Bioelectrochemical treatment of acid mine drainage: Microbiome synergy influences sulfidogenesis and acetogenesis
Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2:...
Saved in:
Published in | Sustainable Chemistry for the Environment Vol. 6; p. 100106 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production.
[Display omitted]
•Bioelectrochemical autotrophic sulfate reduction is attained in AMD.•Electrosynthetic acetate production is observed along with sulfate reduction.•Fe-S particles could act as conducive aids for electron transfer in BES.•Microbial synergy among diverse bacteria enhanced autotrophic sulfate reduction.•Microbiome analysis revealed dominant presence of Methanobacterium on cathode. |
---|---|
AbstractList | Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production. Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production. Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production. [Display omitted] •Bioelectrochemical autotrophic sulfate reduction is attained in AMD.•Electrosynthetic acetate production is observed along with sulfate reduction.•Fe-S particles could act as conducive aids for electron transfer in BES.•Microbial synergy among diverse bacteria enhanced autotrophic sulfate reduction.•Microbiome analysis revealed dominant presence of Methanobacterium on cathode. |
ArticleNumber | 100106 |
Author | J., Annie Modestra Bajracharya, Suman Matsakas, Leonidas Christakopoulos, Paul Rova, Ulrika |
Author_xml | – sequence: 1 givenname: Annie Modestra surname: J. fullname: J., Annie Modestra – sequence: 2 givenname: Suman surname: Bajracharya fullname: Bajracharya, Suman – sequence: 3 givenname: Leonidas surname: Matsakas fullname: Matsakas, Leonidas – sequence: 4 givenname: Ulrika surname: Rova fullname: Rova, Ulrika email: ulrika.rova@ltu.se – sequence: 5 givenname: Paul surname: Christakopoulos fullname: Christakopoulos, Paul |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-105442$$DView record from Swedish Publication Index |
BookMark | eNp9kc1u1DAUhSNUJErbJ2DjF8hw7TjOGIlFKdBWKuqGdmv553rwKLGLnSmat8czAQQbVr46OueTdc7r5iSmiE3zhsKKAhVvt6tiMT6vGDBeFaAgXjSnTHLZrjvJTv66XzUXpWwBgElJRU9Pm-8fQsIR7ZyT_YZTsHokc0Y9TxhnkjzRNjgyhYjEZR2i3uA78iXYnExIE5Kyj5g3exKiH3cYLRZSdqMPLm0wYgmF6OgqBOffwnnz0uux4MWv96x5-Pzp69VNe3d_fXt1edfajg6iNVz7rgdnPHIEgRqMA-24Y9Y5L52w6J3RAwi7Nh4G6Jxkw2C477mgzHZnze3CdUlv1VMOk857lXRQRyHljdJ5DnZEJTl64YwUa6b5IPs1OgkaZSeqQj2rrHZhlR_4tDP_0D6Gx8sjbZx3ikLP-cHfLf7aUykZ_Z8EBXUYTW3VcTR1GE0to9XU-yWFtZbngLl6wqFTF3JdqP47_Df_E0C6plE |
Cites_doi | 10.1039/C5RA18444D 10.1016/j.biortech.2012.12.050 10.1016/j.biortech.2020.124233 10.1021/acs.est.0c03392 10.1016/j.biortech.2020.124095 10.1016/j.electacta.2022.139942 10.1002/jctb.7317 10.1038/ismej.2016.136 10.1016/B978-0-444-64052-9.00026-1 10.1016/j.chemosphere.2021.132188 10.1016/j.biortech.2021.125893 10.1021/acs.est.0c05525 10.1016/j.watres.2017.09.058 10.1039/C7EW00108H 10.1016/j.jhazmat.2012.09.062 10.1016/j.electacta.2016.07.100 10.1002/elsc.200720216 10.3390/microorganisms10112305 10.1128/mBio.00537-21 10.1016/j.watres.2017.06.050 10.1002/ange.201915196 10.1007/BF00422540 10.1016/j.isci.2023.106519 10.4056/sigs.2004648 10.1016/j.watres.2016.09.014 10.1080/15422119.2016.1156548 10.3389/fbioe.2020.00457 10.1007/s00253-008-1391-8 10.1016/j.scitotenv.2023.164311 10.1111/j.1574-6941.2011.01199.x 10.1016/j.ecoenv.2017.08.040 10.1016/j.jhazmat.2020.124944 10.1016/j.renene.2019.12.018 10.1099/ijsem.0.000874 10.1016/j.watres.2021.116808 10.1016/S0923-2508(03)00114-1 10.1016/0043-1354(94)90299-2 10.1016/j.watres.2008.11.044 10.1016/j.jclepro.2023.136332 10.1111/j.1574-6941.1997.tb00439.x 10.1016/j.gca.2017.10.006 10.1007/s10311-019-00894-w 10.1016/j.bioelechem.2017.07.001 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1016/j.scenv.2024.100106 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2949-8392 |
ExternalDocumentID | oai_doaj_org_article_94ef6db9682a47958ed90ae9366821f2 oai_DiVA_org_ltu_105442 10_1016_j_scenv_2024_100106 S294983922400049X |
GroupedDBID | 0SF 6I. AAFTH AAXUO AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ FDB GROUPED_DOAJ M41 M~E ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c3176-b4af350dbfe4e06ea0bd0ad4d2cddf9d6cefdba706c8bf0703d9277b4f54612c3 |
IEDL.DBID | DOA |
ISSN | 2949-8392 |
IngestDate | Wed Aug 27 01:13:00 EDT 2025 Thu Aug 21 06:27:53 EDT 2025 Tue Jul 01 02:03:42 EDT 2025 Tue Jun 18 08:51:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microbial synergy Bioremediation Autotrophic sulfate reduction Acid mine drainage Metal sulfides |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-b4af350dbfe4e06ea0bd0ad4d2cddf9d6cefdba706c8bf0703d9277b4f54612c3 |
OpenAccessLink | https://doaj.org/article/94ef6db9682a47958ed90ae9366821f2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94ef6db9682a47958ed90ae9366821f2 swepub_primary_oai_DiVA_org_ltu_105442 crossref_primary_10_1016_j_scenv_2024_100106 elsevier_sciencedirect_doi_10_1016_j_scenv_2024_100106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable Chemistry for the Environment |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Modestra, Reddy, Krishna, Min, Mohan (bib17) 2020; 149 Zhang, Wang, Xia, He, Huang, Logan (bib18) 2017; 3 Pozo, Jourdin, Lu, Keller, Ledezma, Freguia (bib36) 2016 Chen, Jiang, Villalobos Solis, Kara Murdoch, Murdoch, Xie, Swift, Hettich, Löffler (bib46) 2021 Deng, Dohmae, Kaksonen, Okamoto (bib19) 2020; 132 Horn, van Hille, Oyekola, Welz (bib38) 2022 Blázquez, Guisasola, Gabriel, Baeza (bib9) 2019 Massazza, Robledo, Simón, Busalmen, Bonanni (bib30) 2021 Lovley (bib35) 2017 Bajracharya, Krige, Matsakas, Rova, Christakopoulos (bib23) 2022; 287 Purdy, Nedwell, Embley, Takii (bib27) 1997; 24 Dar, Kleerebezem, Stams, Kuenen, Muyzer (bib42) 2008 Zheng, Liu, Wang, Zhang, Lovley (bib45) 2020; 54 Bharagava, Mishra (bib37) 2018; 147 Baena-Moreno, Rodríguez-Galán, Arroyo-Torralvo, Vilches (bib4) 2020; 54 Pozo, Jourdin, Lu, Ledezma, Keller, Freguia (bib39) 2015 Kaksonen, Puhakka (bib7) 2007; 7 Rodríguez-Gal´an, Baena-Moreno, V´azquez, Arroyo-Torralvo, Vilches, Zhang (bib1) 2019; 17 Favas, Sarkar, Rakshit, Venkatachalam, Prasad (bib3) 2016 Hashemi, Horn, Lamb, Lien (bib34) 2022 Cui, Chen, Pan, Wang, Xu, Bai, Jia, Zhou, Yong, Wu (bib20) 2020; 318 Sarkar, Rova, Christakopoulos, Matsakas (bib22) 2021; 319 Isosaari, Sillanpää (bib16) 2017; 46 Coma, Puig, Pous, Balaguer, Colprim (bib10) 2013; 130 Fang, Oberoi, He, Khanal, Lu (bib40) 2021 Blázquez, Gabriel, Baeza, Guisasola (bib13) 2016; 105 Oyekola, Van Hille, Harrison (bib29) 2009 Meier, Piva, Fortin (bib31) 2012 Sarkar, Matsakas, Rova, Christakopoulos (bib24) 2023; 26 Fan, Zhuang, Gao, Lv, Dong, Xin, Chen, Jia, Wu (bib21) 2023; 889 Jyothsna, Tushar, Sasikala, Ramana (bib41) 2016 Delgado, Llanos, Fernández-Morales (bib12) 2023 Zhao, Chen, Liu, Feng (bib25) 2023 Sulonen, Baeza, Gabriel, Guisasola (bib6) 2021; 409 Lefebvre, Neculita, Yue, Ng (bib11) 2012; 241 Pozo, Pongy, Keller, Ledezma, Freguia (bib2) 2017; 126 Johnson, Hallberg (bib5) 2003; 154 Pozo, Lu, Pongy, Keller, Ledezma, Freguia (bib8) 2017; 118 Picard, Gartman, Clarke, Girguis (bib32) 2018; 220 Agostino, Lenic, Bardl, Rizzotto, Phan, Blank, Rosenbaum (bib33) 2020; 8 Blázquez, Gabriel, Baeza, Guisasola (bib14) 2017; 123 Zellner, Neudo¨ rfer, Diekmann (bib28) 1994; 28 Laanbroek, Pfennig (bib26) 1981; 128 Wang, Ye, Jin, Chen, Xu, Zhu (bib44) 2017 Han, Mwirichia, Chertkov, Held, Lapidus, Nolan, Lucas, Hammon, Deshpande, Cheng, Tapia (bib43) 2011 Dai, Korth, Schwab, Aulenta, Vogt, Harnisch (bib15) 2022; 408 Agostino (10.1016/j.scenv.2024.100106_bib33) 2020; 8 Sarkar (10.1016/j.scenv.2024.100106_bib24) 2023; 26 Johnson (10.1016/j.scenv.2024.100106_bib5) 2003; 154 Blázquez (10.1016/j.scenv.2024.100106_bib9) 2019 Pozo (10.1016/j.scenv.2024.100106_bib36) 2016; 213 Wang (10.1016/j.scenv.2024.100106_bib44) 2017; 7 Zheng (10.1016/j.scenv.2024.100106_bib45) 2020; 54 Laanbroek (10.1016/j.scenv.2024.100106_bib26) 1981; 128 Chen (10.1016/j.scenv.2024.100106_bib46) 2021; 12 Sarkar (10.1016/j.scenv.2024.100106_bib22) 2021; 319 Purdy (10.1016/j.scenv.2024.100106_bib27) 1997; 24 Oyekola (10.1016/j.scenv.2024.100106_bib29) 2009; 43 Dar (10.1016/j.scenv.2024.100106_bib42) 2008; 78 Rodríguez-Gal´an (10.1016/j.scenv.2024.100106_bib1) 2019; 17 Baena-Moreno (10.1016/j.scenv.2024.100106_bib4) 2020; 54 Lefebvre (10.1016/j.scenv.2024.100106_bib11) 2012; 241 Zhao (10.1016/j.scenv.2024.100106_bib25) 2023; 392 Pozo (10.1016/j.scenv.2024.100106_bib39) 2015; 5 Fan (10.1016/j.scenv.2024.100106_bib21) 2023; 889 Coma (10.1016/j.scenv.2024.100106_bib10) 2013; 130 Blázquez (10.1016/j.scenv.2024.100106_bib13) 2016; 105 Isosaari (10.1016/j.scenv.2024.100106_bib16) 2017; 46 Cui (10.1016/j.scenv.2024.100106_bib20) 2020; 318 Bajracharya (10.1016/j.scenv.2024.100106_bib23) 2022; 287 Zellner (10.1016/j.scenv.2024.100106_bib28) 1994; 28 Picard (10.1016/j.scenv.2024.100106_bib32) 2018; 220 Pozo (10.1016/j.scenv.2024.100106_bib2) 2017; 126 Sulonen (10.1016/j.scenv.2024.100106_bib6) 2021; 409 Meier (10.1016/j.scenv.2024.100106_bib31) 2012; 79 Dai (10.1016/j.scenv.2024.100106_bib15) 2022; 408 Deng (10.1016/j.scenv.2024.100106_bib19) 2020; 132 Jyothsna (10.1016/j.scenv.2024.100106_bib41) 2016; 66 Kaksonen (10.1016/j.scenv.2024.100106_bib7) 2007; 7 Pozo (10.1016/j.scenv.2024.100106_bib8) 2017; 118 Delgado (10.1016/j.scenv.2024.100106_bib12) 2023 Favas (10.1016/j.scenv.2024.100106_bib3) 2016 Fang (10.1016/j.scenv.2024.100106_bib40) 2021; 191 Zhang (10.1016/j.scenv.2024.100106_bib18) 2017; 3 Bharagava (10.1016/j.scenv.2024.100106_bib37) 2018; 147 Horn (10.1016/j.scenv.2024.100106_bib38) 2022; 10 Blázquez (10.1016/j.scenv.2024.100106_bib14) 2017; 123 Modestra (10.1016/j.scenv.2024.100106_bib17) 2020; 149 Han (10.1016/j.scenv.2024.100106_bib43) 2011; 4 Hashemi (10.1016/j.scenv.2024.100106_bib34) 2022; 20 Massazza (10.1016/j.scenv.2024.100106_bib30) 2021; 342 Lovley (10.1016/j.scenv.2024.100106_bib35) 2017; 11 |
References_xml | – volume: 8 start-page: 457 year: 2020 ident: bib33 article-title: Electrophysiology of the facultative autotrophic bacterium Desulfosporosinus orientis publication-title: Front. Bioeng. Biotechnol. – start-page: 66 year: 2016 end-page: 74 ident: bib36 article-title: Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction publication-title: Electrochim. Acta – volume: 54 start-page: 15347 year: 2020 end-page: 15354 ident: bib45 article-title: Methanobacterium capable of direct interspecies electron transfer publication-title: Environ. Sci. Technol. – year: 2017 ident: bib44 article-title: Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2, 4-dichloronitrobenzene publication-title: Sci. Rep. – volume: 46 start-page: 1 year: 2017 end-page: 20 ident: bib16 article-title: Use of sulfate-reducing and bioelectrochemical reactors for metal recovery from mine water publication-title: Sep. Purif. Rev. – volume: 28 start-page: 1337 year: 1994 end-page: 1340 ident: bib28 article-title: Degradation of lactate by an anaerobic mixed culture in a fluidized-bed reactor publication-title: Water Res. – start-page: 371 year: 2011 end-page: 380 ident: bib43 article-title: Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyRT) publication-title: Stand. Genom. Sci. – volume: 154 start-page: 466 year: 2003 end-page: 473 ident: bib5 article-title: The microbiology of acidic mine waters publication-title: Res. Microbiol. – start-page: 3345 year: 2009 end-page: 3354 ident: bib29 article-title: Study of anaerobic lactate metabolism under biosulfidogenic conditions publication-title: Water Res. – volume: 126 start-page: 411 year: 2017 end-page: 420 ident: bib2 article-title: A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage publication-title: Water Res. – volume: 318 year: 2020 ident: bib20 article-title: Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell publication-title: Bioresour. Technol. – year: 2022 ident: bib34 article-title: Potential role of sulfide precipitates in direct interspecies electron transfer facilitation during anaerobic digestion of fish silage publication-title: Bioresour. Technol. Rep. – year: 2021 ident: bib40 article-title: Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism publication-title: Water Res. – volume: 128 start-page: 330 year: 1981 end-page: 335 ident: bib26 article-title: Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments publication-title: Arch. Microbiol. – start-page: 327 year: 2017 end-page: 336 ident: bib35 article-title: Happy together: microbial communities that hook up to swap electrons publication-title: ISME J. – volume: 54 start-page: 10936 year: 2020 end-page: 10943 ident: bib4 article-title: Low-energy method for water-mineral recovery from acid mine drainage based on membrane technology: evaluation of inorganic salts as draw solutions publication-title: Environ. Sci. Technol. – volume: 24 start-page: 221 year: 1997 end-page: 234 ident: bib27 article-title: Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary publication-title: FEMS Microbiol. Ecol. – volume: 123 start-page: 301 year: 2017 end-page: 310 ident: bib14 article-title: Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode publication-title: Water Res. – volume: 26 year: 2023 ident: bib24 article-title: Ultrasound-controlled acidogenic valorization of wastewater for biohydrogen and volatile fatty acids production: microbial community profiling publication-title: Iscience – start-page: 2305 year: 2022 ident: bib38 article-title: Functional microbial communities in hybrid linear flow channel reactors for desulfurization of tannery effluent publication-title: Microorganisms – volume: 319 year: 2021 ident: bib22 article-title: Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: optimization and scale-up publication-title: Bioresour. Technol. – volume: 132 start-page: 6051 year: 2020 end-page: 6055 ident: bib19 article-title: Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria publication-title: Angew. Chem. – start-page: 89368 year: 2015 end-page: 89374 ident: bib39 article-title: Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction publication-title: RSC Adv. – volume: 889 year: 2023 ident: bib21 article-title: Electroactive microorganisms synthesizing iron sulfide nanoparticles for enhanced hexavalent chromium removal in microbial fuel cells publication-title: Sci. Total Environ. – volume: 220 start-page: 367 year: 2018 end-page: 384 ident: bib32 article-title: Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite publication-title: Geochim. Cosmochim. Acta – start-page: 10 year: 2021 end-page: 1128 ident: bib46 article-title: Anaerobic microbial metabolism of dichloroacetate publication-title: MBio – start-page: 1045 year: 2008 end-page: 1055 ident: bib42 article-title: Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio publication-title: Appl. Microbiol. Biotechnol. – year: 2023 ident: bib25 article-title: Effects of adding different carbon sources on the microbial behavior of sulfate-reducing bacteria in sulfate-containing wastewater publication-title: J. Clean. Prod. – start-page: 69 year: 2012 end-page: 84 ident: bib31 article-title: Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes publication-title: FEMS Microbiol. Ecol. – volume: 7 start-page: 541 year: 2007 end-page: 564 ident: bib7 article-title: Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals publication-title: Eng. Life Sci. – start-page: 641 year: 2019 end-page: 663 ident: bib9 article-title: Application of bioelectrochemical systems for the treatment of wastewaters with sulfur species publication-title: Microb. Electrochem. Technol. – volume: 105 start-page: 395 year: 2016 end-page: 405 ident: bib13 article-title: Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery publication-title: Water Res. – start-page: 1268 year: 2016 end-page: 1274 ident: bib41 article-title: Paraclostridium benzoelyticum gen. nov., sp nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov Proposal of a new genus Paeniclostridium gen. nov to accommodate Clostridium sordellii and Clostridium ghonii publication-title: Int. J. Syst. Evolut. Microbiol. – volume: 287 year: 2022 ident: bib23 article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata publication-title: Chemosphere – volume: 408 year: 2022 ident: bib15 article-title: Deciphering the fate of sulfate in one-and two-chamber bioelectrochemical systems publication-title: Electrochim. Acta – volume: 3 start-page: 806 year: 2017 end-page: 810 ident: bib18 article-title: Addition of conductive particles to improve the performance of activated carbon air-cathodes in microbial fuel cells publication-title: Environ. Sci. Water Res. Technol. – start-page: 413 year: 2016 end-page: 462 ident: bib3 article-title: Acid mine drainages from abandoned mines: hydrochemistry, environmental impact, resource recovery, and prevention of pollution publication-title: Environmental Materials and Waste – volume: 409 year: 2021 ident: bib6 article-title: Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage publication-title: J. Hazard. Mater. – volume: 118 start-page: 62 year: 2017 end-page: 69 ident: bib8 article-title: Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells publication-title: Bioelectrochemistry – volume: 241 start-page: 411 year: 2012 end-page: 417 ident: bib11 article-title: Bioelectrochemical treatment of acid mine drainage dominated with iron publication-title: J. Hazard. Mater. – volume: 17 start-page: 1529 year: 2019 end-page: 1538 ident: bib1 article-title: Remediation of acid mine drainage publication-title: Environ. Chem. Lett. – year: 2023 ident: bib12 article-title: Coupling of electrodialysis and bio-electrochemical systems for metal and energy recovery from acid mine drainage publication-title: J. Chem. Technol. Biotechnol. – volume: 147 start-page: 102 year: 2018 end-page: 109 ident: bib37 article-title: Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries publication-title: Ecotoxicol. Environ. Saf. – volume: 130 start-page: 218 year: 2013 end-page: 223 ident: bib10 article-title: Biocatalysed sulphate removal in a BES cathode publication-title: Bioresour. Technol. – volume: 149 start-page: 424 year: 2020 end-page: 434 ident: bib17 article-title: Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell publication-title: Renew. Energy – year: 2021 ident: bib30 article-title: Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes–a review publication-title: Bioresour. Technol. – volume: 5 start-page: 89368 issue: 109 year: 2015 ident: 10.1016/j.scenv.2024.100106_bib39 article-title: Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction publication-title: RSC Adv. doi: 10.1039/C5RA18444D – volume: 130 start-page: 218 year: 2013 ident: 10.1016/j.scenv.2024.100106_bib10 article-title: Biocatalysed sulphate removal in a BES cathode publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.050 – volume: 319 year: 2021 ident: 10.1016/j.scenv.2024.100106_bib22 article-title: Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: optimization and scale-up publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124233 – volume: 54 start-page: 10936 issue: 17 year: 2020 ident: 10.1016/j.scenv.2024.100106_bib4 article-title: Low-energy method for water-mineral recovery from acid mine drainage based on membrane technology: evaluation of inorganic salts as draw solutions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c03392 – volume: 318 year: 2020 ident: 10.1016/j.scenv.2024.100106_bib20 article-title: Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124095 – volume: 408 year: 2022 ident: 10.1016/j.scenv.2024.100106_bib15 article-title: Deciphering the fate of sulfate in one-and two-chamber bioelectrochemical systems publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.139942 – year: 2023 ident: 10.1016/j.scenv.2024.100106_bib12 article-title: Coupling of electrodialysis and bio-electrochemical systems for metal and energy recovery from acid mine drainage publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.7317 – volume: 11 start-page: 327 issue: 2 year: 2017 ident: 10.1016/j.scenv.2024.100106_bib35 article-title: Happy together: microbial communities that hook up to swap electrons publication-title: ISME J. doi: 10.1038/ismej.2016.136 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.scenv.2024.100106_bib44 article-title: Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2, 4-dichloronitrobenzene publication-title: Sci. Rep. – start-page: 641 year: 2019 ident: 10.1016/j.scenv.2024.100106_bib9 article-title: Application of bioelectrochemical systems for the treatment of wastewaters with sulfur species publication-title: Microb. Electrochem. Technol. doi: 10.1016/B978-0-444-64052-9.00026-1 – volume: 287 year: 2022 ident: 10.1016/j.scenv.2024.100106_bib23 article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132188 – volume: 342 year: 2021 ident: 10.1016/j.scenv.2024.100106_bib30 article-title: Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes–a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125893 – volume: 54 start-page: 15347 issue: 23 year: 2020 ident: 10.1016/j.scenv.2024.100106_bib45 article-title: Methanobacterium capable of direct interspecies electron transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05525 – volume: 126 start-page: 411 year: 2017 ident: 10.1016/j.scenv.2024.100106_bib2 article-title: A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage publication-title: Water Res. doi: 10.1016/j.watres.2017.09.058 – volume: 3 start-page: 806 issue: 5 year: 2017 ident: 10.1016/j.scenv.2024.100106_bib18 article-title: Addition of conductive particles to improve the performance of activated carbon air-cathodes in microbial fuel cells publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C7EW00108H – volume: 241 start-page: 411 year: 2012 ident: 10.1016/j.scenv.2024.100106_bib11 article-title: Bioelectrochemical treatment of acid mine drainage dominated with iron publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.09.062 – volume: 213 start-page: 66 year: 2016 ident: 10.1016/j.scenv.2024.100106_bib36 article-title: Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.07.100 – volume: 7 start-page: 541 issue: 6 year: 2007 ident: 10.1016/j.scenv.2024.100106_bib7 article-title: Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals publication-title: Eng. Life Sci. doi: 10.1002/elsc.200720216 – volume: 10 start-page: 2305 issue: 11 year: 2022 ident: 10.1016/j.scenv.2024.100106_bib38 article-title: Functional microbial communities in hybrid linear flow channel reactors for desulfurization of tannery effluent publication-title: Microorganisms doi: 10.3390/microorganisms10112305 – volume: 12 start-page: 10 issue: 2 year: 2021 ident: 10.1016/j.scenv.2024.100106_bib46 article-title: Anaerobic microbial metabolism of dichloroacetate publication-title: MBio doi: 10.1128/mBio.00537-21 – volume: 123 start-page: 301 year: 2017 ident: 10.1016/j.scenv.2024.100106_bib14 article-title: Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode publication-title: Water Res. doi: 10.1016/j.watres.2017.06.050 – volume: 20 year: 2022 ident: 10.1016/j.scenv.2024.100106_bib34 article-title: Potential role of sulfide precipitates in direct interspecies electron transfer facilitation during anaerobic digestion of fish silage publication-title: Bioresour. Technol. Rep. – volume: 132 start-page: 6051 issue: 15 year: 2020 ident: 10.1016/j.scenv.2024.100106_bib19 article-title: Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria publication-title: Angew. Chem. doi: 10.1002/ange.201915196 – volume: 128 start-page: 330 year: 1981 ident: 10.1016/j.scenv.2024.100106_bib26 article-title: Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments publication-title: Arch. Microbiol. doi: 10.1007/BF00422540 – volume: 26 issue: 4 year: 2023 ident: 10.1016/j.scenv.2024.100106_bib24 article-title: Ultrasound-controlled acidogenic valorization of wastewater for biohydrogen and volatile fatty acids production: microbial community profiling publication-title: Iscience doi: 10.1016/j.isci.2023.106519 – volume: 4 start-page: 371 issue: 3 year: 2011 ident: 10.1016/j.scenv.2024.100106_bib43 article-title: Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyRT) publication-title: Stand. Genom. Sci. doi: 10.4056/sigs.2004648 – volume: 105 start-page: 395 year: 2016 ident: 10.1016/j.scenv.2024.100106_bib13 article-title: Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery publication-title: Water Res. doi: 10.1016/j.watres.2016.09.014 – volume: 46 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.scenv.2024.100106_bib16 article-title: Use of sulfate-reducing and bioelectrochemical reactors for metal recovery from mine water publication-title: Sep. Purif. Rev. doi: 10.1080/15422119.2016.1156548 – volume: 8 start-page: 457 year: 2020 ident: 10.1016/j.scenv.2024.100106_bib33 article-title: Electrophysiology of the facultative autotrophic bacterium Desulfosporosinus orientis publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00457 – volume: 78 start-page: 1045 year: 2008 ident: 10.1016/j.scenv.2024.100106_bib42 article-title: Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1391-8 – volume: 889 year: 2023 ident: 10.1016/j.scenv.2024.100106_bib21 article-title: Electroactive microorganisms synthesizing iron sulfide nanoparticles for enhanced hexavalent chromium removal in microbial fuel cells publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.164311 – volume: 79 start-page: 69 issue: 1 year: 2012 ident: 10.1016/j.scenv.2024.100106_bib31 article-title: Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01199.x – volume: 147 start-page: 102 year: 2018 ident: 10.1016/j.scenv.2024.100106_bib37 article-title: Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.08.040 – volume: 409 year: 2021 ident: 10.1016/j.scenv.2024.100106_bib6 article-title: Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124944 – volume: 149 start-page: 424 year: 2020 ident: 10.1016/j.scenv.2024.100106_bib17 article-title: Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.018 – volume: 66 start-page: 1268 year: 2016 ident: 10.1016/j.scenv.2024.100106_bib41 publication-title: Int. J. Syst. Evolut. Microbiol. doi: 10.1099/ijsem.0.000874 – volume: 191 year: 2021 ident: 10.1016/j.scenv.2024.100106_bib40 article-title: Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2021.116808 – volume: 154 start-page: 466 issue: 7 year: 2003 ident: 10.1016/j.scenv.2024.100106_bib5 article-title: The microbiology of acidic mine waters publication-title: Res. Microbiol. doi: 10.1016/S0923-2508(03)00114-1 – volume: 28 start-page: 1337 year: 1994 ident: 10.1016/j.scenv.2024.100106_bib28 article-title: Degradation of lactate by an anaerobic mixed culture in a fluidized-bed reactor publication-title: Water Res. doi: 10.1016/0043-1354(94)90299-2 – volume: 43 start-page: 3345 issue: 14 year: 2009 ident: 10.1016/j.scenv.2024.100106_bib29 article-title: Study of anaerobic lactate metabolism under biosulfidogenic conditions publication-title: Water Res. doi: 10.1016/j.watres.2008.11.044 – volume: 392 year: 2023 ident: 10.1016/j.scenv.2024.100106_bib25 article-title: Effects of adding different carbon sources on the microbial behavior of sulfate-reducing bacteria in sulfate-containing wastewater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.136332 – volume: 24 start-page: 221 year: 1997 ident: 10.1016/j.scenv.2024.100106_bib27 article-title: Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1997.tb00439.x – volume: 220 start-page: 367 year: 2018 ident: 10.1016/j.scenv.2024.100106_bib32 article-title: Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.10.006 – volume: 17 start-page: 1529 issue: 4 year: 2019 ident: 10.1016/j.scenv.2024.100106_bib1 article-title: Remediation of acid mine drainage publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-019-00894-w – volume: 118 start-page: 62 year: 2017 ident: 10.1016/j.scenv.2024.100106_bib8 article-title: Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2017.07.001 – start-page: 413 year: 2016 ident: 10.1016/j.scenv.2024.100106_bib3 article-title: Acid mine drainages from abandoned mines: hydrochemistry, environmental impact, resource recovery, and prevention of pollution |
SSID | ssj0002991651 |
Score | 2.2580378 |
Snippet | Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal... |
SourceID | doaj swepub crossref elsevier |
SourceType | Open Website Open Access Repository Index Database Publisher |
StartPage | 100106 |
SubjectTerms | Acid mine drainage Autotrophic sulfate reduction Biochemical Process Engineering Biokemisk processteknik Bioremediation Metal sulfides Microbial synergy |
Title | Bioelectrochemical treatment of acid mine drainage: Microbiome synergy influences sulfidogenesis and acetogenesis |
URI | https://dx.doi.org/10.1016/j.scenv.2024.100106 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-105442 https://doaj.org/article/94ef6db9682a47958ed90ae9366821f2 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwsCAaK85AExEeEmjhOztdCqQioTRd0i22ejoD6Apkgs_Hb8SKp2gYUlg2X5rDvn7rN89x1Cl0QJByvc-yA3ETWSRDxX4F4KEyWythSJqx0ePrLBiD6M0_Faqy-XExbogYPibjjVhoHkLI8FzXiaa-BEaJ4wO9I23vvamLd2mXI-OHawJ203NEM-ocuxI33aG2FMPfGQ63G0Foo8Y_9mRFqnDvXhpr-HdmuciDthf_toS88O0Hu3nNd9a1Rd6I9XmeJ4brBQJeCpBY4YXOsH6ytu8bAMXEtTjRdfvtIPl01nkgVeLCemhPmLc3nlAosZ2EV01QwcolG_93Q3iOqeCZGySIBFkgqTpASk0VQTpgWRQARQiBWA4cCUNiBFRpjKpXH_O_A4yyQ1KbVgRyVHaHs2n-ljhIXF3RpIIpVUlGgmOaQZgVylglnTZy103aiveAvUGEWTM_ZaeG0XTttF0HYLdZ2KV1Mdr7UfsNYuamsXf1m7hVhjoKKGCCH026XK36VfBXNuyL8vnzte_qRa2okppfHJf2zzFO042SGl7AxtVx9LfW7BSyUv_Dm13-F37we6y_Iv |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioelectrochemical+treatment+of+acid+mine+drainage%3A+Microbiome+synergy+influences+sulfidogenesis+and+acetogenesis&rft.jtitle=Sustainable+Chemistry+for+the+Environment&rft.au=J.%2C+Annie+Modestra&rft.au=Bajracharya%2C+Suman&rft.au=Matsakas%2C+Leonidas&rft.au=Rova%2C+Ulrika&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2949-8392&rft.volume=6&rft_id=info:doi/10.1016%2Fj.scenv.2024.100106&rft.externalDocID=S294983922400049X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-8392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-8392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-8392&client=summon |