Direct Imaging of Weak‐to‐Strong‐Coupling Dynamics in Biological Plasmon–Exciton Systems
Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements...
Saved in:
Published in | Laser & photonics reviews Vol. 16; no. 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements offer the power to quantify and characterize optical coupling strength at a single cavity level. However, it remains challenging to dynamically characterize coupling strength during the transition from strong‐ to weak‐coupling regimes for many systems simultaneously. Here, a far‐field imaging technique is reported that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity emissions to be characterized from weak‐ to strong‐coupling regimes. Light‐harvesting biomolecules—chlorophyll‐a—is employed to study dynamic light–matter interactions in strongly coupled plasmonic nanocavities. Identification of coupling strength is achieved by extracting red, green, and blue (RGB) values from dark‐field images and an enhancement factor from fluorescence images. Lastly, the ability to monitor subtle changes of coupling dynamics in bioplasmonic nanocavity is demonstrated. These findings may deepen the understanding in light–matter interactions, paving new avenues toward applications in quantum‐based biosensing and imaging.
In this study, a dynamic imaging technique is proposed that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity to be characterized. By employing RGB channels from dark‐field microscopy, subtle changes of biomolecules can be visualized and monitored from weak to strong coupling, offering the possibility of using such a system to characterize biomolecular interactions and activities. |
---|---|
AbstractList | Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements offer the power to quantify and characterize optical coupling strength at a single cavity level. However, it remains challenging to dynamically characterize coupling strength during the transition from strong‐ to weak‐coupling regimes for many systems simultaneously. Here, a far‐field imaging technique is reported that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity emissions to be characterized from weak‐ to strong‐coupling regimes. Light‐harvesting biomolecules—chlorophyll‐a—is employed to study dynamic light–matter interactions in strongly coupled plasmonic nanocavities. Identification of coupling strength is achieved by extracting red, green, and blue (RGB) values from dark‐field images and an enhancement factor from fluorescence images. Lastly, the ability to monitor subtle changes of coupling dynamics in bioplasmonic nanocavity is demonstrated. These findings may deepen the understanding in light–matter interactions, paving new avenues toward applications in quantum‐based biosensing and imaging. Abstract Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements offer the power to quantify and characterize optical coupling strength at a single cavity level. However, it remains challenging to dynamically characterize coupling strength during the transition from strong‐ to weak‐coupling regimes for many systems simultaneously. Here, a far‐field imaging technique is reported that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity emissions to be characterized from weak‐ to strong‐coupling regimes. Light‐harvesting biomolecules—chlorophyll‐a—is employed to study dynamic light–matter interactions in strongly coupled plasmonic nanocavities. Identification of coupling strength is achieved by extracting red, green, and blue (RGB) values from dark‐field images and an enhancement factor from fluorescence images. Lastly, the ability to monitor subtle changes of coupling dynamics in bioplasmonic nanocavity is demonstrated. These findings may deepen the understanding in light–matter interactions, paving new avenues toward applications in quantum‐based biosensing and imaging. Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements offer the power to quantify and characterize optical coupling strength at a single cavity level. However, it remains challenging to dynamically characterize coupling strength during the transition from strong‐ to weak‐coupling regimes for many systems simultaneously. Here, a far‐field imaging technique is reported that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity emissions to be characterized from weak‐ to strong‐coupling regimes. Light‐harvesting biomolecules—chlorophyll‐a—is employed to study dynamic light–matter interactions in strongly coupled plasmonic nanocavities. Identification of coupling strength is achieved by extracting red, green, and blue (RGB) values from dark‐field images and an enhancement factor from fluorescence images. Lastly, the ability to monitor subtle changes of coupling dynamics in bioplasmonic nanocavity is demonstrated. These findings may deepen the understanding in light–matter interactions, paving new avenues toward applications in quantum‐based biosensing and imaging. In this study, a dynamic imaging technique is proposed that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity to be characterized. By employing RGB channels from dark‐field microscopy, subtle changes of biomolecules can be visualized and monitored from weak to strong coupling, offering the possibility of using such a system to characterize biomolecular interactions and activities. |
Author | Gong, Chaoyang Dang, Cuong Chen, Yu‐Cheng Wu, Pin Chieh Qiao, Zhen Birowosuto, Muhammad D. Yuan, Zhiyi Kim, Munho Huang, Shih‐Hsiu Liao, Yikai |
Author_xml | – sequence: 1 givenname: Zhiyi surname: Yuan fullname: Yuan, Zhiyi organization: Nanyang Technological University – sequence: 2 givenname: Shih‐Hsiu surname: Huang fullname: Huang, Shih‐Hsiu organization: National Cheng Kung University – sequence: 3 givenname: Zhen surname: Qiao fullname: Qiao, Zhen organization: Nanyang Technological University – sequence: 4 givenname: Chaoyang surname: Gong fullname: Gong, Chaoyang organization: Nanyang Technological University – sequence: 5 givenname: Yikai surname: Liao fullname: Liao, Yikai organization: Nanyang Technological University – sequence: 6 givenname: Munho surname: Kim fullname: Kim, Munho organization: Nanyang Technological University – sequence: 7 givenname: Muhammad D. surname: Birowosuto fullname: Birowosuto, Muhammad D. organization: CINTRA (CNRS–International‐NTU‐THALES‐Research Alliances/UMI 3288) – sequence: 8 givenname: Cuong surname: Dang fullname: Dang, Cuong organization: CINTRA (CNRS–International‐NTU‐THALES‐Research Alliances/UMI 3288) – sequence: 9 givenname: Pin Chieh surname: Wu fullname: Wu, Pin Chieh email: pcwu@gs.ncku.edu.tw organization: National Cheng Kung University – sequence: 10 givenname: Yu‐Cheng orcidid: 0000-0002-0008-5601 surname: Chen fullname: Chen, Yu‐Cheng email: yucchen@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkM1OAjEUhRuDiYBuXU_ierA_TGe6VEAlIYGIxmUtpTMpzrTYDtHZ8QgmviFPYgkGl97FvWfxnXOT0wEtY40C4BLBHoIQX5dr63oYYgwhRPQEtFFGSZxljLWOOoNnoOP9CsIkDG2D16F2StbRuBKFNkVk8-hFibfd9qu2Yc1rZ00RxMBu1uUeGDZGVFr6SJvoVtvSFlqKMpqVwlfW7Lbfo0-pa2uieeNrVflzcJqL0quL39sFz3ejp8FDPJnejwc3k1gSlNKYCaJESpgkeIGYojJJGFqKHKf5MkmJ6EMSLkI0SwnuqwVbJoTCIHMKVQggXXB1yF07-75RvuYru3EmvOSYMsZw0g98F_QOlHTWe6dyvna6Eq7hCPJ9i3zfIj-2GAzsYPjQpWr-oflkNn388_4ADyh7yg |
CitedBy_id | crossref_primary_10_1002_adom_202301553 crossref_primary_10_1021_acs_nanolett_2c02917 crossref_primary_10_1515_nanoph_2022_0542 |
Cites_doi | 10.1038/s41467-021-21539-z 10.7150/thno.10302 10.1021/acs.nanolett.6b04659 10.1021/acsphotonics.9b01079 10.1021/acs.nanolett.5b01062 10.1038/ncomms14540 10.1038/ncomms6561 10.1038/s41566-021-00854-3 10.1038/nphoton.2014.228 10.1038/s41567-020-0796-x 10.1021/acs.nanolett.7b04283 10.1038/ncomms14097 10.1038/s41565-019-0560-5 10.1126/sciadv.1600666 10.1038/ncomms8788 10.1038/s41467-020-15196-x 10.1103/PhysRevLett.112.016401 10.1038/s41586-020-2508-1 10.1021/nl402660s 10.1038/nature17974 10.1021/acs.nanolett.7b00332 10.1103/PhysRevA.74.033811 10.1364/OPTICA.6.001124 10.1021/acsnano.0c04600 10.1038/s41467-017-01398-3 10.1038/s41467-018-06450-4 10.1021/acs.nanolett.1c02676 10.1021/acsnano.0c02785 10.1103/PhysRevLett.114.157401 10.1002/ange.201906517 10.1021/acsphotonics.8b01743 10.1103/PhysRevLett.124.063902 10.1073/pnas.1508642112 10.1021/acs.nanolett.7b00858 10.1038/ncomms11823 10.1093/plankt/18.12.2223 10.1126/science.aah5243 10.1038/nphys227 10.1038/srep03074 10.1364/OPTICA.436140 10.1021/acs.nanolett.6b02661 10.1021/acsphotonics.6b00908 10.1021/acs.nanolett.9b01137 10.1021/acsnano.8b05880 10.1039/C9NR05044B 10.1126/sciadv.aas9552 10.1021/acs.nanolett.0c01051 10.1016/j.matt.2020.03.013 10.1002/smll.201900982 10.1038/s41467-019-08611-5 10.1103/PhysRevLett.118.237401 10.1021/acs.nanolett.5b03724 10.1021/acs.nanolett.7b04965 10.1002/adom.201900857 10.1021/acs.nanolett.8b00239 10.1039/C4FD00195H 10.1038/ncomms15225 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202200016 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202200016 LPOR202200016 |
Genre | article |
GrantInformation_xml | – fundername: A*STAR‐Singapore – fundername: National Cheng Kung University – fundername: Higher Education Sprout Project of Ministry of Education – fundername: Ministry of Education, Singapore funderid: MOE‐T2EP50120‐0001 – fundername: Ministry of Science and Technology, Taiwan |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c3176-9a3ea739c32b19e6c5591daf27fd573a403d5711687324eb9d5360324f60e1763 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Thu Oct 10 19:32:16 EDT 2024 Fri Aug 23 01:49:21 EDT 2024 Sat Aug 24 00:54:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-9a3ea739c32b19e6c5591daf27fd573a403d5711687324eb9d5360324f60e1763 |
ORCID | 0000-0002-0008-5601 |
PQID | 2699925460 |
PQPubID | 1016358 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2699925460 crossref_primary_10_1002_lpor_202200016 wiley_primary_10_1002_lpor_202200016_LPOR202200016 |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2021; 8 2015; 15 2017; 8 2015; 6 2013; 3 2006; 74 1996; 18 2015; 5 2019; 6 2017; 4 2020; 20 2019; 11 2020; 583 2019; 10 2019; 15 2019; 14 2020; 16 2019; 19 2020; 14 2020; 11 2020; 124 2006; 2 2022; 22 2016; 16 2014; 112 2017; 118 2018; 18 2018; 9 2021; 15 2016; 7 2014; 5 2021; 12 2016; 2 2020; 2 2018; 4 2013; 13 2017; 17 2015; 114 2015; 178 2015; 112 2016; 354 2016; 535 2018; 12 2014; 8 2019; 131 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 3 start-page: 3074 year: 2013 publication-title: Sci. Rep. – volume: 18 start-page: 2223 year: 1996 publication-title: J. Plankton Res. – volume: 2 start-page: 81 year: 2006 publication-title: Nat. Phys. – volume: 583 start-page: 780 year: 2020 publication-title: Nature – volume: 16 start-page: 270 year: 2016 publication-title: Nano Lett. – volume: 14 start-page: 7347 year: 2020 publication-title: ACS Nano – volume: 8 start-page: 1416 year: 2021 publication-title: Optica – volume: 74 year: 2006 publication-title: Phys. Rev. A – volume: 5 start-page: 188 year: 2015 publication-title: Theranostics – volume: 6 start-page: 2570 year: 2019 publication-title: ACS Photonics – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 18 start-page: 1777 year: 2018 publication-title: Nano Lett. – volume: 4 start-page: 469 year: 2017 publication-title: ACS Photonics – volume: 20 start-page: 4330 year: 2020 publication-title: Nano Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 535 start-page: 127 year: 2016 publication-title: Nature – volume: 16 start-page: 462 year: 2020 publication-title: Nat. Phys. – volume: 9 start-page: 4012 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 1423 year: 2020 publication-title: Nat. Commun. – volume: 19 start-page: 5853 year: 2019 publication-title: Nano Lett. – volume: 18 start-page: 405 year: 2018 publication-title: Nano Lett. – volume: 131 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 2568 year: 2017 publication-title: Nano Lett. – volume: 16 start-page: 6850 year: 2016 publication-title: Nano Lett. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 12 start-page: 1310 year: 2021 publication-title: Nat. Commun. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 112 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 835 year: 2014 publication-title: Nat. Photonics – volume: 10 start-page: 1049 year: 2019 publication-title: Nat. Commun. – volume: 13 start-page: 5866 year: 2013 publication-title: Nano Lett. – volume: 14 start-page: 1110 year: 2019 publication-title: Nat. Nanotechnol. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 15 start-page: 690 year: 2021 publication-title: Nat. Photonics – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 5 start-page: 5561 year: 2014 publication-title: Nat. Commun. – volume: 17 start-page: 551 year: 2017 publication-title: Nano Lett. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 15 year: 2019 publication-title: Small – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 1550 year: 2020 publication-title: Matter – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 7788 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 838 year: 2019 publication-title: ACS Photonics – volume: 354 start-page: 726 year: 2016 publication-title: Science – volume: 22 start-page: 561 year: 2022 publication-title: Nano Lett. – volume: 15 start-page: 3578 year: 2015 publication-title: Nano Lett. – volume: 178 start-page: 185 year: 2015 publication-title: Faraday Discuss. – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 1296 year: 2017 publication-title: Nat. Commun. – volume: 6 start-page: 1124 year: 2019 publication-title: Optica – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 3246 year: 2017 publication-title: Nano Lett. – volume: 18 start-page: 2538 year: 2018 publication-title: Nano Lett. – ident: e_1_2_9_22_1 doi: 10.1038/s41467-021-21539-z – ident: e_1_2_9_38_1 doi: 10.7150/thno.10302 – ident: e_1_2_9_42_1 doi: 10.1021/acs.nanolett.6b04659 – ident: e_1_2_9_43_1 doi: 10.1021/acsphotonics.9b01079 – ident: e_1_2_9_47_1 doi: 10.1021/acs.nanolett.5b01062 – ident: e_1_2_9_31_1 doi: 10.1038/ncomms14540 – ident: e_1_2_9_29_1 doi: 10.1038/ncomms6561 – ident: e_1_2_9_4_1 doi: 10.1038/s41566-021-00854-3 – ident: e_1_2_9_39_1 doi: 10.1038/nphoton.2014.228 – ident: e_1_2_9_55_1 doi: 10.1038/s41567-020-0796-x – ident: e_1_2_9_40_1 doi: 10.1021/acs.nanolett.7b04283 – ident: e_1_2_9_30_1 doi: 10.1038/ncomms14097 – ident: e_1_2_9_6_1 doi: 10.1038/s41565-019-0560-5 – ident: e_1_2_9_32_1 doi: 10.1126/sciadv.1600666 – ident: e_1_2_9_8_1 doi: 10.1038/ncomms8788 – ident: e_1_2_9_17_1 doi: 10.1038/s41467-020-15196-x – ident: e_1_2_9_48_1 doi: 10.1103/PhysRevLett.112.016401 – ident: e_1_2_9_3_1 doi: 10.1038/s41586-020-2508-1 – ident: e_1_2_9_36_1 doi: 10.1021/nl402660s – ident: e_1_2_9_1_1 doi: 10.1038/nature17974 – ident: e_1_2_9_45_1 doi: 10.1021/acs.nanolett.7b00332 – ident: e_1_2_9_49_1 doi: 10.1103/PhysRevA.74.033811 – ident: e_1_2_9_33_1 doi: 10.1364/OPTICA.6.001124 – ident: e_1_2_9_46_1 doi: 10.1021/acsnano.0c04600 – ident: e_1_2_9_19_1 doi: 10.1038/s41467-017-01398-3 – ident: e_1_2_9_34_1 doi: 10.1038/s41467-018-06450-4 – ident: e_1_2_9_52_1 doi: 10.1021/acs.nanolett.1c02676 – ident: e_1_2_9_21_1 doi: 10.1021/acsnano.0c02785 – ident: e_1_2_9_25_1 doi: 10.1103/PhysRevLett.114.157401 – ident: e_1_2_9_10_1 doi: 10.1002/ange.201906517 – ident: e_1_2_9_26_1 doi: 10.1021/acsphotonics.8b01743 – ident: e_1_2_9_23_1 doi: 10.1103/PhysRevLett.124.063902 – ident: e_1_2_9_57_1 doi: 10.1073/pnas.1508642112 – ident: e_1_2_9_51_1 doi: 10.1021/acs.nanolett.7b00858 – ident: e_1_2_9_18_1 doi: 10.1038/ncomms11823 – ident: e_1_2_9_56_1 doi: 10.1093/plankt/18.12.2223 – ident: e_1_2_9_5_1 doi: 10.1126/science.aah5243 – ident: e_1_2_9_14_1 doi: 10.1038/nphys227 – ident: e_1_2_9_27_1 doi: 10.1038/srep03074 – ident: e_1_2_9_53_1 doi: 10.1364/OPTICA.436140 – ident: e_1_2_9_28_1 doi: 10.1021/acs.nanolett.6b02661 – ident: e_1_2_9_37_1 doi: 10.1021/acsphotonics.6b00908 – ident: e_1_2_9_54_1 doi: 10.1021/acs.nanolett.9b01137 – ident: e_1_2_9_11_1 doi: 10.1021/acsnano.8b05880 – ident: e_1_2_9_2_1 doi: 10.1039/C9NR05044B – ident: e_1_2_9_15_1 doi: 10.1126/sciadv.aas9552 – ident: e_1_2_9_7_1 doi: 10.1021/acs.nanolett.0c01051 – ident: e_1_2_9_41_1 doi: 10.1016/j.matt.2020.03.013 – ident: e_1_2_9_12_1 doi: 10.1002/smll.201900982 – ident: e_1_2_9_16_1 doi: 10.1038/s41467-019-08611-5 – ident: e_1_2_9_50_1 doi: 10.1103/PhysRevLett.118.237401 – ident: e_1_2_9_9_1 doi: 10.1021/acs.nanolett.5b03724 – ident: e_1_2_9_24_1 doi: 10.1021/acs.nanolett.7b04965 – ident: e_1_2_9_20_1 doi: 10.1002/adom.201900857 – ident: e_1_2_9_35_1 doi: 10.1021/acs.nanolett.8b00239 – ident: e_1_2_9_44_1 doi: 10.1039/C4FD00195H – ident: e_1_2_9_13_1 doi: 10.1038/ncomms15225 |
SSID | ssj0055556 |
Score | 2.4009852 |
Snippet | Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical... Abstract Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Biomolecules bioplasmonics Chlorophyll Excitons Image enhancement Imaging techniques light–matter interactions nanocavity Optical coupling plasmon–excitons |
Title | Direct Imaging of Weak‐to‐Strong‐Coupling Dynamics in Biological Plasmon–Exciton Systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200016 https://www.proquest.com/docview/2699925460 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwtvRHnJAxJT2sRO4npEFASIR1VAdAu2Y1eokCKaSoipPwGJf8gv4RynLxYkyJA4g63Evjt_Z919h9A-Z6khKQ894SvmhVyFoFLGeHVOiIb9SJoiv-LyKj69C8_bUXsqi9_xQ4wP3KxmFPbaKriQ_dqENPQJ8Cn4d4QUsAWMcECZjelqtMb8URFcRXpRPaYeuHr-iLXRJ7XZ7rO70gRqTgPWYsc5WUJi9K0u0KRbHeSyqt5_0Dj-52eW0WIJR_Ghk58VNKezVbRUQlNcKn5_DT0404jPnouqRrhn8L0W3a_hR96D2409UO9A46g3sCm-Hdxwle77-DHDrt6llQbcBLAOgv81_Dx-U2BMMlxSpq-ju5Pj26NTryzO4CmAHLHHBdWCUa4okQHXsQLXJEiFIcykEaMi9Ck8gyCuM8BsWvI0orEPTRP7GgagG2g-62V6E2HmmyjSTIYm4iEhqdQkMOCWyUgoppRfQQejxUleHAdH4tiWSWInLhlPXAXtjNYuKXWxn5AYQLCl_YeBSLEIv4ySXDSvW-O3rb902kYLtu0iBXfQfP460LuAXnK5V0joN81d6nw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DLDwRjwKeEBiCiR2EtcjakEtlIJKK9hC7NgIASmirYSY-AlI_MP-Es5xUigLEmRInEg-Ofad_Z3l-w6hXc4STRLuO7ErmeNz6YNJae2UOSEK1iOhs_iKs2ZY6_gn10FxmtDEwlh-iNGGm7GMbL42Bm42pA--WEMfAKCCg0dIhlsm0TTYPDXZG6qtEYNUAFcWYFQOqQPOnlvwNrrkYLz--Lr0BTa_Q9ZszTmeR6JorT1qcr8_6It9-fqDyPFfv7OA5nJEig-tCi2iCZUuofkcneLc9nvL6MbOjrj-mCU2wl2Nr1R8P3x773fhdmn21G-hUOkOTJTvLa7aZPc9fJdim_LSKAS-ALwOuj98-zh6kTCfpDhnTV9BneOjdqXm5PkZHAmoI3R4TFXMKJeUCI-rUIJ34iWxJkwnAaOx71J4el5YZgDblOBJQEMXijp0FQigq2gq7aZqDWHm6iBQTPg64D4hiVDE0-CZiSCWTEp3He0VoxM9WRqOyBIuk8h0XDTquHVUKgYvys2xF5EQcLBh_gdBJBuFX6REjYvz1uht4y-VdtBMrX3WiBr15ukmmjXf7cHBEprqPw_UFoCZvtjO1PUTbAfulA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-QLz4Ft_mIHiqtmmbbI6iLru6rosP3Ftt02SR1VbcLognf4LgP_SXOGnarnoRtIc2LSSkyUzmm5D5BqEdzmJFYu5ZoS2Y5XHhgUopZdU4IRLsUaTy-IqzNm1ceyddv_slit_wQ1Qbbloz8vVaK_hjrPZHpKH3gE_BvyMkhy3jaNKjAH81LLqoCKR8uPL4ohp1LfD17JK20Sb73-t_N0sjrPkVseYmpz6LwrKz5qRJf2-YRXvi5QeP43_-Zg7NFHgUHxgBmkdjMllAswU2xYXmDxbRrVkbcfMhT2uEU4VvZNj_eH3LUrhd6h31HhQO06GO8e3hI5PqfoDvEmwSXmpxwB1A6yD5H6_vx88CVpMEF5zpS-i6fnx12LCK7AyWAMxBLR66MmQuFy6JHC6pAN_EiUNFmIp95oae7cLTcWiNAWiTEY99l9pQVNSW0IC7jCaSNJErCDNb-b5kkad87hESR5I4CvyyyA8FE8JeRbvl5ASPhoQjMHTLJNADF1QDt4o2yrkLCmUcBIQCCta8_9AQySfhl1aCVuf8onpb-0ulbTTVOaoHrWb7dB1N68_m1OAGmsiehnITkEwWbeXC-gm05-1D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Imaging+of+Weak%E2%80%90to%E2%80%90Strong%E2%80%90Coupling+Dynamics+in+Biological+Plasmon%E2%80%93Exciton+Systems&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Yuan%2C+Zhiyi&rft.au=Huang%2C+Shih%E2%80%90Hsiu&rft.au=Qiao%2C+Zhen&rft.au=Gong%2C+Chaoyang&rft.date=2022-08-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=8&rft_id=info:doi/10.1002%2Flpor.202200016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202200016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |