Inheritable Organic‐Inorganic Hybrid Interfaces with π–d Electron Coupling for Robust Electrocatalytic Hydrogen Evolution at High‐Current‐Densities
Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 6 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202211576 |
Cover
Loading…
Abstract | Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling is achieved between the delocalized π electrons of PANI and the localized d electrons of oxalate metal sites. The CoC2O4 nanosheets are grown on nickel foam (NF) with Ni2+ ions substitution by the precursor etching. By virtue of the synergy of hetero ions and π–d electron coupling, metal sites obtain sufficient exposure and electronic structure optimization. Surprisingly, the phase transition of oxalate during HER in the alkaline environment does not weaken the π–d electronic coupling of the organic‐inorganic hybrid interfaces. Inheritable interfacial electron interaction provides a reliable guarantee for robust stability at high‐current‐densities while endowing the hybrid materials with extremely low overpotentials. As expected, post‐phase reconstructed Co0.59Ni0.41(OH)2@PANI/NF displays impressive HER activity, with a low overpotential of 43 mV@−10 mA cm−2 and robust stability at −1000 mA cm−2 for 30 h in the alkaline environment. This study sheds light on the rational heterostructure interface design and promotes the architecture of an impressive electrocatalysts system.
This study constructs robust organic‐inorganic hybrid interfaces between bimetallic oxalate and polyaniline with strong π–d electronic coupling. The oxalate undergoes phase reconstruction to form hydroxide during hydrogen evolution reaction (HER) in the alkaline environment. Benefiting from the strong electronic coupling, the hybrid interfaces after the reconstruction remain structurally stable to achieve superior HER activity at high‐current‐densities. |
---|---|
AbstractList | Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling is achieved between the delocalized π electrons of PANI and the localized d electrons of oxalate metal sites. The CoC
2
O
4
nanosheets are grown on nickel foam (NF) with Ni
2+
ions substitution by the precursor etching. By virtue of the synergy of hetero ions and π–d electron coupling, metal sites obtain sufficient exposure and electronic structure optimization. Surprisingly, the phase transition of oxalate during HER in the alkaline environment does not weaken the π–d electronic coupling of the organic‐inorganic hybrid interfaces. Inheritable interfacial electron interaction provides a reliable guarantee for robust stability at high‐current‐densities while endowing the hybrid materials with extremely low overpotentials. As expected, post‐phase reconstructed Co
0.59
Ni
0.41
(OH)
2
@PANI/NF displays impressive HER activity, with a low overpotential of 43 mV@−10 mA cm
−2
and robust stability at −1000 mA cm
−2
for 30 h in the alkaline environment. This study sheds light on the rational heterostructure interface design and promotes the architecture of an impressive electrocatalysts system. Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling is achieved between the delocalized π electrons of PANI and the localized d electrons of oxalate metal sites. The CoC2O4 nanosheets are grown on nickel foam (NF) with Ni2+ ions substitution by the precursor etching. By virtue of the synergy of hetero ions and π–d electron coupling, metal sites obtain sufficient exposure and electronic structure optimization. Surprisingly, the phase transition of oxalate during HER in the alkaline environment does not weaken the π–d electronic coupling of the organic‐inorganic hybrid interfaces. Inheritable interfacial electron interaction provides a reliable guarantee for robust stability at high‐current‐densities while endowing the hybrid materials with extremely low overpotentials. As expected, post‐phase reconstructed Co0.59Ni0.41(OH)2@PANI/NF displays impressive HER activity, with a low overpotential of 43 mV@−10 mA cm−2 and robust stability at −1000 mA cm−2 for 30 h in the alkaline environment. This study sheds light on the rational heterostructure interface design and promotes the architecture of an impressive electrocatalysts system. This study constructs robust organic‐inorganic hybrid interfaces between bimetallic oxalate and polyaniline with strong π–d electronic coupling. The oxalate undergoes phase reconstruction to form hydroxide during hydrogen evolution reaction (HER) in the alkaline environment. Benefiting from the strong electronic coupling, the hybrid interfaces after the reconstruction remain structurally stable to achieve superior HER activity at high‐current‐densities. Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid heterojunction based on the assembly of oxalate with polyaniline (PANI) for HER at high‐current‐densities is envisioned. Strong π–d electron coupling is achieved between the delocalized π electrons of PANI and the localized d electrons of oxalate metal sites. The CoC2O4 nanosheets are grown on nickel foam (NF) with Ni2+ ions substitution by the precursor etching. By virtue of the synergy of hetero ions and π–d electron coupling, metal sites obtain sufficient exposure and electronic structure optimization. Surprisingly, the phase transition of oxalate during HER in the alkaline environment does not weaken the π–d electronic coupling of the organic‐inorganic hybrid interfaces. Inheritable interfacial electron interaction provides a reliable guarantee for robust stability at high‐current‐densities while endowing the hybrid materials with extremely low overpotentials. As expected, post‐phase reconstructed Co0.59Ni0.41(OH)2@PANI/NF displays impressive HER activity, with a low overpotential of 43 mV@−10 mA cm−2 and robust stability at −1000 mA cm−2 for 30 h in the alkaline environment. This study sheds light on the rational heterostructure interface design and promotes the architecture of an impressive electrocatalysts system. |
Author | Zhao, Sheng Li, Linlin Wang, Hui Deng, Liming Chang, Yu‐Ming Peng, Shengjie Chen, Han‐Yi Song, Junnan Hu, Feng Yin, Lijie |
Author_xml | – sequence: 1 givenname: Sheng surname: Zhao fullname: Zhao, Sheng organization: Nanjing University of Aeronautics and Astronautics – sequence: 2 givenname: Lijie surname: Yin fullname: Yin, Lijie organization: Nanjing University of Aeronautics and Astronautics – sequence: 3 givenname: Liming surname: Deng fullname: Deng, Liming organization: Nanjing University of Aeronautics and Astronautics – sequence: 4 givenname: Junnan surname: Song fullname: Song, Junnan organization: Nanjing University of Aeronautics and Astronautics – sequence: 5 givenname: Yu‐Ming surname: Chang fullname: Chang, Yu‐Ming organization: National Tsing Hua University – sequence: 6 givenname: Feng surname: Hu fullname: Hu, Feng organization: Nanjing University of Aeronautics and Astronautics – sequence: 7 givenname: Hui surname: Wang fullname: Wang, Hui organization: Nanjing University of Aeronautics and Astronautics – sequence: 8 givenname: Han‐Yi surname: Chen fullname: Chen, Han‐Yi organization: National Tsing Hua University – sequence: 9 givenname: Linlin surname: Li fullname: Li, Linlin organization: Nanjing University of Aeronautics and Astronautics – sequence: 10 givenname: Shengjie orcidid: 0000-0003-1591-1301 surname: Peng fullname: Peng, Shengjie email: pengshengjie@nuaa.edu.cn organization: Nanjing University of Aeronautics and Astronautics |
BookMark | eNqFkc9KAzEQxoNUsP65eg54bk2y7aZ7LG21BaUgCt6WbDLbRtakJlmltz6C4NV38h18ElOrFQTxlI_M_OZj5ttHDWMNIHRMSZsSwk6FKu_bjDBGaZenO6hJU5q2EsJ6ja2mt3to3_s7QijnSaeJXidmDk4HUVSAp24mjJbvq-eJsRuNx8vCaYUnJoArhQSPn3SY47fV--pF4VEFMjhr8MDWi0qbGS6tw1e2qH34LkoRRLUMn7OUszMwePRoqzroyImAx3o2j5aD2jkwIaohGK-DBn-IdktReTj6eg_QzdnoejBuXUzPJ4P-RUsmlKctDpRlNE1Z2cmyJCuLHiNJ3FUSBQXrFfGTx3pPdlVHdEslucyKglNQSkrgWXKATjZzF84-1OBDfmdrZ6JlzjinKSNZl8eu9qZLOuu9gzJfOH0v3DKnJF8nkK8TyLcJRKDzC5Dx0Ou1gxO6-hvLNtiTrmD5j0neH55d_rAfdoSlKA |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_145147 crossref_primary_10_1016_j_jcis_2024_11_199 crossref_primary_10_1016_j_cej_2023_143124 crossref_primary_10_1039_D4TC00456F crossref_primary_10_1002_chem_202303826 crossref_primary_10_1016_j_apsusc_2024_160397 crossref_primary_10_1039_D4TA08245A crossref_primary_10_1002_cssc_202300348 crossref_primary_10_1002_aesr_202300057 crossref_primary_10_1002_smll_202407721 crossref_primary_10_1021_acsnano_3c09159 crossref_primary_10_1002_aenm_202303563 crossref_primary_10_1002_adfm_202316296 crossref_primary_10_1021_acsomega_4c06966 crossref_primary_10_1016_j_jcis_2024_05_099 crossref_primary_10_1002_smll_202306273 crossref_primary_10_1007_s10562_023_04462_4 crossref_primary_10_1002_smll_202207852 crossref_primary_10_1038_s41467_024_49834_5 crossref_primary_10_1038_s41467_024_50535_2 crossref_primary_10_1039_D3QM00682D crossref_primary_10_1039_D3CP05790A crossref_primary_10_1021_acs_energyfuels_4c03150 crossref_primary_10_1039_D3QM00722G crossref_primary_10_1002_adma_202313156 crossref_primary_10_1016_j_jcis_2025_01_050 crossref_primary_10_1039_D4QI00085D crossref_primary_10_1002_chem_202402725 crossref_primary_10_1002_smll_202407319 crossref_primary_10_1039_D3QI01203D crossref_primary_10_1002_cctc_202201472 |
Cites_doi | 10.1002/adma.202006034 10.1038/s41467-020-19433-1 10.1002/aenm.202200001 10.1021/acscatal.1c03333 10.1080/00032719.2013.832277 10.1038/s41467-021-24829-8 10.1002/adma.202109108 10.1021/acscatal.2c02770 10.1002/advs.202106029 10.1016/j.apcatb.2021.120202 10.1039/C9EE00839J 10.1021/jacs.7b12968 10.1002/adma.202000231 10.1002/adma.201905622 10.1002/anie.202116068 10.1002/aenm.202101758 10.1002/anie.202005241 10.1002/adma.202202195 10.1002/anie.202110374 10.1021/acsnano.2c02820 10.1002/aenm.202201452 10.1038/s41467-022-29710-w 10.1016/j.nanoen.2022.107753 10.1021/acs.chemmater.2c01738 10.1039/D1TA10678C 10.1016/j.esci.2021.12.007 10.1007/s11426-022-1287-4 10.1038/s41467-019-09845-z 10.1021/jacs.9b02527 10.1021/acsami.1c07504 10.1021/acsami.2c04093 10.1038/s41467-020-17121-8 10.1038/s41467-019-13519-1 10.1038/s41467-018-07792-9 10.1038/s41929-021-00721-y 10.1038/s41467-022-33007-3 10.1002/adma.202000872 10.1016/j.apcatb.2021.120350 10.1002/advs.202202445 10.1016/j.esci.2022.04.002 10.1021/acssuschemeng.1c00730 10.1002/adfm.202112367 10.1039/D1EE02538D 10.1002/adfm.202109731 10.1039/D1TA00693B 10.1002/aenm.202102353 10.1002/cey2.3 10.1021/acsnano.1c10504 10.1021/jacs.7b03507 10.1002/adma.202006351 10.1039/D1TA03686F 10.1002/adma.201503187 10.1002/adma.202203615 10.1002/adfm.202100618 10.1002/EXP.20210050 10.1016/j.cej.2022.138426 10.1038/s41467-020-17199-0 10.1038/s41467-022-31971-4 10.1038/s41467-022-33590-5 10.1039/D2TA03358E 10.1016/j.apcatb.2020.119137 10.1016/j.esci.2021.11.006 10.1002/aenm.202200067 10.1016/j.cej.2021.134247 10.1038/s41467-021-26315-7 10.1016/j.esci.2021.09.002 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202211576 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202211576 ADFM202211576 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2021M691561; 2021T140319 – fundername: Fundamental Research Funds for the Central Universities funderid: kfjj20180605 – fundername: Nanjing University of Aeronautics and Astronautics funderid: XCXJH20210606 – fundername: Carbon Peak and Carbon Neutrality of Jiangsu Province funderid: BK20220039 – fundername: National Natural Science Foundation of China funderid: 51871119; 22075141; 22101132 – fundername: Jiangsu Postdoctoral Research Fund funderid: 2021K547C – fundername: Jiangsu Provincial Founds for Natural Science Foundation funderid: BK20180015; BK20210311 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-7e1291662f49939fb8203301c0deb28b99379168c5d4a5fdc7c9bb71eddcce793 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 05:13:01 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Tue Jul 01 00:30:36 EDT 2025 Wed Jan 22 16:17:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-7e1291662f49939fb8203301c0deb28b99379168c5d4a5fdc7c9bb71eddcce793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1591-1301 |
PQID | 2771620957 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2771620957 crossref_primary_10_1002_adfm_202211576 crossref_citationtrail_10_1002_adfm_202211576 wiley_primary_10_1002_adfm_202211576_ADFM202211576 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2022; 431 2022; 450 2018; 140 2021; 2 2019; 31 2019; 10 2019; 1 2020; 59 2014; 47 2020; 13 2020; 11 2022; 65 2020; 32 2021; 1 2019; 141 2017; 139 2021; 14 2021; 13 2021; 32 2021; 31 2015; 27 2021; 12 2021; 33 2021; 11 2022; 5 2022; 61 2022; 9 2022; 12 2022; 34 2021; 292 2022; 13 2022; 14 2021; 296 2020; 276 2022; 10 2022; 32 2022; 2 2021; 60 2022; 16 2022; 103 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 102 year: 2021 publication-title: eScience – volume: 10 start-page: 2149 year: 2019 publication-title: Nat. Commun. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 141 year: 2021 publication-title: eScience – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 3724 year: 2020 publication-title: Nat. Commun. – volume: 140 start-page: 5118 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7051 year: 2015 publication-title: Adv. Mater. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 1 start-page: 77 year: 2019 publication-title: Carbon Energy – volume: 47 start-page: 117 year: 2014 publication-title: Anal. Lett. – volume: 13 start-page: 2024 year: 2022 publication-title: Nat. Commun. – volume: 139 start-page: 8320 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 103 year: 2022 publication-title: Nano Energy – volume: 10 start-page: 269 year: 2019 publication-title: Nat. Commun. – volume: 276 year: 2020 publication-title: Appl. Catal. B Environ. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 2 start-page: 304 year: 2022 publication-title: eScience – volume: 34 start-page: 8271 year: 2022 publication-title: Chem. Mater. – volume: 65 start-page: 1829 year: 2022 publication-title: Sci. China Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 9 start-page: 7586 year: 2021 publication-title: J. Mater. Chem. A – volume: 14 start-page: 6419 year: 2021 publication-title: Energy Environ. Sci. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 292 year: 2021 publication-title: Appl. Catal. B Environ. – volume: 11 start-page: 3315 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 5692 year: 2019 publication-title: Nat. Commun. – volume: 13 start-page: 4200 year: 2022 publication-title: Nat. Commun. – volume: 9 start-page: 7454 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 12 start-page: 6051 year: 2021 publication-title: Nat. Commun. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 5657 year: 2020 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 69 year: 2021 publication-title: eScience – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 5 start-page: 66 year: 2022 publication-title: Nat. Catal. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 12 start-page: 4606 year: 2021 publication-title: Nat. Commun. – volume: 13 start-page: 5382 year: 2022 publication-title: Nat. Commun. – volume: 450 year: 2022 publication-title: Chem. Eng. J. – volume: 10 start-page: 3454 year: 2022 publication-title: J. Mater. Chem. A – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 13 start-page: 102 year: 2020 publication-title: Energy Environ. Sci. – volume: 296 year: 2021 publication-title: Appl. Catal. B Environ. – volume: 13 start-page: 5785 year: 2022 publication-title: Nat. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 1 year: 2021 publication-title: Exploration – volume: 431 year: 2022 publication-title: Chem. Eng. J. – volume: 16 start-page: 1625 year: 2022 publication-title: ACS Nano – volume: 141 start-page: 7537 year: 2019 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_19_1 doi: 10.1002/adma.202006034 – ident: e_1_2_7_24_1 doi: 10.1038/s41467-020-19433-1 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.202200001 – ident: e_1_2_7_29_1 doi: 10.1021/acscatal.1c03333 – ident: e_1_2_7_30_1 doi: 10.1080/00032719.2013.832277 – ident: e_1_2_7_64_1 doi: 10.1038/s41467-021-24829-8 – ident: e_1_2_7_41_1 doi: 10.1002/adma.202109108 – ident: e_1_2_7_4_1 doi: 10.1021/acscatal.2c02770 – ident: e_1_2_7_56_1 doi: 10.1002/advs.202106029 – ident: e_1_2_7_34_1 doi: 10.1016/j.apcatb.2021.120202 – ident: e_1_2_7_45_1 doi: 10.1039/C9EE00839J – ident: e_1_2_7_33_1 doi: 10.1021/jacs.7b12968 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202000231 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201905622 – ident: e_1_2_7_42_1 doi: 10.1002/anie.202116068 – ident: e_1_2_7_65_1 doi: 10.1002/aenm.202101758 – ident: e_1_2_7_9_1 doi: 10.1002/anie.202005241 – ident: e_1_2_7_61_1 doi: 10.1002/adma.202202195 – ident: e_1_2_7_11_1 doi: 10.1002/anie.202110374 – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.2c02820 – ident: e_1_2_7_46_1 doi: 10.1002/aenm.202201452 – ident: e_1_2_7_63_1 doi: 10.1038/s41467-022-29710-w – ident: e_1_2_7_14_1 doi: 10.1016/j.nanoen.2022.107753 – ident: e_1_2_7_25_1 doi: 10.1021/acs.chemmater.2c01738 – ident: e_1_2_7_50_1 doi: 10.1039/D1TA10678C – ident: e_1_2_7_3_1 doi: 10.1016/j.esci.2021.12.007 – ident: e_1_2_7_57_1 doi: 10.1007/s11426-022-1287-4 – ident: e_1_2_7_8_1 doi: 10.1038/s41467-019-09845-z – ident: e_1_2_7_48_1 doi: 10.1021/jacs.9b02527 – ident: e_1_2_7_54_1 doi: 10.1021/acsami.1c07504 – ident: e_1_2_7_58_1 doi: 10.1021/acsami.2c04093 – ident: e_1_2_7_43_1 doi: 10.1038/s41467-020-17121-8 – ident: e_1_2_7_32_1 doi: 10.1038/s41467-019-13519-1 – ident: e_1_2_7_44_1 doi: 10.1038/s41467-018-07792-9 – ident: e_1_2_7_1_1 doi: 10.1038/s41929-021-00721-y – ident: e_1_2_7_2_1 doi: 10.1038/s41467-022-33007-3 – ident: e_1_2_7_7_1 doi: 10.1002/adma.202000872 – ident: e_1_2_7_17_1 doi: 10.1016/j.apcatb.2021.120350 – ident: e_1_2_7_52_1 doi: 10.1002/advs.202202445 – ident: e_1_2_7_16_1 doi: 10.1016/j.esci.2022.04.002 – ident: e_1_2_7_55_1 doi: 10.1021/acssuschemeng.1c00730 – ident: e_1_2_7_59_1 doi: 10.1002/adfm.202112367 – ident: e_1_2_7_23_1 doi: 10.1039/D1EE02538D – ident: e_1_2_7_5_1 doi: 10.1002/adfm.202109731 – ident: e_1_2_7_60_1 doi: 10.1039/D1TA00693B – ident: e_1_2_7_22_1 doi: 10.1002/aenm.202102353 – ident: e_1_2_7_27_1 doi: 10.1002/cey2.3 – ident: e_1_2_7_28_1 doi: 10.1021/acsnano.1c10504 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.7b03507 – ident: e_1_2_7_15_1 doi: 10.1002/adma.202006351 – ident: e_1_2_7_53_1 doi: 10.1039/D1TA03686F – ident: e_1_2_7_35_1 doi: 10.1002/adma.201503187 – ident: e_1_2_7_62_1 doi: 10.1002/adma.202203615 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.202100618 – ident: e_1_2_7_20_1 doi: 10.1002/EXP.20210050 – ident: e_1_2_7_39_1 doi: 10.1016/j.cej.2022.138426 – ident: e_1_2_7_49_1 doi: 10.1038/s41467-020-17199-0 – ident: e_1_2_7_66_1 doi: 10.1038/s41467-022-31971-4 – ident: e_1_2_7_36_1 doi: 10.1038/s41467-022-33590-5 – ident: e_1_2_7_31_1 doi: 10.1039/D2TA03358E – ident: e_1_2_7_47_1 doi: 10.1016/j.apcatb.2020.119137 – ident: e_1_2_7_13_1 doi: 10.1016/j.esci.2021.11.006 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.202200067 – ident: e_1_2_7_51_1 doi: 10.1016/j.cej.2021.134247 – ident: e_1_2_7_18_1 doi: 10.1038/s41467-021-26315-7 – ident: e_1_2_7_38_1 doi: 10.1016/j.esci.2021.09.002 |
SSID | ssj0017734 |
Score | 2.577083 |
Snippet | Rational heterointerface engineering is crucial for superior and robust hydrogen evolution reaction (HER). Herein, a delicate organic‐inorganic hybrid... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cobalt oxalates Coupling Electrocatalysts electrolysis electron coupling Electronic structure Electrons Heterojunctions heterostructure interfaces Heterostructures Hydrogen evolution reactions Interface stability Materials science Metal foams Optimization Phase transitions Polyanilines Robustness Substitution reactions |
Title | Inheritable Organic‐Inorganic Hybrid Interfaces with π–d Electron Coupling for Robust Electrocatalytic Hydrogen Evolution at High‐Current‐Densities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202211576 https://www.proquest.com/docview/2771620957 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YT3rwbUTR7MHEU4GWtgtHwiNgggciCbdmX_WgKQaKCZ74CSZe_U_-B36JM922gIkx0ds2-2i7u7Pz7ezMt4Rc-z7joHW1JWp2aLnKcyyhfWVJXlMKGdhUiCe6_Tu_O3RvR95oLYrf8EPkBjeUjGS9RgHnYlpekYZyFWIkueMgXQxybqPDFqKiQc4fZTNmjpV9Gx287FHG2lhxypvVN7XSCmquA9ZE43T2Cc--1TiaPJZmsSjJ1280jv_5mQOyl8JR2jDz55Bs6eiI7K6RFB6Tj16EMYIxxlhRE7opl4u3XmQuhJK0O8eoL5rYFkP08KJo3KWfi-XiXdF2es8ObY5nGP37QAEm08FYzKZxlpnYkOZx0paajGFO0_ZLKhOUxxSdUeCVKZcUpFrodo9UsCdk2GnfN7tWeqeDJQGp-BbTADBs33dC2GpV66EABFKFoZEVBXv8mkC4BPk16SmXe6GSTNaFYLZWSkoNi8kp2Y7GkT4jFFaeEPb2Wrma4ekv53VQt56AZrXgriwQKxvTQKaE53jvxlNgqJqdAHs9yHu9QG7y8s-G6uPHksVsigSpyE8DhyEZFyBWViBOMta_tBI0Wp1-_nT-l0oXZAfSVeNFXiTb8WSmLwEkxeIqEYQvqvoQfA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCpA0sdtjRVu1QDkgkLhF8RIOoBRBigSnfgISV_6Jf-iXMBMnYZEQEtySeElie-zn8cwbgB3ORYSrrnFkzY0dXweeIw3XjopqWhMDm47pRLd3yjsX_tFlUFgTki-M5YcoFW4kGdl8TQJOCun9D9bQSMfkSu55xBfDx2GSwnqTbDbPSgYpVwh7sMxdMvFyLwvexgNv_2v5r-vSB9j8DFmzNac9B7L4Wmtqcr03SOWeevpG5Piv35mH2RyRsoYdQgswZpJFmPnEU7gEr92E3ARTcrNi1ntTjYbP3cTGhFKs80iOXyxTL8Zk5MVIv8vehqPhi2atPNQOO-wPyAH4iiFSZmd9ObhPi8RMjfSYZnXpuz4Oa9Z6yMWCRSkjexR8ZU4nhVdNsrwnNthluGi3zg87Th7WwVEIVrgjDGIMl3Mvxt1WtR5LBCFV7Bt1oHGbX5OEmDC9pgLtR0GslVB1KYVrtFbK4HyyAhNJPzGrwHDyiXF7b7RvBB0AR1EdV9xAYrVGRr6qgFN0aqhyznMKvXETWrZmL6RWD8tWr8Bumf_Wsn38mHOjGCNhLvX3oSeIjwtBq6iAl3X2L7WEjWa7V96t_aXQNkx1znsn4Un39HgdpvF51RqVb8BEejcwm4iZUrmVScU7j3gUlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61VKrgAH0hwqt7qNSTIXbsXeeISKKkLahCRcrN2mcPRU4EDhKc8hOQuPY_9T_wS5jx2iYgVZXozfY-bO_u7H47O_MNwCfOhcRV1wYqDV0QmyQKlOUm0DI1hhjYjKMT3aNjPjyNv4yT8YIXv-eHaBRuJBnlfE0CPjVu_4E0VBpHnuRRRHQx_CW8ink7pe1X76QhkAqF8OfKPCQLr3Bc0za2o_3H5R8vSw9YcxGxlkvOYA1k_bHe0uTX3qxQe_r6CY_j__zNG1it8Cg78APoLbyw-TtYWWApfA-_Rzk5CRbkZMW876a-m9-Mch8RSrPhFbl9sVK56MjEi5F2l_2Z381vDetXgXbY4WRG7r8_GeJkdjJRs4uiTiyVSFdFWZc5n-CgZv3LSiiYLBhZo-ArKzIpvOqR3T1xwX6A00H_x-EwqII6BBqhCg-ERYQRch453Gt1uk4hBOlg1-i2wU1-qggvYXqqExPLxBktdFcpEVpjtLY4m6zDUj7J7QYwnHocbu6tia2g418pu7jeJgqrtUrGugVB3aeZrhjPKfDGWea5mqOMWj1rWr0Fn5v8U8_18dec2_UQySqZv8giQWxcCFlFC6Kyr_9RS3bQGxw1d5vPKfQRXn_vDbJvo-OvW7CMjzveonwblorzmd1BwFSo3VIm7gFquBNN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inheritable+Organic%E2%80%90Inorganic+Hybrid+Interfaces+with+%CF%80%E2%80%93d+Electron+Coupling+for+Robust+Electrocatalytic+Hydrogen+Evolution+at+High%E2%80%90Current%E2%80%90Densities&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Sheng&rft.au=Yin%2C+Lijie&rft.au=Deng%2C+Liming&rft.au=Song%2C+Junnan&rft.date=2023-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202211576&rft.externalDBID=10.1002%252Fadfm.202211576&rft.externalDocID=ADFM202211576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |