Direct Imaging of Weak‐to‐Strong‐Coupling Dynamics in Biological Plasmon–Exciton Systems

Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 16; no. 8
Main Authors Yuan, Zhiyi, Huang, Shih‐Hsiu, Qiao, Zhen, Gong, Chaoyang, Liao, Yikai, Kim, Munho, Birowosuto, Muhammad D., Dang, Cuong, Wu, Pin Chieh, Chen, Yu‐Cheng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements offer the power to quantify and characterize optical coupling strength at a single cavity level. However, it remains challenging to dynamically characterize coupling strength during the transition from strong‐ to weak‐coupling regimes for many systems simultaneously. Here, a far‐field imaging technique is reported that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity emissions to be characterized from weak‐ to strong‐coupling regimes. Light‐harvesting biomolecules—chlorophyll‐a—is employed to study dynamic light–matter interactions in strongly coupled plasmonic nanocavities. Identification of coupling strength is achieved by extracting red, green, and blue (RGB) values from dark‐field images and an enhancement factor from fluorescence images. Lastly, the ability to monitor subtle changes of coupling dynamics in bioplasmonic nanocavity is demonstrated. These findings may deepen the understanding in light–matter interactions, paving new avenues toward applications in quantum‐based biosensing and imaging. In this study, a dynamic imaging technique is proposed that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity to be characterized. By employing RGB channels from dark‐field microscopy, subtle changes of biomolecules can be visualized and monitored from weak to strong coupling, offering the possibility of using such a system to characterize biomolecular interactions and activities.
AbstractList Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements offer the power to quantify and characterize optical coupling strength at a single cavity level. However, it remains challenging to dynamically characterize coupling strength during the transition from strong‐ to weak‐coupling regimes for many systems simultaneously. Here, a far‐field imaging technique is reported that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity emissions to be characterized from weak‐ to strong‐coupling regimes. Light‐harvesting biomolecules—chlorophyll‐a—is employed to study dynamic light–matter interactions in strongly coupled plasmonic nanocavities. Identification of coupling strength is achieved by extracting red, green, and blue (RGB) values from dark‐field images and an enhancement factor from fluorescence images. Lastly, the ability to monitor subtle changes of coupling dynamics in bioplasmonic nanocavity is demonstrated. These findings may deepen the understanding in light–matter interactions, paving new avenues toward applications in quantum‐based biosensing and imaging.
Abstract Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements offer the power to quantify and characterize optical coupling strength at a single cavity level. However, it remains challenging to dynamically characterize coupling strength during the transition from strong‐ to weak‐coupling regimes for many systems simultaneously. Here, a far‐field imaging technique is reported that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity emissions to be characterized from weak‐ to strong‐coupling regimes. Light‐harvesting biomolecules—chlorophyll‐a—is employed to study dynamic light–matter interactions in strongly coupled plasmonic nanocavities. Identification of coupling strength is achieved by extracting red, green, and blue (RGB) values from dark‐field images and an enhancement factor from fluorescence images. Lastly, the ability to monitor subtle changes of coupling dynamics in bioplasmonic nanocavity is demonstrated. These findings may deepen the understanding in light–matter interactions, paving new avenues toward applications in quantum‐based biosensing and imaging.
Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical coupling strength is, therefore, the key to understanding light–matter interactions. State‐of‐the‐art approaches based on spectral measurements offer the power to quantify and characterize optical coupling strength at a single cavity level. However, it remains challenging to dynamically characterize coupling strength during the transition from strong‐ to weak‐coupling regimes for many systems simultaneously. Here, a far‐field imaging technique is reported that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity emissions to be characterized from weak‐ to strong‐coupling regimes. Light‐harvesting biomolecules—chlorophyll‐a—is employed to study dynamic light–matter interactions in strongly coupled plasmonic nanocavities. Identification of coupling strength is achieved by extracting red, green, and blue (RGB) values from dark‐field images and an enhancement factor from fluorescence images. Lastly, the ability to monitor subtle changes of coupling dynamics in bioplasmonic nanocavity is demonstrated. These findings may deepen the understanding in light–matter interactions, paving new avenues toward applications in quantum‐based biosensing and imaging. In this study, a dynamic imaging technique is proposed that can directly monitor optical coupling dynamics in plasmon–exciton systems, allowing multiple nanocavity to be characterized. By employing RGB channels from dark‐field microscopy, subtle changes of biomolecules can be visualized and monitored from weak to strong coupling, offering the possibility of using such a system to characterize biomolecular interactions and activities.
Author Gong, Chaoyang
Dang, Cuong
Chen, Yu‐Cheng
Wu, Pin Chieh
Qiao, Zhen
Birowosuto, Muhammad D.
Yuan, Zhiyi
Kim, Munho
Huang, Shih‐Hsiu
Liao, Yikai
Author_xml – sequence: 1
  givenname: Zhiyi
  surname: Yuan
  fullname: Yuan, Zhiyi
  organization: Nanyang Technological University
– sequence: 2
  givenname: Shih‐Hsiu
  surname: Huang
  fullname: Huang, Shih‐Hsiu
  organization: National Cheng Kung University
– sequence: 3
  givenname: Zhen
  surname: Qiao
  fullname: Qiao, Zhen
  organization: Nanyang Technological University
– sequence: 4
  givenname: Chaoyang
  surname: Gong
  fullname: Gong, Chaoyang
  organization: Nanyang Technological University
– sequence: 5
  givenname: Yikai
  surname: Liao
  fullname: Liao, Yikai
  organization: Nanyang Technological University
– sequence: 6
  givenname: Munho
  surname: Kim
  fullname: Kim, Munho
  organization: Nanyang Technological University
– sequence: 7
  givenname: Muhammad D.
  surname: Birowosuto
  fullname: Birowosuto, Muhammad D.
  organization: CINTRA (CNRS–International‐NTU‐THALES‐Research Alliances/UMI 3288)
– sequence: 8
  givenname: Cuong
  surname: Dang
  fullname: Dang, Cuong
  organization: CINTRA (CNRS–International‐NTU‐THALES‐Research Alliances/UMI 3288)
– sequence: 9
  givenname: Pin Chieh
  surname: Wu
  fullname: Wu, Pin Chieh
  email: pcwu@gs.ncku.edu.tw
  organization: National Cheng Kung University
– sequence: 10
  givenname: Yu‐Cheng
  orcidid: 0000-0002-0008-5601
  surname: Chen
  fullname: Chen, Yu‐Cheng
  email: yucchen@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFkM1OAjEUhRuDiYBuXU_ierA_TGe6VEAlIYGIxmUtpTMpzrTYDtHZ8QgmviFPYgkGl97FvWfxnXOT0wEtY40C4BLBHoIQX5dr63oYYgwhRPQEtFFGSZxljLWOOoNnoOP9CsIkDG2D16F2StbRuBKFNkVk8-hFibfd9qu2Yc1rZ00RxMBu1uUeGDZGVFr6SJvoVtvSFlqKMpqVwlfW7Lbfo0-pa2uieeNrVflzcJqL0quL39sFz3ejp8FDPJnejwc3k1gSlNKYCaJESpgkeIGYojJJGFqKHKf5MkmJ6EMSLkI0SwnuqwVbJoTCIHMKVQggXXB1yF07-75RvuYru3EmvOSYMsZw0g98F_QOlHTWe6dyvna6Eq7hCPJ9i3zfIj-2GAzsYPjQpWr-oflkNn388_4ADyh7yg
CitedBy_id crossref_primary_10_1002_adom_202301553
crossref_primary_10_1021_acs_nanolett_2c02917
crossref_primary_10_1515_nanoph_2022_0542
Cites_doi 10.1038/s41467-021-21539-z
10.7150/thno.10302
10.1021/acs.nanolett.6b04659
10.1021/acsphotonics.9b01079
10.1021/acs.nanolett.5b01062
10.1038/ncomms14540
10.1038/ncomms6561
10.1038/s41566-021-00854-3
10.1038/nphoton.2014.228
10.1038/s41567-020-0796-x
10.1021/acs.nanolett.7b04283
10.1038/ncomms14097
10.1038/s41565-019-0560-5
10.1126/sciadv.1600666
10.1038/ncomms8788
10.1038/s41467-020-15196-x
10.1103/PhysRevLett.112.016401
10.1038/s41586-020-2508-1
10.1021/nl402660s
10.1038/nature17974
10.1021/acs.nanolett.7b00332
10.1103/PhysRevA.74.033811
10.1364/OPTICA.6.001124
10.1021/acsnano.0c04600
10.1038/s41467-017-01398-3
10.1038/s41467-018-06450-4
10.1021/acs.nanolett.1c02676
10.1021/acsnano.0c02785
10.1103/PhysRevLett.114.157401
10.1002/ange.201906517
10.1021/acsphotonics.8b01743
10.1103/PhysRevLett.124.063902
10.1073/pnas.1508642112
10.1021/acs.nanolett.7b00858
10.1038/ncomms11823
10.1093/plankt/18.12.2223
10.1126/science.aah5243
10.1038/nphys227
10.1038/srep03074
10.1364/OPTICA.436140
10.1021/acs.nanolett.6b02661
10.1021/acsphotonics.6b00908
10.1021/acs.nanolett.9b01137
10.1021/acsnano.8b05880
10.1039/C9NR05044B
10.1126/sciadv.aas9552
10.1021/acs.nanolett.0c01051
10.1016/j.matt.2020.03.013
10.1002/smll.201900982
10.1038/s41467-019-08611-5
10.1103/PhysRevLett.118.237401
10.1021/acs.nanolett.5b03724
10.1021/acs.nanolett.7b04965
10.1002/adom.201900857
10.1021/acs.nanolett.8b00239
10.1039/C4FD00195H
10.1038/ncomms15225
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202200016
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202200016
LPOR202200016
Genre article
GrantInformation_xml – fundername: A*STAR‐Singapore
– fundername: National Cheng Kung University
– fundername: Higher Education Sprout Project of Ministry of Education
– fundername: Ministry of Education, Singapore
  funderid: MOE‐T2EP50120‐0001
– fundername: Ministry of Science and Technology, Taiwan
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c3176-9a3ea739c32b19e6c5591daf27fd573a403d5711687324eb9d5360324f60e1763
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Thu Oct 10 19:32:16 EDT 2024
Fri Aug 23 01:49:21 EDT 2024
Sat Aug 24 00:54:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-9a3ea739c32b19e6c5591daf27fd573a403d5711687324eb9d5360324f60e1763
ORCID 0000-0002-0008-5601
PQID 2699925460
PQPubID 1016358
PageCount 12
ParticipantIDs proquest_journals_2699925460
crossref_primary_10_1002_lpor_202200016
wiley_primary_10_1002_lpor_202200016_LPOR202200016
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2021; 8
2015; 15
2017; 8
2015; 6
2013; 3
2006; 74
1996; 18
2015; 5
2019; 6
2017; 4
2020; 20
2019; 11
2020; 583
2019; 10
2019; 15
2019; 14
2020; 16
2019; 19
2020; 14
2020; 11
2020; 124
2006; 2
2022; 22
2016; 16
2014; 112
2017; 118
2018; 18
2018; 9
2021; 15
2016; 7
2014; 5
2021; 12
2016; 2
2020; 2
2018; 4
2013; 13
2017; 17
2015; 114
2015; 178
2015; 112
2016; 354
2016; 535
2018; 12
2014; 8
2019; 131
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 3
  start-page: 3074
  year: 2013
  publication-title: Sci. Rep.
– volume: 18
  start-page: 2223
  year: 1996
  publication-title: J. Plankton Res.
– volume: 2
  start-page: 81
  year: 2006
  publication-title: Nat. Phys.
– volume: 583
  start-page: 780
  year: 2020
  publication-title: Nature
– volume: 16
  start-page: 270
  year: 2016
  publication-title: Nano Lett.
– volume: 14
  start-page: 7347
  year: 2020
  publication-title: ACS Nano
– volume: 8
  start-page: 1416
  year: 2021
  publication-title: Optica
– volume: 74
  year: 2006
  publication-title: Phys. Rev. A
– volume: 5
  start-page: 188
  year: 2015
  publication-title: Theranostics
– volume: 6
  start-page: 2570
  year: 2019
  publication-title: ACS Photonics
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 18
  start-page: 1777
  year: 2018
  publication-title: Nano Lett.
– volume: 4
  start-page: 469
  year: 2017
  publication-title: ACS Photonics
– volume: 20
  start-page: 4330
  year: 2020
  publication-title: Nano Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 535
  start-page: 127
  year: 2016
  publication-title: Nature
– volume: 16
  start-page: 462
  year: 2020
  publication-title: Nat. Phys.
– volume: 9
  start-page: 4012
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1423
  year: 2020
  publication-title: Nat. Commun.
– volume: 19
  start-page: 5853
  year: 2019
  publication-title: Nano Lett.
– volume: 18
  start-page: 405
  year: 2018
  publication-title: Nano Lett.
– volume: 131
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 2568
  year: 2017
  publication-title: Nano Lett.
– volume: 16
  start-page: 6850
  year: 2016
  publication-title: Nano Lett.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 12
  start-page: 1310
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 835
  year: 2014
  publication-title: Nat. Photonics
– volume: 10
  start-page: 1049
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5866
  year: 2013
  publication-title: Nano Lett.
– volume: 14
  start-page: 1110
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 15
  start-page: 690
  year: 2021
  publication-title: Nat. Photonics
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 5
  start-page: 5561
  year: 2014
  publication-title: Nat. Commun.
– volume: 17
  start-page: 551
  year: 2017
  publication-title: Nano Lett.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 15
  year: 2019
  publication-title: Small
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 1550
  year: 2020
  publication-title: Matter
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 7788
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 838
  year: 2019
  publication-title: ACS Photonics
– volume: 354
  start-page: 726
  year: 2016
  publication-title: Science
– volume: 22
  start-page: 561
  year: 2022
  publication-title: Nano Lett.
– volume: 15
  start-page: 3578
  year: 2015
  publication-title: Nano Lett.
– volume: 178
  start-page: 185
  year: 2015
  publication-title: Faraday Discuss.
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 1296
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1124
  year: 2019
  publication-title: Optica
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 3246
  year: 2017
  publication-title: Nano Lett.
– volume: 18
  start-page: 2538
  year: 2018
  publication-title: Nano Lett.
– ident: e_1_2_9_22_1
  doi: 10.1038/s41467-021-21539-z
– ident: e_1_2_9_38_1
  doi: 10.7150/thno.10302
– ident: e_1_2_9_42_1
  doi: 10.1021/acs.nanolett.6b04659
– ident: e_1_2_9_43_1
  doi: 10.1021/acsphotonics.9b01079
– ident: e_1_2_9_47_1
  doi: 10.1021/acs.nanolett.5b01062
– ident: e_1_2_9_31_1
  doi: 10.1038/ncomms14540
– ident: e_1_2_9_29_1
  doi: 10.1038/ncomms6561
– ident: e_1_2_9_4_1
  doi: 10.1038/s41566-021-00854-3
– ident: e_1_2_9_39_1
  doi: 10.1038/nphoton.2014.228
– ident: e_1_2_9_55_1
  doi: 10.1038/s41567-020-0796-x
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.nanolett.7b04283
– ident: e_1_2_9_30_1
  doi: 10.1038/ncomms14097
– ident: e_1_2_9_6_1
  doi: 10.1038/s41565-019-0560-5
– ident: e_1_2_9_32_1
  doi: 10.1126/sciadv.1600666
– ident: e_1_2_9_8_1
  doi: 10.1038/ncomms8788
– ident: e_1_2_9_17_1
  doi: 10.1038/s41467-020-15196-x
– ident: e_1_2_9_48_1
  doi: 10.1103/PhysRevLett.112.016401
– ident: e_1_2_9_3_1
  doi: 10.1038/s41586-020-2508-1
– ident: e_1_2_9_36_1
  doi: 10.1021/nl402660s
– ident: e_1_2_9_1_1
  doi: 10.1038/nature17974
– ident: e_1_2_9_45_1
  doi: 10.1021/acs.nanolett.7b00332
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevA.74.033811
– ident: e_1_2_9_33_1
  doi: 10.1364/OPTICA.6.001124
– ident: e_1_2_9_46_1
  doi: 10.1021/acsnano.0c04600
– ident: e_1_2_9_19_1
  doi: 10.1038/s41467-017-01398-3
– ident: e_1_2_9_34_1
  doi: 10.1038/s41467-018-06450-4
– ident: e_1_2_9_52_1
  doi: 10.1021/acs.nanolett.1c02676
– ident: e_1_2_9_21_1
  doi: 10.1021/acsnano.0c02785
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevLett.114.157401
– ident: e_1_2_9_10_1
  doi: 10.1002/ange.201906517
– ident: e_1_2_9_26_1
  doi: 10.1021/acsphotonics.8b01743
– ident: e_1_2_9_23_1
  doi: 10.1103/PhysRevLett.124.063902
– ident: e_1_2_9_57_1
  doi: 10.1073/pnas.1508642112
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.nanolett.7b00858
– ident: e_1_2_9_18_1
  doi: 10.1038/ncomms11823
– ident: e_1_2_9_56_1
  doi: 10.1093/plankt/18.12.2223
– ident: e_1_2_9_5_1
  doi: 10.1126/science.aah5243
– ident: e_1_2_9_14_1
  doi: 10.1038/nphys227
– ident: e_1_2_9_27_1
  doi: 10.1038/srep03074
– ident: e_1_2_9_53_1
  doi: 10.1364/OPTICA.436140
– ident: e_1_2_9_28_1
  doi: 10.1021/acs.nanolett.6b02661
– ident: e_1_2_9_37_1
  doi: 10.1021/acsphotonics.6b00908
– ident: e_1_2_9_54_1
  doi: 10.1021/acs.nanolett.9b01137
– ident: e_1_2_9_11_1
  doi: 10.1021/acsnano.8b05880
– ident: e_1_2_9_2_1
  doi: 10.1039/C9NR05044B
– ident: e_1_2_9_15_1
  doi: 10.1126/sciadv.aas9552
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.nanolett.0c01051
– ident: e_1_2_9_41_1
  doi: 10.1016/j.matt.2020.03.013
– ident: e_1_2_9_12_1
  doi: 10.1002/smll.201900982
– ident: e_1_2_9_16_1
  doi: 10.1038/s41467-019-08611-5
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevLett.118.237401
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.nanolett.5b03724
– ident: e_1_2_9_24_1
  doi: 10.1021/acs.nanolett.7b04965
– ident: e_1_2_9_20_1
  doi: 10.1002/adom.201900857
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.nanolett.8b00239
– ident: e_1_2_9_44_1
  doi: 10.1039/C4FD00195H
– ident: e_1_2_9_13_1
  doi: 10.1038/ncomms15225
SSID ssj0055556
Score 2.4009852
Snippet Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring optical...
Abstract Optical coupling plays a pivotal role in nanophotonic systems, which can be divided into weak, intermediate, and strong‐coupling regimes. Monitoring...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Biomolecules
bioplasmonics
Chlorophyll
Excitons
Image enhancement
Imaging techniques
light–matter interactions
nanocavity
Optical coupling
plasmon–excitons
Title Direct Imaging of Weak‐to‐Strong‐Coupling Dynamics in Biological Plasmon–Exciton Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200016
https://www.proquest.com/docview/2699925460
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwtvRHnJAxJT2sRO4npEFASIR1VAdAu2Y1eokCKaSoipPwGJf8gv4RynLxYkyJA4g63Evjt_Z919h9A-Z6khKQ894SvmhVyFoFLGeHVOiIb9SJoiv-LyKj69C8_bUXsqi9_xQ4wP3KxmFPbaKriQ_dqENPQJ8Cn4d4QUsAWMcECZjelqtMb8URFcRXpRPaYeuHr-iLXRJ7XZ7rO70gRqTgPWYsc5WUJi9K0u0KRbHeSyqt5_0Dj-52eW0WIJR_Ghk58VNKezVbRUQlNcKn5_DT0404jPnouqRrhn8L0W3a_hR96D2409UO9A46g3sCm-Hdxwle77-DHDrt6llQbcBLAOgv81_Dx-U2BMMlxSpq-ju5Pj26NTryzO4CmAHLHHBdWCUa4okQHXsQLXJEiFIcykEaMi9Ck8gyCuM8BsWvI0orEPTRP7GgagG2g-62V6E2HmmyjSTIYm4iEhqdQkMOCWyUgoppRfQQejxUleHAdH4tiWSWInLhlPXAXtjNYuKXWxn5AYQLCl_YeBSLEIv4ySXDSvW-O3rb902kYLtu0iBXfQfP460LuAXnK5V0joN81d6nw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DLDwRjwKeEBiCiR2EtcjakEtlIJKK9hC7NgIASmirYSY-AlI_MP-Es5xUigLEmRInEg-Ofad_Z3l-w6hXc4STRLuO7ErmeNz6YNJae2UOSEK1iOhs_iKs2ZY6_gn10FxmtDEwlh-iNGGm7GMbL42Bm42pA--WEMfAKCCg0dIhlsm0TTYPDXZG6qtEYNUAFcWYFQOqQPOnlvwNrrkYLz--Lr0BTa_Q9ZszTmeR6JorT1qcr8_6It9-fqDyPFfv7OA5nJEig-tCi2iCZUuofkcneLc9nvL6MbOjrj-mCU2wl2Nr1R8P3x773fhdmn21G-hUOkOTJTvLa7aZPc9fJdim_LSKAS-ALwOuj98-zh6kTCfpDhnTV9BneOjdqXm5PkZHAmoI3R4TFXMKJeUCI-rUIJ34iWxJkwnAaOx71J4el5YZgDblOBJQEMXijp0FQigq2gq7aZqDWHm6iBQTPg64D4hiVDE0-CZiSCWTEp3He0VoxM9WRqOyBIuk8h0XDTquHVUKgYvys2xF5EQcLBh_gdBJBuFX6REjYvz1uht4y-VdtBMrX3WiBr15ukmmjXf7cHBEprqPw_UFoCZvtjO1PUTbAfulA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-QLz4Ft_mIHiqtmmbbI6iLru6rosP3Ftt02SR1VbcLognf4LgP_SXOGnarnoRtIc2LSSkyUzmm5D5BqEdzmJFYu5ZoS2Y5XHhgUopZdU4IRLsUaTy-IqzNm1ceyddv_slit_wQ1Qbbloz8vVaK_hjrPZHpKH3gE_BvyMkhy3jaNKjAH81LLqoCKR8uPL4ohp1LfD17JK20Sb73-t_N0sjrPkVseYmpz6LwrKz5qRJf2-YRXvi5QeP43_-Zg7NFHgUHxgBmkdjMllAswU2xYXmDxbRrVkbcfMhT2uEU4VvZNj_eH3LUrhd6h31HhQO06GO8e3hI5PqfoDvEmwSXmpxwB1A6yD5H6_vx88CVpMEF5zpS-i6fnx12LCK7AyWAMxBLR66MmQuFy6JHC6pAN_EiUNFmIp95oae7cLTcWiNAWiTEY99l9pQVNSW0IC7jCaSNJErCDNb-b5kkad87hESR5I4CvyyyA8FE8JeRbvl5ASPhoQjMHTLJNADF1QDt4o2yrkLCmUcBIQCCta8_9AQySfhl1aCVuf8onpb-0ulbTTVOaoHrWb7dB1N68_m1OAGmsiehnITkEwWbeXC-gm05-1D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Imaging+of+Weak%E2%80%90to%E2%80%90Strong%E2%80%90Coupling+Dynamics+in+Biological+Plasmon%E2%80%93Exciton+Systems&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Yuan%2C+Zhiyi&rft.au=Huang%2C+Shih%E2%80%90Hsiu&rft.au=Qiao%2C+Zhen&rft.au=Gong%2C+Chaoyang&rft.date=2022-08-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=8&rft_id=info:doi/10.1002%2Flpor.202200016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202200016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon