Inheritable Organic‐Inorganic Hybrid Interfaces with π–d Electron Coupling for Robust Electrocatalytic Hydrogen Evolution at High‐Current‐Densities

Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 6
Main Authors Zhao, Sheng, Yin, Lijie, Deng, Liming, Song, Junnan, Chang, Yu‐Ming, Hu, Feng, Wang, Hui, Chen, Han‐Yi, Li, Linlin, Peng, Shengjie
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202211576

Cover

Loading…
Abstract Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling is achieved between the delocalized π electrons of PANI and the localized d electrons of oxalate metal sites. The CoC2O4 nanosheets are grown on nickel foam (NF) with Ni2+ ions substitution by the precursor etching. By virtue of the synergy of hetero ions and π–d electron coupling, metal sites obtain sufficient exposure and electronic structure optimization. Surprisingly, the phase transition of oxalate during HER in the alkaline environment does not weaken the π–d electronic coupling of the organic‐inorganic hybrid interfaces. Inheritable interfacial electron interaction provides a reliable guarantee for robust stability at high‐current‐densities while endowing the hybrid materials with extremely low overpotentials. As expected, post‐phase reconstructed Co0.59Ni0.41(OH)2@PANI/NF displays impressive HER activity, with a low overpotential of 43 mV@−10 mA cm−2 and robust stability at −1000 mA cm−2 for 30 h in the alkaline environment. This study sheds light on the rational heterostructure interface design and promotes the architecture of an impressive electrocatalysts system. This study constructs robust organic‐inorganic hybrid interfaces between bimetallic oxalate and polyaniline with strong π–d electronic coupling. The oxalate undergoes phase reconstruction to form hydroxide during hydrogen evolution reaction (HER) in the alkaline environment. Benefiting from the strong electronic coupling, the hybrid interfaces after the reconstruction remain structurally stable to achieve superior HER activity at high‐current‐densities.
AbstractList Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling is achieved between the delocalized π electrons of PANI and the localized d electrons of oxalate metal sites. The CoC 2 O 4 nanosheets are grown on nickel foam (NF) with Ni 2+ ions substitution by the precursor etching. By virtue of the synergy of hetero ions and π–d electron coupling, metal sites obtain sufficient exposure and electronic structure optimization. Surprisingly, the phase transition of oxalate during HER in the alkaline environment does not weaken the π–d electronic coupling of the organic‐inorganic hybrid interfaces. Inheritable interfacial electron interaction provides a reliable guarantee for robust stability at high‐current‐densities while endowing the hybrid materials with extremely low overpotentials. As expected, post‐phase reconstructed Co 0.59 Ni 0.41 (OH) 2 @PANI/NF displays impressive HER activity, with a low overpotential of 43 mV@−10 mA cm −2 and robust stability at −1000 mA cm −2 for 30 h in the alkaline environment. This study sheds light on the rational heterostructure interface design and promotes the architecture of an impressive electrocatalysts system.
Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling is achieved between the delocalized π electrons of PANI and the localized d electrons of oxalate metal sites. The CoC2O4 nanosheets are grown on nickel foam (NF) with Ni2+ ions substitution by the precursor etching. By virtue of the synergy of hetero ions and π–d electron coupling, metal sites obtain sufficient exposure and electronic structure optimization. Surprisingly, the phase transition of oxalate during HER in the alkaline environment does not weaken the π–d electronic coupling of the organic‐inorganic hybrid interfaces. Inheritable interfacial electron interaction provides a reliable guarantee for robust stability at high‐current‐densities while endowing the hybrid materials with extremely low overpotentials. As expected, post‐phase reconstructed Co0.59Ni0.41(OH)2@PANI/NF displays impressive HER activity, with a low overpotential of 43 mV@−10 mA cm−2 and robust stability at −1000 mA cm−2 for 30 h in the alkaline environment. This study sheds light on the rational heterostructure interface design and promotes the architecture of an impressive electrocatalysts system. This study constructs robust organic‐inorganic hybrid interfaces between bimetallic oxalate and polyaniline with strong π–d electronic coupling. The oxalate undergoes phase reconstruction to form hydroxide during hydrogen evolution reaction (HER) in the alkaline environment. Benefiting from the strong electronic coupling, the hybrid interfaces after the reconstruction remain structurally stable to achieve superior HER activity at high‐current‐densities.
Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling is achieved between the delocalized π electrons of PANI and the localized d electrons of oxalate metal sites. The CoC2O4 nanosheets are grown on nickel foam (NF) with Ni2+ ions substitution by the precursor etching. By virtue of the synergy of hetero ions and π–d electron coupling, metal sites obtain sufficient exposure and electronic structure optimization. Surprisingly, the phase transition of oxalate during HER in the alkaline environment does not weaken the π–d electronic coupling of the organic‐inorganic hybrid interfaces. Inheritable interfacial electron interaction provides a reliable guarantee for robust stability at high‐current‐densities while endowing the hybrid materials with extremely low overpotentials. As expected, post‐phase reconstructed Co0.59Ni0.41(OH)2@PANI/NF displays impressive HER activity, with a low overpotential of 43 mV@−10 mA cm−2 and robust stability at −1000 mA cm−2 for 30 h in the alkaline environment. This study sheds light on the rational heterostructure interface design and promotes the architecture of an impressive electrocatalysts system.
Author Zhao, Sheng
Li, Linlin
Wang, Hui
Deng, Liming
Chang, Yu‐Ming
Peng, Shengjie
Chen, Han‐Yi
Song, Junnan
Hu, Feng
Yin, Lijie
Author_xml – sequence: 1
  givenname: Sheng
  surname: Zhao
  fullname: Zhao, Sheng
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Lijie
  surname: Yin
  fullname: Yin, Lijie
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 3
  givenname: Liming
  surname: Deng
  fullname: Deng, Liming
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 4
  givenname: Junnan
  surname: Song
  fullname: Song, Junnan
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 5
  givenname: Yu‐Ming
  surname: Chang
  fullname: Chang, Yu‐Ming
  organization: National Tsing Hua University
– sequence: 6
  givenname: Feng
  surname: Hu
  fullname: Hu, Feng
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 7
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 8
  givenname: Han‐Yi
  surname: Chen
  fullname: Chen, Han‐Yi
  organization: National Tsing Hua University
– sequence: 9
  givenname: Linlin
  surname: Li
  fullname: Li, Linlin
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 10
  givenname: Shengjie
  orcidid: 0000-0003-1591-1301
  surname: Peng
  fullname: Peng, Shengjie
  email: pengshengjie@nuaa.edu.cn
  organization: Nanjing University of Aeronautics and Astronautics
BookMark eNqFkc9KAzEQxoNUsP65eg54bk2y7aZ7LG21BaUgCt6WbDLbRtakJlmltz6C4NV38h18ElOrFQTxlI_M_OZj5ttHDWMNIHRMSZsSwk6FKu_bjDBGaZenO6hJU5q2EsJ6ja2mt3to3_s7QijnSaeJXidmDk4HUVSAp24mjJbvq-eJsRuNx8vCaYUnJoArhQSPn3SY47fV--pF4VEFMjhr8MDWi0qbGS6tw1e2qH34LkoRRLUMn7OUszMwePRoqzroyImAx3o2j5aD2jkwIaohGK-DBn-IdktReTj6eg_QzdnoejBuXUzPJ4P-RUsmlKctDpRlNE1Z2cmyJCuLHiNJ3FUSBQXrFfGTx3pPdlVHdEslucyKglNQSkrgWXKATjZzF84-1OBDfmdrZ6JlzjinKSNZl8eu9qZLOuu9gzJfOH0v3DKnJF8nkK8TyLcJRKDzC5Dx0Ou1gxO6-hvLNtiTrmD5j0neH55d_rAfdoSlKA
CitedBy_id crossref_primary_10_1016_j_cej_2023_145147
crossref_primary_10_1016_j_jcis_2024_11_199
crossref_primary_10_1016_j_cej_2023_143124
crossref_primary_10_1039_D4TC00456F
crossref_primary_10_1002_chem_202303826
crossref_primary_10_1016_j_apsusc_2024_160397
crossref_primary_10_1039_D4TA08245A
crossref_primary_10_1002_cssc_202300348
crossref_primary_10_1002_aesr_202300057
crossref_primary_10_1002_smll_202407721
crossref_primary_10_1021_acsnano_3c09159
crossref_primary_10_1002_aenm_202303563
crossref_primary_10_1002_adfm_202316296
crossref_primary_10_1021_acsomega_4c06966
crossref_primary_10_1016_j_jcis_2024_05_099
crossref_primary_10_1002_smll_202306273
crossref_primary_10_1007_s10562_023_04462_4
crossref_primary_10_1002_smll_202207852
crossref_primary_10_1038_s41467_024_49834_5
crossref_primary_10_1038_s41467_024_50535_2
crossref_primary_10_1039_D3QM00682D
crossref_primary_10_1039_D3CP05790A
crossref_primary_10_1021_acs_energyfuels_4c03150
crossref_primary_10_1039_D3QM00722G
crossref_primary_10_1002_adma_202313156
crossref_primary_10_1016_j_jcis_2025_01_050
crossref_primary_10_1039_D4QI00085D
crossref_primary_10_1002_chem_202402725
crossref_primary_10_1002_smll_202407319
crossref_primary_10_1039_D3QI01203D
crossref_primary_10_1002_cctc_202201472
Cites_doi 10.1002/adma.202006034
10.1038/s41467-020-19433-1
10.1002/aenm.202200001
10.1021/acscatal.1c03333
10.1080/00032719.2013.832277
10.1038/s41467-021-24829-8
10.1002/adma.202109108
10.1021/acscatal.2c02770
10.1002/advs.202106029
10.1016/j.apcatb.2021.120202
10.1039/C9EE00839J
10.1021/jacs.7b12968
10.1002/adma.202000231
10.1002/adma.201905622
10.1002/anie.202116068
10.1002/aenm.202101758
10.1002/anie.202005241
10.1002/adma.202202195
10.1002/anie.202110374
10.1021/acsnano.2c02820
10.1002/aenm.202201452
10.1038/s41467-022-29710-w
10.1016/j.nanoen.2022.107753
10.1021/acs.chemmater.2c01738
10.1039/D1TA10678C
10.1016/j.esci.2021.12.007
10.1007/s11426-022-1287-4
10.1038/s41467-019-09845-z
10.1021/jacs.9b02527
10.1021/acsami.1c07504
10.1021/acsami.2c04093
10.1038/s41467-020-17121-8
10.1038/s41467-019-13519-1
10.1038/s41467-018-07792-9
10.1038/s41929-021-00721-y
10.1038/s41467-022-33007-3
10.1002/adma.202000872
10.1016/j.apcatb.2021.120350
10.1002/advs.202202445
10.1016/j.esci.2022.04.002
10.1021/acssuschemeng.1c00730
10.1002/adfm.202112367
10.1039/D1EE02538D
10.1002/adfm.202109731
10.1039/D1TA00693B
10.1002/aenm.202102353
10.1002/cey2.3
10.1021/acsnano.1c10504
10.1021/jacs.7b03507
10.1002/adma.202006351
10.1039/D1TA03686F
10.1002/adma.201503187
10.1002/adma.202203615
10.1002/adfm.202100618
10.1002/EXP.20210050
10.1016/j.cej.2022.138426
10.1038/s41467-020-17199-0
10.1038/s41467-022-31971-4
10.1038/s41467-022-33590-5
10.1039/D2TA03358E
10.1016/j.apcatb.2020.119137
10.1016/j.esci.2021.11.006
10.1002/aenm.202200067
10.1016/j.cej.2021.134247
10.1038/s41467-021-26315-7
10.1016/j.esci.2021.09.002
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202211576
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202211576
ADFM202211576
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2021M691561; 2021T140319
– fundername: Fundamental Research Funds for the Central Universities
  funderid: kfjj20180605
– fundername: Nanjing University of Aeronautics and Astronautics
  funderid: XCXJH20210606
– fundername: Carbon Peak and Carbon Neutrality of Jiangsu Province
  funderid: BK20220039
– fundername: National Natural Science Foundation of China
  funderid: 51871119; 22075141; 22101132
– fundername: Jiangsu Postdoctoral Research Fund
  funderid: 2021K547C
– fundername: Jiangsu Provincial Founds for Natural Science Foundation
  funderid: BK20180015; BK20210311
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-7e1291662f49939fb8203301c0deb28b99379168c5d4a5fdc7c9bb71eddcce793
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 05:13:01 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Tue Jul 01 00:30:36 EDT 2025
Wed Jan 22 16:17:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-7e1291662f49939fb8203301c0deb28b99379168c5d4a5fdc7c9bb71eddcce793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1591-1301
PQID 2771620957
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2771620957
crossref_primary_10_1002_adfm_202211576
crossref_citationtrail_10_1002_adfm_202211576
wiley_primary_10_1002_adfm_202211576_ADFM202211576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2022; 431
2022; 450
2018; 140
2021; 2
2019; 31
2019; 10
2019; 1
2020; 59
2014; 47
2020; 13
2020; 11
2022; 65
2020; 32
2021; 1
2019; 141
2017; 139
2021; 14
2021; 13
2021; 32
2021; 31
2015; 27
2021; 12
2021; 33
2021; 11
2022; 5
2022; 61
2022; 9
2022; 12
2022; 34
2021; 292
2022; 13
2022; 14
2021; 296
2020; 276
2022; 10
2022; 32
2022; 2
2021; 60
2022; 16
2022; 103
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 102
  year: 2021
  publication-title: eScience
– volume: 10
  start-page: 2149
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 141
  year: 2021
  publication-title: eScience
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 3724
  year: 2020
  publication-title: Nat. Commun.
– volume: 140
  start-page: 5118
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 7051
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 77
  year: 2019
  publication-title: Carbon Energy
– volume: 47
  start-page: 117
  year: 2014
  publication-title: Anal. Lett.
– volume: 13
  start-page: 2024
  year: 2022
  publication-title: Nat. Commun.
– volume: 139
  start-page: 8320
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 103
  year: 2022
  publication-title: Nano Energy
– volume: 10
  start-page: 269
  year: 2019
  publication-title: Nat. Commun.
– volume: 276
  year: 2020
  publication-title: Appl. Catal. B Environ.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 2
  start-page: 304
  year: 2022
  publication-title: eScience
– volume: 34
  start-page: 8271
  year: 2022
  publication-title: Chem. Mater.
– volume: 65
  start-page: 1829
  year: 2022
  publication-title: Sci. China Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 7586
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 6419
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 292
  year: 2021
  publication-title: Appl. Catal. B Environ.
– volume: 11
  start-page: 3315
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 5692
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 4200
  year: 2022
  publication-title: Nat. Commun.
– volume: 9
  start-page: 7454
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 12
  start-page: 6051
  year: 2021
  publication-title: Nat. Commun.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 5657
  year: 2020
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 69
  year: 2021
  publication-title: eScience
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 5
  start-page: 66
  year: 2022
  publication-title: Nat. Catal.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 12
  start-page: 4606
  year: 2021
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5382
  year: 2022
  publication-title: Nat. Commun.
– volume: 450
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 3454
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 13
  start-page: 102
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 296
  year: 2021
  publication-title: Appl. Catal. B Environ.
– volume: 13
  start-page: 5785
  year: 2022
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 1
  year: 2021
  publication-title: Exploration
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 1625
  year: 2022
  publication-title: ACS Nano
– volume: 141
  start-page: 7537
  year: 2019
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202006034
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-020-19433-1
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.202200001
– ident: e_1_2_7_29_1
  doi: 10.1021/acscatal.1c03333
– ident: e_1_2_7_30_1
  doi: 10.1080/00032719.2013.832277
– ident: e_1_2_7_64_1
  doi: 10.1038/s41467-021-24829-8
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.202109108
– ident: e_1_2_7_4_1
  doi: 10.1021/acscatal.2c02770
– ident: e_1_2_7_56_1
  doi: 10.1002/advs.202106029
– ident: e_1_2_7_34_1
  doi: 10.1016/j.apcatb.2021.120202
– ident: e_1_2_7_45_1
  doi: 10.1039/C9EE00839J
– ident: e_1_2_7_33_1
  doi: 10.1021/jacs.7b12968
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202000231
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201905622
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.202116068
– ident: e_1_2_7_65_1
  doi: 10.1002/aenm.202101758
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.202005241
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.202202195
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.202110374
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.2c02820
– ident: e_1_2_7_46_1
  doi: 10.1002/aenm.202201452
– ident: e_1_2_7_63_1
  doi: 10.1038/s41467-022-29710-w
– ident: e_1_2_7_14_1
  doi: 10.1016/j.nanoen.2022.107753
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.chemmater.2c01738
– ident: e_1_2_7_50_1
  doi: 10.1039/D1TA10678C
– ident: e_1_2_7_3_1
  doi: 10.1016/j.esci.2021.12.007
– ident: e_1_2_7_57_1
  doi: 10.1007/s11426-022-1287-4
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-019-09845-z
– ident: e_1_2_7_48_1
  doi: 10.1021/jacs.9b02527
– ident: e_1_2_7_54_1
  doi: 10.1021/acsami.1c07504
– ident: e_1_2_7_58_1
  doi: 10.1021/acsami.2c04093
– ident: e_1_2_7_43_1
  doi: 10.1038/s41467-020-17121-8
– ident: e_1_2_7_32_1
  doi: 10.1038/s41467-019-13519-1
– ident: e_1_2_7_44_1
  doi: 10.1038/s41467-018-07792-9
– ident: e_1_2_7_1_1
  doi: 10.1038/s41929-021-00721-y
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-022-33007-3
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.202000872
– ident: e_1_2_7_17_1
  doi: 10.1016/j.apcatb.2021.120350
– ident: e_1_2_7_52_1
  doi: 10.1002/advs.202202445
– ident: e_1_2_7_16_1
  doi: 10.1016/j.esci.2022.04.002
– ident: e_1_2_7_55_1
  doi: 10.1021/acssuschemeng.1c00730
– ident: e_1_2_7_59_1
  doi: 10.1002/adfm.202112367
– ident: e_1_2_7_23_1
  doi: 10.1039/D1EE02538D
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.202109731
– ident: e_1_2_7_60_1
  doi: 10.1039/D1TA00693B
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.202102353
– ident: e_1_2_7_27_1
  doi: 10.1002/cey2.3
– ident: e_1_2_7_28_1
  doi: 10.1021/acsnano.1c10504
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.7b03507
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.202006351
– ident: e_1_2_7_53_1
  doi: 10.1039/D1TA03686F
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201503187
– ident: e_1_2_7_62_1
  doi: 10.1002/adma.202203615
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.202100618
– ident: e_1_2_7_20_1
  doi: 10.1002/EXP.20210050
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cej.2022.138426
– ident: e_1_2_7_49_1
  doi: 10.1038/s41467-020-17199-0
– ident: e_1_2_7_66_1
  doi: 10.1038/s41467-022-31971-4
– ident: e_1_2_7_36_1
  doi: 10.1038/s41467-022-33590-5
– ident: e_1_2_7_31_1
  doi: 10.1039/D2TA03358E
– ident: e_1_2_7_47_1
  doi: 10.1016/j.apcatb.2020.119137
– ident: e_1_2_7_13_1
  doi: 10.1016/j.esci.2021.11.006
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.202200067
– ident: e_1_2_7_51_1
  doi: 10.1016/j.cej.2021.134247
– ident: e_1_2_7_18_1
  doi: 10.1038/s41467-021-26315-7
– ident: e_1_2_7_38_1
  doi: 10.1016/j.esci.2021.09.002
SSID ssj0017734
Score 2.577083
Snippet Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cobalt oxalates
Coupling
Electrocatalysts
electrolysis
electron coupling
Electronic structure
Electrons
Heterojunctions
heterostructure interfaces
Heterostructures
Hydrogen evolution reactions
Interface stability
Materials science
Metal foams
Optimization
Phase transitions
Polyanilines
Robustness
Substitution reactions
Title Inheritable Organic‐Inorganic Hybrid Interfaces with π–d Electron Coupling for Robust Electrocatalytic Hydrogen Evolution at High‐Current‐Densities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202211576
https://www.proquest.com/docview/2771620957
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YT3rwbUTR7MHEU4GWtgtHwiNgggciCbdmX_WgKQaKCZ74CSZe_U_-B36JM922gIkx0ds2-2i7u7Pz7ezMt4Rc-z7joHW1JWp2aLnKcyyhfWVJXlMKGdhUiCe6_Tu_O3RvR95oLYrf8EPkBjeUjGS9RgHnYlpekYZyFWIkueMgXQxybqPDFqKiQc4fZTNmjpV9Gx287FHG2lhxypvVN7XSCmquA9ZE43T2Cc--1TiaPJZmsSjJ1280jv_5mQOyl8JR2jDz55Bs6eiI7K6RFB6Tj16EMYIxxlhRE7opl4u3XmQuhJK0O8eoL5rYFkP08KJo3KWfi-XiXdF2es8ObY5nGP37QAEm08FYzKZxlpnYkOZx0paajGFO0_ZLKhOUxxSdUeCVKZcUpFrodo9UsCdk2GnfN7tWeqeDJQGp-BbTADBs33dC2GpV66EABFKFoZEVBXv8mkC4BPk16SmXe6GSTNaFYLZWSkoNi8kp2Y7GkT4jFFaeEPb2Wrma4ekv53VQt56AZrXgriwQKxvTQKaE53jvxlNgqJqdAHs9yHu9QG7y8s-G6uPHksVsigSpyE8DhyEZFyBWViBOMta_tBI0Wp1-_nT-l0oXZAfSVeNFXiTb8WSmLwEkxeIqEYQvqvoQfA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCpA0sdtjRVu1QDkgkLhF8RIOoBRBigSnfgISV_6Jf-iXMBMnYZEQEtySeElie-zn8cwbgB3ORYSrrnFkzY0dXweeIw3XjopqWhMDm47pRLd3yjsX_tFlUFgTki-M5YcoFW4kGdl8TQJOCun9D9bQSMfkSu55xBfDx2GSwnqTbDbPSgYpVwh7sMxdMvFyLwvexgNv_2v5r-vSB9j8DFmzNac9B7L4Wmtqcr03SOWeevpG5Piv35mH2RyRsoYdQgswZpJFmPnEU7gEr92E3ARTcrNi1ntTjYbP3cTGhFKs80iOXyxTL8Zk5MVIv8vehqPhi2atPNQOO-wPyAH4iiFSZmd9ObhPi8RMjfSYZnXpuz4Oa9Z6yMWCRSkjexR8ZU4nhVdNsrwnNthluGi3zg87Th7WwVEIVrgjDGIMl3Mvxt1WtR5LBCFV7Bt1oHGbX5OEmDC9pgLtR0GslVB1KYVrtFbK4HyyAhNJPzGrwHDyiXF7b7RvBB0AR1EdV9xAYrVGRr6qgFN0aqhyznMKvXETWrZmL6RWD8tWr8Bumf_Wsn38mHOjGCNhLvX3oSeIjwtBq6iAl3X2L7WEjWa7V96t_aXQNkx1znsn4Un39HgdpvF51RqVb8BEejcwm4iZUrmVScU7j3gUlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61VKrgAH0hwqt7qNSTIXbsXeeISKKkLahCRcrN2mcPRU4EDhKc8hOQuPY_9T_wS5jx2iYgVZXozfY-bO_u7H47O_MNwCfOhcRV1wYqDV0QmyQKlOUm0DI1hhjYjKMT3aNjPjyNv4yT8YIXv-eHaBRuJBnlfE0CPjVu_4E0VBpHnuRRRHQx_CW8ink7pe1X76QhkAqF8OfKPCQLr3Bc0za2o_3H5R8vSw9YcxGxlkvOYA1k_bHe0uTX3qxQe_r6CY_j__zNG1it8Cg78APoLbyw-TtYWWApfA-_Rzk5CRbkZMW876a-m9-Mch8RSrPhFbl9sVK56MjEi5F2l_2Z381vDetXgXbY4WRG7r8_GeJkdjJRs4uiTiyVSFdFWZc5n-CgZv3LSiiYLBhZo-ArKzIpvOqR3T1xwX6A00H_x-EwqII6BBqhCg-ERYQRch453Gt1uk4hBOlg1-i2wU1-qggvYXqqExPLxBktdFcpEVpjtLY4m6zDUj7J7QYwnHocbu6tia2g418pu7jeJgqrtUrGugVB3aeZrhjPKfDGWea5mqOMWj1rWr0Fn5v8U8_18dec2_UQySqZv8giQWxcCFlFC6Kyr_9RS3bQGxw1d5vPKfQRXn_vDbJvo-OvW7CMjzveonwblorzmd1BwFSo3VIm7gFquBNN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inheritable+Organic%E2%80%90Inorganic+Hybrid+Interfaces+with+%CF%80%E2%80%93d+Electron+Coupling+for+Robust+Electrocatalytic+Hydrogen+Evolution+at+High%E2%80%90Current%E2%80%90Densities&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Sheng&rft.au=Yin%2C+Lijie&rft.au=Deng%2C+Liming&rft.au=Song%2C+Junnan&rft.date=2023-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202211576&rft.externalDBID=10.1002%252Fadfm.202211576&rft.externalDocID=ADFM202211576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon