Interfacial Engineering Enhances the Electroactivity of Frame‐Like Concave RhCu Bimetallic Nanocubes for Nitrate Reduction

Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐Rh...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 15
Main Authors Ge, Zi‐Xin, Wang, Tian‐Jiao, Ding, Yu, Yin, Shi‐Bin, Li, Fu‐Min, Chen, Pei, Chen, Yu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202103916

Cover

Loading…
Abstract Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐RhCu cNCs) are reported with an electrochemically active surface area of 72.8 m2 g−1 as a robust electrocatalyst for the 8e reduction of nitrate (NO3−) to NH3. PA‐RhCu cNCs show a remarkable NH3 production yield of 2.40 mg h−1 mgcat−1 and a high faradaic efficiency of 93.7% at +0.05 V potential. Density functional theory calculations and experimental results indicate that Cu and PA (adsorbed amino) coregulate the Rh d‐band center, which slightly weakens the adsorption energy of reaction‐related species on Rh. In addition, the electrochemical interface mass transfer accelerated by the surface PA further determines the notable performance of PA‐RhCu cNCs for electroreduction of NO3− to NH3. These findings may open an avenue to construct other advanced catalysts based on organic molecule‐mediated interfacial engineering in various catalysis/electrocatalysis fields. Polyallylamine functionalized frame‐like concave RhCu bimetallic nanocubes are synthesized by a facile wet chemical method, which achieve a remarkable NH3 production yield of 2.40 mg h–1 mgcat–1 and a high Faradaic efficiency of 93.7% at +0.05 V for NO3− electroreduction thanks to abundant active sites, Cu and polyallylamine coregulated Rh electronic structure and accelerated mass transfer induced by polyallylamine.
AbstractList Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH 3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐RhCu cNCs) are reported with an electrochemically active surface area of 72.8 m 2 g −1 as a robust electrocatalyst for the 8e reduction of nitrate (NO 3 − ) to NH 3 . PA‐RhCu cNCs show a remarkable NH 3 production yield of 2.40 mg h −1 mg cat −1 and a high faradaic efficiency of 93.7% at +0.05 V potential. Density functional theory calculations and experimental results indicate that Cu and PA (adsorbed amino) coregulate the Rh d‐band center, which slightly weakens the adsorption energy of reaction‐related species on Rh. In addition, the electrochemical interface mass transfer accelerated by the surface PA further determines the notable performance of PA‐RhCu cNCs for electroreduction of NO 3 − to NH 3 . These findings may open an avenue to construct other advanced catalysts based on organic molecule‐mediated interfacial engineering in various catalysis/electrocatalysis fields.
Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐RhCu cNCs) are reported with an electrochemically active surface area of 72.8 m2 g−1 as a robust electrocatalyst for the 8e reduction of nitrate (NO3−) to NH3. PA‐RhCu cNCs show a remarkable NH3 production yield of 2.40 mg h−1 mgcat−1 and a high faradaic efficiency of 93.7% at +0.05 V potential. Density functional theory calculations and experimental results indicate that Cu and PA (adsorbed amino) coregulate the Rh d‐band center, which slightly weakens the adsorption energy of reaction‐related species on Rh. In addition, the electrochemical interface mass transfer accelerated by the surface PA further determines the notable performance of PA‐RhCu cNCs for electroreduction of NO3− to NH3. These findings may open an avenue to construct other advanced catalysts based on organic molecule‐mediated interfacial engineering in various catalysis/electrocatalysis fields.
Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and environmentally‐friendly NH3 synthesis strategies are highly desired. Here polyallylamine (PA) functionalized frame‐like concave RhCu bimetallic nanocubes (PA‐RhCu cNCs) are reported with an electrochemically active surface area of 72.8 m2 g−1 as a robust electrocatalyst for the 8e reduction of nitrate (NO3−) to NH3. PA‐RhCu cNCs show a remarkable NH3 production yield of 2.40 mg h−1 mgcat−1 and a high faradaic efficiency of 93.7% at +0.05 V potential. Density functional theory calculations and experimental results indicate that Cu and PA (adsorbed amino) coregulate the Rh d‐band center, which slightly weakens the adsorption energy of reaction‐related species on Rh. In addition, the electrochemical interface mass transfer accelerated by the surface PA further determines the notable performance of PA‐RhCu cNCs for electroreduction of NO3− to NH3. These findings may open an avenue to construct other advanced catalysts based on organic molecule‐mediated interfacial engineering in various catalysis/electrocatalysis fields. Polyallylamine functionalized frame‐like concave RhCu bimetallic nanocubes are synthesized by a facile wet chemical method, which achieve a remarkable NH3 production yield of 2.40 mg h–1 mgcat–1 and a high Faradaic efficiency of 93.7% at +0.05 V for NO3− electroreduction thanks to abundant active sites, Cu and polyallylamine coregulated Rh electronic structure and accelerated mass transfer induced by polyallylamine.
Author Li, Fu‐Min
Ge, Zi‐Xin
Wang, Tian‐Jiao
Yin, Shi‐Bin
Chen, Pei
Chen, Yu
Ding, Yu
Author_xml – sequence: 1
  givenname: Zi‐Xin
  surname: Ge
  fullname: Ge, Zi‐Xin
  organization: Shaanxi Normal University
– sequence: 2
  givenname: Tian‐Jiao
  surname: Wang
  fullname: Wang, Tian‐Jiao
  organization: Shaanxi Normal University
– sequence: 3
  givenname: Yu
  surname: Ding
  fullname: Ding, Yu
  organization: Shaanxi Normal University
– sequence: 4
  givenname: Shi‐Bin
  surname: Yin
  fullname: Yin, Shi‐Bin
  organization: Guangxi University
– sequence: 5
  givenname: Fu‐Min
  surname: Li
  fullname: Li, Fu‐Min
  email: fuminli@snnu.edu.cn
  organization: Shaanxi Normal University
– sequence: 6
  givenname: Pei
  surname: Chen
  fullname: Chen, Pei
  organization: Shaanxi Normal University
– sequence: 7
  givenname: Yu
  orcidid: 0000-0001-9545-6761
  surname: Chen
  fullname: Chen, Yu
  email: chenyu001@snnu.edu.cn
  organization: Shaanxi Normal University
BookMark eNqFkEFPAjEQhRuDiYhePTfxDLbdpQtHJKAkiInR86btTqG4tNjtYkg8-BP8jf4SSzCYmBjnMnN435u8d4oa1llA6IKSDiWEXQmwqw4jjJKkT_kRalJO0zbvpaRxuBN2gs6raknipP2oTJrobWIDeC2UESUe2bmxAN7YebwXwiqocFgAHpWggndCBbMxYYudxmMvVvD5_jE1z4CHziqxAfywGNb42qwgiLI0Cs-EdaqW0UU7j2cmeBGiCoo6Ojl7ho61KCs4_94t9DQePQ5v29P7m8lwMG2rhGa8LRRksiApLSR0KZdpJiX0KOlBpmOOjBeaEyaFTiWNm4NiCWUF60tdiIwVSQtd7n3X3r3UUIV86Wpv48uc8S7LYj20G1WdvUp5V1UedL72ZiX8Nqck35Wc70rODyVHIP0FKBPELljMacq_sf4eezUlbP95kg9Gs7sf9guboJZV
CitedBy_id crossref_primary_10_1002_cssc_202401607
crossref_primary_10_1016_j_jelechem_2023_117706
crossref_primary_10_1021_acs_nanolett_4c06396
crossref_primary_10_1002_celc_202201122
crossref_primary_10_1039_D3QI01021J
crossref_primary_10_1016_j_cej_2023_143889
crossref_primary_10_1021_acs_jpcc_3c00785
crossref_primary_10_1021_acsami_2c19011
crossref_primary_10_1002_asia_202200983
crossref_primary_10_1021_jacs_3c12783
crossref_primary_10_1021_acsami_3c02101
crossref_primary_10_1016_j_cattod_2024_114809
crossref_primary_10_1039_D2EE04095F
crossref_primary_10_1016_j_apcatb_2024_124205
crossref_primary_10_1002_anie_202407589
crossref_primary_10_1021_acs_langmuir_3c04025
crossref_primary_10_1002_ece2_33
crossref_primary_10_1021_accountsmr_2c00261
crossref_primary_10_1002_smll_202309559
crossref_primary_10_1021_acssuschemeng_3c03458
crossref_primary_10_1021_acssuschemeng_4c00394
crossref_primary_10_1016_j_apcatb_2024_124390
crossref_primary_10_26599_NRE_2022_9120010
crossref_primary_10_1016_j_mcat_2024_114548
crossref_primary_10_1016_j_jcis_2023_03_023
crossref_primary_10_1002_adma_202415632
crossref_primary_10_1007_s11705_024_2452_y
crossref_primary_10_1016_j_matchemphys_2023_128812
crossref_primary_10_1021_acscatal_2c04584
crossref_primary_10_1088_1361_6528_ac9b60
crossref_primary_10_1002_cey2_367
crossref_primary_10_1002_adma_202312746
crossref_primary_10_1039_D4MH01133C
crossref_primary_10_1016_j_ijhydene_2023_12_128
crossref_primary_10_1039_D3CC03293K
crossref_primary_10_1039_D4TA04550E
crossref_primary_10_1039_D4EY00016A
crossref_primary_10_1002_anie_202303483
crossref_primary_10_1039_D3TA03467D
crossref_primary_10_1002_adfm_202401796
crossref_primary_10_1021_acsanm_4c03049
crossref_primary_10_1002_adfm_202420153
crossref_primary_10_1016_j_ccr_2024_216418
crossref_primary_10_1002_aenm_202302608
crossref_primary_10_1002_anie_202406046
crossref_primary_10_1016_j_apsusc_2023_159082
crossref_primary_10_1002_aenm_202402970
crossref_primary_10_1002_cey2_491
crossref_primary_10_1016_j_jechem_2022_11_024
crossref_primary_10_1016_j_jece_2023_110927
crossref_primary_10_1016_j_enchem_2025_100148
crossref_primary_10_1016_j_jelechem_2024_118143
crossref_primary_10_1002_smll_202207661
crossref_primary_10_1002_adfm_202410941
crossref_primary_10_1021_acs_energyfuels_3c01259
crossref_primary_10_1039_D4TA03153A
crossref_primary_10_1002_aenm_202401591
crossref_primary_10_1002_smll_202203335
crossref_primary_10_1126_sciadv_adm9325
crossref_primary_10_1039_D2DT03720C
crossref_primary_10_1002_smll_202206563
crossref_primary_10_1515_revic_2024_0107
crossref_primary_10_1016_j_jechem_2023_06_005
crossref_primary_10_1002_ange_202406046
crossref_primary_10_1002_adfm_202413243
crossref_primary_10_1002_adfm_202304963
crossref_primary_10_1021_acssuschemeng_3c02473
crossref_primary_10_1002_celc_202300419
crossref_primary_10_1016_j_jelechem_2023_117386
crossref_primary_10_1002_adfm_202310288
crossref_primary_10_1016_j_mtener_2024_101610
crossref_primary_10_1002_cctc_202301545
crossref_primary_10_1039_D3NR05331H
crossref_primary_10_1039_D3SE01024D
crossref_primary_10_1039_D3QI01536J
crossref_primary_10_1016_j_apcatb_2023_122772
crossref_primary_10_1021_acscatal_3c02740
crossref_primary_10_1016_j_apcatb_2022_121805
crossref_primary_10_1002_adfm_202300512
crossref_primary_10_1016_j_cej_2024_155399
crossref_primary_10_1002_adfm_202313548
crossref_primary_10_1016_j_apcatb_2024_124408
crossref_primary_10_1039_D3TA05082C
crossref_primary_10_1002_ange_202303483
crossref_primary_10_1021_acsami_2c09241
crossref_primary_10_1016_j_jelechem_2022_117118
crossref_primary_10_1016_j_nanoen_2023_108597
crossref_primary_10_1039_D2TA03358E
crossref_primary_10_1002_adfm_202417914
crossref_primary_10_1007_s12274_024_6470_3
crossref_primary_10_1016_j_nxener_2024_100125
crossref_primary_10_1021_acsaem_3c03047
crossref_primary_10_1016_j_nanoen_2024_109396
crossref_primary_10_1002_adfm_202401287
crossref_primary_10_1016_j_watres_2023_120256
crossref_primary_10_1002_adma_202200840
crossref_primary_10_1039_D3CC02791K
crossref_primary_10_1021_acs_inorgchem_2c02716
crossref_primary_10_1002_ange_202407589
crossref_primary_10_1039_D2TA08095H
crossref_primary_10_1002_adfm_202409696
crossref_primary_10_1016_j_jhazmat_2022_130651
crossref_primary_10_1002_aenm_202300669
crossref_primary_10_1016_j_mtchem_2024_102418
crossref_primary_10_1016_j_ese_2023_100383
crossref_primary_10_1016_j_ijhydene_2024_07_109
crossref_primary_10_1016_j_apcatb_2025_125195
crossref_primary_10_1021_acscatal_4c00879
crossref_primary_10_1002_smll_202308246
crossref_primary_10_1016_j_cej_2024_149769
crossref_primary_10_1016_j_ccr_2024_215802
crossref_primary_10_1002_adma_202400396
crossref_primary_10_3390_ma16114000
crossref_primary_10_1016_j_apsusc_2024_159881
crossref_primary_10_1016_j_jechem_2023_08_043
crossref_primary_10_1002_adsu_202400523
crossref_primary_10_1039_D2TA04295A
crossref_primary_10_1002_chem_202300398
crossref_primary_10_1016_j_cej_2024_156343
crossref_primary_10_1002_aenm_202401717
crossref_primary_10_54227_elab_20220022
crossref_primary_10_1039_D2DT02256G
crossref_primary_10_1002_smll_202302266
crossref_primary_10_1016_j_apcatb_2022_121876
crossref_primary_10_1016_j_cattod_2024_114662
crossref_primary_10_26599_NR_2025_94907248
crossref_primary_10_1002_adma_202304021
crossref_primary_10_1021_acssuschemeng_4c04572
crossref_primary_10_1021_acs_inorgchem_3c02886
crossref_primary_10_1016_j_apsusc_2022_155872
crossref_primary_10_1021_acsami_3c04714
crossref_primary_10_1039_D2SE01414A
crossref_primary_10_1016_j_jechem_2022_10_020
crossref_primary_10_1039_D4TA03840A
crossref_primary_10_1039_D3TA04385A
crossref_primary_10_1016_j_cej_2023_146529
crossref_primary_10_1021_acsanm_4c04066
crossref_primary_10_1073_pnas_2311149120
crossref_primary_10_1038_s41467_023_43897_6
crossref_primary_10_1039_D3TA01883K
crossref_primary_10_1039_D4NR00981A
crossref_primary_10_1021_acsnano_3c01862
crossref_primary_10_1007_s40843_023_2552_1
Cites_doi 10.1021/acs.nanolett.1c00902
10.1016/j.apmt.2020.100620
10.1002/smll.202005092
10.1126/science.1140484
10.1021/jacs.8b03080
10.1021/ja801210s
10.1021/acs.nanolett.9b02729
10.1016/j.apcatb.2020.118589
10.1021/acssuschemeng.6b02994
10.1039/D0CS00013B
10.1039/C7TA10866D
10.1002/anie.202003071
10.1002/anie.201207491
10.1021/acscatal.8b03447
10.1038/s41563-020-0610-2
10.1007/s12274-021-3348-5
10.1039/c2sc00723a
10.1002/smll.202007179
10.1021/acsami.1c11249
10.1002/anie.202003654
10.1039/C9EE00752K
10.1039/C9TA05334D
10.1002/anie.202111426
10.1021/acscatal.0c03747
10.1126/science.aaw7493
10.1002/aenm.201901945
10.1103/PhysRevA.43.3161
10.1021/acsami.6b02223
10.1039/D1TA08038E
10.1039/D0CC05720G
10.1038/s41565-020-0665-x
10.1002/anie.201915992
10.1021/acscatal.9b05260
10.1039/C9TA08806G
10.1016/j.jechem.2020.03.054
10.1021/acsami.8b09297
10.1002/smll.202001775
10.1021/acsaem.0c00801
10.1002/aenm.201801400
10.1002/chem.201203332
10.1021/acsami.7b04874
10.1021/acscatal.1c01413
10.1021/acs.accounts.0c00488
10.1016/j.electacta.2007.03.072
10.1021/acsami.1c15206
10.1002/anie.202002647
10.1002/anie.201201557
10.1126/science.abc3183
10.1039/D1TA04743D
10.1016/j.cej.2021.130759
10.1002/adma.202007733
10.1021/acsami.0c01937
10.1002/aenm.201801326
10.1016/j.apcatb.2019.118082
10.1038/s41560-020-0654-1
10.1002/aenm.201903038
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202103916
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202103916
AENM202103916
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: GK202101005; GK202103062
– fundername: Open Foundation of Guangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials at Guangxi University
  funderid: 2021GXYSOF02
– fundername: National Natural Science Foundation of China
  funderid: 21875133; 51873100
– fundername: Natural Science Foundation of Shaanxi Province
  funderid: 2020JZ‐23
– fundername: 111 Project
  funderid: B14041
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3176-ace7bd041dbe516b47bbe8108e7f49176df602baf4b102b6ec2312d29bfda72d3
ISSN 1614-6832
IngestDate Fri Jul 25 12:07:35 EDT 2025
Tue Jul 01 01:43:43 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Wed Jan 22 16:24:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3176-ace7bd041dbe516b47bbe8108e7f49176df602baf4b102b6ec2312d29bfda72d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9545-6761
PQID 2652761415
PQPubID 886389
PageCount 11
ParticipantIDs proquest_journals_2652761415
crossref_primary_10_1002_aenm_202103916
crossref_citationtrail_10_1002_aenm_202103916
wiley_primary_10_1002_aenm_202103916_AENM202103916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2017; 5
2019; 7
2021; 21
2018; 140
2019; 12
2021; 426
2020; 369
2020; 16
2020; 59
2020; 15
2019; 366
2019; 19
2020; 265
2020; 56
2020; 12
2020; 10
2007; 52
2017; 9
2020; 19
2012; 51
2013; 19
2021; 14
2021; 13
2018; 6
2018; 8
2020; 5
2021; 54
2007; 316
2012; 3
2020; 3
2021; 11
2021; 33
2020; 51
1991; 43
2021; 17
2020; 49
2019; 259
2021; 60
2018; 10
2016; 8
2008; 130
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 105
  year: 2020
  publication-title: J. Energy Chem.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 311
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 15
  start-page: 390
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 21
  start-page: 5075
  year: 2021
  publication-title: Nano Lett.
– volume: 59
  start-page: 5350
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 316
  start-page: 732
  year: 2007
  publication-title: Science
– volume: 60
  year: 2021
  publication-title: Angew. Chem.
– volume: 3
  start-page: 1157
  year: 2012
  publication-title: Chem. Sci.
– volume: 51
  year: 2012
  publication-title: Angew. Chem.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 259
  year: 2019
  publication-title: Appl. Catal.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1179
  year: 2021
  publication-title: ACS Catal.
– volume: 19
  start-page: 266
  year: 2020
  publication-title: Nat. Mater.
– volume: 366
  start-page: 850
  year: 2019
  publication-title: Science
– volume: 19
  start-page: 8447
  year: 2019
  publication-title: Nano Lett.
– volume: 51
  start-page: 7656
  year: 2012
  publication-title: Angew. Chem.
– volume: 130
  start-page: 5868
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 9744
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 605
  year: 2020
  publication-title: Nat. Energy
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 2056
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 369
  year: 2020
  publication-title: Science
– volume: 426
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 5077
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 3533
  year: 2020
  publication-title: ACS Catal.
– volume: 49
  start-page: 3072
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 6237
  year: 2007
  publication-title: Electrochim. Acta
– volume: 19
  start-page: 233
  year: 2013
  publication-title: Chem. ‐ Eur. J.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 3161
  year: 1991
  publication-title: Phys. Rev. A
– volume: 19
  year: 2020
  publication-title: Appl. Mater. Today
– volume: 6
  start-page: 3211
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 4093
  year: 2021
  publication-title: Nano Res.
– volume: 12
  start-page: 2298
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 265
  year: 2020
  publication-title: Appl. Catal., B
– volume: 11
  start-page: 7568
  year: 2021
  publication-title: ACS Catal.
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.nanolett.1c00902
– ident: e_1_2_8_50_1
  doi: 10.1016/j.apmt.2020.100620
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.202005092
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1140484
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.8b03080
– ident: e_1_2_8_38_1
  doi: 10.1021/ja801210s
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.nanolett.9b02729
– ident: e_1_2_8_22_1
  doi: 10.1016/j.apcatb.2020.118589
– ident: e_1_2_8_39_1
  doi: 10.1021/acssuschemeng.6b02994
– ident: e_1_2_8_3_1
  doi: 10.1039/D0CS00013B
– ident: e_1_2_8_53_1
  doi: 10.1039/C7TA10866D
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.202003071
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.201207491
– ident: e_1_2_8_15_1
  doi: 10.1021/acscatal.8b03447
– ident: e_1_2_8_17_1
  doi: 10.1038/s41563-020-0610-2
– ident: e_1_2_8_56_1
  doi: 10.1007/s12274-021-3348-5
– ident: e_1_2_8_32_1
  doi: 10.1039/c2sc00723a
– ident: e_1_2_8_37_1
  doi: 10.1002/smll.202007179
– ident: e_1_2_8_45_1
  doi: 10.1021/acsami.1c11249
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.202003654
– ident: e_1_2_8_18_1
  doi: 10.1039/C9EE00752K
– ident: e_1_2_8_33_1
  doi: 10.1039/C9TA05334D
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.202111426
– ident: e_1_2_8_13_1
  doi: 10.1021/acscatal.0c03747
– ident: e_1_2_8_9_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_8_1_1
  doi: 10.1002/aenm.201901945
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevA.43.3161
– ident: e_1_2_8_7_1
  doi: 10.1021/acsami.6b02223
– ident: e_1_2_8_21_1
  doi: 10.1039/D1TA08038E
– ident: e_1_2_8_24_1
  doi: 10.1039/D0CC05720G
– ident: e_1_2_8_6_1
  doi: 10.1038/s41565-020-0665-x
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201915992
– ident: e_1_2_8_29_1
  doi: 10.1021/acscatal.9b05260
– ident: e_1_2_8_34_1
  doi: 10.1039/C9TA08806G
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jechem.2020.03.054
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.8b09297
– ident: e_1_2_8_43_1
  doi: 10.1002/smll.202001775
– ident: e_1_2_8_36_1
  doi: 10.1021/acsaem.0c00801
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201801400
– ident: e_1_2_8_35_1
  doi: 10.1002/chem.201203332
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.7b04874
– ident: e_1_2_8_46_1
  doi: 10.1021/acscatal.1c01413
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.accounts.0c00488
– ident: e_1_2_8_54_1
  doi: 10.1016/j.electacta.2007.03.072
– ident: e_1_2_8_48_1
  doi: 10.1021/acsami.1c15206
– ident: e_1_2_8_51_1
  doi: 10.1002/anie.202002647
– ident: e_1_2_8_40_1
  doi: 10.1002/anie.201201557
– ident: e_1_2_8_42_1
  doi: 10.1126/science.abc3183
– ident: e_1_2_8_47_1
  doi: 10.1039/D1TA04743D
– ident: e_1_2_8_44_1
  doi: 10.1016/j.cej.2021.130759
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.202007733
– ident: e_1_2_8_52_1
  doi: 10.1021/acsami.0c01937
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.201801326
– ident: e_1_2_8_27_1
  doi: 10.1016/j.apcatb.2019.118082
– ident: e_1_2_8_49_1
  doi: 10.1038/s41560-020-0654-1
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.201903038
SSID ssj0000491033
Score 2.6618192
Snippet Ammonia is a crucial chemical in agriculture, industry, and emerging energy industries, so high‐efficient, energy‐saving, sustainable, and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ammonia
bimetallic nanocubes
Bimetals
Catalysis
Density functional theory
Electroactivity
Electrocatalysts
interfacial engineering
Mass transfer
nitrate reduction reaction
Organic chemistry
Reduction
RhCu alloys
Rhodium
Title Interfacial Engineering Enhances the Electroactivity of Frame‐Like Concave RhCu Bimetallic Nanocubes for Nitrate Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103916
https://www.proquest.com/docview/2652761415
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7gUOiF9RWJAPSByqQOIkTvbYXVpWq7ZIkIruKbJjR42AFLENB8SBR-AZeDSehLHjOF5UYOESpU46qTxfxjPT8TcIPQ5TKRnzU0-UYexFLPU9WPRSr4jihAkpZKzbvc0X9GQZna7i1WDw3alaarb8afF5576S_9EqjIFe1S7Zf9CsFQoDcA76hSNoGI6X0rFO55VMZ70dYkE4XytlnmuvctI2ulEbGD6Z-oupqsiyZQ6z6q3qXVcXqhHRq_VxMzqq3ktwyhX_NVjfTdFwqWkbADeazBaUIlrWWde3HXflBLLdTwi-cDsJNjld2Weuqnr0wmIqA4zaS6cV24zeMLOiKh_btF05a2w6aN1LOgJJZ4Y-3GQvIPDti14uZyMd2wyehEdTkw6V7ljL-GQNOnGBG-9cKFriWSZrxUZA1P_hwQ5G7sXLfLqczfJsssquoH0CoQgY__3x8_nstc3kQYwF39c7Obpf2LGD-uTZxUdc9H76kMYNjLRnk91A101Igsctvm6igaxvoWsOnm6jLw7SsHMFd0jDgDT8C9LwpsQaaT--flMYwwZjWGEM9xjDFmMYMIYNxrDF2B20nE6y4xPP9O3wCvBGqccKmXDhR4HgMg4ojxLOZRr4qUxKmKuEipL6hLMy4uDecioLCDKIIIe8FCwhIryL9upNLe8hTKPEl1EhWKQSGWA-WFyGqUiCQ5HysKBD5HXzmReG1F71VnmXt3TcJFfzn9v5H6In9v4PLZ3Lb-886NSTm1f-PCc0JgkoOYiHiGiV_UVKPp4s5vbT_T_LfICu9q_IAdrbfmzkQ3B5t_yRwdxPzJ6rwA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Engineering+Enhances+the+Electroactivity+of+Frame%E2%80%90Like+Concave+RhCu+Bimetallic+Nanocubes+for+Nitrate+Reduction&rft.jtitle=Advanced+energy+materials&rft.au=Zi%E2%80%90Xin+Ge&rft.au=Tian%E2%80%90Jiao+Wang&rft.au=Ding%2C+Yu&rft.au=Shi%E2%80%90Bin+Yin&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=15&rft_id=info:doi/10.1002%2Faenm.202103916&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon