Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation

Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic thera...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 27
Main Authors Guan, Xin, Yin, Hao‐Hao, Xu, Xiao‐Hong, Xu, Guang, Zhang, Yan, Zhou, Bang‐Guo, Yue, Wen‐Wen, Liu, Chang, Sun, Li‐Ping, Xu, Hui‐Xiong, Zhang, Kun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202000326

Cover

Loading…
Abstract Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.
AbstractList Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems.
Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.
Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb 2 C nanosheets serve as the scaffold to accommodate TiO 2 sonosensitizers and l ‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb 2 C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems.
Author Xu, Xiao‐Hong
Yin, Hao‐Hao
Sun, Li‐Ping
Xu, Guang
Yue, Wen‐Wen
Zhang, Kun
Zhang, Yan
Xu, Hui‐Xiong
Zhou, Bang‐Guo
Guan, Xin
Liu, Chang
Author_xml – sequence: 1
  givenname: Xin
  surname: Guan
  fullname: Guan, Xin
  organization: Tongji University School of Medicine
– sequence: 2
  givenname: Hao‐Hao
  surname: Yin
  fullname: Yin, Hao‐Hao
  organization: Tongji University School of Medicine
– sequence: 3
  givenname: Xiao‐Hong
  surname: Xu
  fullname: Xu, Xiao‐Hong
  organization: Guangdong Medical University Affiliated Hospital
– sequence: 4
  givenname: Guang
  surname: Xu
  fullname: Xu, Guang
  organization: Tongji University School of Medicine
– sequence: 5
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Tongji University School of Medicine
– sequence: 6
  givenname: Bang‐Guo
  surname: Zhou
  fullname: Zhou, Bang‐Guo
  organization: Tongji University School of Medicine
– sequence: 7
  givenname: Wen‐Wen
  surname: Yue
  fullname: Yue, Wen‐Wen
  organization: Tongji University School of Medicine
– sequence: 8
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: liuchang0907@tongji.edu.cn
  organization: Tongji University School of Medicine
– sequence: 9
  givenname: Li‐Ping
  surname: Sun
  fullname: Sun, Li‐Ping
  organization: Tongji University School of Medicine
– sequence: 10
  givenname: Hui‐Xiong
  surname: Xu
  fullname: Xu, Hui‐Xiong
  email: xuhuixiong@tongji.edu.cn
  organization: Tongji University School of Medicine
– sequence: 11
  givenname: Kun
  orcidid: 0000-0002-6971-1164
  surname: Zhang
  fullname: Zhang, Kun
  email: zhang1986kun@126.com
  organization: Chinese PLA General Hospital
BookMark eNqFkcFqGzEQhkVJoUnaa8-Cnu1qpNWqewyunRSSNjQu9LaM5dlEYVfaSnKKb36EQk55iT6Un6TrOqRQKD3NwHzfDMN_xA588MTYaxBjEEK-xWXTjaWQQggly2fsEEooR0rIdwdPPXx9wY5SuhUCjFHFIfs5X3Uh8gvKuAitS91282Pqr50nirTkk9D1IblM_CP60LeYmxC7xC9DJp8dDoOr4MNy7bFzls9vKGK_5ncO-WdKN9g7f80fTzgbA_k7F4PvBpmjX_IZWte6jHnHTVuyeZhuN_dnoSV-iS6m7eaBX1GPcWCCf8meN9gmevVYj9mX2XQ-ORudfzr9MDk5H1kFphxVUIgSqkJpsEohGmUNaYkLCQCq0sZqDY3RRYWEi8aAkloIXBgojZBGqGP2Zr-3j-HbilKub8Mq-uFkLQuoFGhV6IEq9tTwWUqRmtr-_iX4HNG1NYh6l0y9S6Z-SmbQxn9pfXQdxvW_hWovfHctrf9D1yfvZxd_3F_Loqla
CitedBy_id crossref_primary_10_1016_j_bioactmat_2021_09_016
crossref_primary_10_1021_acsami_2c05369
crossref_primary_10_1016_j_gee_2022_04_004
crossref_primary_10_2174_0929867328666210617103905
crossref_primary_10_3390_molecules29204828
crossref_primary_10_1021_acsami_2c09443
crossref_primary_10_1021_acsami_1c14024
crossref_primary_10_1016_j_cej_2022_136030
crossref_primary_10_1002_ange_202317218
crossref_primary_10_1016_j_nantod_2021_101305
crossref_primary_10_1002_adhm_202302028
crossref_primary_10_1186_s12951_021_01006_z
crossref_primary_10_1016_j_fmre_2022_06_020
crossref_primary_10_1007_s12274_022_4646_2
crossref_primary_10_1002_advs_202101065
crossref_primary_10_1002_advs_202301638
crossref_primary_10_1007_s12598_023_02481_z
crossref_primary_10_1016_j_partic_2022_08_001
crossref_primary_10_1039_D2TB00600F
crossref_primary_10_1016_j_biomaterials_2021_121250
crossref_primary_10_1002_smll_202311228
crossref_primary_10_1021_acsnano_1c10770
crossref_primary_10_1002_adhm_202300253
crossref_primary_10_1002_adhm_202300652
crossref_primary_10_1021_acsnano_4c03172
crossref_primary_10_1002_adfm_202313454
crossref_primary_10_1021_acsami_2c14776
crossref_primary_10_1002_advs_202301764
crossref_primary_10_1016_j_fmre_2024_02_005
crossref_primary_10_1016_j_bioactmat_2021_06_021
crossref_primary_10_1002_adfm_202103394
crossref_primary_10_1021_acsnano_2c10251
crossref_primary_10_1016_j_ijbiomac_2024_130960
crossref_primary_10_1021_acsnano_1c10714
crossref_primary_10_1016_j_ccr_2020_213662
crossref_primary_10_1186_s12951_021_00936_y
crossref_primary_10_1016_j_apmt_2021_101215
crossref_primary_10_1063_5_0027606
crossref_primary_10_1007_s12274_022_4547_4
crossref_primary_10_1016_j_addr_2022_114643
crossref_primary_10_1016_j_actbio_2025_02_045
crossref_primary_10_1016_j_ccr_2022_214824
crossref_primary_10_1088_1748_605X_abef58
crossref_primary_10_1002_adma_202005295
crossref_primary_10_1016_j_addr_2022_114241
crossref_primary_10_1002_adma_202101467
crossref_primary_10_1039_D0CS00718H
crossref_primary_10_1002_smll_202202002
crossref_primary_10_1016_j_ccr_2021_214087
crossref_primary_10_1039_D2TB01783K
crossref_primary_10_1002_advs_202105523
crossref_primary_10_1002_adma_202109973
crossref_primary_10_1016_j_bioactmat_2021_12_002
crossref_primary_10_1021_acsami_1c10656
crossref_primary_10_1186_s12951_022_01398_6
crossref_primary_10_1002_wnan_1733
crossref_primary_10_1016_j_smaim_2023_01_004
crossref_primary_10_1002_anie_202317218
crossref_primary_10_1039_D3NA00738C
crossref_primary_10_1136_jitc_2022_006516
crossref_primary_10_1002_smll_202005728
crossref_primary_10_2174_1568009621666210219101552
crossref_primary_10_1002_adhm_202001208
crossref_primary_10_1002_EXP_20220119
crossref_primary_10_1002_smll_202410041
crossref_primary_10_1016_j_biomaterials_2020_120639
crossref_primary_10_1002_adma_202409663
crossref_primary_10_1002_cmdc_202400329
crossref_primary_10_1021_acsami_1c08105
crossref_primary_10_1002_smll_202107160
crossref_primary_10_1002_adfm_202107530
crossref_primary_10_1016_j_ccr_2022_214897
crossref_primary_10_1039_D1SC06315D
crossref_primary_10_1039_D4BM00883A
crossref_primary_10_1016_j_matt_2022_08_026
crossref_primary_10_1021_accountsmr_2c00106
crossref_primary_10_1016_j_ajps_2021_10_001
crossref_primary_10_1186_s12951_021_00897_2
crossref_primary_10_1039_D2NR04418H
crossref_primary_10_1002_adfm_202209399
crossref_primary_10_1016_j_ccr_2023_215115
crossref_primary_10_1021_acsami_1c25072
crossref_primary_10_1016_j_matdes_2022_110838
crossref_primary_10_1021_acs_bioconjchem_1c00039
crossref_primary_10_1021_acsabm_3c00678
crossref_primary_10_1039_D2QM00960A
crossref_primary_10_1021_acs_nanolett_1c03534
crossref_primary_10_3390_jfb14030136
crossref_primary_10_1002_smll_202303195
crossref_primary_10_1002_advs_202104125
crossref_primary_10_1039_D1BM01710A
crossref_primary_10_1007_s40843_022_2413_4
crossref_primary_10_1016_j_bioactmat_2021_10_048
crossref_primary_10_1186_s12951_022_01324_w
crossref_primary_10_1002_advs_202203921
crossref_primary_10_1002_smll_202401650
crossref_primary_10_1021_acsnano_0c05235
crossref_primary_10_1016_j_colcom_2024_100783
crossref_primary_10_1021_acsnano_3c03134
crossref_primary_10_1016_j_nantod_2022_101600
crossref_primary_10_1021_acsnano_2c10845
crossref_primary_10_1016_j_actbio_2024_05_013
crossref_primary_10_1039_D2BM00323F
crossref_primary_10_1002_smll_202206253
crossref_primary_10_1002_adma_202100333
crossref_primary_10_1186_s12951_024_02591_5
crossref_primary_10_1021_acsami_0c21579
crossref_primary_10_1007_s40820_021_00622_6
crossref_primary_10_1016_j_nanoen_2024_109530
crossref_primary_10_1016_j_actbio_2022_08_067
crossref_primary_10_1002_advs_202200005
crossref_primary_10_1002_adma_202209589
crossref_primary_10_2139_ssrn_4069237
crossref_primary_10_1186_s12951_022_01287_y
crossref_primary_10_1016_j_cej_2024_153103
crossref_primary_10_1016_j_cej_2024_158757
crossref_primary_10_1002_adfm_202102160
crossref_primary_10_1002_adma_202210296
crossref_primary_10_1016_j_jddst_2023_104724
crossref_primary_10_1039_D3CC02486E
crossref_primary_10_1016_j_apsusc_2021_151769
crossref_primary_10_1016_j_actbio_2022_11_037
crossref_primary_10_34133_research_0108
Cites_doi 10.1002/adma.201602012
10.3109/10715761003667554
10.1002/advs.201800021
10.1002/adhm.201900192
10.1021/nn5068094
10.1038/s41467-019-11269-8
10.1002/adma.201802244
10.1016/j.cell.2010.03.015
10.1038/nprot.2006.378
10.1007/s11010-011-0900-8
10.1002/adfm.201905124
10.1021/acsnano.8b09387
10.1016/j.cell.2011.02.013
10.1002/adfm.201901417
10.1002/anie.201605509
10.1021/acsnano.7b05215
10.1016/j.biomaterials.2019.119255
10.1021/jacs.6b11263
10.1002/smll.201903016
10.1002/adfm.201907954
10.1002/adfm.201906466
10.1002/adma.201905271
10.1002/smll.201805339
10.1002/adma.201900401
10.1038/nrc1478
10.1038/nrc2618
10.1002/adfm.201800706
10.1002/aenm.201700025
10.1002/advs.201900099
10.1002/adma.201900730
10.1016/j.ccr.2006.08.015
10.1021/acsnano.7b08225
10.1038/s41467-019-09760-3
10.1016/j.molcel.2013.05.003
10.7150/thno.12691
10.1126/science.1156906
10.1002/advs.201901954
10.1038/s41388-018-0392-z
10.1073/pnas.1210633110
10.1021/acsnano.8b03788
10.1016/j.nanoen.2017.06.047
10.1002/adma.201607017
10.1021/acs.nanolett.8b03905
10.1021/acsnano.6b04921
10.1021/acsnano.9b01665
10.1016/j.biomaterials.2019.119303
10.1002/adfm.201805764
10.1038/s41467-019-13115-3
10.1021/acsami.9b02401
10.1038/s41467-019-10385-9
10.1016/j.neuro.2010.01.001
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202000326
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202000326
ADFM202000326
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81771836; 81601501; 81801700; 81927801; 81725008
– fundername: Shanghai Rising-Star Program
  funderid: 19QA1406800
– fundername: State Key Laboratory of High Performance Ceramics and Superfine Microstructure
  funderid: SKL201811SIC
– fundername: Shanghai Municipal Health Commission
  funderid: 2019LJ21; SHSLCZDZK03502
– fundername: Shanghai Talent Development Fund
  funderid: 2019040
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 22120190021; 22120190137
– fundername: Fostering Project of Shanghai Municipal Health Commission for Excellent Young Medical Scholars
  funderid: 2018YQ31
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:32:06 EDT 2025
Tue Jul 01 04:12:13 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Wed Jan 22 16:35:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6971-1164
PQID 2419315345
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2419315345
crossref_citationtrail_10_1002_adfm_202000326
crossref_primary_10_1002_adfm_202000326
wiley_primary_10_1002_adfm_202000326_ADFM202000326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 7
2010; 31
2016 2019; 28 15
2019 2020; 31 30
2009 2004 2010 2011 2019; 9 4 141 144 29
2017; 39
2002 2019; 62 19
2019 2019; 10 13
2017; 11
2019 2019 2018 2019 2015 2016 2019; 216 31 28 13 5 10 6
2019 2019; 10 10
2017 2019; 11 29
2016 2019; 55 31
2013 2013 2019; 110 51 13
2019; 29
2008 2010 2006 2019; 320 44 10 10
2019 2019 2018 2019; 31 15 5 11
2017 2019; 7 30
2017; 29
2011 2018; 357 37
2006; 1
2017; 139
2019 2015 2019; 217 9 8
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_1_5
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_3_7
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_3_6
e_1_2_7_7_2
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_1
Kuppusamy P. (e_1_2_7_14_1) 2002; 62
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 31 30
  year: 2019 2020
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 31
  start-page: 204
  year: 2010
  publication-title: NeuroToxicol.
– volume: 28 15
  start-page: 8097
  year: 2016 2019
  publication-title: Adv. Mater. Small
– volume: 139
  start-page: 3438
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 357 37
  start-page: 295 5843
  year: 2011 2018
  publication-title: Mol. Cell. Biochem. Oncogene
– volume: 62 19
  start-page: 307 805
  year: 2002 2019
  publication-title: Cancer Res. Nano Lett.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 31 15 5 11
  year: 2019 2019 2018 2019
  publication-title: Adv. Mater. Small Adv. Sci. ACS Appl. Mater. Interfaces
– volume: 10 10
  start-page: 2412 3349
  year: 2019 2019
  publication-title: Nat. Commun. Nat. Commun.
– volume: 216 31 28 13 5 10 6
  start-page: 2849 1291
  year: 2019 2019 2018 2019 2015 2016 2019
  publication-title: Biomaterials Adv. Mater. Adv. Funct. Mater. ACS Nano Theranostics ACS Nano Adv. Sci.
– volume: 7 30
  year: 2017 2019
  publication-title: Adv. Energy Mater. Adv. Funct. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 55 31
  year: 2016 2019
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 39
  start-page: 183
  year: 2017
  publication-title: Nano Energy
– volume: 1
  start-page: 3159
  year: 2006
  publication-title: Nat. Protoc.
– volume: 9 4 141 144 29
  start-page: 239 891 52 646
  year: 2009 2004 2010 2011 2019
  publication-title: Nat. Rev. Cancer Nat. Rev. Cancer Cell Cell Adv. Funct. Mater.
– volume: 11
  start-page: 9467
  year: 2017
  publication-title: ACS Nano
– volume: 217 9 8
  start-page: 5646
  year: 2019 2015 2019
  publication-title: Biomaterials ACS Nano Adv. Healthcare Mater.
– volume: 10 13
  start-page: 2025 4267
  year: 2019 2019
  publication-title: Nat. Commun. ACS Nano
– volume: 11 29
  year: 2017 2019
  publication-title: ACS Nano Adv. Funct. Mater.
– volume: 320 44 10 10
  start-page: 661 479 175 5380
  year: 2008 2010 2006 2019
  publication-title: Science Free Radical Res. Cancer Cell Nat. Commun.
– volume: 110 51 13
  start-page: 4622 236 6879
  year: 2013 2013 2019
  publication-title: Proc. Natl. Acad. Sci. U. S. A. Mol. Cell ACS Nano
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201602012
– ident: e_1_2_7_2_2
  doi: 10.3109/10715761003667554
– ident: e_1_2_7_6_3
  doi: 10.1002/advs.201800021
– ident: e_1_2_7_7_3
  doi: 10.1002/adhm.201900192
– ident: e_1_2_7_7_2
  doi: 10.1021/nn5068094
– ident: e_1_2_7_21_2
  doi: 10.1038/s41467-019-11269-8
– ident: e_1_2_7_9_2
  doi: 10.1002/adma.201802244
– ident: e_1_2_7_1_3
  doi: 10.1016/j.cell.2010.03.015
– ident: e_1_2_7_23_1
  doi: 10.1038/nprot.2006.378
– ident: e_1_2_7_5_1
  doi: 10.1007/s11010-011-0900-8
– ident: e_1_2_7_1_5
  doi: 10.1002/adfm.201905124
– ident: e_1_2_7_20_2
  doi: 10.1021/acsnano.8b09387
– ident: e_1_2_7_1_4
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201901417
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.201605509
– ident: e_1_2_7_16_1
  doi: 10.1021/acsnano.7b05215
– ident: e_1_2_7_3_1
  doi: 10.1016/j.biomaterials.2019.119255
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.6b11263
– ident: e_1_2_7_6_2
  doi: 10.1002/smll.201903016
– ident: e_1_2_7_12_2
  doi: 10.1002/adfm.201907954
– ident: e_1_2_7_15_2
  doi: 10.1002/adfm.201906466
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201905271
– ident: e_1_2_7_8_2
  doi: 10.1002/smll.201805339
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.201900401
– ident: e_1_2_7_1_2
  doi: 10.1038/nrc1478
– ident: e_1_2_7_1_1
  doi: 10.1038/nrc2618
– ident: e_1_2_7_3_3
  doi: 10.1002/adfm.201800706
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201700025
– ident: e_1_2_7_3_7
  doi: 10.1002/advs.201900099
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201900730
– ident: e_1_2_7_2_3
  doi: 10.1016/j.ccr.2006.08.015
– ident: e_1_2_7_11_1
  doi: 10.1021/acsnano.7b08225
– ident: e_1_2_7_20_1
  doi: 10.1038/s41467-019-09760-3
– ident: e_1_2_7_4_2
  doi: 10.1016/j.molcel.2013.05.003
– ident: e_1_2_7_3_5
  doi: 10.7150/thno.12691
– volume: 62
  start-page: 307
  year: 2002
  ident: e_1_2_7_14_1
  publication-title: Cancer Res.
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1156906
– ident: e_1_2_7_13_1
  doi: 10.1002/advs.201901954
– ident: e_1_2_7_5_2
  doi: 10.1038/s41388-018-0392-z
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.1210633110
– ident: e_1_2_7_3_4
  doi: 10.1021/acsnano.8b03788
– ident: e_1_2_7_18_1
  doi: 10.1016/j.nanoen.2017.06.047
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201607017
– ident: e_1_2_7_14_2
  doi: 10.1021/acs.nanolett.8b03905
– ident: e_1_2_7_3_6
  doi: 10.1021/acsnano.6b04921
– ident: e_1_2_7_4_3
  doi: 10.1021/acsnano.9b01665
– ident: e_1_2_7_7_1
  doi: 10.1016/j.biomaterials.2019.119303
– ident: e_1_2_7_11_2
  doi: 10.1002/adfm.201805764
– ident: e_1_2_7_2_4
  doi: 10.1038/s41467-019-13115-3
– ident: e_1_2_7_6_4
  doi: 10.1021/acsami.9b02401
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-019-10385-9
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neuro.2010.01.001
SSID ssj0017734
Score 2.6254525
Snippet Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chemical energy
Depletion
Electrons
electron–hole pairs
Energy conversion efficiency
Glutathione
Materials science
Metabolism
Niobium carbide
reactive oxygen species
redox metabolism modulation
Separation
Sonodynamic therapy
Titanium dioxide
tumor microenvironment
Title Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000326
https://www.proquest.com/docview/2419315345
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i_XFHgRP0by3OYpailARrdBbmN1sQKxJsakHT_0Jgif_hD-qv8SZbhKrIILeEpi8mN2ZbzIz3zB2EPnCT8KmZ2lbB5avtWNJ9LsW2GGU-NBUqaTe4c5l2L71L3pBb6aL3_BD1D_caGdM7TVtcJDD40_SUEhS6iSnVhOEIGiEqWCLUNF1zR_lCGHSyqFDBV5Or2JttN3jr5d_9UqfUHMWsE49TmuZQfWuptDk_mhUyCP1_I3G8T8fs8KWSjjKT8z6WWVzOltjizMkhevsvTt6yB95Rxe4Xvp3w4fJ-KUS0Akng0KFX5qjoc4HfSgIBg_5VV5QIRJCWX6TZ3liJt_zrmEx4E93wK8p3UT9Wrx8BBUHznTeccgS3gJVEomj3Hk5tGcyfm3nfc2vKBs1Gb_xG204zPNsg922zrunbauc8mApxC4hWlvCFBHCNkd5HoDwlNCBCxJDU4eyiApBXSowjgUNMsWgGlGbDRIDPYExte1tsvksz_QW4zY0ZeoHaeKC8m0vAUSj2pEijIKmcMOowaxKy7EqKdBpEkc_NuTNbkx6iGs9NNhhLT8w5B8_Su5WiyYujcAwRnAUeehR_KDB3Kn2f7lLfHLW6tRn23-5aIct0LEpKN5l88XjSO8hbCrk_nRrfAD5VBQx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BeygcoPyJ0EL3gMTJrf83Pla0UaBNVbWp1Js1u15LEYldNQ4SnPIISJx4iT5UnoSZrO2mSKgSHG3t-kezO_PNzsw3AO-TUIZZ3A0c45rICY3xHEV210E3TrIQuzpXXDs8OIn7F-Hny6jJJuRaGMsP0R648c5Y6mve4HwgvXfLGopZzqXkXGtCGOQhrHNbb25icHDWMkh5UtrAcuxxipd32fA2uv7e3fl37dIt2FyFrEub03sKqvlam2ryZXdWqV39_Q8ix__6nU14UiNSsW-X0DN4YIrn8HiFp_AF3Axnk_JaDExFS2Y8mk4W8x_NAJMJ1imc-2UE6eryaowVI-GpOC0rzkUiNCvOy6LMvhU4GWkxtEQG4usIxRlHnLhkS9Sv4PzAleI7gUUmeqhrLnEad1j37VnMf_bLsRGnHJBazH-Jc2NpzMviJVz0Docf-07d6MHRBF9iUrgMKxJCbp4OAkQZaGkiHxV5px4HEjXhulySK4sGVU5-NQE3FxX5epLcajd4BWtFWZjXIFzsqjyM8sxHHbpBhgRIjadknERd6cdJB5xGzKmuWdC5Gcc4tfzNfspySFs5dOBDO_7K8n_8deR2s2rSWg9MU8JHSUBGJYw64C_Ff89T0v2D3qC9evMvk3Zgoz8cHKfHn06OtuAR37f5xduwVl3PzFtCUZV6t9wnvwEh1RhL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF7aFEp7aNMXdZumeyj0pESPldY6hiTCfTiYxAHfxOxqBSa2ZGK5kJz8Ewo99U_kR_mXdMYrKU6hFNqjxOjF7Mx8o5n5lrEPsZAii7qBY1wTOsIYz1EYdx1wozgT0NW5otnh_knUOxefR-FoY4rf8kO0P9zIMtb-mgx8luX7t6ShkOU0SU6jJghB7rMHIkKLIVh02hJIeVLaunLkUYeXN2poG11__-71d8PSLdbcRKzrkJM8ZdC8rO00udhbVGpPX__G4_g_X7PNntR4lB_YBfSM3TPFc_Z4g6XwBbsZLqblJe-bChfMZDyfrpbfGwGTcfIo1PllOHrqcjaBinDwnA_KijqREMvys7Ios6sCpmPNh5bGgH8bAz-lehMNbPH6EdQduDF6x6HIeAK6ZhJHueN6157V8kevnBg-oHLUavmTnxlLYl4WL9l5cjw87Dn1Ng-ORvASobslUBEjbvN0EADIQEsT-qAwN_WojKgR1eUSE1kwoHLMqhG2uaAw05OYVLvBK7ZVlIV5zbgLXZWLMM980MINMkA4ajwlozjsSj-KO8xptJzqmgOdtuKYpJa92U9JD2mrhw772MrPLPvHHyV3mkWT1l5gniI6igMMKSLsMH-t_b_cJT04Svrt0Zt_ueg9ezg4StKvn06-vGWP6LRtLt5hW9XlwrxDCFWp3bWV_ALpVxcD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Metabolism%E2%80%90Engineered+Composite+Nanoplatforms+Potentiate+Sonodynamic+Therapy+via+Reshaping+Tumor+Microenvironment+and+Facilitating+Electron%E2%80%93Hole+Pairs%E2%80%99+Separation&rft.jtitle=Advanced+functional+materials&rft.au=Guan%2C+Xin&rft.au=Yin%2C+Hao%E2%80%90Hao&rft.au=Xu%2C+Xiao%E2%80%90Hong&rft.au=Xu%2C+Guang&rft.date=2020-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202000326&rft.externalDBID=10.1002%252Fadfm.202000326&rft.externalDocID=ADFM202000326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon