A Highly Tolerant Printing for Scalable and Flexible Perovskite Solar Cells

Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 50
Main Authors Xing, Zhi, Lin, Suyu, Meng, Xiangchuan, Hu, Ting, Li, Dengxue, Fan, Baojin, Cui, Yongjie, Li, Fengyu, Hu, Xiaotian, Chen, Yiwang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron‐scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron‐scale defects of pinholes and intergranular cracking. Concurrently, 4‐chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nano‐scale. Finally, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi‐scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs. The multi‐scale defect repair strategy is developed to fabricate scalable and flexible perovskite solar cells. By inhibiting the aggregation behavior of colloidal particles to avoid pinholes and intergranular cracking in the perovskite film, along with repairing the deep defects at the interface, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability.
AbstractList Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron‐scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron‐scale defects of pinholes and intergranular cracking. Concurrently, 4‐chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nano‐scale. Finally, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi‐scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs.
Abstract Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron‐scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron‐scale defects of pinholes and intergranular cracking. Concurrently, 4‐chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nano‐scale. Finally, the target flexible devices (1.01 cm 2 ) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi‐scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs.
Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron‐scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron‐scale defects of pinholes and intergranular cracking. Concurrently, 4‐chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nano‐scale. Finally, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi‐scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs. The multi‐scale defect repair strategy is developed to fabricate scalable and flexible perovskite solar cells. By inhibiting the aggregation behavior of colloidal particles to avoid pinholes and intergranular cracking in the perovskite film, along with repairing the deep defects at the interface, the target flexible devices (1.01 cm2) deliver a superior efficiency of 18.12% with improved air atmosphere stability.
Author Li, Dengxue
Hu, Ting
Xing, Zhi
Meng, Xiangchuan
Cui, Yongjie
Chen, Yiwang
Li, Fengyu
Hu, Xiaotian
Lin, Suyu
Fan, Baojin
Author_xml – sequence: 1
  givenname: Zhi
  surname: Xing
  fullname: Xing, Zhi
  organization: Nanchang University
– sequence: 2
  givenname: Suyu
  surname: Lin
  fullname: Lin, Suyu
  organization: Jinan University
– sequence: 3
  givenname: Xiangchuan
  surname: Meng
  fullname: Meng, Xiangchuan
  organization: Nanchang University
– sequence: 4
  givenname: Ting
  surname: Hu
  fullname: Hu, Ting
  email: huting@ncu.edu.cn
  organization: Nanchang University
– sequence: 5
  givenname: Dengxue
  surname: Li
  fullname: Li, Dengxue
  organization: Nanchang University
– sequence: 6
  givenname: Baojin
  surname: Fan
  fullname: Fan, Baojin
  organization: Nanchang University
– sequence: 7
  givenname: Yongjie
  surname: Cui
  fullname: Cui, Yongjie
  organization: Jiangxi Normal University
– sequence: 8
  givenname: Fengyu
  surname: Li
  fullname: Li, Fengyu
  email: lifengyu@jnu.edu.cn
  organization: Jinan University
– sequence: 9
  givenname: Xiaotian
  surname: Hu
  fullname: Hu, Xiaotian
  organization: Nanchang University
– sequence: 10
  givenname: Yiwang
  orcidid: 0000-0003-4709-7623
  surname: Chen
  fullname: Chen, Yiwang
  email: ywchen@ncu.edu.cn
  organization: Jiangxi Normal University
BookMark eNqFkM1PAjEQxRujiYBePTfxvDjtfrQ9EhQxYiQBE29Nd9vFxbLFdlH5790NBo-eZibzfvMyr49Oa1cbhK4IDAkAvVG63AwpUAKM0ewE9UhGsigGyk-PPXk9R_0Q1gCEsTjpoccRnlarN7vHS2eNV3WD576qm6pe4dJ5vCiUVbk1WNUaT6z5rrphbrz7DO9VY_DCWeXx2FgbLtBZqWwwl791gF4md8vxNJo93z-MR7OoiAnLolykmgngOtE5UzrLCElEKXRRAI9NDpAUIi14SZMURPtZt00E0zQnaRozFQ_Q9eHu1ruPnQmNXLudr1tLSTNgKeeCx61qeFAV3oXgTSm3vtoov5cEZBeY7AKTx8BaQByAr8qa_T9qObqdPP2xPzn4b0g
CitedBy_id crossref_primary_10_1002_aenm_202300168
crossref_primary_10_1021_acsaem_3c01495
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_1021_acsami_3c08746
crossref_primary_10_1016_j_foodcont_2023_109983
crossref_primary_10_1016_j_isci_2023_107248
crossref_primary_10_1039_D2TA04502H
crossref_primary_10_1002_solr_202400172
crossref_primary_10_1021_acsaem_3c02723
crossref_primary_10_1002_adma_202201840
crossref_primary_10_1039_D2EE00966H
crossref_primary_10_1002_solr_202300803
crossref_primary_10_1039_D2MA00431C
crossref_primary_10_1039_D2QM01149B
crossref_primary_10_1002_aenm_202200417
crossref_primary_10_1002_aenm_202200975
crossref_primary_10_1002_aenm_202401463
crossref_primary_10_1002_solr_202200284
crossref_primary_10_26599_EMD_2024_9370030
crossref_primary_10_1002_aenm_202204144
crossref_primary_10_1039_D2EE01326F
crossref_primary_10_1088_2752_5724_ad37cf
crossref_primary_10_1002_smll_202301630
crossref_primary_10_1002_smll_202305732
crossref_primary_10_1021_acsaem_3c01580
crossref_primary_10_1016_j_surfin_2023_103530
crossref_primary_10_1002_aesr_202200133
crossref_primary_10_1038_s41570_023_00492_z
crossref_primary_10_1002_aenm_202303946
crossref_primary_10_1002_aenm_202201436
crossref_primary_10_1002_solr_202200210
crossref_primary_10_1002_aenm_202103674
crossref_primary_10_1021_acsenergylett_1c02768
crossref_primary_10_1021_acsami_3c06098
crossref_primary_10_1002_sstr_202200338
crossref_primary_10_1002_adma_202200320
crossref_primary_10_34133_energymatadv_0002
crossref_primary_10_1002_adma_202203430
crossref_primary_10_1002_adma_202311473
crossref_primary_10_1016_j_cej_2022_137851
crossref_primary_10_1016_j_solmat_2022_111861
crossref_primary_10_1002_adfm_202314349
crossref_primary_10_1002_solr_202300860
crossref_primary_10_1002_aenm_202303210
crossref_primary_10_1002_cssc_202102474
crossref_primary_10_1002_adfm_202206412
crossref_primary_10_1039_D3TA00493G
Cites_doi 10.1126/science.aay7044
10.1039/D1TA01763B
10.1126/science.abf7652
10.1039/C6EE00413J
10.1021/ic401215x
10.1002/anie.202003813
10.1002/smll.201002022
10.1126/science.aba0893
10.1039/C8NR08344D
10.1002/adma.201806095
10.1016/j.joule.2018.04.011
10.1021/acsenergylett.8b01556
10.1038/s41560-020-00721-5
10.1021/acsenergylett.8b02262
10.1038/s41467-020-16831-3
10.1002/aenm.201702915
10.1038/s41560-018-0153-9
10.1038/s41467-019-09093-1
10.1126/science.abh1035
10.1038/s41467-020-18940-5
10.1002/adma.201907396
10.1002/aenm.201701757
10.1002/anie.202004256
10.1038/nature14133
10.1039/C6EE02373H
10.1002/adma.201901090
10.1002/adma.201607039
10.1021/acs.nanolett.9b02721
10.1016/S0376-7388(97)00142-7
10.1021/jacs.0c00411
10.1016/j.joule.2020.04.001
10.1021/jz501510v
10.1021/jacs.5b00321
10.1002/cphc.201600575
10.1016/j.chempr.2019.02.025
10.1038/nenergy.2017.102
10.1021/jacs.8b13091
10.1038/s41578-019-0176-2
10.1039/C9CS00711C
10.1021/acsenergylett.7b00923
10.1016/j.joule.2018.10.025
10.1021/acs.nanolett.0c01689
10.1126/science.aaf8060
10.1002/aenm.201803699
10.1126/science.1254050
10.1002/adfm.201900092
10.1002/aenm.202001185
10.1021/acsenergylett.8b01212
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202107726
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202107726
ADFM202107726
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51803085; 51833004; 22005131; and U20A20128
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 51803085; 51833004; 22005131; 52163019; 52173169; U20A20128
– fundername: Postdoctoral Innovative Talents
  funderid: BX2021117
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AASGY
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3176-b95d7908d4db7ad661149f9dcc083eb004c95c8f24509100149f497d2b15537a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Oct 10 15:34:32 EDT 2024
Fri Aug 23 02:46:24 EDT 2024
Sat Aug 24 01:03:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-b95d7908d4db7ad661149f9dcc083eb004c95c8f24509100149f497d2b15537a3
ORCID 0000-0003-4709-7623
PQID 2607588983
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2607588983
crossref_primary_10_1002_adfm_202107726
wiley_primary_10_1002_adfm_202107726_ADFM202107726
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997; 135
2021; 9
2021; 6
2019; 9
2019; 4
2019; 3
2017; 2
2019; 5
2020; 20
2019; 31
2020; 142
2019; 11
2019; 10
2019; 366
2020; 59
2019; 19
2017; 29
2020; 11
2020; 367
2020; 10
2020; 32
2016; 17
2019; 141
2011; 7
2020; 5
2018; 8
2018; 3
2020; 4
2014; 5
2018; 2
2015; 137
2021
2017; 10
2013; 52
2020; 49
2016; 353
2021; 371
2015; 517
2019; 29
2021; 372
2014; 345
2016; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 353
  start-page: 58
  year: 2016
  publication-title: Science
– volume: 4
  start-page: 358
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 4460
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2685
  year: 2011
  publication-title: Small
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 560
  year: 2018
  publication-title: Nat. Energy
– volume: 9
  start-page: 1752
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– year: 2021
– volume: 5
  start-page: 995
  year: 2019
  publication-title: Chem
– volume: 371
  start-page: 1359
  year: 2021
  publication-title: Science
– volume: 367
  start-page: 1352
  year: 2020
  publication-title: Science
– volume: 6
  start-page: 38
  year: 2021
  publication-title: Nat. Energy
– volume: 141
  start-page: 5781
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 1313
  year: 2018
  publication-title: Joule
– volume: 19
  start-page: 6498
  year: 2019
  publication-title: Nano Lett.
– volume: 5
  start-page: 2903
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2206
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 49
  start-page: 1653
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 2558
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 145
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 2795
  year: 2016
  publication-title: ChemPhysChem
– volume: 5
  start-page: 333
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1248
  year: 2020
  publication-title: Joule
– volume: 135
  start-page: 147
  year: 1997
  publication-title: J. Membr. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 372
  start-page: 1327
  year: 2021
  publication-title: Science
– volume: 11
  start-page: 170
  year: 2019
  publication-title: Nanoscale
– volume: 142
  start-page: 6251
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 402
  year: 2019
  publication-title: Joule
– volume: 11
  start-page: 5146
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1112
  year: 2019
  publication-title: Nat. Commun.
– volume: 2
  start-page: 2616
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 11
  start-page: 3016
  year: 2020
  publication-title: Nat. Commun.
– volume: 366
  start-page: 749
  year: 2019
  publication-title: Science
– volume: 20
  start-page: 5799
  year: 2020
  publication-title: Nano Lett.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_1_1
  doi: 10.1126/science.aay7044
– ident: e_1_2_8_28_1
  doi: 10.1039/D1TA01763B
– ident: e_1_2_8_27_1
  doi: 10.1126/science.abf7652
– ident: e_1_2_8_29_1
  doi: 10.1039/C6EE00413J
– ident: e_1_2_8_42_1
  doi: 10.1021/ic401215x
– ident: e_1_2_8_33_1
  doi: 10.1002/anie.202003813
– ident: e_1_2_8_15_1
  doi: 10.1002/smll.201002022
– ident: e_1_2_8_30_1
  doi: 10.1126/science.aba0893
– ident: e_1_2_8_37_1
  doi: 10.1039/C8NR08344D
– ident: e_1_2_8_46_1
  doi: 10.1002/adma.201806095
– ident: e_1_2_8_11_1
  doi: 10.1016/j.joule.2018.04.011
– ident: e_1_2_8_13_1
  doi: 10.1021/acsenergylett.8b01556
– ident: e_1_2_8_31_1
  doi: 10.1038/s41560-020-00721-5
– ident: e_1_2_8_22_1
  doi: 10.1021/acsenergylett.8b02262
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-020-16831-3
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201702915
– ident: e_1_2_8_5_1
  doi: 10.1038/s41560-018-0153-9
– ident: e_1_2_8_47_1
  doi: 10.1038/s41467-019-09093-1
– ident: e_1_2_8_34_1
  doi: 10.1126/science.abh1035
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-020-18940-5
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201907396
– ident: e_1_2_8_48_1
  doi: 10.1002/aenm.201701757
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.202004256
– ident: e_1_2_8_2_1
  doi: 10.1038/nature14133
– ident: e_1_2_8_12_1
  doi: 10.1039/C6EE02373H
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201901090
– ident: e_1_2_8_6_1
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201607039
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.nanolett.9b02721
– ident: e_1_2_8_17_1
  doi: 10.1016/S0376-7388(97)00142-7
– ident: e_1_2_8_21_1
  doi: 10.1021/jacs.0c00411
– ident: e_1_2_8_39_1
  doi: 10.1016/j.joule.2020.04.001
– ident: e_1_2_8_43_1
  doi: 10.1021/jz501510v
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.5b00321
– ident: e_1_2_8_20_1
  doi: 10.1002/cphc.201600575
– ident: e_1_2_8_24_1
  doi: 10.1016/j.chempr.2019.02.025
– ident: e_1_2_8_44_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_8_49_1
  doi: 10.1021/jacs.8b13091
– ident: e_1_2_8_10_1
  doi: 10.1038/s41578-019-0176-2
– ident: e_1_2_8_16_1
  doi: 10.1039/C9CS00711C
– ident: e_1_2_8_41_1
  doi: 10.1021/acsenergylett.7b00923
– ident: e_1_2_8_8_1
  doi: 10.1016/j.joule.2018.10.025
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.nanolett.0c01689
– ident: e_1_2_8_9_1
  doi: 10.1126/science.aaf8060
– ident: e_1_2_8_35_1
  doi: 10.1002/aenm.201803699
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1254050
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201900092
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.202001185
– ident: e_1_2_8_45_1
  doi: 10.1021/acsenergylett.8b01212
SSID ssj0017734
Score 2.6000247
Snippet Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the...
Abstract Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms colloidal particle
Crystal defects
Crystallization
deep traps
Design defects
Homogeneity
Materials science
Optical microscopes
perovskite solar cells
Perovskites
Photovoltaic cells
Pinhole defects
Pinholes
printing
Solar cells
Stability
Title A Highly Tolerant Printing for Scalable and Flexible Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202107726
https://www.proquest.com/docview/2607588983
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i9UqexA8pW2SzWOPpTUUpVJsC72FfeViSaVJBf31ziRN2noR9JYl7JDs7GS-2cx8Q8i9x33bwMYB5GYLi4VaWqEwHUsJlYD3S4yvsVB4-OIPpuxp5s22qvhLfoj6wA0to_heo4ELmbU3pKFCJ1hJDiELAETk3LbdAHO6-q81f5QdBOVvZd_GBC97VrE2dpz27vRdr7SBmtuAtfA40TER1bOWiSZvrVUuW-rrB43jf17mhByt4SjtlvvnlOyZ9IwcbpEUnpPnLsVkkPknnSzmBlxbTkdwB9OlKSBeOgYtY_0VFammEfJr4mBklouPDI-G6RijZ9oz83l2QabR46Q3sNYtGCwFwMK3JPd0wDuhZloGQoMzh4gq4VopgG7Ydogp7qkwcVgBPDDeShgPtCOxH1Eg3Euyny5Sc0UoyOMJaN7YUrOQe5wVjY5BsMul8FWDPFQqiN9Lpo245FR2YlyeuF6eBmlWGorXFpfFEJdB6BPy0G0Qp1jqX6TE3X40rEfXf5l0Qw7wusxuaZL9fLkyt4BRcnlX7MNvv5HcTQ
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHtSDbyOKugcTTwVa-tojAQnKI0Qg4dZ0H73YgOFhor_emZby8GKix22zm3Znp_PNdOYbgAeHu6bGg4PIzQwN21fC8ENdNmQoI7R-kXYVFQp3um5zaL-MnCybkGphUn6IVcCNNCP5XpOCU0C6tGYNDVVEpeTosyBCdHdhD3W-Qk0M6q8rBinT89Ify65JKV7mKONtLFul7fnbdmkNNjcha2JzGscgsqdNU03eiou5KMqvH0SO_3qdEzhaIlJWTY_QKezo8RkcbvAUnkOryigfJP5kg0ms0brNWQ_vUMY0Q9DL-ihoKsFi4VixBlFs0qCnp5OPGUWHWZ8caFbTcTy7gGHjaVBrGssuDIZEbOEagjvK42Vf2Up4oUJ7jk5VxJWUiN6o85AtuSP9yLIT7EEuV2RzT1mCWhJ5YeUScuPJWF8Bw_V4hMLXplC2zx1uJ72OceEKF6Er8_CYySB4T8k2gpRW2Qpoe4LV9uShkIkoWCrdLEDXDL0fn_uVPFjJXv-ySlCtNzqr0fVfJt3DfnPQaQft527rBg7oeprsUoDcfLrQtwhZ5uIuOZTfnDrgZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBGDATkgcSpbu_SR47RRDcbQxIa0W5Um6YVqm_ZAgl-P3e4FFyQ4plWsNo7rz6n9GeDGFZ5tcOMgcrOlxQMdW4E0FUtJlaD3S4ynqVC4_ew1X_lj3-2vVfHn_BDLAzeyjOx7TQY-0kl5RRoqdUKV5BiyIED0NmGLe9UKJXU1XpYEUrbv5_-VPZsyvOz-grax4pS_z__ullZYcx2xZi4n3Ae5eNg80-TtbjaN79TnDx7H_7zNAezN8Sir5RvoEDbM4Ah211gKj6FVY5QNkn6w3jA16NumrIN3KF-aIeRlXVQzFWAxOdAsJIJNGnTMePg-obNh1qXwmdVNmk5O4DW879Wb1rwHg6UQWXhWLFzti0qguY59qdGbY0iVCK0UYjfqO8SVcFWQODxDHhRwJVz42ompIZEvq6dQGAwH5gwYyhMJqt7YseaBcAXPOh2j4KqIpaeKcLtQQTTKqTainFTZiWh5ouXyFKG00FA0N7lJhIEZxj6BCKpFcLKl_kVKVGuE7eXo_C-TrmG70wijp4fn1gXs0OU806UEhel4Zi4Rr0zjq2xLfgELON8W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Tolerant+Printing+for+Scalable+and+Flexible+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Xing%2C+Zhi&rft.au=Lin%2C+Suyu&rft.au=Meng%2C+Xiangchuan&rft.au=Hu%2C+Ting&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=50&rft_id=info:doi/10.1002%2Fadfm.202107726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202107726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon