Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation
Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic thera...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 27 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202000326 |
Cover
Loading…
Abstract | Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems.
An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors. |
---|---|
AbstractList | Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors. Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb 2 C nanosheets serve as the scaffold to accommodate TiO 2 sonosensitizers and l ‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb 2 C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. |
Author | Xu, Xiao‐Hong Yin, Hao‐Hao Sun, Li‐Ping Xu, Guang Yue, Wen‐Wen Zhang, Kun Zhang, Yan Xu, Hui‐Xiong Zhou, Bang‐Guo Guan, Xin Liu, Chang |
Author_xml | – sequence: 1 givenname: Xin surname: Guan fullname: Guan, Xin organization: Tongji University School of Medicine – sequence: 2 givenname: Hao‐Hao surname: Yin fullname: Yin, Hao‐Hao organization: Tongji University School of Medicine – sequence: 3 givenname: Xiao‐Hong surname: Xu fullname: Xu, Xiao‐Hong organization: Guangdong Medical University Affiliated Hospital – sequence: 4 givenname: Guang surname: Xu fullname: Xu, Guang organization: Tongji University School of Medicine – sequence: 5 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Tongji University School of Medicine – sequence: 6 givenname: Bang‐Guo surname: Zhou fullname: Zhou, Bang‐Guo organization: Tongji University School of Medicine – sequence: 7 givenname: Wen‐Wen surname: Yue fullname: Yue, Wen‐Wen organization: Tongji University School of Medicine – sequence: 8 givenname: Chang surname: Liu fullname: Liu, Chang email: liuchang0907@tongji.edu.cn organization: Tongji University School of Medicine – sequence: 9 givenname: Li‐Ping surname: Sun fullname: Sun, Li‐Ping organization: Tongji University School of Medicine – sequence: 10 givenname: Hui‐Xiong surname: Xu fullname: Xu, Hui‐Xiong email: xuhuixiong@tongji.edu.cn organization: Tongji University School of Medicine – sequence: 11 givenname: Kun orcidid: 0000-0002-6971-1164 surname: Zhang fullname: Zhang, Kun email: zhang1986kun@126.com organization: Chinese PLA General Hospital |
BookMark | eNqFkcFqGzEQhkVJoUnaa8-Cnu1qpNWqewyunRSSNjQu9LaM5dlEYVfaSnKKb36EQk55iT6Un6TrOqRQKD3NwHzfDMN_xA588MTYaxBjEEK-xWXTjaWQQggly2fsEEooR0rIdwdPPXx9wY5SuhUCjFHFIfs5X3Uh8gvKuAitS91282Pqr50nirTkk9D1IblM_CP60LeYmxC7xC9DJp8dDoOr4MNy7bFzls9vKGK_5ncO-WdKN9g7f80fTzgbA_k7F4PvBpmjX_IZWte6jHnHTVuyeZhuN_dnoSV-iS6m7eaBX1GPcWCCf8meN9gmevVYj9mX2XQ-ORudfzr9MDk5H1kFphxVUIgSqkJpsEohGmUNaYkLCQCq0sZqDY3RRYWEi8aAkloIXBgojZBGqGP2Zr-3j-HbilKub8Mq-uFkLQuoFGhV6IEq9tTwWUqRmtr-_iX4HNG1NYh6l0y9S6Z-SmbQxn9pfXQdxvW_hWovfHctrf9D1yfvZxd_3F_Loqla |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2021_09_016 crossref_primary_10_1021_acsami_2c05369 crossref_primary_10_1016_j_gee_2022_04_004 crossref_primary_10_2174_0929867328666210617103905 crossref_primary_10_3390_molecules29204828 crossref_primary_10_1021_acsami_2c09443 crossref_primary_10_1021_acsami_1c14024 crossref_primary_10_1016_j_cej_2022_136030 crossref_primary_10_1002_ange_202317218 crossref_primary_10_1016_j_nantod_2021_101305 crossref_primary_10_1002_adhm_202302028 crossref_primary_10_1186_s12951_021_01006_z crossref_primary_10_1016_j_fmre_2022_06_020 crossref_primary_10_1007_s12274_022_4646_2 crossref_primary_10_1002_advs_202101065 crossref_primary_10_1002_advs_202301638 crossref_primary_10_1007_s12598_023_02481_z crossref_primary_10_1016_j_partic_2022_08_001 crossref_primary_10_1039_D2TB00600F crossref_primary_10_1016_j_biomaterials_2021_121250 crossref_primary_10_1002_smll_202311228 crossref_primary_10_1021_acsnano_1c10770 crossref_primary_10_1002_adhm_202300253 crossref_primary_10_1002_adhm_202300652 crossref_primary_10_1021_acsnano_4c03172 crossref_primary_10_1002_adfm_202313454 crossref_primary_10_1021_acsami_2c14776 crossref_primary_10_1002_advs_202301764 crossref_primary_10_1016_j_fmre_2024_02_005 crossref_primary_10_1016_j_bioactmat_2021_06_021 crossref_primary_10_1002_adfm_202103394 crossref_primary_10_1021_acsnano_2c10251 crossref_primary_10_1016_j_ijbiomac_2024_130960 crossref_primary_10_1021_acsnano_1c10714 crossref_primary_10_1016_j_ccr_2020_213662 crossref_primary_10_1186_s12951_021_00936_y crossref_primary_10_1016_j_apmt_2021_101215 crossref_primary_10_1063_5_0027606 crossref_primary_10_1007_s12274_022_4547_4 crossref_primary_10_1016_j_addr_2022_114643 crossref_primary_10_1016_j_actbio_2025_02_045 crossref_primary_10_1016_j_ccr_2022_214824 crossref_primary_10_1088_1748_605X_abef58 crossref_primary_10_1002_adma_202005295 crossref_primary_10_1016_j_addr_2022_114241 crossref_primary_10_1002_adma_202101467 crossref_primary_10_1039_D0CS00718H crossref_primary_10_1002_smll_202202002 crossref_primary_10_1016_j_ccr_2021_214087 crossref_primary_10_1039_D2TB01783K crossref_primary_10_1002_advs_202105523 crossref_primary_10_1002_adma_202109973 crossref_primary_10_1016_j_bioactmat_2021_12_002 crossref_primary_10_1021_acsami_1c10656 crossref_primary_10_1186_s12951_022_01398_6 crossref_primary_10_1002_wnan_1733 crossref_primary_10_1016_j_smaim_2023_01_004 crossref_primary_10_1002_anie_202317218 crossref_primary_10_1039_D3NA00738C crossref_primary_10_1136_jitc_2022_006516 crossref_primary_10_1002_smll_202005728 crossref_primary_10_2174_1568009621666210219101552 crossref_primary_10_1002_adhm_202001208 crossref_primary_10_1002_EXP_20220119 crossref_primary_10_1002_smll_202410041 crossref_primary_10_1016_j_biomaterials_2020_120639 crossref_primary_10_1002_adma_202409663 crossref_primary_10_1002_cmdc_202400329 crossref_primary_10_1021_acsami_1c08105 crossref_primary_10_1002_smll_202107160 crossref_primary_10_1002_adfm_202107530 crossref_primary_10_1016_j_ccr_2022_214897 crossref_primary_10_1039_D1SC06315D crossref_primary_10_1039_D4BM00883A crossref_primary_10_1016_j_matt_2022_08_026 crossref_primary_10_1021_accountsmr_2c00106 crossref_primary_10_1016_j_ajps_2021_10_001 crossref_primary_10_1186_s12951_021_00897_2 crossref_primary_10_1039_D2NR04418H crossref_primary_10_1002_adfm_202209399 crossref_primary_10_1016_j_ccr_2023_215115 crossref_primary_10_1021_acsami_1c25072 crossref_primary_10_1016_j_matdes_2022_110838 crossref_primary_10_1021_acs_bioconjchem_1c00039 crossref_primary_10_1021_acsabm_3c00678 crossref_primary_10_1039_D2QM00960A crossref_primary_10_1021_acs_nanolett_1c03534 crossref_primary_10_3390_jfb14030136 crossref_primary_10_1002_smll_202303195 crossref_primary_10_1002_advs_202104125 crossref_primary_10_1039_D1BM01710A crossref_primary_10_1007_s40843_022_2413_4 crossref_primary_10_1016_j_bioactmat_2021_10_048 crossref_primary_10_1186_s12951_022_01324_w crossref_primary_10_1002_advs_202203921 crossref_primary_10_1002_smll_202401650 crossref_primary_10_1021_acsnano_0c05235 crossref_primary_10_1016_j_colcom_2024_100783 crossref_primary_10_1021_acsnano_3c03134 crossref_primary_10_1016_j_nantod_2022_101600 crossref_primary_10_1021_acsnano_2c10845 crossref_primary_10_1016_j_actbio_2024_05_013 crossref_primary_10_1039_D2BM00323F crossref_primary_10_1002_smll_202206253 crossref_primary_10_1002_adma_202100333 crossref_primary_10_1186_s12951_024_02591_5 crossref_primary_10_1021_acsami_0c21579 crossref_primary_10_1007_s40820_021_00622_6 crossref_primary_10_1016_j_nanoen_2024_109530 crossref_primary_10_1016_j_actbio_2022_08_067 crossref_primary_10_1002_advs_202200005 crossref_primary_10_1002_adma_202209589 crossref_primary_10_2139_ssrn_4069237 crossref_primary_10_1186_s12951_022_01287_y crossref_primary_10_1016_j_cej_2024_153103 crossref_primary_10_1016_j_cej_2024_158757 crossref_primary_10_1002_adfm_202102160 crossref_primary_10_1002_adma_202210296 crossref_primary_10_1016_j_jddst_2023_104724 crossref_primary_10_1039_D3CC02486E crossref_primary_10_1016_j_apsusc_2021_151769 crossref_primary_10_1016_j_actbio_2022_11_037 crossref_primary_10_34133_research_0108 |
Cites_doi | 10.1002/adma.201602012 10.3109/10715761003667554 10.1002/advs.201800021 10.1002/adhm.201900192 10.1021/nn5068094 10.1038/s41467-019-11269-8 10.1002/adma.201802244 10.1016/j.cell.2010.03.015 10.1038/nprot.2006.378 10.1007/s11010-011-0900-8 10.1002/adfm.201905124 10.1021/acsnano.8b09387 10.1016/j.cell.2011.02.013 10.1002/adfm.201901417 10.1002/anie.201605509 10.1021/acsnano.7b05215 10.1016/j.biomaterials.2019.119255 10.1021/jacs.6b11263 10.1002/smll.201903016 10.1002/adfm.201907954 10.1002/adfm.201906466 10.1002/adma.201905271 10.1002/smll.201805339 10.1002/adma.201900401 10.1038/nrc1478 10.1038/nrc2618 10.1002/adfm.201800706 10.1002/aenm.201700025 10.1002/advs.201900099 10.1002/adma.201900730 10.1016/j.ccr.2006.08.015 10.1021/acsnano.7b08225 10.1038/s41467-019-09760-3 10.1016/j.molcel.2013.05.003 10.7150/thno.12691 10.1126/science.1156906 10.1002/advs.201901954 10.1038/s41388-018-0392-z 10.1073/pnas.1210633110 10.1021/acsnano.8b03788 10.1016/j.nanoen.2017.06.047 10.1002/adma.201607017 10.1021/acs.nanolett.8b03905 10.1021/acsnano.6b04921 10.1021/acsnano.9b01665 10.1016/j.biomaterials.2019.119303 10.1002/adfm.201805764 10.1038/s41467-019-13115-3 10.1021/acsami.9b02401 10.1038/s41467-019-10385-9 10.1016/j.neuro.2010.01.001 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202000326 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202000326 ADFM202000326 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81771836; 81601501; 81801700; 81927801; 81725008 – fundername: Shanghai Rising-Star Program funderid: 19QA1406800 – fundername: State Key Laboratory of High Performance Ceramics and Superfine Microstructure funderid: SKL201811SIC – fundername: Shanghai Municipal Health Commission funderid: 2019LJ21; SHSLCZDZK03502 – fundername: Shanghai Talent Development Fund funderid: 2019040 – fundername: Fundamental Research Funds for the Central Universities funderid: 22120190021; 22120190137 – fundername: Fostering Project of Shanghai Municipal Health Commission for Excellent Young Medical Scholars funderid: 2018YQ31 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:32:06 EDT 2025 Tue Jul 01 04:12:13 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Wed Jan 22 16:35:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6971-1164 |
PQID | 2419315345 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2419315345 crossref_citationtrail_10_1002_adfm_202000326 crossref_primary_10_1002_adfm_202000326 wiley_primary_10_1002_adfm_202000326_ADFM202000326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 7 2010; 31 2016 2019; 28 15 2019 2020; 31 30 2009 2004 2010 2011 2019; 9 4 141 144 29 2017; 39 2002 2019; 62 19 2019 2019; 10 13 2017; 11 2019 2019 2018 2019 2015 2016 2019; 216 31 28 13 5 10 6 2019 2019; 10 10 2017 2019; 11 29 2016 2019; 55 31 2013 2013 2019; 110 51 13 2019; 29 2008 2010 2006 2019; 320 44 10 10 2019 2019 2018 2019; 31 15 5 11 2017 2019; 7 30 2017; 29 2011 2018; 357 37 2006; 1 2017; 139 2019 2015 2019; 217 9 8 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_1_5 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_3_7 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_3_6 e_1_2_7_7_2 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_1 Kuppusamy P. (e_1_2_7_14_1) 2002; 62 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 31 30 year: 2019 2020 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 31 start-page: 204 year: 2010 publication-title: NeuroToxicol. – volume: 28 15 start-page: 8097 year: 2016 2019 publication-title: Adv. Mater. Small – volume: 139 start-page: 3438 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 357 37 start-page: 295 5843 year: 2011 2018 publication-title: Mol. Cell. Biochem. Oncogene – volume: 62 19 start-page: 307 805 year: 2002 2019 publication-title: Cancer Res. Nano Lett. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 31 15 5 11 year: 2019 2019 2018 2019 publication-title: Adv. Mater. Small Adv. Sci. ACS Appl. Mater. Interfaces – volume: 10 10 start-page: 2412 3349 year: 2019 2019 publication-title: Nat. Commun. Nat. Commun. – volume: 216 31 28 13 5 10 6 start-page: 2849 1291 year: 2019 2019 2018 2019 2015 2016 2019 publication-title: Biomaterials Adv. Mater. Adv. Funct. Mater. ACS Nano Theranostics ACS Nano Adv. Sci. – volume: 7 30 year: 2017 2019 publication-title: Adv. Energy Mater. Adv. Funct. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 55 31 year: 2016 2019 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 39 start-page: 183 year: 2017 publication-title: Nano Energy – volume: 1 start-page: 3159 year: 2006 publication-title: Nat. Protoc. – volume: 9 4 141 144 29 start-page: 239 891 52 646 year: 2009 2004 2010 2011 2019 publication-title: Nat. Rev. Cancer Nat. Rev. Cancer Cell Cell Adv. Funct. Mater. – volume: 11 start-page: 9467 year: 2017 publication-title: ACS Nano – volume: 217 9 8 start-page: 5646 year: 2019 2015 2019 publication-title: Biomaterials ACS Nano Adv. Healthcare Mater. – volume: 10 13 start-page: 2025 4267 year: 2019 2019 publication-title: Nat. Commun. ACS Nano – volume: 11 29 year: 2017 2019 publication-title: ACS Nano Adv. Funct. Mater. – volume: 320 44 10 10 start-page: 661 479 175 5380 year: 2008 2010 2006 2019 publication-title: Science Free Radical Res. Cancer Cell Nat. Commun. – volume: 110 51 13 start-page: 4622 236 6879 year: 2013 2013 2019 publication-title: Proc. Natl. Acad. Sci. U. S. A. Mol. Cell ACS Nano – volume: 7 year: 2020 publication-title: Adv. Sci. – ident: e_1_2_7_8_1 doi: 10.1002/adma.201602012 – ident: e_1_2_7_2_2 doi: 10.3109/10715761003667554 – ident: e_1_2_7_6_3 doi: 10.1002/advs.201800021 – ident: e_1_2_7_7_3 doi: 10.1002/adhm.201900192 – ident: e_1_2_7_7_2 doi: 10.1021/nn5068094 – ident: e_1_2_7_21_2 doi: 10.1038/s41467-019-11269-8 – ident: e_1_2_7_9_2 doi: 10.1002/adma.201802244 – ident: e_1_2_7_1_3 doi: 10.1016/j.cell.2010.03.015 – ident: e_1_2_7_23_1 doi: 10.1038/nprot.2006.378 – ident: e_1_2_7_5_1 doi: 10.1007/s11010-011-0900-8 – ident: e_1_2_7_1_5 doi: 10.1002/adfm.201905124 – ident: e_1_2_7_20_2 doi: 10.1021/acsnano.8b09387 – ident: e_1_2_7_1_4 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201901417 – ident: e_1_2_7_9_1 doi: 10.1002/anie.201605509 – ident: e_1_2_7_16_1 doi: 10.1021/acsnano.7b05215 – ident: e_1_2_7_3_1 doi: 10.1016/j.biomaterials.2019.119255 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.6b11263 – ident: e_1_2_7_6_2 doi: 10.1002/smll.201903016 – ident: e_1_2_7_12_2 doi: 10.1002/adfm.201907954 – ident: e_1_2_7_15_2 doi: 10.1002/adfm.201906466 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201905271 – ident: e_1_2_7_8_2 doi: 10.1002/smll.201805339 – ident: e_1_2_7_3_2 doi: 10.1002/adma.201900401 – ident: e_1_2_7_1_2 doi: 10.1038/nrc1478 – ident: e_1_2_7_1_1 doi: 10.1038/nrc2618 – ident: e_1_2_7_3_3 doi: 10.1002/adfm.201800706 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201700025 – ident: e_1_2_7_3_7 doi: 10.1002/advs.201900099 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201900730 – ident: e_1_2_7_2_3 doi: 10.1016/j.ccr.2006.08.015 – ident: e_1_2_7_11_1 doi: 10.1021/acsnano.7b08225 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-019-09760-3 – ident: e_1_2_7_4_2 doi: 10.1016/j.molcel.2013.05.003 – ident: e_1_2_7_3_5 doi: 10.7150/thno.12691 – volume: 62 start-page: 307 year: 2002 ident: e_1_2_7_14_1 publication-title: Cancer Res. – ident: e_1_2_7_2_1 doi: 10.1126/science.1156906 – ident: e_1_2_7_13_1 doi: 10.1002/advs.201901954 – ident: e_1_2_7_5_2 doi: 10.1038/s41388-018-0392-z – ident: e_1_2_7_4_1 doi: 10.1073/pnas.1210633110 – ident: e_1_2_7_3_4 doi: 10.1021/acsnano.8b03788 – ident: e_1_2_7_18_1 doi: 10.1016/j.nanoen.2017.06.047 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201607017 – ident: e_1_2_7_14_2 doi: 10.1021/acs.nanolett.8b03905 – ident: e_1_2_7_3_6 doi: 10.1021/acsnano.6b04921 – ident: e_1_2_7_4_3 doi: 10.1021/acsnano.9b01665 – ident: e_1_2_7_7_1 doi: 10.1016/j.biomaterials.2019.119303 – ident: e_1_2_7_11_2 doi: 10.1002/adfm.201805764 – ident: e_1_2_7_2_4 doi: 10.1038/s41467-019-13115-3 – ident: e_1_2_7_6_4 doi: 10.1021/acsami.9b02401 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-019-10385-9 – ident: e_1_2_7_22_1 doi: 10.1016/j.neuro.2010.01.001 |
SSID | ssj0017734 |
Score | 2.6254525 |
Snippet | Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chemical energy Depletion Electrons electron–hole pairs Energy conversion efficiency Glutathione Materials science Metabolism Niobium carbide reactive oxygen species redox metabolism modulation Separation Sonodynamic therapy Titanium dioxide tumor microenvironment |
Title | Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000326 https://www.proquest.com/docview/2419315345 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i_XFHgRP0by3OYpailARrdBbmN1sQKxJsakHT_0Jgif_hD-qv8SZbhKrIILeEpi8mN2ZbzIz3zB2EPnCT8KmZ2lbB5avtWNJ9LsW2GGU-NBUqaTe4c5l2L71L3pBb6aL3_BD1D_caGdM7TVtcJDD40_SUEhS6iSnVhOEIGiEqWCLUNF1zR_lCGHSyqFDBV5Or2JttN3jr5d_9UqfUHMWsE49TmuZQfWuptDk_mhUyCP1_I3G8T8fs8KWSjjKT8z6WWVzOltjizMkhevsvTt6yB95Rxe4Xvp3w4fJ-KUS0Akng0KFX5qjoc4HfSgIBg_5VV5QIRJCWX6TZ3liJt_zrmEx4E93wK8p3UT9Wrx8BBUHznTeccgS3gJVEomj3Hk5tGcyfm3nfc2vKBs1Gb_xG204zPNsg922zrunbauc8mApxC4hWlvCFBHCNkd5HoDwlNCBCxJDU4eyiApBXSowjgUNMsWgGlGbDRIDPYExte1tsvksz_QW4zY0ZeoHaeKC8m0vAUSj2pEijIKmcMOowaxKy7EqKdBpEkc_NuTNbkx6iGs9NNhhLT8w5B8_Su5WiyYujcAwRnAUeehR_KDB3Kn2f7lLfHLW6tRn23-5aIct0LEpKN5l88XjSO8hbCrk_nRrfAD5VBQx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BeygcoPyJ0EL3gMTJrf83Pla0UaBNVbWp1Js1u15LEYldNQ4SnPIISJx4iT5UnoSZrO2mSKgSHG3t-kezO_PNzsw3AO-TUIZZ3A0c45rICY3xHEV210E3TrIQuzpXXDs8OIn7F-Hny6jJJuRaGMsP0R648c5Y6mve4HwgvXfLGopZzqXkXGtCGOQhrHNbb25icHDWMkh5UtrAcuxxipd32fA2uv7e3fl37dIt2FyFrEub03sKqvlam2ryZXdWqV39_Q8ix__6nU14UiNSsW-X0DN4YIrn8HiFp_AF3Axnk_JaDExFS2Y8mk4W8x_NAJMJ1imc-2UE6eryaowVI-GpOC0rzkUiNCvOy6LMvhU4GWkxtEQG4usIxRlHnLhkS9Sv4PzAleI7gUUmeqhrLnEad1j37VnMf_bLsRGnHJBazH-Jc2NpzMviJVz0Docf-07d6MHRBF9iUrgMKxJCbp4OAkQZaGkiHxV5px4HEjXhulySK4sGVU5-NQE3FxX5epLcajd4BWtFWZjXIFzsqjyM8sxHHbpBhgRIjadknERd6cdJB5xGzKmuWdC5Gcc4tfzNfspySFs5dOBDO_7K8n_8deR2s2rSWg9MU8JHSUBGJYw64C_Ff89T0v2D3qC9evMvk3Zgoz8cHKfHn06OtuAR37f5xduwVl3PzFtCUZV6t9wnvwEh1RhL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF7aFEp7aNMXdZumeyj0pESPldY6hiTCfTiYxAHfxOxqBSa2ZGK5kJz8Ewo99U_kR_mXdMYrKU6hFNqjxOjF7Mx8o5n5lrEPsZAii7qBY1wTOsIYz1EYdx1wozgT0NW5otnh_knUOxefR-FoY4rf8kO0P9zIMtb-mgx8luX7t6ShkOU0SU6jJghB7rMHIkKLIVh02hJIeVLaunLkUYeXN2poG11__-71d8PSLdbcRKzrkJM8ZdC8rO00udhbVGpPX__G4_g_X7PNntR4lB_YBfSM3TPFc_Z4g6XwBbsZLqblJe-bChfMZDyfrpbfGwGTcfIo1PllOHrqcjaBinDwnA_KijqREMvys7Ios6sCpmPNh5bGgH8bAz-lehMNbPH6EdQduDF6x6HIeAK6ZhJHueN6157V8kevnBg-oHLUavmTnxlLYl4WL9l5cjw87Dn1Ng-ORvASobslUBEjbvN0EADIQEsT-qAwN_WojKgR1eUSE1kwoHLMqhG2uaAw05OYVLvBK7ZVlIV5zbgLXZWLMM980MINMkA4ajwlozjsSj-KO8xptJzqmgOdtuKYpJa92U9JD2mrhw772MrPLPvHHyV3mkWT1l5gniI6igMMKSLsMH-t_b_cJT04Svrt0Zt_ueg9ezg4StKvn06-vGWP6LRtLt5hW9XlwrxDCFWp3bWV_ALpVxcD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Metabolism%E2%80%90Engineered+Composite+Nanoplatforms+Potentiate+Sonodynamic+Therapy+via+Reshaping+Tumor+Microenvironment+and+Facilitating+Electron%E2%80%93Hole+Pairs%E2%80%99+Separation&rft.jtitle=Advanced+functional+materials&rft.au=Guan%2C+Xin&rft.au=Yin%2C+Hao%E2%80%90Hao&rft.au=Xu%2C+Xiao%E2%80%90Hong&rft.au=Xu%2C+Guang&rft.date=2020-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202000326&rft.externalDBID=10.1002%252Fadfm.202000326&rft.externalDocID=ADFM202000326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |