3D Molecularly Functionalized Cell‐Free Biomimetic Scaffolds for Osteochondral Regeneration
Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize t...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 6 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize the simultaneous repair of osteochondral defects by employing a self‐assembling peptide hydrogel (SAPH) FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) to coat onto 3D‐printed polycaprolactone (PCL) scaffolds. Results show that the SAPH‐coated PCL scaffolds exhibit highly improved hydrophilicity and biomimetic extracellular matrix (ECM) structures compared to PCL scaffolds. In vitro experiments demonstrate that the SAPH‐coated PCL scaffolds promote the proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) and maintain the chondrocyte phenotypes. Furthermore, 3% SAPH‐coated PCL scaffolds significantly induce simultaneous regeneration of cartilage and subchondral bone after 8‐ and 12‐week implantation in vivo, respectively. Mechanistically, by virtue of the enhanced deposition of ECM in SAPH‐coated PCL scaffolds, SAPH with increased stiffness facilitates and remodels the microenvironment around osteochondral defects, which may favor simultaneous dual tissue regeneration. These findings indicate that the 3% SAPH provides efficient and reliable modification on PCL scaffolds and SAPH‐coated PCL scaffolds appear to be a promising biomaterial for osteochondral defect repair.
The molecularly functionalized self‐assembling peptide hydrogel‐coated polycaprolactone scaffolds provide superior performance for the regeneration of cartilage and subchondral bone simultaneously, offering a reliable and flexible strategy for osteochondral defects caused by osteoarthritis or acute trauma. |
---|---|
AbstractList | Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize the simultaneous repair of osteochondral defects by employing a self‐assembling peptide hydrogel (SAPH) FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) to coat onto 3D‐printed polycaprolactone (PCL) scaffolds. Results show that the SAPH‐coated PCL scaffolds exhibit highly improved hydrophilicity and biomimetic extracellular matrix (ECM) structures compared to PCL scaffolds. In vitro experiments demonstrate that the SAPH‐coated PCL scaffolds promote the proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) and maintain the chondrocyte phenotypes. Furthermore, 3% SAPH‐coated PCL scaffolds significantly induce simultaneous regeneration of cartilage and subchondral bone after 8‐ and 12‐week implantation in vivo, respectively. Mechanistically, by virtue of the enhanced deposition of ECM in SAPH‐coated PCL scaffolds, SAPH with increased stiffness facilitates and remodels the microenvironment around osteochondral defects, which may favor simultaneous dual tissue regeneration. These findings indicate that the 3% SAPH provides efficient and reliable modification on PCL scaffolds and SAPH‐coated PCL scaffolds appear to be a promising biomaterial for osteochondral defect repair.
The molecularly functionalized self‐assembling peptide hydrogel‐coated polycaprolactone scaffolds provide superior performance for the regeneration of cartilage and subchondral bone simultaneously, offering a reliable and flexible strategy for osteochondral defects caused by osteoarthritis or acute trauma. Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize the simultaneous repair of osteochondral defects by employing a self‐assembling peptide hydrogel (SAPH) FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) to coat onto 3D‐printed polycaprolactone (PCL) scaffolds. Results show that the SAPH‐coated PCL scaffolds exhibit highly improved hydrophilicity and biomimetic extracellular matrix (ECM) structures compared to PCL scaffolds. In vitro experiments demonstrate that the SAPH‐coated PCL scaffolds promote the proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) and maintain the chondrocyte phenotypes. Furthermore, 3% SAPH‐coated PCL scaffolds significantly induce simultaneous regeneration of cartilage and subchondral bone after 8‐ and 12‐week implantation in vivo, respectively. Mechanistically, by virtue of the enhanced deposition of ECM in SAPH‐coated PCL scaffolds, SAPH with increased stiffness facilitates and remodels the microenvironment around osteochondral defects, which may favor simultaneous dual tissue regeneration. These findings indicate that the 3% SAPH provides efficient and reliable modification on PCL scaffolds and SAPH‐coated PCL scaffolds appear to be a promising biomaterial for osteochondral defect repair. |
Author | Zhang, Xin Zhu, Yishen Guo, Jiamin Zhang, Huikang Yao, Qingqiang Yin, Caiyun Li, Lan Li, Jiayi Wang, Liming |
Author_xml | – sequence: 1 givenname: Lan surname: Li fullname: Li, Lan organization: Nanjing Tech University – sequence: 2 givenname: Jiayi surname: Li fullname: Li, Jiayi organization: Nanjing Medical University – sequence: 3 givenname: Jiamin surname: Guo fullname: Guo, Jiamin organization: China Pharmaceutical University – sequence: 4 givenname: Huikang surname: Zhang fullname: Zhang, Huikang organization: Nanjing Medical University – sequence: 5 givenname: Xin surname: Zhang fullname: Zhang, Xin organization: Nanjing Tech University – sequence: 6 givenname: Caiyun surname: Yin fullname: Yin, Caiyun organization: Nanjing Tech University – sequence: 7 givenname: Liming surname: Wang fullname: Wang, Liming organization: Nanjing Medical University – sequence: 8 givenname: Yishen orcidid: 0000-0002-2616-8501 surname: Zhu fullname: Zhu, Yishen email: zhuyish@njtech.edu.cn organization: Nanjing Tech University – sequence: 9 givenname: Qingqiang surname: Yao fullname: Yao, Qingqiang email: Yaoqingqiang@njmu.edu.cn, yaoqingqiang@gmail.com organization: Nanjing Medical University |
BookMark | eNqFkE1LAzEQhoMoWKtXzwueWzOb3WR7rK1VoaXgB3iRJZudaEq6qckWqSd_gr_RX-LWSgVBPM0cnudl5j0gu5WrkJBjoF2gND6VpZ53YwoZFSzlO6QFHHiH0Tjb3e5wv08OQphRCkKwpEUe2DCaOItqaaW3q2i0rFRtXCWtecUyGqC1H2_vI48YnRk3N3OsjYpulNTa2TJE2vloGmp06slVpZc2usZHrNDLdcoh2dPSBjz6nm1yNzq_HVx2xtOLq0F_3FEMBO9wjaIssoxqKBgyyZSQDGSzZGmc6ESIgnPoyYSDVDFmUBRJwrkGlTYopKxNTja5C--elxjqfOaWvnki5DGIVPS4oFlDJRtKeReCR50rU3_dWXtpbA40XxeZr4vMt0U2WveXtvBmLv3qb6G3EV6MxdU_dN4fjiY_7ifM0omo |
CitedBy_id | crossref_primary_10_3390_membranes10110348 crossref_primary_10_1557_s43579_021_00038_8 crossref_primary_10_1002_advs_201900867 crossref_primary_10_1016_j_bioactmat_2020_10_029 crossref_primary_10_1002_adfm_202214158 crossref_primary_10_1016_j_bioadv_2022_213067 crossref_primary_10_1002_adhm_202200998 crossref_primary_10_1002_adma_202310258 crossref_primary_10_1021_acsami_4c06207 crossref_primary_10_1016_j_mtchem_2021_100760 crossref_primary_10_1002_biot_202300040 crossref_primary_10_1039_D2BM00103A crossref_primary_10_1021_acsbiomaterials_4c00603 crossref_primary_10_1021_acssuschemeng_9b07051 crossref_primary_10_1088_1758_5090_acb73d crossref_primary_10_1016_j_ccr_2022_214481 crossref_primary_10_1002_VIW_20230069 crossref_primary_10_1016_j_pmatsci_2023_101072 crossref_primary_10_1016_j_bioactmat_2021_04_008 crossref_primary_10_1002_adfm_201807860 crossref_primary_10_1016_j_bioactmat_2021_04_005 crossref_primary_10_1088_1748_605X_ac21dd crossref_primary_10_1186_s13287_024_03745_w crossref_primary_10_3390_biomedicines9070748 crossref_primary_10_1016_j_cej_2021_130051 crossref_primary_10_1021_acs_chemrev_1c00071 crossref_primary_10_1088_1758_5090_ac2cd7 crossref_primary_10_1039_D2TB02203F crossref_primary_10_3390_pharmaceutics15082145 crossref_primary_10_1089_ten_tec_2019_0344 crossref_primary_10_1002_adfm_202009432 crossref_primary_10_1021_acsami_4c05004 crossref_primary_10_3390_ijms222212420 crossref_primary_10_1080_10717544_2020_1797239 crossref_primary_10_3390_polym13132146 crossref_primary_10_1002_advs_202300038 crossref_primary_10_1007_s42242_020_00119_y crossref_primary_10_1002_smm2_1244 crossref_primary_10_1016_j_tibtech_2019_06_003 crossref_primary_10_1016_j_biomaterials_2019_04_009 crossref_primary_10_1016_j_cej_2020_125232 crossref_primary_10_1002_adfm_202202470 crossref_primary_10_1021_acsbiomaterials_4c01865 crossref_primary_10_3390_pharmaceutics13101602 crossref_primary_10_1021_acsbiomaterials_1c00620 crossref_primary_10_1021_acs_chemrev_0c00690 crossref_primary_10_1039_D1NA00534K crossref_primary_10_1002_advs_202303650 crossref_primary_10_1038_s41467_023_43334_8 crossref_primary_10_1002_cbic_202300149 crossref_primary_10_1021_acsami_2c04609 crossref_primary_10_1002_adhm_202201588 crossref_primary_10_1002_adma_202107922 crossref_primary_10_1002_adfm_202208968 crossref_primary_10_3389_fmats_2022_1022386 crossref_primary_10_1002_jbm_b_35056 crossref_primary_10_1002_advs_202103820 crossref_primary_10_1039_D0BM02058C crossref_primary_10_1186_s12951_023_02007_w crossref_primary_10_1002_smll_202206960 crossref_primary_10_1021_acsbiomaterials_4c01279 crossref_primary_10_1016_j_actbio_2020_01_015 crossref_primary_10_1002_adfm_201910067 crossref_primary_10_1039_D0NR03483E crossref_primary_10_1007_s10853_021_06607_5 crossref_primary_10_1016_j_matt_2022_06_003 crossref_primary_10_3390_ijms23063352 crossref_primary_10_1021_acsbiomaterials_0c00752 crossref_primary_10_1021_acs_biomac_3c01424 crossref_primary_10_1039_C9TB01698H crossref_primary_10_1021_acs_biomac_2c00032 crossref_primary_10_14815_kjdm_2021_48_2_89 crossref_primary_10_3389_fbioe_2022_858656 crossref_primary_10_1021_acsmaterialslett_4c00889 crossref_primary_10_1038_s41578_020_0204_2 crossref_primary_10_1021_acsabm_9b01063 crossref_primary_10_1021_acsami_1c25015 crossref_primary_10_1039_D0SM00966K crossref_primary_10_1002_adhm_202001404 |
Cites_doi | 10.1016/j.biomaterials.2017.06.038 10.1002/adfm.201500105 10.1089/ten.tea.2013.0662 10.1016/j.msec.2018.04.063 10.1073/pnas.1514854113 10.1016/j.actbio.2012.08.044 10.1016/j.mser.2008.04.004 10.1177/10454411000110030101 10.1038/nrdp.2017.52 10.1002/jbmr.5650080510 10.1016/j.biomaterials.2005.02.002 10.1006/cbir.1997.0165 10.1002/adfm.200800117 10.1073/pnas.142309999 10.1083/jcb.200401138 10.1007/s10456-010-9194-9 10.1016/S0021-9258(18)98430-9 10.1002/adma.200801957 10.1016/j.injury.2005.10.007 10.1126/science.2821619 10.1016/S1357-2725(03)00107-9 10.1016/S0142-9612(99)00158-1 10.1038/nrrheum.2010.159 10.2174/1389203711314010010 10.1016/S0142-9612(99)00242-2 10.1002/adfm.201703117 10.1016/S0092-8674(00)80429-8 10.1002/adma.201605235 10.1136/ard.2004.033480 10.1038/nrrheum.2012.178 10.1002/adfm.201800405 10.1016/j.progpolymsci.2010.04.002 10.1016/j.actbio.2010.08.013 10.1177/2041731414539344 10.1002/adfm.200400106 10.1002/adfm.200801561 10.1039/B811288F 10.1073/pnas.0708474105 10.1002/adfm.201102695 10.1073/pnas.90.18.8562 10.2106/00004623-199304000-00009 10.1016/j.biomaterials.2006.01.011 10.1126/science.1222454 10.1002/adma.201701089 10.1002/adfm.201300483 10.1002/adfm.201505329 10.1016/j.progpolymsci.2007.05.017 10.1038/s41578-018-0023-x |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201807356 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201807356 ADFM201807356 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81601612; 81771985 – fundername: Key Medical Subjects of Jiangsu Province funderid: BE2015613; BE2016763 – fundername: National Key Research and Development Program of China funderid: 2018YFC1105204 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province funderid: SJCX18_0346 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-6fe7db880f1b3e3a3c7a31a3a38524f477b6619a461ac2e81bb4466f1c53c7153 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:57:51 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Jul 01 04:11:55 EDT 2025 Wed Jan 22 16:45:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-6fe7db880f1b3e3a3c7a31a3a38524f477b6619a461ac2e81bb4466f1c53c7153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2616-8501 |
PQID | 2175796708 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2175796708 crossref_citationtrail_10_1002_adfm_201807356 crossref_primary_10_1002_adfm_201807356 wiley_primary_10_1002_adfm_201807356_ADFM201807356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 166 1993; 8 2018; 28 2009; 21 2017; 3 2010; 35 1997; 21 2013; 23 2017; 27 2008; 18 2000; 21 2002; 99 2003; 35 1999; 20 2008; 105 2017; 29 1993; 90 2011; 14 1993; 268 2005; 26 2007; 32 2011; 7 2013; 9 2014; 20 1997; 91 2015; 25 2018; 3 2014; 5 2013; 14 1987; 238 2006; 65 2006; 27 2000; 11 1993; 75 2016; 113 2018; 90 2017; 141 2009; 5 2005; 15 2008; 62 2009; 19 2016; 26 2012; 22 2012; 338 2010; 6 2005; 36 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 90 start-page: 728 year: 2018 publication-title: Mater. Sci. Eng., C – volume: 26 start-page: 5474 year: 2005 publication-title: Biomaterials – volume: 105 start-page: 686 year: 2008 publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 3419 year: 2009 publication-title: Adv. Mater. – volume: 14 start-page: 47 year: 2011 publication-title: Angiogenesis – volume: 5 start-page: 2041731414539344 year: 2014 publication-title: J. Tissue Eng. – volume: 27 start-page: 2962 year: 2006 publication-title: Biomaterials – volume: 20 start-page: 2281 year: 1999 publication-title: Biomaterials – volume: 14 start-page: 70 year: 2013 publication-title: Curr. Protein Pept. Sci. – volume: 6 start-page: 625 year: 2010 publication-title: Nat. Rev. Rheumatol. – volume: 90 start-page: 8562 year: 1993 publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 419 year: 1997 publication-title: Cell Biol. Int. – volume: 9 start-page: 43 year: 2013 publication-title: Nat. Rev. Rheumatol. – volume: 338 start-page: 917 year: 2012 publication-title: Science – volume: 113 start-page: 5453 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 1703117 year: 2017 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 5833 year: 2013 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1605235 year: 2017 publication-title: Adv. Mater. – volume: 65 start-page: 184 year: 2006 publication-title: Ann. Rheum. Dis. – volume: 15 start-page: 83 year: 2005 publication-title: Adv. Funct. Mater. – volume: 62 start-page: 125 year: 2008 publication-title: Mater. Sci. Eng., R – volume: 5 start-page: 193 year: 2009 publication-title: Soft Matter – volume: 21 start-page: 667 year: 2000 publication-title: Biomaterials – volume: 75 start-page: 532 year: 1993 publication-title: J. Bone Joint Surg. – volume: 29 start-page: 1701089 year: 2017 publication-title: Adv. Mater. – volume: 20 start-page: 2646 year: 2014 publication-title: Tissue Eng., Part A – volume: 32 start-page: 762 year: 2007 publication-title: Prog. Polym. Sci. – volume: 35 start-page: 1301 year: 2003 publication-title: Int. J. Biochem. Cell Biol. – volume: 35 start-page: 1217 year: 2010 publication-title: Prog. Polym. Sci. – volume: 99 start-page: 9996 year: 2002 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 279 year: 2000 publication-title: Crit. Rev. Oral Biol. Med. – volume: 26 start-page: 3612 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 4609 year: 2013 publication-title: Acta Biomater. – volume: 28 start-page: 1800405 year: 2018 publication-title: Adv. Funct. Mater. – volume: 141 start-page: 176 year: 2017 publication-title: Biomaterials – volume: 22 start-page: 4292 year: 2012 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 589 year: 1993 publication-title: J. Bone Miner. Res. – volume: 18 start-page: 2889 year: 2008 publication-title: Adv. Funct. Mater. – volume: 166 start-page: 85 year: 2004 publication-title: J. Cell Biol. – volume: 25 start-page: 2715 year: 2015 publication-title: Adv. Funct. Mater. – volume: 268 start-page: 9901 year: 1993 publication-title: J. Biol. Chem. – volume: 3 start-page: 17052 year: 2017 publication-title: Nat. Rev. Dis. Primers – volume: 36 start-page: S14 year: 2005 publication-title: Injury – volume: 19 start-page: 1276 year: 2009 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 225 year: 2011 publication-title: Acta Biomater. – volume: 238 start-page: 491 year: 1987 publication-title: Science – volume: 91 start-page: 439 year: 1997 publication-title: Cell – volume: 3 start-page: 159 year: 2018 publication-title: Nat. Rev. Mater. – ident: e_1_2_8_17_1 doi: 10.1016/j.biomaterials.2017.06.038 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.201500105 – ident: e_1_2_8_48_1 doi: 10.1089/ten.tea.2013.0662 – ident: e_1_2_8_13_1 doi: 10.1016/j.msec.2018.04.063 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.1514854113 – ident: e_1_2_8_44_1 doi: 10.1016/j.actbio.2012.08.044 – ident: e_1_2_8_11_1 doi: 10.1016/j.mser.2008.04.004 – ident: e_1_2_8_36_1 doi: 10.1177/10454411000110030101 – ident: e_1_2_8_39_1 doi: 10.1038/nrdp.2017.52 – ident: e_1_2_8_42_1 doi: 10.1002/jbmr.5650080510 – ident: e_1_2_8_46_1 doi: 10.1016/j.biomaterials.2005.02.002 – ident: e_1_2_8_26_1 doi: 10.1006/cbir.1997.0165 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.200800117 – ident: e_1_2_8_20_1 doi: 10.1073/pnas.142309999 – ident: e_1_2_8_35_1 doi: 10.1083/jcb.200401138 – ident: e_1_2_8_43_1 doi: 10.1007/s10456-010-9194-9 – ident: e_1_2_8_37_1 doi: 10.1016/S0021-9258(18)98430-9 – ident: e_1_2_8_2_1 doi: 10.1002/adma.200801957 – ident: e_1_2_8_45_1 doi: 10.1016/j.injury.2005.10.007 – ident: e_1_2_8_25_1 doi: 10.1126/science.2821619 – ident: e_1_2_8_40_1 doi: 10.1016/S1357-2725(03)00107-9 – ident: e_1_2_8_16_1 doi: 10.1016/S0142-9612(99)00158-1 – ident: e_1_2_8_1_1 doi: 10.1038/nrrheum.2010.159 – ident: e_1_2_8_21_1 doi: 10.2174/1389203711314010010 – ident: e_1_2_8_41_1 doi: 10.1016/S0142-9612(99)00242-2 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.201703117 – ident: e_1_2_8_10_1 doi: 10.1016/S0092-8674(00)80429-8 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201605235 – ident: e_1_2_8_32_1 doi: 10.1136/ard.2004.033480 – ident: e_1_2_8_31_1 doi: 10.1038/nrrheum.2012.178 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201800405 – ident: e_1_2_8_7_1 doi: 10.1016/j.progpolymsci.2010.04.002 – ident: e_1_2_8_14_1 doi: 10.1016/j.actbio.2010.08.013 – ident: e_1_2_8_22_1 doi: 10.1177/2041731414539344 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.200400106 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.200801561 – ident: e_1_2_8_24_1 doi: 10.1039/B811288F – ident: e_1_2_8_30_1 doi: 10.1073/pnas.0708474105 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201102695 – ident: e_1_2_8_38_1 doi: 10.1073/pnas.90.18.8562 – ident: e_1_2_8_47_1 doi: 10.2106/00004623-199304000-00009 – ident: e_1_2_8_15_1 doi: 10.1016/j.biomaterials.2006.01.011 – ident: e_1_2_8_3_1 doi: 10.1126/science.1222454 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201701089 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201300483 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201505329 – ident: e_1_2_8_6_1 doi: 10.1016/j.progpolymsci.2007.05.017 – ident: e_1_2_8_12_1 doi: 10.1038/s41578-018-0023-x |
SSID | ssj0017734 |
Score | 2.5756516 |
Snippet | Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3D‐printed scaffolds Biocompatibility Biomedical materials biomimetic scaffolds Biomimetics Cartilage Coating Defects Differentiation (biology) Glutamic acid Hydrogels Implantation Knee Lysine Materials science osteochondral regeneration Phenylalanine Polycaprolactone Regeneration (physiology) Repair Scaffolds self‐assembling peptide Stem cells Stiffness Surgical implants Three dimensional printing Tissue engineering |
Title | 3D Molecularly Functionalized Cell‐Free Biomimetic Scaffolds for Osteochondral Regeneration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201807356 https://www.proquest.com/docview/2175796708 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQXNjDwvKjLbCVD0h7CtSxG6fH0m6EVltW4kfqBUVje7KqCC1qywFOPMI-4z4J46QJZaUV0nJLFNtJPDOez_bMZ8YOFcqOoydBRMIPSClEACq2gYAIpUKBSvt858FZdHqlvg_bw6Us_pIfol5w85ZRjNfewMHMjl9IQ8FlPpNcxKSkbc-57QO2PCo6r_mjhNbltnIkfICXGFasja3w-HX1117pBWouA9bC4yQbDKpvLQNNbo7u5-bIPv5F4_ien9lkHxdwlHdL_fnEVnC8xT4skRRus2vZ54PqEN38gSfkCcsFxNEjOt7DPP_z9DuZIvKT0eR2dOvTIvmFhSyb5G7GCRXzn6RLExpox25KbzvHXwXZtW9lh10l3y57p8HiUIbAEtSIgihD7QxZfSaMRAnSapAC6CJuhypTWhty-R1QkQAbIqFi47eMM2HbVJTG1122Op6M8TPj2oETGk0HQSoJISgDMc3PDFjVAu0aLKiEktoFY7k_OCNPS67lMPXdltbd1mBf6_J3JVfHP0seVDJOFzY7S2ly5hNzdStusLAQ1hutpN1-Mqjv9v6n0j5bp-tOGQZ-wFbn03v8Qihnbppsrdsf_LhoFhr9DNty9u0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61cGg5FCggtqXFByROgXXsjbNHXtEWWJB4SFxQ5MekWjW7Wy3LoZz4CfzG_hLGySY8JIQEtzz8SDwznrE98w3AmkTRdvQmiIj4ATEFD7SMbcB1hEIiR6l8vHP3KOqcy_2LVuVN6GNhSnyIesPNS0YxX3sB9xvSmw-oodplPpScx8SlregjTPu03sWq6qRGkOJKlQfLEfcuXvyiwm1shptP6z_VSw_G5mOTtdA5ySyY6mtLV5M_G9djs2FvngE5vut35uDLxCJlWyULzcMHHHyFmUc4hQtwKXZZt8qjm_9jCSnDcg-xd4OO7WCe_7-9S0aIbLs37Pf6PjKSnVqdZcPcXTEyjNkxsdOQ5tqBG1FvJ_i7wLv2rSzCebJ3ttMJJnkZAkvWRhREGSpnSPAzbgQKLazSgmu6iFuhzKRShrR-W8uIaxsiGcbGnxpn3LaoKE2xSzA1GA5wGZhy2nGFpo1aSKFDLY2OaYlmtJVNrVwDgooqqZ2AlvvcGXlawi2HqR-2tB62BqzX5f-WcB0vllypiJxOxPYqpfWZj81VzbgBYUGtV1pJt3aTbn337S2VVuFT56x7mB7-Ojr4Dp_pebv0Cl-BqfHoGn-Q0TM2Pwu2vgeB6Pl0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceFcsFPABiVPadey1s8fSJSqPLahQaS8oGtsTtCLdrbbbAz3xE_iN_BLGySbdIiEkuOXhR-KZ8Xx-zGeA55rUMPCbxLDwE1YKmaDOfCLRkNIkSdsY7zw-MPtH-s1kMFmL4m_4IboJt2gZdX8dDfwklDsXpKEYyhhJLjNW0oG5Cte06WdRr0eHHYGUtLZZVzYy7vCSk5a2sZ_uXM5_2S1dYM11xFq7nPw2YPuxzU6Tr9tnS7ftz3_jcfyfv7kDt1Z4VOw2CnQXrtDsHtxcYym8D5_VSIzbU3SrbyJnV9jMIE7PKYg9qqqf33_kCyLxcjo_nh7HuEjx0WNZzqtwKhgWi_esTHPuaWdhwbUd0pea7TqW8gCO8lef9vaT1akMiWesYRJTkg2Ozb6UTpFC5S0qiXyRDVJdamsd-_whaiPRp8Sw2MU141L6ASflDnYTNmbzGT0EYQMGackNCZVWmKJ2mPEAzaHXfbShB0krlMKvKMvjyRlV0ZAtp0VstqJrth686NKfNGQdf0y51cq4WBntacGjsxiZa_tZD9JaWH8ppdgd5ePu7tG_ZHoG1z-M8uLd64O3j-EGPx42W8K3YGO5OKMnjHiW7mmt1L8AszP4LA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Molecularly+Functionalized+Cell%E2%80%90Free+Biomimetic+Scaffolds+for+Osteochondral+Regeneration&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Lan&rft.au=Li%2C+Jiayi&rft.au=Guo%2C+Jiamin&rft.au=Zhang%2C+Huikang&rft.date=2019-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201807356&rft.externalDBID=10.1002%252Fadfm.201807356&rft.externalDocID=ADFM201807356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |