Interfacial Engineering Enhances the Electroactivity of Frame‐Like Concave RhCu Bimetallic Nanocubes for Nitrate Reduction
Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐Rh...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 15 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202103916 |
Cover
Loading…
Abstract | Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐RhCu cNCs) are reported with an electrochemically active surface area of 72.8 m2 g−1 as a robust electrocatalyst for the 8e reduction of nitrate (NO3−) to NH3. PA‐RhCu cNCs show a remarkable NH3 production yield of 2.40 mg h−1 mgcat−1 and a high faradaic efficiency of 93.7% at +0.05 V potential. Density functional theory calculations and experimental results indicate that Cu and PA (adsorbed amino) coregulate the Rh d‐band center, which slightly weakens the adsorption energy of reaction‐related species on Rh. In addition, the electrochemical interface mass transfer accelerated by the surface PA further determines the notable performance of PA‐RhCu cNCs for electroreduction of NO3− to NH3. These findings may open an avenue to construct other advanced catalysts based on organic molecule‐mediated interfacial engineering in various catalysis/electrocatalysis fields.
Polyallylamine functionalized frame‐like concave RhCu bimetallic nanocubes are synthesized by a facile wet chemical method, which achieve a remarkable NH3 production yield of 2.40 mg h–1 mgcat–1 and a high Faradaic efficiency of 93.7% at +0.05 V for NO3− electroreduction thanks to abundant active sites, Cu and polyallylamine coregulated Rh electronic structure and accelerated mass transfer induced by polyallylamine. |
---|---|
AbstractList | Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH
3
synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐RhCu cNCs) are reported with an electrochemically active surface area of 72.8 m
2
g
−1
as a robust electrocatalyst for the 8e reduction of nitrate (NO
3
−
) to NH
3
. PA‐RhCu cNCs show a remarkable NH
3
production yield of 2.40 mg h
−1
mg
cat
−1
and a high faradaic efficiency of 93.7% at +0.05 V potential. Density functional theory calculations and experimental results indicate that Cu and PA (adsorbed amino) coregulate the Rh d‐band center, which slightly weakens the adsorption energy of reaction‐related species on Rh. In addition, the electrochemical interface mass transfer accelerated by the surface PA further determines the notable performance of PA‐RhCu cNCs for electroreduction of NO
3
−
to NH
3
. These findings may open an avenue to construct other advanced catalysts based on organic molecule‐mediated interfacial engineering in various catalysis/electrocatalysis fields. Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐RhCu cNCs) are reported with an electrochemically active surface area of 72.8 m2 g−1 as a robust electrocatalyst for the 8e reduction of nitrate (NO3−) to NH3. PA‐RhCu cNCs show a remarkable NH3 production yield of 2.40 mg h−1 mgcat−1 and a high faradaic efficiency of 93.7% at +0.05 V potential. Density functional theory calculations and experimental results indicate that Cu and PA (adsorbed amino) coregulate the Rh d‐band center, which slightly weakens the adsorption energy of reaction‐related species on Rh. In addition, the electrochemical interface mass transfer accelerated by the surface PA further determines the notable performance of PA‐RhCu cNCs for electroreduction of NO3− to NH3. These findings may open an avenue to construct other advanced catalysts based on organic molecule‐mediated interfacial engineering in various catalysis/electrocatalysis fields. Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐RhCu cNCs) are reported with an electrochemically active surface area of 72.8 m2 g−1 as a robust electrocatalyst for the 8e reduction of nitrate (NO3−) to NH3. PA‐RhCu cNCs show a remarkable NH3 production yield of 2.40 mg h−1 mgcat−1 and a high faradaic efficiency of 93.7% at +0.05 V potential. Density functional theory calculations and experimental results indicate that Cu and PA (adsorbed amino) coregulate the Rh d‐band center, which slightly weakens the adsorption energy of reaction‐related species on Rh. In addition, the electrochemical interface mass transfer accelerated by the surface PA further determines the notable performance of PA‐RhCu cNCs for electroreduction of NO3− to NH3. These findings may open an avenue to construct other advanced catalysts based on organic molecule‐mediated interfacial engineering in various catalysis/electrocatalysis fields. Polyallylamine functionalized frame‐like concave RhCu bimetallic nanocubes are synthesized by a facile wet chemical method, which achieve a remarkable NH3 production yield of 2.40 mg h–1 mgcat–1 and a high Faradaic efficiency of 93.7% at +0.05 V for NO3− electroreduction thanks to abundant active sites, Cu and polyallylamine coregulated Rh electronic structure and accelerated mass transfer induced by polyallylamine. |
Author | Li, Fu‐Min Ge, Zi‐Xin Wang, Tian‐Jiao Yin, Shi‐Bin Chen, Pei Chen, Yu Ding, Yu |
Author_xml | – sequence: 1 givenname: Zi‐Xin surname: Ge fullname: Ge, Zi‐Xin organization: Shaanxi Normal University – sequence: 2 givenname: Tian‐Jiao surname: Wang fullname: Wang, Tian‐Jiao organization: Shaanxi Normal University – sequence: 3 givenname: Yu surname: Ding fullname: Ding, Yu organization: Shaanxi Normal University – sequence: 4 givenname: Shi‐Bin surname: Yin fullname: Yin, Shi‐Bin organization: Guangxi University – sequence: 5 givenname: Fu‐Min surname: Li fullname: Li, Fu‐Min email: fuminli@snnu.edu.cn organization: Shaanxi Normal University – sequence: 6 givenname: Pei surname: Chen fullname: Chen, Pei organization: Shaanxi Normal University – sequence: 7 givenname: Yu orcidid: 0000-0001-9545-6761 surname: Chen fullname: Chen, Yu email: chenyu001@snnu.edu.cn organization: Shaanxi Normal University |
BookMark | eNqFkEFPAjEQhRuDiYhePTfxDLbdpQtHJKAkiInR86btTqG4tNjtYkg8-BP8jf4SSzCYmBjnMnN435u8d4oa1llA6IKSDiWEXQmwqw4jjJKkT_kRalJO0zbvpaRxuBN2gs6raknipP2oTJrobWIDeC2UESUe2bmxAN7YebwXwiqocFgAHpWggndCBbMxYYudxmMvVvD5_jE1z4CHziqxAfywGNb42qwgiLI0Cs-EdaqW0UU7j2cmeBGiCoo6Ojl7ho61KCs4_94t9DQePQ5v29P7m8lwMG2rhGa8LRRksiApLSR0KZdpJiX0KOlBpmOOjBeaEyaFTiWNm4NiCWUF60tdiIwVSQtd7n3X3r3UUIV86Wpv48uc8S7LYj20G1WdvUp5V1UedL72ZiX8Nqck35Wc70rODyVHIP0FKBPELljMacq_sf4eezUlbP95kg9Gs7sf9guboJZV |
CitedBy_id | crossref_primary_10_1002_cssc_202401607 crossref_primary_10_1016_j_jelechem_2023_117706 crossref_primary_10_1021_acs_nanolett_4c06396 crossref_primary_10_1002_celc_202201122 crossref_primary_10_1039_D3QI01021J crossref_primary_10_1016_j_cej_2023_143889 crossref_primary_10_1021_acs_jpcc_3c00785 crossref_primary_10_1021_acsami_2c19011 crossref_primary_10_1002_asia_202200983 crossref_primary_10_1021_jacs_3c12783 crossref_primary_10_1021_acsami_3c02101 crossref_primary_10_1016_j_cattod_2024_114809 crossref_primary_10_1039_D2EE04095F crossref_primary_10_1016_j_apcatb_2024_124205 crossref_primary_10_1002_anie_202407589 crossref_primary_10_1021_acs_langmuir_3c04025 crossref_primary_10_1002_ece2_33 crossref_primary_10_1021_accountsmr_2c00261 crossref_primary_10_1002_smll_202309559 crossref_primary_10_1021_acssuschemeng_3c03458 crossref_primary_10_1021_acssuschemeng_4c00394 crossref_primary_10_1016_j_apcatb_2024_124390 crossref_primary_10_26599_NRE_2022_9120010 crossref_primary_10_1016_j_mcat_2024_114548 crossref_primary_10_1016_j_jcis_2023_03_023 crossref_primary_10_1002_adma_202415632 crossref_primary_10_1007_s11705_024_2452_y crossref_primary_10_1016_j_matchemphys_2023_128812 crossref_primary_10_1021_acscatal_2c04584 crossref_primary_10_1088_1361_6528_ac9b60 crossref_primary_10_1002_cey2_367 crossref_primary_10_1002_adma_202312746 crossref_primary_10_1039_D4MH01133C crossref_primary_10_1016_j_ijhydene_2023_12_128 crossref_primary_10_1039_D3CC03293K crossref_primary_10_1039_D4TA04550E crossref_primary_10_1039_D4EY00016A crossref_primary_10_1002_anie_202303483 crossref_primary_10_1039_D3TA03467D crossref_primary_10_1002_adfm_202401796 crossref_primary_10_1021_acsanm_4c03049 crossref_primary_10_1002_adfm_202420153 crossref_primary_10_1016_j_ccr_2024_216418 crossref_primary_10_1002_aenm_202302608 crossref_primary_10_1002_anie_202406046 crossref_primary_10_1016_j_apsusc_2023_159082 crossref_primary_10_1002_aenm_202402970 crossref_primary_10_1002_cey2_491 crossref_primary_10_1016_j_jechem_2022_11_024 crossref_primary_10_1016_j_jece_2023_110927 crossref_primary_10_1016_j_enchem_2025_100148 crossref_primary_10_1016_j_jelechem_2024_118143 crossref_primary_10_1002_smll_202207661 crossref_primary_10_1002_adfm_202410941 crossref_primary_10_1021_acs_energyfuels_3c01259 crossref_primary_10_1039_D4TA03153A crossref_primary_10_1002_aenm_202401591 crossref_primary_10_1002_smll_202203335 crossref_primary_10_1126_sciadv_adm9325 crossref_primary_10_1039_D2DT03720C crossref_primary_10_1002_smll_202206563 crossref_primary_10_1515_revic_2024_0107 crossref_primary_10_1016_j_jechem_2023_06_005 crossref_primary_10_1002_ange_202406046 crossref_primary_10_1002_adfm_202413243 crossref_primary_10_1002_adfm_202304963 crossref_primary_10_1021_acssuschemeng_3c02473 crossref_primary_10_1002_celc_202300419 crossref_primary_10_1016_j_jelechem_2023_117386 crossref_primary_10_1002_adfm_202310288 crossref_primary_10_1016_j_mtener_2024_101610 crossref_primary_10_1002_cctc_202301545 crossref_primary_10_1039_D3NR05331H crossref_primary_10_1039_D3SE01024D crossref_primary_10_1039_D3QI01536J crossref_primary_10_1016_j_apcatb_2023_122772 crossref_primary_10_1021_acscatal_3c02740 crossref_primary_10_1016_j_apcatb_2022_121805 crossref_primary_10_1002_adfm_202300512 crossref_primary_10_1016_j_cej_2024_155399 crossref_primary_10_1002_adfm_202313548 crossref_primary_10_1016_j_apcatb_2024_124408 crossref_primary_10_1039_D3TA05082C crossref_primary_10_1002_ange_202303483 crossref_primary_10_1021_acsami_2c09241 crossref_primary_10_1016_j_jelechem_2022_117118 crossref_primary_10_1016_j_nanoen_2023_108597 crossref_primary_10_1039_D2TA03358E crossref_primary_10_1002_adfm_202417914 crossref_primary_10_1007_s12274_024_6470_3 crossref_primary_10_1016_j_nxener_2024_100125 crossref_primary_10_1021_acsaem_3c03047 crossref_primary_10_1016_j_nanoen_2024_109396 crossref_primary_10_1002_adfm_202401287 crossref_primary_10_1016_j_watres_2023_120256 crossref_primary_10_1002_adma_202200840 crossref_primary_10_1039_D3CC02791K crossref_primary_10_1021_acs_inorgchem_2c02716 crossref_primary_10_1002_ange_202407589 crossref_primary_10_1039_D2TA08095H crossref_primary_10_1002_adfm_202409696 crossref_primary_10_1016_j_jhazmat_2022_130651 crossref_primary_10_1002_aenm_202300669 crossref_primary_10_1016_j_mtchem_2024_102418 crossref_primary_10_1016_j_ese_2023_100383 crossref_primary_10_1016_j_ijhydene_2024_07_109 crossref_primary_10_1016_j_apcatb_2025_125195 crossref_primary_10_1021_acscatal_4c00879 crossref_primary_10_1002_smll_202308246 crossref_primary_10_1016_j_cej_2024_149769 crossref_primary_10_1016_j_ccr_2024_215802 crossref_primary_10_1002_adma_202400396 crossref_primary_10_3390_ma16114000 crossref_primary_10_1016_j_apsusc_2024_159881 crossref_primary_10_1016_j_jechem_2023_08_043 crossref_primary_10_1002_adsu_202400523 crossref_primary_10_1039_D2TA04295A crossref_primary_10_1002_chem_202300398 crossref_primary_10_1016_j_cej_2024_156343 crossref_primary_10_1002_aenm_202401717 crossref_primary_10_54227_elab_20220022 crossref_primary_10_1039_D2DT02256G crossref_primary_10_1002_smll_202302266 crossref_primary_10_1016_j_apcatb_2022_121876 crossref_primary_10_1016_j_cattod_2024_114662 crossref_primary_10_26599_NR_2025_94907248 crossref_primary_10_1002_adma_202304021 crossref_primary_10_1021_acssuschemeng_4c04572 crossref_primary_10_1021_acs_inorgchem_3c02886 crossref_primary_10_1016_j_apsusc_2022_155872 crossref_primary_10_1021_acsami_3c04714 crossref_primary_10_1039_D2SE01414A crossref_primary_10_1016_j_jechem_2022_10_020 crossref_primary_10_1039_D4TA03840A crossref_primary_10_1039_D3TA04385A crossref_primary_10_1016_j_cej_2023_146529 crossref_primary_10_1021_acsanm_4c04066 crossref_primary_10_1073_pnas_2311149120 crossref_primary_10_1038_s41467_023_43897_6 crossref_primary_10_1039_D3TA01883K crossref_primary_10_1039_D4NR00981A crossref_primary_10_1021_acsnano_3c01862 crossref_primary_10_1007_s40843_023_2552_1 |
Cites_doi | 10.1021/acs.nanolett.1c00902 10.1016/j.apmt.2020.100620 10.1002/smll.202005092 10.1126/science.1140484 10.1021/jacs.8b03080 10.1021/ja801210s 10.1021/acs.nanolett.9b02729 10.1016/j.apcatb.2020.118589 10.1021/acssuschemeng.6b02994 10.1039/D0CS00013B 10.1039/C7TA10866D 10.1002/anie.202003071 10.1002/anie.201207491 10.1021/acscatal.8b03447 10.1038/s41563-020-0610-2 10.1007/s12274-021-3348-5 10.1039/c2sc00723a 10.1002/smll.202007179 10.1021/acsami.1c11249 10.1002/anie.202003654 10.1039/C9EE00752K 10.1039/C9TA05334D 10.1002/anie.202111426 10.1021/acscatal.0c03747 10.1126/science.aaw7493 10.1002/aenm.201901945 10.1103/PhysRevA.43.3161 10.1021/acsami.6b02223 10.1039/D1TA08038E 10.1039/D0CC05720G 10.1038/s41565-020-0665-x 10.1002/anie.201915992 10.1021/acscatal.9b05260 10.1039/C9TA08806G 10.1016/j.jechem.2020.03.054 10.1021/acsami.8b09297 10.1002/smll.202001775 10.1021/acsaem.0c00801 10.1002/aenm.201801400 10.1002/chem.201203332 10.1021/acsami.7b04874 10.1021/acscatal.1c01413 10.1021/acs.accounts.0c00488 10.1016/j.electacta.2007.03.072 10.1021/acsami.1c15206 10.1002/anie.202002647 10.1002/anie.201201557 10.1126/science.abc3183 10.1039/D1TA04743D 10.1016/j.cej.2021.130759 10.1002/adma.202007733 10.1021/acsami.0c01937 10.1002/aenm.201801326 10.1016/j.apcatb.2019.118082 10.1038/s41560-020-0654-1 10.1002/aenm.201903038 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202103916 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202103916 AENM202103916 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: GK202101005; GK202103062 – fundername: Open Foundation of Guangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials at Guangxi University funderid: 2021GXYSOF02 – fundername: National Natural Science Foundation of China funderid: 21875133; 51873100 – fundername: Natural Science Foundation of Shaanxi Province funderid: 2020JZ‐23 – fundername: 111 Project funderid: B14041 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3176-ace7bd041dbe516b47bbe8108e7f49176df602baf4b102b6ec2312d29bfda72d3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:07:35 EDT 2025 Tue Jul 01 01:43:43 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Wed Jan 22 16:24:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3176-ace7bd041dbe516b47bbe8108e7f49176df602baf4b102b6ec2312d29bfda72d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9545-6761 |
PQID | 2652761415 |
PQPubID | 886389 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2652761415 crossref_primary_10_1002_aenm_202103916 crossref_citationtrail_10_1002_aenm_202103916 wiley_primary_10_1002_aenm_202103916_AENM202103916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2017; 5 2019; 7 2021; 21 2018; 140 2019; 12 2021; 426 2020; 369 2020; 16 2020; 59 2020; 15 2019; 366 2019; 19 2020; 265 2020; 56 2020; 12 2020; 10 2007; 52 2017; 9 2020; 19 2012; 51 2013; 19 2021; 14 2021; 13 2018; 6 2018; 8 2020; 5 2021; 54 2007; 316 2012; 3 2020; 3 2021; 11 2021; 33 2020; 51 1991; 43 2021; 17 2020; 49 2019; 259 2021; 60 2018; 10 2016; 8 2008; 130 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 105 year: 2020 publication-title: J. Energy Chem. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 311 year: 2021 publication-title: Acc. Chem. Res. – volume: 15 start-page: 390 year: 2020 publication-title: Nat. Nanotechnol. – volume: 21 start-page: 5075 year: 2021 publication-title: Nano Lett. – volume: 59 start-page: 5350 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2018 publication-title: ACS Catal. – volume: 316 start-page: 732 year: 2007 publication-title: Science – volume: 60 year: 2021 publication-title: Angew. Chem. – volume: 3 start-page: 1157 year: 2012 publication-title: Chem. Sci. – volume: 51 year: 2012 publication-title: Angew. Chem. – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 259 year: 2019 publication-title: Appl. Catal. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 start-page: 1179 year: 2021 publication-title: ACS Catal. – volume: 19 start-page: 266 year: 2020 publication-title: Nat. Mater. – volume: 366 start-page: 850 year: 2019 publication-title: Science – volume: 19 start-page: 8447 year: 2019 publication-title: Nano Lett. – volume: 51 start-page: 7656 year: 2012 publication-title: Angew. Chem. – volume: 130 start-page: 5868 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 9744 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 5 start-page: 605 year: 2020 publication-title: Nat. Energy – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 2056 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 369 year: 2020 publication-title: Science – volume: 426 year: 2021 publication-title: Chem. Eng. J. – volume: 3 start-page: 5077 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 17 year: 2021 publication-title: Small – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 3533 year: 2020 publication-title: ACS Catal. – volume: 49 start-page: 3072 year: 2020 publication-title: Chem. Soc. Rev. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 6237 year: 2007 publication-title: Electrochim. Acta – volume: 19 start-page: 233 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 3161 year: 1991 publication-title: Phys. Rev. A – volume: 19 year: 2020 publication-title: Appl. Mater. Today – volume: 6 start-page: 3211 year: 2018 publication-title: J. Mater. Chem. A – volume: 14 start-page: 4093 year: 2021 publication-title: Nano Res. – volume: 12 start-page: 2298 year: 2019 publication-title: Energy Environ. Sci. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 265 year: 2020 publication-title: Appl. Catal., B – volume: 11 start-page: 7568 year: 2021 publication-title: ACS Catal. – ident: e_1_2_8_12_1 doi: 10.1021/acs.nanolett.1c00902 – ident: e_1_2_8_50_1 doi: 10.1016/j.apmt.2020.100620 – ident: e_1_2_8_4_1 doi: 10.1002/smll.202005092 – ident: e_1_2_8_8_1 doi: 10.1126/science.1140484 – ident: e_1_2_8_25_1 doi: 10.1021/jacs.8b03080 – ident: e_1_2_8_38_1 doi: 10.1021/ja801210s – ident: e_1_2_8_14_1 doi: 10.1021/acs.nanolett.9b02729 – ident: e_1_2_8_22_1 doi: 10.1016/j.apcatb.2020.118589 – ident: e_1_2_8_39_1 doi: 10.1021/acssuschemeng.6b02994 – ident: e_1_2_8_3_1 doi: 10.1039/D0CS00013B – ident: e_1_2_8_53_1 doi: 10.1039/C7TA10866D – ident: e_1_2_8_28_1 doi: 10.1002/anie.202003071 – ident: e_1_2_8_41_1 doi: 10.1002/anie.201207491 – ident: e_1_2_8_15_1 doi: 10.1021/acscatal.8b03447 – ident: e_1_2_8_17_1 doi: 10.1038/s41563-020-0610-2 – ident: e_1_2_8_56_1 doi: 10.1007/s12274-021-3348-5 – ident: e_1_2_8_32_1 doi: 10.1039/c2sc00723a – ident: e_1_2_8_37_1 doi: 10.1002/smll.202007179 – ident: e_1_2_8_45_1 doi: 10.1021/acsami.1c11249 – ident: e_1_2_8_5_1 doi: 10.1002/anie.202003654 – ident: e_1_2_8_18_1 doi: 10.1039/C9EE00752K – ident: e_1_2_8_33_1 doi: 10.1039/C9TA05334D – ident: e_1_2_8_11_1 doi: 10.1002/anie.202111426 – ident: e_1_2_8_13_1 doi: 10.1021/acscatal.0c03747 – ident: e_1_2_8_9_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_8_1_1 doi: 10.1002/aenm.201901945 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevA.43.3161 – ident: e_1_2_8_7_1 doi: 10.1021/acsami.6b02223 – ident: e_1_2_8_21_1 doi: 10.1039/D1TA08038E – ident: e_1_2_8_24_1 doi: 10.1039/D0CC05720G – ident: e_1_2_8_6_1 doi: 10.1038/s41565-020-0665-x – ident: e_1_2_8_30_1 doi: 10.1002/anie.201915992 – ident: e_1_2_8_29_1 doi: 10.1021/acscatal.9b05260 – ident: e_1_2_8_34_1 doi: 10.1039/C9TA08806G – ident: e_1_2_8_16_1 doi: 10.1016/j.jechem.2020.03.054 – ident: e_1_2_8_26_1 doi: 10.1021/acsami.8b09297 – ident: e_1_2_8_43_1 doi: 10.1002/smll.202001775 – ident: e_1_2_8_36_1 doi: 10.1021/acsaem.0c00801 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201801400 – ident: e_1_2_8_35_1 doi: 10.1002/chem.201203332 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.7b04874 – ident: e_1_2_8_46_1 doi: 10.1021/acscatal.1c01413 – ident: e_1_2_8_2_1 doi: 10.1021/acs.accounts.0c00488 – ident: e_1_2_8_54_1 doi: 10.1016/j.electacta.2007.03.072 – ident: e_1_2_8_48_1 doi: 10.1021/acsami.1c15206 – ident: e_1_2_8_51_1 doi: 10.1002/anie.202002647 – ident: e_1_2_8_40_1 doi: 10.1002/anie.201201557 – ident: e_1_2_8_42_1 doi: 10.1126/science.abc3183 – ident: e_1_2_8_47_1 doi: 10.1039/D1TA04743D – ident: e_1_2_8_44_1 doi: 10.1016/j.cej.2021.130759 – ident: e_1_2_8_55_1 doi: 10.1002/adma.202007733 – ident: e_1_2_8_52_1 doi: 10.1021/acsami.0c01937 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.201801326 – ident: e_1_2_8_27_1 doi: 10.1016/j.apcatb.2019.118082 – ident: e_1_2_8_49_1 doi: 10.1038/s41560-020-0654-1 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.201903038 |
SSID | ssj0000491033 |
Score | 2.6618192 |
Snippet | Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ammonia bimetallic nanocubes Bimetals Catalysis Density functional theory Electroactivity Electrocatalysts interfacial engineering Mass transfer nitrate reduction reaction Organic chemistry Reduction RhCu alloys Rhodium |
Title | Interfacial Engineering Enhances the Electroactivity of Frame‐Like Concave RhCu Bimetallic Nanocubes for Nitrate Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103916 https://www.proquest.com/docview/2652761415 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7gUOiF9RWJAPSByqQOIkTvbYXVpWq7ZIkIruKbJjR42AFLENB8SBR-AZeDSehLHjOF5UYOESpU46qTxfxjPT8TcIPQ5TKRnzU0-UYexFLPU9WPRSr4jihAkpZKzbvc0X9GQZna7i1WDw3alaarb8afF5576S_9EqjIFe1S7Zf9CsFQoDcA76hSNoGI6X0rFO55VMZ70dYkE4XytlnmuvctI2ulEbGD6Z-oupqsiyZQ6z6q3qXVcXqhHRq_VxMzqq3ktwyhX_NVjfTdFwqWkbADeazBaUIlrWWde3HXflBLLdTwi-cDsJNjld2Weuqnr0wmIqA4zaS6cV24zeMLOiKh_btF05a2w6aN1LOgJJZ4Y-3GQvIPDti14uZyMd2wyehEdTkw6V7ljL-GQNOnGBG-9cKFriWSZrxUZA1P_hwQ5G7sXLfLqczfJsssquoH0CoQgY__3x8_nstc3kQYwF39c7Obpf2LGD-uTZxUdc9H76kMYNjLRnk91A101Igsctvm6igaxvoWsOnm6jLw7SsHMFd0jDgDT8C9LwpsQaaT--flMYwwZjWGEM9xjDFmMYMIYNxrDF2B20nE6y4xPP9O3wCvBGqccKmXDhR4HgMg4ojxLOZRr4qUxKmKuEipL6hLMy4uDecioLCDKIIIe8FCwhIryL9upNLe8hTKPEl1EhWKQSGWA-WFyGqUiCQ5HysKBD5HXzmReG1F71VnmXt3TcJFfzn9v5H6In9v4PLZ3Lb-886NSTm1f-PCc0JgkoOYiHiGiV_UVKPp4s5vbT_T_LfICu9q_IAdrbfmzkQ3B5t_yRwdxPzJ6rwA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Engineering+Enhances+the+Electroactivity+of+Frame%E2%80%90Like+Concave+RhCu+Bimetallic+Nanocubes+for+Nitrate+Reduction&rft.jtitle=Advanced+energy+materials&rft.au=Zi%E2%80%90Xin+Ge&rft.au=Tian%E2%80%90Jiao+Wang&rft.au=Ding%2C+Yu&rft.au=Shi%E2%80%90Bin+Yin&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=15&rft_id=info:doi/10.1002%2Faenm.202103916&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |