3D Molecularly Functionalized Cell‐Free Biomimetic Scaffolds for Osteochondral Regeneration

Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 6
Main Authors Li, Lan, Li, Jiayi, Guo, Jiamin, Zhang, Huikang, Zhang, Xin, Yin, Caiyun, Wang, Liming, Zhu, Yishen, Yao, Qingqiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize the simultaneous repair of osteochondral defects by employing a self‐assembling peptide hydrogel (SAPH) FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) to coat onto 3D‐printed polycaprolactone (PCL) scaffolds. Results show that the SAPH‐coated PCL scaffolds exhibit highly improved hydrophilicity and biomimetic extracellular matrix (ECM) structures compared to PCL scaffolds. In vitro experiments demonstrate that the SAPH‐coated PCL scaffolds promote the proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) and maintain the chondrocyte phenotypes. Furthermore, 3% SAPH‐coated PCL scaffolds significantly induce simultaneous regeneration of cartilage and subchondral bone after 8‐ and 12‐week implantation in vivo, respectively. Mechanistically, by virtue of the enhanced deposition of ECM in SAPH‐coated PCL scaffolds, SAPH with increased stiffness facilitates and remodels the microenvironment around osteochondral defects, which may favor simultaneous dual tissue regeneration. These findings indicate that the 3% SAPH provides efficient and reliable modification on PCL scaffolds and SAPH‐coated PCL scaffolds appear to be a promising biomaterial for osteochondral defect repair. The molecularly functionalized self‐assembling peptide hydrogel‐coated polycaprolactone scaffolds provide superior performance for the regeneration of cartilage and subchondral bone simultaneously, offering a reliable and flexible strategy for osteochondral defects caused by osteoarthritis or acute trauma.
AbstractList Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize the simultaneous repair of osteochondral defects by employing a self‐assembling peptide hydrogel (SAPH) FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) to coat onto 3D‐printed polycaprolactone (PCL) scaffolds. Results show that the SAPH‐coated PCL scaffolds exhibit highly improved hydrophilicity and biomimetic extracellular matrix (ECM) structures compared to PCL scaffolds. In vitro experiments demonstrate that the SAPH‐coated PCL scaffolds promote the proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) and maintain the chondrocyte phenotypes. Furthermore, 3% SAPH‐coated PCL scaffolds significantly induce simultaneous regeneration of cartilage and subchondral bone after 8‐ and 12‐week implantation in vivo, respectively. Mechanistically, by virtue of the enhanced deposition of ECM in SAPH‐coated PCL scaffolds, SAPH with increased stiffness facilitates and remodels the microenvironment around osteochondral defects, which may favor simultaneous dual tissue regeneration. These findings indicate that the 3% SAPH provides efficient and reliable modification on PCL scaffolds and SAPH‐coated PCL scaffolds appear to be a promising biomaterial for osteochondral defect repair. The molecularly functionalized self‐assembling peptide hydrogel‐coated polycaprolactone scaffolds provide superior performance for the regeneration of cartilage and subchondral bone simultaneously, offering a reliable and flexible strategy for osteochondral defects caused by osteoarthritis or acute trauma.
Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize the simultaneous repair of osteochondral defects by employing a self‐assembling peptide hydrogel (SAPH) FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) to coat onto 3D‐printed polycaprolactone (PCL) scaffolds. Results show that the SAPH‐coated PCL scaffolds exhibit highly improved hydrophilicity and biomimetic extracellular matrix (ECM) structures compared to PCL scaffolds. In vitro experiments demonstrate that the SAPH‐coated PCL scaffolds promote the proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) and maintain the chondrocyte phenotypes. Furthermore, 3% SAPH‐coated PCL scaffolds significantly induce simultaneous regeneration of cartilage and subchondral bone after 8‐ and 12‐week implantation in vivo, respectively. Mechanistically, by virtue of the enhanced deposition of ECM in SAPH‐coated PCL scaffolds, SAPH with increased stiffness facilitates and remodels the microenvironment around osteochondral defects, which may favor simultaneous dual tissue regeneration. These findings indicate that the 3% SAPH provides efficient and reliable modification on PCL scaffolds and SAPH‐coated PCL scaffolds appear to be a promising biomaterial for osteochondral defect repair.
Author Zhang, Xin
Zhu, Yishen
Guo, Jiamin
Zhang, Huikang
Yao, Qingqiang
Yin, Caiyun
Li, Lan
Li, Jiayi
Wang, Liming
Author_xml – sequence: 1
  givenname: Lan
  surname: Li
  fullname: Li, Lan
  organization: Nanjing Tech University
– sequence: 2
  givenname: Jiayi
  surname: Li
  fullname: Li, Jiayi
  organization: Nanjing Medical University
– sequence: 3
  givenname: Jiamin
  surname: Guo
  fullname: Guo, Jiamin
  organization: China Pharmaceutical University
– sequence: 4
  givenname: Huikang
  surname: Zhang
  fullname: Zhang, Huikang
  organization: Nanjing Medical University
– sequence: 5
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: Nanjing Tech University
– sequence: 6
  givenname: Caiyun
  surname: Yin
  fullname: Yin, Caiyun
  organization: Nanjing Tech University
– sequence: 7
  givenname: Liming
  surname: Wang
  fullname: Wang, Liming
  organization: Nanjing Medical University
– sequence: 8
  givenname: Yishen
  orcidid: 0000-0002-2616-8501
  surname: Zhu
  fullname: Zhu, Yishen
  email: zhuyish@njtech.edu.cn
  organization: Nanjing Tech University
– sequence: 9
  givenname: Qingqiang
  surname: Yao
  fullname: Yao, Qingqiang
  email: Yaoqingqiang@njmu.edu.cn, yaoqingqiang@gmail.com
  organization: Nanjing Medical University
BookMark eNqFkE1LAzEQhoMoWKtXzwueWzOb3WR7rK1VoaXgB3iRJZudaEq6qckWqSd_gr_RX-LWSgVBPM0cnudl5j0gu5WrkJBjoF2gND6VpZ53YwoZFSzlO6QFHHiH0Tjb3e5wv08OQphRCkKwpEUe2DCaOItqaaW3q2i0rFRtXCWtecUyGqC1H2_vI48YnRk3N3OsjYpulNTa2TJE2vloGmp06slVpZc2usZHrNDLdcoh2dPSBjz6nm1yNzq_HVx2xtOLq0F_3FEMBO9wjaIssoxqKBgyyZSQDGSzZGmc6ESIgnPoyYSDVDFmUBRJwrkGlTYopKxNTja5C--elxjqfOaWvnki5DGIVPS4oFlDJRtKeReCR50rU3_dWXtpbA40XxeZr4vMt0U2WveXtvBmLv3qb6G3EV6MxdU_dN4fjiY_7ifM0omo
CitedBy_id crossref_primary_10_3390_membranes10110348
crossref_primary_10_1557_s43579_021_00038_8
crossref_primary_10_1002_advs_201900867
crossref_primary_10_1016_j_bioactmat_2020_10_029
crossref_primary_10_1002_adfm_202214158
crossref_primary_10_1016_j_bioadv_2022_213067
crossref_primary_10_1002_adhm_202200998
crossref_primary_10_1002_adma_202310258
crossref_primary_10_1021_acsami_4c06207
crossref_primary_10_1016_j_mtchem_2021_100760
crossref_primary_10_1002_biot_202300040
crossref_primary_10_1039_D2BM00103A
crossref_primary_10_1021_acsbiomaterials_4c00603
crossref_primary_10_1021_acssuschemeng_9b07051
crossref_primary_10_1088_1758_5090_acb73d
crossref_primary_10_1016_j_ccr_2022_214481
crossref_primary_10_1002_VIW_20230069
crossref_primary_10_1016_j_pmatsci_2023_101072
crossref_primary_10_1016_j_bioactmat_2021_04_008
crossref_primary_10_1002_adfm_201807860
crossref_primary_10_1016_j_bioactmat_2021_04_005
crossref_primary_10_1088_1748_605X_ac21dd
crossref_primary_10_1186_s13287_024_03745_w
crossref_primary_10_3390_biomedicines9070748
crossref_primary_10_1016_j_cej_2021_130051
crossref_primary_10_1021_acs_chemrev_1c00071
crossref_primary_10_1088_1758_5090_ac2cd7
crossref_primary_10_1039_D2TB02203F
crossref_primary_10_3390_pharmaceutics15082145
crossref_primary_10_1089_ten_tec_2019_0344
crossref_primary_10_1002_adfm_202009432
crossref_primary_10_1021_acsami_4c05004
crossref_primary_10_3390_ijms222212420
crossref_primary_10_1080_10717544_2020_1797239
crossref_primary_10_3390_polym13132146
crossref_primary_10_1002_advs_202300038
crossref_primary_10_1007_s42242_020_00119_y
crossref_primary_10_1002_smm2_1244
crossref_primary_10_1016_j_tibtech_2019_06_003
crossref_primary_10_1016_j_biomaterials_2019_04_009
crossref_primary_10_1016_j_cej_2020_125232
crossref_primary_10_1002_adfm_202202470
crossref_primary_10_1021_acsbiomaterials_4c01865
crossref_primary_10_3390_pharmaceutics13101602
crossref_primary_10_1021_acsbiomaterials_1c00620
crossref_primary_10_1021_acs_chemrev_0c00690
crossref_primary_10_1039_D1NA00534K
crossref_primary_10_1002_advs_202303650
crossref_primary_10_1038_s41467_023_43334_8
crossref_primary_10_1002_cbic_202300149
crossref_primary_10_1021_acsami_2c04609
crossref_primary_10_1002_adhm_202201588
crossref_primary_10_1002_adma_202107922
crossref_primary_10_1002_adfm_202208968
crossref_primary_10_3389_fmats_2022_1022386
crossref_primary_10_1002_jbm_b_35056
crossref_primary_10_1002_advs_202103820
crossref_primary_10_1039_D0BM02058C
crossref_primary_10_1186_s12951_023_02007_w
crossref_primary_10_1002_smll_202206960
crossref_primary_10_1021_acsbiomaterials_4c01279
crossref_primary_10_1016_j_actbio_2020_01_015
crossref_primary_10_1002_adfm_201910067
crossref_primary_10_1039_D0NR03483E
crossref_primary_10_1007_s10853_021_06607_5
crossref_primary_10_1016_j_matt_2022_06_003
crossref_primary_10_3390_ijms23063352
crossref_primary_10_1021_acsbiomaterials_0c00752
crossref_primary_10_1021_acs_biomac_3c01424
crossref_primary_10_1039_C9TB01698H
crossref_primary_10_1021_acs_biomac_2c00032
crossref_primary_10_14815_kjdm_2021_48_2_89
crossref_primary_10_3389_fbioe_2022_858656
crossref_primary_10_1021_acsmaterialslett_4c00889
crossref_primary_10_1038_s41578_020_0204_2
crossref_primary_10_1021_acsabm_9b01063
crossref_primary_10_1021_acsami_1c25015
crossref_primary_10_1039_D0SM00966K
crossref_primary_10_1002_adhm_202001404
Cites_doi 10.1016/j.biomaterials.2017.06.038
10.1002/adfm.201500105
10.1089/ten.tea.2013.0662
10.1016/j.msec.2018.04.063
10.1073/pnas.1514854113
10.1016/j.actbio.2012.08.044
10.1016/j.mser.2008.04.004
10.1177/10454411000110030101
10.1038/nrdp.2017.52
10.1002/jbmr.5650080510
10.1016/j.biomaterials.2005.02.002
10.1006/cbir.1997.0165
10.1002/adfm.200800117
10.1073/pnas.142309999
10.1083/jcb.200401138
10.1007/s10456-010-9194-9
10.1016/S0021-9258(18)98430-9
10.1002/adma.200801957
10.1016/j.injury.2005.10.007
10.1126/science.2821619
10.1016/S1357-2725(03)00107-9
10.1016/S0142-9612(99)00158-1
10.1038/nrrheum.2010.159
10.2174/1389203711314010010
10.1016/S0142-9612(99)00242-2
10.1002/adfm.201703117
10.1016/S0092-8674(00)80429-8
10.1002/adma.201605235
10.1136/ard.2004.033480
10.1038/nrrheum.2012.178
10.1002/adfm.201800405
10.1016/j.progpolymsci.2010.04.002
10.1016/j.actbio.2010.08.013
10.1177/2041731414539344
10.1002/adfm.200400106
10.1002/adfm.200801561
10.1039/B811288F
10.1073/pnas.0708474105
10.1002/adfm.201102695
10.1073/pnas.90.18.8562
10.2106/00004623-199304000-00009
10.1016/j.biomaterials.2006.01.011
10.1126/science.1222454
10.1002/adma.201701089
10.1002/adfm.201300483
10.1002/adfm.201505329
10.1016/j.progpolymsci.2007.05.017
10.1038/s41578-018-0023-x
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201807356
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201807356
ADFM201807356
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81601612; 81771985
– fundername: Key Medical Subjects of Jiangsu Province
  funderid: BE2015613; BE2016763
– fundername: National Key Research and Development Program of China
  funderid: 2018YFC1105204
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  funderid: SJCX18_0346
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-6fe7db880f1b3e3a3c7a31a3a38524f477b6619a461ac2e81bb4466f1c53c7153
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 04:57:51 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 01 04:11:55 EDT 2025
Wed Jan 22 16:45:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-6fe7db880f1b3e3a3c7a31a3a38524f477b6619a461ac2e81bb4466f1c53c7153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2616-8501
PQID 2175796708
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2175796708
crossref_citationtrail_10_1002_adfm_201807356
crossref_primary_10_1002_adfm_201807356
wiley_primary_10_1002_adfm_201807356_ADFM201807356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 166
1993; 8
2018; 28
2009; 21
2017; 3
2010; 35
1997; 21
2013; 23
2017; 27
2008; 18
2000; 21
2002; 99
2003; 35
1999; 20
2008; 105
2017; 29
1993; 90
2011; 14
1993; 268
2005; 26
2007; 32
2011; 7
2013; 9
2014; 20
1997; 91
2015; 25
2018; 3
2014; 5
2013; 14
1987; 238
2006; 65
2006; 27
2000; 11
1993; 75
2016; 113
2018; 90
2017; 141
2009; 5
2005; 15
2008; 62
2009; 19
2016; 26
2012; 22
2012; 338
2010; 6
2005; 36
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 90
  start-page: 728
  year: 2018
  publication-title: Mater. Sci. Eng., C
– volume: 26
  start-page: 5474
  year: 2005
  publication-title: Biomaterials
– volume: 105
  start-page: 686
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 3419
  year: 2009
  publication-title: Adv. Mater.
– volume: 14
  start-page: 47
  year: 2011
  publication-title: Angiogenesis
– volume: 5
  start-page: 2041731414539344
  year: 2014
  publication-title: J. Tissue Eng.
– volume: 27
  start-page: 2962
  year: 2006
  publication-title: Biomaterials
– volume: 20
  start-page: 2281
  year: 1999
  publication-title: Biomaterials
– volume: 14
  start-page: 70
  year: 2013
  publication-title: Curr. Protein Pept. Sci.
– volume: 6
  start-page: 625
  year: 2010
  publication-title: Nat. Rev. Rheumatol.
– volume: 90
  start-page: 8562
  year: 1993
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 419
  year: 1997
  publication-title: Cell Biol. Int.
– volume: 9
  start-page: 43
  year: 2013
  publication-title: Nat. Rev. Rheumatol.
– volume: 338
  start-page: 917
  year: 2012
  publication-title: Science
– volume: 113
  start-page: 5453
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 1703117
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 5833
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1605235
  year: 2017
  publication-title: Adv. Mater.
– volume: 65
  start-page: 184
  year: 2006
  publication-title: Ann. Rheum. Dis.
– volume: 15
  start-page: 83
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 125
  year: 2008
  publication-title: Mater. Sci. Eng., R
– volume: 5
  start-page: 193
  year: 2009
  publication-title: Soft Matter
– volume: 21
  start-page: 667
  year: 2000
  publication-title: Biomaterials
– volume: 75
  start-page: 532
  year: 1993
  publication-title: J. Bone Joint Surg.
– volume: 29
  start-page: 1701089
  year: 2017
  publication-title: Adv. Mater.
– volume: 20
  start-page: 2646
  year: 2014
  publication-title: Tissue Eng., Part A
– volume: 32
  start-page: 762
  year: 2007
  publication-title: Prog. Polym. Sci.
– volume: 35
  start-page: 1301
  year: 2003
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 35
  start-page: 1217
  year: 2010
  publication-title: Prog. Polym. Sci.
– volume: 99
  start-page: 9996
  year: 2002
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 279
  year: 2000
  publication-title: Crit. Rev. Oral Biol. Med.
– volume: 26
  start-page: 3612
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 4609
  year: 2013
  publication-title: Acta Biomater.
– volume: 28
  start-page: 1800405
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 141
  start-page: 176
  year: 2017
  publication-title: Biomaterials
– volume: 22
  start-page: 4292
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 589
  year: 1993
  publication-title: J. Bone Miner. Res.
– volume: 18
  start-page: 2889
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 166
  start-page: 85
  year: 2004
  publication-title: J. Cell Biol.
– volume: 25
  start-page: 2715
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 268
  start-page: 9901
  year: 1993
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 17052
  year: 2017
  publication-title: Nat. Rev. Dis. Primers
– volume: 36
  start-page: S14
  year: 2005
  publication-title: Injury
– volume: 19
  start-page: 1276
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 225
  year: 2011
  publication-title: Acta Biomater.
– volume: 238
  start-page: 491
  year: 1987
  publication-title: Science
– volume: 91
  start-page: 439
  year: 1997
  publication-title: Cell
– volume: 3
  start-page: 159
  year: 2018
  publication-title: Nat. Rev. Mater.
– ident: e_1_2_8_17_1
  doi: 10.1016/j.biomaterials.2017.06.038
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.201500105
– ident: e_1_2_8_48_1
  doi: 10.1089/ten.tea.2013.0662
– ident: e_1_2_8_13_1
  doi: 10.1016/j.msec.2018.04.063
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.1514854113
– ident: e_1_2_8_44_1
  doi: 10.1016/j.actbio.2012.08.044
– ident: e_1_2_8_11_1
  doi: 10.1016/j.mser.2008.04.004
– ident: e_1_2_8_36_1
  doi: 10.1177/10454411000110030101
– ident: e_1_2_8_39_1
  doi: 10.1038/nrdp.2017.52
– ident: e_1_2_8_42_1
  doi: 10.1002/jbmr.5650080510
– ident: e_1_2_8_46_1
  doi: 10.1016/j.biomaterials.2005.02.002
– ident: e_1_2_8_26_1
  doi: 10.1006/cbir.1997.0165
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.200800117
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.142309999
– ident: e_1_2_8_35_1
  doi: 10.1083/jcb.200401138
– ident: e_1_2_8_43_1
  doi: 10.1007/s10456-010-9194-9
– ident: e_1_2_8_37_1
  doi: 10.1016/S0021-9258(18)98430-9
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.200801957
– ident: e_1_2_8_45_1
  doi: 10.1016/j.injury.2005.10.007
– ident: e_1_2_8_25_1
  doi: 10.1126/science.2821619
– ident: e_1_2_8_40_1
  doi: 10.1016/S1357-2725(03)00107-9
– ident: e_1_2_8_16_1
  doi: 10.1016/S0142-9612(99)00158-1
– ident: e_1_2_8_1_1
  doi: 10.1038/nrrheum.2010.159
– ident: e_1_2_8_21_1
  doi: 10.2174/1389203711314010010
– ident: e_1_2_8_41_1
  doi: 10.1016/S0142-9612(99)00242-2
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.201703117
– ident: e_1_2_8_10_1
  doi: 10.1016/S0092-8674(00)80429-8
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201605235
– ident: e_1_2_8_32_1
  doi: 10.1136/ard.2004.033480
– ident: e_1_2_8_31_1
  doi: 10.1038/nrrheum.2012.178
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201800405
– ident: e_1_2_8_7_1
  doi: 10.1016/j.progpolymsci.2010.04.002
– ident: e_1_2_8_14_1
  doi: 10.1016/j.actbio.2010.08.013
– ident: e_1_2_8_22_1
  doi: 10.1177/2041731414539344
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.200400106
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.200801561
– ident: e_1_2_8_24_1
  doi: 10.1039/B811288F
– ident: e_1_2_8_30_1
  doi: 10.1073/pnas.0708474105
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201102695
– ident: e_1_2_8_38_1
  doi: 10.1073/pnas.90.18.8562
– ident: e_1_2_8_47_1
  doi: 10.2106/00004623-199304000-00009
– ident: e_1_2_8_15_1
  doi: 10.1016/j.biomaterials.2006.01.011
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1222454
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201701089
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201300483
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201505329
– ident: e_1_2_8_6_1
  doi: 10.1016/j.progpolymsci.2007.05.017
– ident: e_1_2_8_12_1
  doi: 10.1038/s41578-018-0023-x
SSID ssj0017734
Score 2.5756516
Snippet Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D‐printed scaffolds
Biocompatibility
Biomedical materials
biomimetic scaffolds
Biomimetics
Cartilage
Coating
Defects
Differentiation (biology)
Glutamic acid
Hydrogels
Implantation
Knee
Lysine
Materials science
osteochondral regeneration
Phenylalanine
Polycaprolactone
Regeneration (physiology)
Repair
Scaffolds
self‐assembling peptide
Stem cells
Stiffness
Surgical implants
Three dimensional printing
Tissue engineering
Title 3D Molecularly Functionalized Cell‐Free Biomimetic Scaffolds for Osteochondral Regeneration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201807356
https://www.proquest.com/docview/2175796708
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQXNjDwvKjLbCVD0h7CtSxG6fH0m6EVltW4kfqBUVje7KqCC1qywFOPMI-4z4J46QJZaUV0nJLFNtJPDOez_bMZ8YOFcqOoydBRMIPSClEACq2gYAIpUKBSvt858FZdHqlvg_bw6Us_pIfol5w85ZRjNfewMHMjl9IQ8FlPpNcxKSkbc-57QO2PCo6r_mjhNbltnIkfICXGFasja3w-HX1117pBWouA9bC4yQbDKpvLQNNbo7u5-bIPv5F4_ien9lkHxdwlHdL_fnEVnC8xT4skRRus2vZ54PqEN38gSfkCcsFxNEjOt7DPP_z9DuZIvKT0eR2dOvTIvmFhSyb5G7GCRXzn6RLExpox25KbzvHXwXZtW9lh10l3y57p8HiUIbAEtSIgihD7QxZfSaMRAnSapAC6CJuhypTWhty-R1QkQAbIqFi47eMM2HbVJTG1122Op6M8TPj2oETGk0HQSoJISgDMc3PDFjVAu0aLKiEktoFY7k_OCNPS67lMPXdltbd1mBf6_J3JVfHP0seVDJOFzY7S2ly5hNzdStusLAQ1hutpN1-Mqjv9v6n0j5bp-tOGQZ-wFbn03v8Qihnbppsrdsf_LhoFhr9DNty9u0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61cGg5FCggtqXFByROgXXsjbNHXtEWWJB4SFxQ5MekWjW7Wy3LoZz4CfzG_hLGySY8JIQEtzz8SDwznrE98w3AmkTRdvQmiIj4ATEFD7SMbcB1hEIiR6l8vHP3KOqcy_2LVuVN6GNhSnyIesPNS0YxX3sB9xvSmw-oodplPpScx8SlregjTPu03sWq6qRGkOJKlQfLEfcuXvyiwm1shptP6z_VSw_G5mOTtdA5ySyY6mtLV5M_G9djs2FvngE5vut35uDLxCJlWyULzcMHHHyFmUc4hQtwKXZZt8qjm_9jCSnDcg-xd4OO7WCe_7-9S0aIbLs37Pf6PjKSnVqdZcPcXTEyjNkxsdOQ5tqBG1FvJ_i7wLv2rSzCebJ3ttMJJnkZAkvWRhREGSpnSPAzbgQKLazSgmu6iFuhzKRShrR-W8uIaxsiGcbGnxpn3LaoKE2xSzA1GA5wGZhy2nGFpo1aSKFDLY2OaYlmtJVNrVwDgooqqZ2AlvvcGXlawi2HqR-2tB62BqzX5f-WcB0vllypiJxOxPYqpfWZj81VzbgBYUGtV1pJt3aTbn337S2VVuFT56x7mB7-Ojr4Dp_pebv0Cl-BqfHoGn-Q0TM2Pwu2vgeB6Pl0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceFcsFPABiVPadey1s8fSJSqPLahQaS8oGtsTtCLdrbbbAz3xE_iN_BLGySbdIiEkuOXhR-KZ8Xx-zGeA55rUMPCbxLDwE1YKmaDOfCLRkNIkSdsY7zw-MPtH-s1kMFmL4m_4IboJt2gZdX8dDfwklDsXpKEYyhhJLjNW0oG5Cte06WdRr0eHHYGUtLZZVzYy7vCSk5a2sZ_uXM5_2S1dYM11xFq7nPw2YPuxzU6Tr9tnS7ftz3_jcfyfv7kDt1Z4VOw2CnQXrtDsHtxcYym8D5_VSIzbU3SrbyJnV9jMIE7PKYg9qqqf33_kCyLxcjo_nh7HuEjx0WNZzqtwKhgWi_esTHPuaWdhwbUd0pea7TqW8gCO8lef9vaT1akMiWesYRJTkg2Ozb6UTpFC5S0qiXyRDVJdamsd-_whaiPRp8Sw2MU141L6ASflDnYTNmbzGT0EYQMGackNCZVWmKJ2mPEAzaHXfbShB0krlMKvKMvjyRlV0ZAtp0VstqJrth686NKfNGQdf0y51cq4WBntacGjsxiZa_tZD9JaWH8ppdgd5ePu7tG_ZHoG1z-M8uLd64O3j-EGPx42W8K3YGO5OKMnjHiW7mmt1L8AszP4LA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Molecularly+Functionalized+Cell%E2%80%90Free+Biomimetic+Scaffolds+for+Osteochondral+Regeneration&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Lan&rft.au=Li%2C+Jiayi&rft.au=Guo%2C+Jiamin&rft.au=Zhang%2C+Huikang&rft.date=2019-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201807356&rft.externalDBID=10.1002%252Fadfm.201807356&rft.externalDocID=ADFM201807356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon