Bioelectrochemical treatment of acid mine drainage: Microbiome synergy influences sulfidogenesis and acetogenesis

Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2:...

Full description

Saved in:
Bibliographic Details
Published inSustainable Chemistry for the Environment Vol. 6; p. 100106
Main Authors J., Annie Modestra, Bajracharya, Suman, Matsakas, Leonidas, Rova, Ulrika, Christakopoulos, Paul
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production. [Display omitted] •Bioelectrochemical autotrophic sulfate reduction is attained in AMD.•Electrosynthetic acetate production is observed along with sulfate reduction.•Fe-S particles could act as conducive aids for electron transfer in BES.•Microbial synergy among diverse bacteria enhanced autotrophic sulfate reduction.•Microbiome analysis revealed dominant presence of Methanobacterium on cathode.
AbstractList Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production.
Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production.
Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production. [Display omitted] •Bioelectrochemical autotrophic sulfate reduction is attained in AMD.•Electrosynthetic acetate production is observed along with sulfate reduction.•Fe-S particles could act as conducive aids for electron transfer in BES.•Microbial synergy among diverse bacteria enhanced autotrophic sulfate reduction.•Microbiome analysis revealed dominant presence of Methanobacterium on cathode.
ArticleNumber 100106
Author J., Annie Modestra
Bajracharya, Suman
Matsakas, Leonidas
Christakopoulos, Paul
Rova, Ulrika
Author_xml – sequence: 1
  givenname: Annie Modestra
  surname: J.
  fullname: J., Annie Modestra
– sequence: 2
  givenname: Suman
  surname: Bajracharya
  fullname: Bajracharya, Suman
– sequence: 3
  givenname: Leonidas
  surname: Matsakas
  fullname: Matsakas, Leonidas
– sequence: 4
  givenname: Ulrika
  surname: Rova
  fullname: Rova, Ulrika
  email: ulrika.rova@ltu.se
– sequence: 5
  givenname: Paul
  surname: Christakopoulos
  fullname: Christakopoulos, Paul
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-105442$$DView record from Swedish Publication Index
BookMark eNp9kc1u1DAUhSNUJErbJ2DjF8hw7TjOGIlFKdBWKuqGdmv553rwKLGLnSmat8czAQQbVr46OueTdc7r5iSmiE3zhsKKAhVvt6tiMT6vGDBeFaAgXjSnTHLZrjvJTv66XzUXpWwBgElJRU9Pm-8fQsIR7ZyT_YZTsHokc0Y9TxhnkjzRNjgyhYjEZR2i3uA78iXYnExIE5Kyj5g3exKiH3cYLRZSdqMPLm0wYgmF6OgqBOffwnnz0uux4MWv96x5-Pzp69VNe3d_fXt1edfajg6iNVz7rgdnPHIEgRqMA-24Y9Y5L52w6J3RAwi7Nh4G6Jxkw2C477mgzHZnze3CdUlv1VMOk857lXRQRyHljdJ5DnZEJTl64YwUa6b5IPs1OgkaZSeqQj2rrHZhlR_4tDP_0D6Gx8sjbZx3ikLP-cHfLf7aUykZ_Z8EBXUYTW3VcTR1GE0to9XU-yWFtZbngLl6wqFTF3JdqP47_Df_E0C6plE
Cites_doi 10.1039/C5RA18444D
10.1016/j.biortech.2012.12.050
10.1016/j.biortech.2020.124233
10.1021/acs.est.0c03392
10.1016/j.biortech.2020.124095
10.1016/j.electacta.2022.139942
10.1002/jctb.7317
10.1038/ismej.2016.136
10.1016/B978-0-444-64052-9.00026-1
10.1016/j.chemosphere.2021.132188
10.1016/j.biortech.2021.125893
10.1021/acs.est.0c05525
10.1016/j.watres.2017.09.058
10.1039/C7EW00108H
10.1016/j.jhazmat.2012.09.062
10.1016/j.electacta.2016.07.100
10.1002/elsc.200720216
10.3390/microorganisms10112305
10.1128/mBio.00537-21
10.1016/j.watres.2017.06.050
10.1002/ange.201915196
10.1007/BF00422540
10.1016/j.isci.2023.106519
10.4056/sigs.2004648
10.1016/j.watres.2016.09.014
10.1080/15422119.2016.1156548
10.3389/fbioe.2020.00457
10.1007/s00253-008-1391-8
10.1016/j.scitotenv.2023.164311
10.1111/j.1574-6941.2011.01199.x
10.1016/j.ecoenv.2017.08.040
10.1016/j.jhazmat.2020.124944
10.1016/j.renene.2019.12.018
10.1099/ijsem.0.000874
10.1016/j.watres.2021.116808
10.1016/S0923-2508(03)00114-1
10.1016/0043-1354(94)90299-2
10.1016/j.watres.2008.11.044
10.1016/j.jclepro.2023.136332
10.1111/j.1574-6941.1997.tb00439.x
10.1016/j.gca.2017.10.006
10.1007/s10311-019-00894-w
10.1016/j.bioelechem.2017.07.001
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1016/j.scenv.2024.100106
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2949-8392
ExternalDocumentID oai_doaj_org_article_94ef6db9682a47958ed90ae9366821f2
oai_DiVA_org_ltu_105442
10_1016_j_scenv_2024_100106
S294983922400049X
GroupedDBID 0SF
6I.
AAFTH
AAXUO
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
FDB
GROUPED_DOAJ
M41
M~E
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c3176-b4af350dbfe4e06ea0bd0ad4d2cddf9d6cefdba706c8bf0703d9277b4f54612c3
IEDL.DBID DOA
ISSN 2949-8392
IngestDate Wed Aug 27 01:13:00 EDT 2025
Thu Aug 21 06:27:53 EDT 2025
Tue Jul 01 02:03:42 EDT 2025
Tue Jun 18 08:51:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Microbial synergy
Bioremediation
Autotrophic sulfate reduction
Acid mine drainage
Metal sulfides
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-b4af350dbfe4e06ea0bd0ad4d2cddf9d6cefdba706c8bf0703d9277b4f54612c3
OpenAccessLink https://doaj.org/article/94ef6db9682a47958ed90ae9366821f2
ParticipantIDs doaj_primary_oai_doaj_org_article_94ef6db9682a47958ed90ae9366821f2
swepub_primary_oai_DiVA_org_ltu_105442
crossref_primary_10_1016_j_scenv_2024_100106
elsevier_sciencedirect_doi_10_1016_j_scenv_2024_100106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Sustainable Chemistry for the Environment
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Modestra, Reddy, Krishna, Min, Mohan (bib17) 2020; 149
Zhang, Wang, Xia, He, Huang, Logan (bib18) 2017; 3
Pozo, Jourdin, Lu, Keller, Ledezma, Freguia (bib36) 2016
Chen, Jiang, Villalobos Solis, Kara Murdoch, Murdoch, Xie, Swift, Hettich, Löffler (bib46) 2021
Deng, Dohmae, Kaksonen, Okamoto (bib19) 2020; 132
Horn, van Hille, Oyekola, Welz (bib38) 2022
Blázquez, Guisasola, Gabriel, Baeza (bib9) 2019
Massazza, Robledo, Simón, Busalmen, Bonanni (bib30) 2021
Lovley (bib35) 2017
Bajracharya, Krige, Matsakas, Rova, Christakopoulos (bib23) 2022; 287
Purdy, Nedwell, Embley, Takii (bib27) 1997; 24
Dar, Kleerebezem, Stams, Kuenen, Muyzer (bib42) 2008
Zheng, Liu, Wang, Zhang, Lovley (bib45) 2020; 54
Bharagava, Mishra (bib37) 2018; 147
Baena-Moreno, Rodríguez-Galán, Arroyo-Torralvo, Vilches (bib4) 2020; 54
Pozo, Jourdin, Lu, Ledezma, Keller, Freguia (bib39) 2015
Kaksonen, Puhakka (bib7) 2007; 7
Rodríguez-Gal´an, Baena-Moreno, V´azquez, Arroyo-Torralvo, Vilches, Zhang (bib1) 2019; 17
Favas, Sarkar, Rakshit, Venkatachalam, Prasad (bib3) 2016
Hashemi, Horn, Lamb, Lien (bib34) 2022
Cui, Chen, Pan, Wang, Xu, Bai, Jia, Zhou, Yong, Wu (bib20) 2020; 318
Sarkar, Rova, Christakopoulos, Matsakas (bib22) 2021; 319
Isosaari, Sillanpää (bib16) 2017; 46
Coma, Puig, Pous, Balaguer, Colprim (bib10) 2013; 130
Fang, Oberoi, He, Khanal, Lu (bib40) 2021
Blázquez, Gabriel, Baeza, Guisasola (bib13) 2016; 105
Oyekola, Van Hille, Harrison (bib29) 2009
Meier, Piva, Fortin (bib31) 2012
Sarkar, Matsakas, Rova, Christakopoulos (bib24) 2023; 26
Fan, Zhuang, Gao, Lv, Dong, Xin, Chen, Jia, Wu (bib21) 2023; 889
Jyothsna, Tushar, Sasikala, Ramana (bib41) 2016
Delgado, Llanos, Fernández-Morales (bib12) 2023
Zhao, Chen, Liu, Feng (bib25) 2023
Sulonen, Baeza, Gabriel, Guisasola (bib6) 2021; 409
Lefebvre, Neculita, Yue, Ng (bib11) 2012; 241
Pozo, Pongy, Keller, Ledezma, Freguia (bib2) 2017; 126
Johnson, Hallberg (bib5) 2003; 154
Pozo, Lu, Pongy, Keller, Ledezma, Freguia (bib8) 2017; 118
Picard, Gartman, Clarke, Girguis (bib32) 2018; 220
Agostino, Lenic, Bardl, Rizzotto, Phan, Blank, Rosenbaum (bib33) 2020; 8
Blázquez, Gabriel, Baeza, Guisasola (bib14) 2017; 123
Zellner, Neudo¨ rfer, Diekmann (bib28) 1994; 28
Laanbroek, Pfennig (bib26) 1981; 128
Wang, Ye, Jin, Chen, Xu, Zhu (bib44) 2017
Han, Mwirichia, Chertkov, Held, Lapidus, Nolan, Lucas, Hammon, Deshpande, Cheng, Tapia (bib43) 2011
Dai, Korth, Schwab, Aulenta, Vogt, Harnisch (bib15) 2022; 408
Agostino (10.1016/j.scenv.2024.100106_bib33) 2020; 8
Sarkar (10.1016/j.scenv.2024.100106_bib24) 2023; 26
Johnson (10.1016/j.scenv.2024.100106_bib5) 2003; 154
Blázquez (10.1016/j.scenv.2024.100106_bib9) 2019
Pozo (10.1016/j.scenv.2024.100106_bib36) 2016; 213
Wang (10.1016/j.scenv.2024.100106_bib44) 2017; 7
Zheng (10.1016/j.scenv.2024.100106_bib45) 2020; 54
Laanbroek (10.1016/j.scenv.2024.100106_bib26) 1981; 128
Chen (10.1016/j.scenv.2024.100106_bib46) 2021; 12
Sarkar (10.1016/j.scenv.2024.100106_bib22) 2021; 319
Purdy (10.1016/j.scenv.2024.100106_bib27) 1997; 24
Oyekola (10.1016/j.scenv.2024.100106_bib29) 2009; 43
Dar (10.1016/j.scenv.2024.100106_bib42) 2008; 78
Rodríguez-Gal´an (10.1016/j.scenv.2024.100106_bib1) 2019; 17
Baena-Moreno (10.1016/j.scenv.2024.100106_bib4) 2020; 54
Lefebvre (10.1016/j.scenv.2024.100106_bib11) 2012; 241
Zhao (10.1016/j.scenv.2024.100106_bib25) 2023; 392
Pozo (10.1016/j.scenv.2024.100106_bib39) 2015; 5
Fan (10.1016/j.scenv.2024.100106_bib21) 2023; 889
Coma (10.1016/j.scenv.2024.100106_bib10) 2013; 130
Blázquez (10.1016/j.scenv.2024.100106_bib13) 2016; 105
Isosaari (10.1016/j.scenv.2024.100106_bib16) 2017; 46
Cui (10.1016/j.scenv.2024.100106_bib20) 2020; 318
Bajracharya (10.1016/j.scenv.2024.100106_bib23) 2022; 287
Zellner (10.1016/j.scenv.2024.100106_bib28) 1994; 28
Picard (10.1016/j.scenv.2024.100106_bib32) 2018; 220
Pozo (10.1016/j.scenv.2024.100106_bib2) 2017; 126
Sulonen (10.1016/j.scenv.2024.100106_bib6) 2021; 409
Meier (10.1016/j.scenv.2024.100106_bib31) 2012; 79
Dai (10.1016/j.scenv.2024.100106_bib15) 2022; 408
Deng (10.1016/j.scenv.2024.100106_bib19) 2020; 132
Jyothsna (10.1016/j.scenv.2024.100106_bib41) 2016; 66
Kaksonen (10.1016/j.scenv.2024.100106_bib7) 2007; 7
Pozo (10.1016/j.scenv.2024.100106_bib8) 2017; 118
Delgado (10.1016/j.scenv.2024.100106_bib12) 2023
Favas (10.1016/j.scenv.2024.100106_bib3) 2016
Fang (10.1016/j.scenv.2024.100106_bib40) 2021; 191
Zhang (10.1016/j.scenv.2024.100106_bib18) 2017; 3
Bharagava (10.1016/j.scenv.2024.100106_bib37) 2018; 147
Horn (10.1016/j.scenv.2024.100106_bib38) 2022; 10
Blázquez (10.1016/j.scenv.2024.100106_bib14) 2017; 123
Modestra (10.1016/j.scenv.2024.100106_bib17) 2020; 149
Han (10.1016/j.scenv.2024.100106_bib43) 2011; 4
Hashemi (10.1016/j.scenv.2024.100106_bib34) 2022; 20
Massazza (10.1016/j.scenv.2024.100106_bib30) 2021; 342
Lovley (10.1016/j.scenv.2024.100106_bib35) 2017; 11
References_xml – volume: 8
  start-page: 457
  year: 2020
  ident: bib33
  article-title: Electrophysiology of the facultative autotrophic bacterium Desulfosporosinus orientis
  publication-title: Front. Bioeng. Biotechnol.
– start-page: 66
  year: 2016
  end-page: 74
  ident: bib36
  article-title: Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 15347
  year: 2020
  end-page: 15354
  ident: bib45
  article-title: Methanobacterium capable of direct interspecies electron transfer
  publication-title: Environ. Sci. Technol.
– year: 2017
  ident: bib44
  article-title: Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2, 4-dichloronitrobenzene
  publication-title: Sci. Rep.
– volume: 46
  start-page: 1
  year: 2017
  end-page: 20
  ident: bib16
  article-title: Use of sulfate-reducing and bioelectrochemical reactors for metal recovery from mine water
  publication-title: Sep. Purif. Rev.
– volume: 28
  start-page: 1337
  year: 1994
  end-page: 1340
  ident: bib28
  article-title: Degradation of lactate by an anaerobic mixed culture in a fluidized-bed reactor
  publication-title: Water Res.
– start-page: 371
  year: 2011
  end-page: 380
  ident: bib43
  article-title: Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyRT)
  publication-title: Stand. Genom. Sci.
– volume: 154
  start-page: 466
  year: 2003
  end-page: 473
  ident: bib5
  article-title: The microbiology of acidic mine waters
  publication-title: Res. Microbiol.
– start-page: 3345
  year: 2009
  end-page: 3354
  ident: bib29
  article-title: Study of anaerobic lactate metabolism under biosulfidogenic conditions
  publication-title: Water Res.
– volume: 126
  start-page: 411
  year: 2017
  end-page: 420
  ident: bib2
  article-title: A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage
  publication-title: Water Res.
– volume: 318
  year: 2020
  ident: bib20
  article-title: Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell
  publication-title: Bioresour. Technol.
– year: 2022
  ident: bib34
  article-title: Potential role of sulfide precipitates in direct interspecies electron transfer facilitation during anaerobic digestion of fish silage
  publication-title: Bioresour. Technol. Rep.
– year: 2021
  ident: bib40
  article-title: Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism
  publication-title: Water Res.
– volume: 128
  start-page: 330
  year: 1981
  end-page: 335
  ident: bib26
  article-title: Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments
  publication-title: Arch. Microbiol.
– start-page: 327
  year: 2017
  end-page: 336
  ident: bib35
  article-title: Happy together: microbial communities that hook up to swap electrons
  publication-title: ISME J.
– volume: 54
  start-page: 10936
  year: 2020
  end-page: 10943
  ident: bib4
  article-title: Low-energy method for water-mineral recovery from acid mine drainage based on membrane technology: evaluation of inorganic salts as draw solutions
  publication-title: Environ. Sci. Technol.
– volume: 24
  start-page: 221
  year: 1997
  end-page: 234
  ident: bib27
  article-title: Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary
  publication-title: FEMS Microbiol. Ecol.
– volume: 123
  start-page: 301
  year: 2017
  end-page: 310
  ident: bib14
  article-title: Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode
  publication-title: Water Res.
– volume: 26
  year: 2023
  ident: bib24
  article-title: Ultrasound-controlled acidogenic valorization of wastewater for biohydrogen and volatile fatty acids production: microbial community profiling
  publication-title: Iscience
– start-page: 2305
  year: 2022
  ident: bib38
  article-title: Functional microbial communities in hybrid linear flow channel reactors for desulfurization of tannery effluent
  publication-title: Microorganisms
– volume: 319
  year: 2021
  ident: bib22
  article-title: Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: optimization and scale-up
  publication-title: Bioresour. Technol.
– volume: 132
  start-page: 6051
  year: 2020
  end-page: 6055
  ident: bib19
  article-title: Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria
  publication-title: Angew. Chem.
– start-page: 89368
  year: 2015
  end-page: 89374
  ident: bib39
  article-title: Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction
  publication-title: RSC Adv.
– volume: 889
  year: 2023
  ident: bib21
  article-title: Electroactive microorganisms synthesizing iron sulfide nanoparticles for enhanced hexavalent chromium removal in microbial fuel cells
  publication-title: Sci. Total Environ.
– volume: 220
  start-page: 367
  year: 2018
  end-page: 384
  ident: bib32
  article-title: Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite
  publication-title: Geochim. Cosmochim. Acta
– start-page: 10
  year: 2021
  end-page: 1128
  ident: bib46
  article-title: Anaerobic microbial metabolism of dichloroacetate
  publication-title: MBio
– start-page: 1045
  year: 2008
  end-page: 1055
  ident: bib42
  article-title: Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio
  publication-title: Appl. Microbiol. Biotechnol.
– year: 2023
  ident: bib25
  article-title: Effects of adding different carbon sources on the microbial behavior of sulfate-reducing bacteria in sulfate-containing wastewater
  publication-title: J. Clean. Prod.
– start-page: 69
  year: 2012
  end-page: 84
  ident: bib31
  article-title: Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes
  publication-title: FEMS Microbiol. Ecol.
– volume: 7
  start-page: 541
  year: 2007
  end-page: 564
  ident: bib7
  article-title: Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals
  publication-title: Eng. Life Sci.
– start-page: 641
  year: 2019
  end-page: 663
  ident: bib9
  article-title: Application of bioelectrochemical systems for the treatment of wastewaters with sulfur species
  publication-title: Microb. Electrochem. Technol.
– volume: 105
  start-page: 395
  year: 2016
  end-page: 405
  ident: bib13
  article-title: Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery
  publication-title: Water Res.
– start-page: 1268
  year: 2016
  end-page: 1274
  ident: bib41
  article-title: Paraclostridium benzoelyticum gen. nov., sp nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov Proposal of a new genus Paeniclostridium gen. nov to accommodate Clostridium sordellii and Clostridium ghonii
  publication-title: Int. J. Syst. Evolut. Microbiol.
– volume: 287
  year: 2022
  ident: bib23
  article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
  publication-title: Chemosphere
– volume: 408
  year: 2022
  ident: bib15
  article-title: Deciphering the fate of sulfate in one-and two-chamber bioelectrochemical systems
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 806
  year: 2017
  end-page: 810
  ident: bib18
  article-title: Addition of conductive particles to improve the performance of activated carbon air-cathodes in microbial fuel cells
  publication-title: Environ. Sci. Water Res. Technol.
– start-page: 413
  year: 2016
  end-page: 462
  ident: bib3
  article-title: Acid mine drainages from abandoned mines: hydrochemistry, environmental impact, resource recovery, and prevention of pollution
  publication-title: Environmental Materials and Waste
– volume: 409
  year: 2021
  ident: bib6
  article-title: Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage
  publication-title: J. Hazard. Mater.
– volume: 118
  start-page: 62
  year: 2017
  end-page: 69
  ident: bib8
  article-title: Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells
  publication-title: Bioelectrochemistry
– volume: 241
  start-page: 411
  year: 2012
  end-page: 417
  ident: bib11
  article-title: Bioelectrochemical treatment of acid mine drainage dominated with iron
  publication-title: J. Hazard. Mater.
– volume: 17
  start-page: 1529
  year: 2019
  end-page: 1538
  ident: bib1
  article-title: Remediation of acid mine drainage
  publication-title: Environ. Chem. Lett.
– year: 2023
  ident: bib12
  article-title: Coupling of electrodialysis and bio-electrochemical systems for metal and energy recovery from acid mine drainage
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 147
  start-page: 102
  year: 2018
  end-page: 109
  ident: bib37
  article-title: Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 130
  start-page: 218
  year: 2013
  end-page: 223
  ident: bib10
  article-title: Biocatalysed sulphate removal in a BES cathode
  publication-title: Bioresour. Technol.
– volume: 149
  start-page: 424
  year: 2020
  end-page: 434
  ident: bib17
  article-title: Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell
  publication-title: Renew. Energy
– year: 2021
  ident: bib30
  article-title: Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes–a review
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 89368
  issue: 109
  year: 2015
  ident: 10.1016/j.scenv.2024.100106_bib39
  article-title: Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction
  publication-title: RSC Adv.
  doi: 10.1039/C5RA18444D
– volume: 130
  start-page: 218
  year: 2013
  ident: 10.1016/j.scenv.2024.100106_bib10
  article-title: Biocatalysed sulphate removal in a BES cathode
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.050
– volume: 319
  year: 2021
  ident: 10.1016/j.scenv.2024.100106_bib22
  article-title: Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: optimization and scale-up
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124233
– volume: 54
  start-page: 10936
  issue: 17
  year: 2020
  ident: 10.1016/j.scenv.2024.100106_bib4
  article-title: Low-energy method for water-mineral recovery from acid mine drainage based on membrane technology: evaluation of inorganic salts as draw solutions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c03392
– volume: 318
  year: 2020
  ident: 10.1016/j.scenv.2024.100106_bib20
  article-title: Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124095
– volume: 408
  year: 2022
  ident: 10.1016/j.scenv.2024.100106_bib15
  article-title: Deciphering the fate of sulfate in one-and two-chamber bioelectrochemical systems
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.139942
– year: 2023
  ident: 10.1016/j.scenv.2024.100106_bib12
  article-title: Coupling of electrodialysis and bio-electrochemical systems for metal and energy recovery from acid mine drainage
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.7317
– volume: 11
  start-page: 327
  issue: 2
  year: 2017
  ident: 10.1016/j.scenv.2024.100106_bib35
  article-title: Happy together: microbial communities that hook up to swap electrons
  publication-title: ISME J.
  doi: 10.1038/ismej.2016.136
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.scenv.2024.100106_bib44
  article-title: Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2, 4-dichloronitrobenzene
  publication-title: Sci. Rep.
– start-page: 641
  year: 2019
  ident: 10.1016/j.scenv.2024.100106_bib9
  article-title: Application of bioelectrochemical systems for the treatment of wastewaters with sulfur species
  publication-title: Microb. Electrochem. Technol.
  doi: 10.1016/B978-0-444-64052-9.00026-1
– volume: 287
  year: 2022
  ident: 10.1016/j.scenv.2024.100106_bib23
  article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132188
– volume: 342
  year: 2021
  ident: 10.1016/j.scenv.2024.100106_bib30
  article-title: Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes–a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125893
– volume: 54
  start-page: 15347
  issue: 23
  year: 2020
  ident: 10.1016/j.scenv.2024.100106_bib45
  article-title: Methanobacterium capable of direct interspecies electron transfer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c05525
– volume: 126
  start-page: 411
  year: 2017
  ident: 10.1016/j.scenv.2024.100106_bib2
  article-title: A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.058
– volume: 3
  start-page: 806
  issue: 5
  year: 2017
  ident: 10.1016/j.scenv.2024.100106_bib18
  article-title: Addition of conductive particles to improve the performance of activated carbon air-cathodes in microbial fuel cells
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C7EW00108H
– volume: 241
  start-page: 411
  year: 2012
  ident: 10.1016/j.scenv.2024.100106_bib11
  article-title: Bioelectrochemical treatment of acid mine drainage dominated with iron
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.09.062
– volume: 213
  start-page: 66
  year: 2016
  ident: 10.1016/j.scenv.2024.100106_bib36
  article-title: Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.07.100
– volume: 7
  start-page: 541
  issue: 6
  year: 2007
  ident: 10.1016/j.scenv.2024.100106_bib7
  article-title: Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.200720216
– volume: 10
  start-page: 2305
  issue: 11
  year: 2022
  ident: 10.1016/j.scenv.2024.100106_bib38
  article-title: Functional microbial communities in hybrid linear flow channel reactors for desulfurization of tannery effluent
  publication-title: Microorganisms
  doi: 10.3390/microorganisms10112305
– volume: 12
  start-page: 10
  issue: 2
  year: 2021
  ident: 10.1016/j.scenv.2024.100106_bib46
  article-title: Anaerobic microbial metabolism of dichloroacetate
  publication-title: MBio
  doi: 10.1128/mBio.00537-21
– volume: 123
  start-page: 301
  year: 2017
  ident: 10.1016/j.scenv.2024.100106_bib14
  article-title: Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.06.050
– volume: 20
  year: 2022
  ident: 10.1016/j.scenv.2024.100106_bib34
  article-title: Potential role of sulfide precipitates in direct interspecies electron transfer facilitation during anaerobic digestion of fish silage
  publication-title: Bioresour. Technol. Rep.
– volume: 132
  start-page: 6051
  issue: 15
  year: 2020
  ident: 10.1016/j.scenv.2024.100106_bib19
  article-title: Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201915196
– volume: 128
  start-page: 330
  year: 1981
  ident: 10.1016/j.scenv.2024.100106_bib26
  article-title: Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00422540
– volume: 26
  issue: 4
  year: 2023
  ident: 10.1016/j.scenv.2024.100106_bib24
  article-title: Ultrasound-controlled acidogenic valorization of wastewater for biohydrogen and volatile fatty acids production: microbial community profiling
  publication-title: Iscience
  doi: 10.1016/j.isci.2023.106519
– volume: 4
  start-page: 371
  issue: 3
  year: 2011
  ident: 10.1016/j.scenv.2024.100106_bib43
  article-title: Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyRT)
  publication-title: Stand. Genom. Sci.
  doi: 10.4056/sigs.2004648
– volume: 105
  start-page: 395
  year: 2016
  ident: 10.1016/j.scenv.2024.100106_bib13
  article-title: Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.09.014
– volume: 46
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.scenv.2024.100106_bib16
  article-title: Use of sulfate-reducing and bioelectrochemical reactors for metal recovery from mine water
  publication-title: Sep. Purif. Rev.
  doi: 10.1080/15422119.2016.1156548
– volume: 8
  start-page: 457
  year: 2020
  ident: 10.1016/j.scenv.2024.100106_bib33
  article-title: Electrophysiology of the facultative autotrophic bacterium Desulfosporosinus orientis
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00457
– volume: 78
  start-page: 1045
  year: 2008
  ident: 10.1016/j.scenv.2024.100106_bib42
  article-title: Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1391-8
– volume: 889
  year: 2023
  ident: 10.1016/j.scenv.2024.100106_bib21
  article-title: Electroactive microorganisms synthesizing iron sulfide nanoparticles for enhanced hexavalent chromium removal in microbial fuel cells
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.164311
– volume: 79
  start-page: 69
  issue: 1
  year: 2012
  ident: 10.1016/j.scenv.2024.100106_bib31
  article-title: Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01199.x
– volume: 147
  start-page: 102
  year: 2018
  ident: 10.1016/j.scenv.2024.100106_bib37
  article-title: Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.08.040
– volume: 409
  year: 2021
  ident: 10.1016/j.scenv.2024.100106_bib6
  article-title: Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124944
– volume: 149
  start-page: 424
  year: 2020
  ident: 10.1016/j.scenv.2024.100106_bib17
  article-title: Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.018
– volume: 66
  start-page: 1268
  year: 2016
  ident: 10.1016/j.scenv.2024.100106_bib41
  publication-title: Int. J. Syst. Evolut. Microbiol.
  doi: 10.1099/ijsem.0.000874
– volume: 191
  year: 2021
  ident: 10.1016/j.scenv.2024.100106_bib40
  article-title: Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.116808
– volume: 154
  start-page: 466
  issue: 7
  year: 2003
  ident: 10.1016/j.scenv.2024.100106_bib5
  article-title: The microbiology of acidic mine waters
  publication-title: Res. Microbiol.
  doi: 10.1016/S0923-2508(03)00114-1
– volume: 28
  start-page: 1337
  year: 1994
  ident: 10.1016/j.scenv.2024.100106_bib28
  article-title: Degradation of lactate by an anaerobic mixed culture in a fluidized-bed reactor
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)90299-2
– volume: 43
  start-page: 3345
  issue: 14
  year: 2009
  ident: 10.1016/j.scenv.2024.100106_bib29
  article-title: Study of anaerobic lactate metabolism under biosulfidogenic conditions
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.11.044
– volume: 392
  year: 2023
  ident: 10.1016/j.scenv.2024.100106_bib25
  article-title: Effects of adding different carbon sources on the microbial behavior of sulfate-reducing bacteria in sulfate-containing wastewater
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.136332
– volume: 24
  start-page: 221
  year: 1997
  ident: 10.1016/j.scenv.2024.100106_bib27
  article-title: Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1997.tb00439.x
– volume: 220
  start-page: 367
  year: 2018
  ident: 10.1016/j.scenv.2024.100106_bib32
  article-title: Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.10.006
– volume: 17
  start-page: 1529
  issue: 4
  year: 2019
  ident: 10.1016/j.scenv.2024.100106_bib1
  article-title: Remediation of acid mine drainage
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-019-00894-w
– volume: 118
  start-page: 62
  year: 2017
  ident: 10.1016/j.scenv.2024.100106_bib8
  article-title: Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2017.07.001
– start-page: 413
  year: 2016
  ident: 10.1016/j.scenv.2024.100106_bib3
  article-title: Acid mine drainages from abandoned mines: hydrochemistry, environmental impact, resource recovery, and prevention of pollution
SSID ssj0002991651
Score 2.2580378
Snippet Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal...
SourceID doaj
swepub
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 100106
SubjectTerms Acid mine drainage
Autotrophic sulfate reduction
Biochemical Process Engineering
Biokemisk processteknik
Bioremediation
Metal sulfides
Microbial synergy
Title Bioelectrochemical treatment of acid mine drainage: Microbiome synergy influences sulfidogenesis and acetogenesis
URI https://dx.doi.org/10.1016/j.scenv.2024.100106
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-105442
https://doaj.org/article/94ef6db9682a47958ed90ae9366821f2
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwsCAaK85AExEeEmjhOztdCqQioTRd0i22ejoD6Apkgs_Hb8SKp2gYUlg2X5rDvn7rN89x1Cl0QJByvc-yA3ETWSRDxX4F4KEyWythSJqx0ePrLBiD6M0_Faqy-XExbogYPibjjVhoHkLI8FzXiaa-BEaJ4wO9I23vvamLd2mXI-OHawJ203NEM-ocuxI33aG2FMPfGQ63G0Foo8Y_9mRFqnDvXhpr-HdmuciDthf_toS88O0Hu3nNd9a1Rd6I9XmeJ4brBQJeCpBY4YXOsH6ytu8bAMXEtTjRdfvtIPl01nkgVeLCemhPmLc3nlAosZ2EV01QwcolG_93Q3iOqeCZGySIBFkgqTpASk0VQTpgWRQARQiBWA4cCUNiBFRpjKpXH_O_A4yyQ1KbVgRyVHaHs2n-ljhIXF3RpIIpVUlGgmOaQZgVylglnTZy103aiveAvUGEWTM_ZaeG0XTttF0HYLdZ2KV1Mdr7UfsNYuamsXf1m7hVhjoKKGCCH026XK36VfBXNuyL8vnzte_qRa2okppfHJf2zzFO042SGl7AxtVx9LfW7BSyUv_Dm13-F37we6y_Iv
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioelectrochemical+treatment+of+acid+mine+drainage%3A+Microbiome+synergy+influences+sulfidogenesis+and+acetogenesis&rft.jtitle=Sustainable+Chemistry+for+the+Environment&rft.au=J.%2C+Annie+Modestra&rft.au=Bajracharya%2C+Suman&rft.au=Matsakas%2C+Leonidas&rft.au=Rova%2C+Ulrika&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2949-8392&rft.volume=6&rft_id=info:doi/10.1016%2Fj.scenv.2024.100106&rft.externalDocID=S294983922400049X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-8392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-8392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-8392&client=summon