi: 10.1016/S0376-7388(97)00142-7 – ident: e_1_2_8_21_1 doi: 10.1021/jacs.0c00411 – ident: e_1_2_8_39_1 doi: 10.1016/j.joule.2020.04.001 – ident: e_1_2_8_43_1 doi: 10.1021/jz501510v – ident: e_1_2_8_14_1 doi: 10.1021/jacs.5b00321 – ident: e_1_2_8_20_1 doi: 10.1002/cphc.201600575 – ident: e_1_2_8_24_1 doi: 10.1016/j.chempr.2019.02.025 – ident: e_1_2_8_44_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_8_49_1 doi: 10.1021/jacs.8b13091 – ident: e_1_2_8_10_1 doi: 10.1038/s41578-019-0176-2 – ident: e_1_2_8_16_1 doi: 10.1039/C9CS00711C – ident: e_1_2_8_41_1 doi: 10.1021/acsenergylett.7b00923 – ident: e_1_2_8_8_1 doi: 10.1016/j.joule.2018.10.025 – ident: e_1_2_8_25_1 doi: 10.1021/acs.nanolett.0c01689 – ident: e_1_2_8_9_1 doi: 10.1126/science.aaf8060 – ident: e_1_2_8_35_1 doi: 10.1002/aenm.201803699 – ident: e_1_2_8_3_1 doi: 10.1126/science.1254050 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201900092 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.202001185 – ident: e_1_2_8_45_1 doi: 10.1021/acsenergylett.8b01212 |
SSID | ssj0017734 |
Score | 2.6000247 |
Snippet | Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the... Abstract Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | colloidal particle Crystal defects Crystallization deep traps Design defects Homogeneity Materials science Optical microscopes perovskite solar cells Perovskites Photovoltaic cells Pinhole defects Pinholes printing Solar cells Stability |
Title | A Highly Tolerant Printing for Scalable and Flexible Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202107726 https://www.proquest.com/docview/2607588983 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i9UqexA8pW2SzWOPpTUUpVJsC72FfeViSaVJBf31ziRN2noR9JYl7JDs7GS-2cx8Q8i9x33bwMYB5GYLi4VaWqEwHUsJlYD3S4yvsVB4-OIPpuxp5s22qvhLfoj6wA0to_heo4ELmbU3pKFCJ1hJDiELAETk3LbdAHO6-q81f5QdBOVvZd_GBC97VrE2dpz27vRdr7SBmtuAtfA40TER1bOWiSZvrVUuW-rrB43jf17mhByt4SjtlvvnlOyZ9IwcbpEUnpPnLsVkkPknnSzmBlxbTkdwB9OlKSBeOgYtY_0VFammEfJr4mBklouPDI-G6RijZ9oz83l2QabR46Q3sNYtGCwFwMK3JPd0wDuhZloGQoMzh4gq4VopgG7Ydogp7qkwcVgBPDDeShgPtCOxH1Eg3Euyny5Sc0UoyOMJaN7YUrOQe5wVjY5BsMul8FWDPFQqiN9Lpo245FR2YlyeuF6eBmlWGorXFpfFEJdB6BPy0G0Qp1jqX6TE3X40rEfXf5l0Qw7wusxuaZL9fLkyt4BRcnlX7MNvv5HcTQ |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHtSDbyOKugcTTwVa-tojAQnKI0Qg4dZ0H73YgOFhor_emZby8GKix22zm3Znp_PNdOYbgAeHu6bGg4PIzQwN21fC8ENdNmQoI7R-kXYVFQp3um5zaL-MnCybkGphUn6IVcCNNCP5XpOCU0C6tGYNDVVEpeTosyBCdHdhD3W-Qk0M6q8rBinT89Ify65JKV7mKONtLFul7fnbdmkNNjcha2JzGscgsqdNU03eiou5KMqvH0SO_3qdEzhaIlJWTY_QKezo8RkcbvAUnkOryigfJP5kg0ms0brNWQ_vUMY0Q9DL-ihoKsFi4VixBlFs0qCnp5OPGUWHWZ8caFbTcTy7gGHjaVBrGssuDIZEbOEagjvK42Vf2Up4oUJ7jk5VxJWUiN6o85AtuSP9yLIT7EEuV2RzT1mCWhJ5YeUScuPJWF8Bw_V4hMLXplC2zx1uJ72OceEKF6Er8_CYySB4T8k2gpRW2Qpoe4LV9uShkIkoWCrdLEDXDL0fn_uVPFjJXv-ySlCtNzqr0fVfJt3DfnPQaQft527rBg7oeprsUoDcfLrQtwhZ5uIuOZTfnDrgZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBGDATkgcSpbu_SR47RRDcbQxIa0W5Um6YVqm_ZAgl-P3e4FFyQ4plWsNo7rz6n9GeDGFZ5tcOMgcrOlxQMdW4E0FUtJlaD3S4ynqVC4_ew1X_lj3-2vVfHn_BDLAzeyjOx7TQY-0kl5RRoqdUKV5BiyIED0NmGLe9UKJXU1XpYEUrbv5_-VPZsyvOz-grax4pS_z__ullZYcx2xZi4n3Ae5eNg80-TtbjaN79TnDx7H_7zNAezN8Sir5RvoEDbM4Ah211gKj6FVY5QNkn6w3jA16NumrIN3KF-aIeRlXVQzFWAxOdAsJIJNGnTMePg-obNh1qXwmdVNmk5O4DW879Wb1rwHg6UQWXhWLFzti0qguY59qdGbY0iVCK0UYjfqO8SVcFWQODxDHhRwJVz42ompIZEvq6dQGAwH5gwYyhMJqt7YseaBcAXPOh2j4KqIpaeKcLtQQTTKqTainFTZiWh5ouXyFKG00FA0N7lJhIEZxj6BCKpFcLKl_kVKVGuE7eXo_C-TrmG70wijp4fn1gXs0OU806UEhel4Zi4Rr0zjq2xLfgELON8W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Tolerant+Printing+for+Scalable+and+Flexible+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Xing%2C+Zhi&rft.au=Lin%2C+Suyu&rft.au=Meng%2C+Xiangchuan&rft.au=Hu%2C+Ting&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=50&rft_id=info:doi/10.1002%2Fadfm.202107726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202107726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |