Tunable Emission in Heteroepitaxial Ln‐SURMOFs

By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In particular, the LbL approach allows manufacturing of heteroepitaxial Tb(III)‐Eu(III)(BTC) coatings with precise thickness control. Adjusting the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 37
Main Authors Chen, Dong‐Hui, Haldar, Ritesh, Neumeier, Beatrice Lilli, Fu, Zhi‐Hua, Feldmann, Claus, Wöll, Christof, Redel, Engelbert
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In particular, the LbL approach allows manufacturing of heteroepitaxial Tb(III)‐Eu(III)(BTC) coatings with precise thickness control. Adjusting the Tb(III)‐to‐Eu(III) ratio allows tuning of the emission color. The hetero‐multilayer architecture makes it possible to suppress the direct Tb(III)‐to‐Eu(III) energy transfer, an unwanted phenomenon present in the corresponding mixed‐metal bulk MOF structures. The resulting Ln‐MOF thin films, or Ln‐surface‐anchored MOFs (SURMOFs), are characterized by X‐ray diffraction, infra‐red reflection absorption spectroscopy, UV–vis, and photoluminescence measurements. The results demonstrate that the heteroepitaxial SURMOF architectures carry huge potential for fabricating optical coatings for a wide range of applications. The first lanthanide‐based, oriented and crystalline surface‐anchored metal–organic frameworks (MOFs) are fabricated via a layer‐by‐layer approach. Adjusting the ratio of the heteroepitaxial bilayer Tb(III)‐Eu(III)(BTC) can tune the emission color. The hetero‐multilayer architecture reduces the Tb(III)‐to‐Eu(III) energy transfer and results in an optimized fabrication of Ln‐MOF thin films with straightforward modulation of the emission color.
AbstractList By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In particular, the LbL approach allows manufacturing of heteroepitaxial Tb(III)‐Eu(III)(BTC) coatings with precise thickness control. Adjusting the Tb(III)‐to‐Eu(III) ratio allows tuning of the emission color. The hetero‐multilayer architecture makes it possible to suppress the direct Tb(III)‐to‐Eu(III) energy transfer, an unwanted phenomenon present in the corresponding mixed‐metal bulk MOF structures. The resulting Ln‐MOF thin films, or Ln‐surface‐anchored MOFs (SURMOFs), are characterized by X‐ray diffraction, infra‐red reflection absorption spectroscopy, UV–vis, and photoluminescence measurements. The results demonstrate that the heteroepitaxial SURMOF architectures carry huge potential for fabricating optical coatings for a wide range of applications.
By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In particular, the LbL approach allows manufacturing of heteroepitaxial Tb(III)‐Eu(III)(BTC) coatings with precise thickness control. Adjusting the Tb(III)‐to‐Eu(III) ratio allows tuning of the emission color. The hetero‐multilayer architecture makes it possible to suppress the direct Tb(III)‐to‐Eu(III) energy transfer, an unwanted phenomenon present in the corresponding mixed‐metal bulk MOF structures. The resulting Ln‐MOF thin films, or Ln‐surface‐anchored MOFs (SURMOFs), are characterized by X‐ray diffraction, infra‐red reflection absorption spectroscopy, UV–vis, and photoluminescence measurements. The results demonstrate that the heteroepitaxial SURMOF architectures carry huge potential for fabricating optical coatings for a wide range of applications. The first lanthanide‐based, oriented and crystalline surface‐anchored metal–organic frameworks (MOFs) are fabricated via a layer‐by‐layer approach. Adjusting the ratio of the heteroepitaxial bilayer Tb(III)‐Eu(III)(BTC) can tune the emission color. The hetero‐multilayer architecture reduces the Tb(III)‐to‐Eu(III) energy transfer and results in an optimized fabrication of Ln‐MOF thin films with straightforward modulation of the emission color.
Author Feldmann, Claus
Haldar, Ritesh
Chen, Dong‐Hui
Redel, Engelbert
Wöll, Christof
Fu, Zhi‐Hua
Neumeier, Beatrice Lilli
Author_xml – sequence: 1
  givenname: Dong‐Hui
  surname: Chen
  fullname: Chen, Dong‐Hui
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 2
  givenname: Ritesh
  surname: Haldar
  fullname: Haldar, Ritesh
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 3
  givenname: Beatrice Lilli
  surname: Neumeier
  fullname: Neumeier, Beatrice Lilli
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 4
  givenname: Zhi‐Hua
  surname: Fu
  fullname: Fu, Zhi‐Hua
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 5
  givenname: Claus
  surname: Feldmann
  fullname: Feldmann, Claus
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 6
  givenname: Christof
  surname: Wöll
  fullname: Wöll, Christof
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 7
  givenname: Engelbert
  orcidid: 0000-0001-7687-5637
  surname: Redel
  fullname: Redel, Engelbert
  email: engelbert.redel@kit.edu
  organization: Karlsruhe Institute of Technology (KIT)
BookMark eNqFkM1KAzEUhYNUsK1uXQ-4nnrzMzPJstTWCi0FbcFdyGQykDLN1GSKducj-Iw-iVMqFQRxc-9dnO8ezumhjqudQegawwADkFtVlJsBASyAAk_PUBenOI0pEN453fj5AvVCWAPgLKOsi2C5cyqvTDTe2BBs7SLroqlpjK_N1jbqzaoqmrnP94-n1eN8MQmX6LxUVTBX37uPVpPxcjSNZ4v7h9FwFmuKszROcVFQSIhghDOmFKWEFQkmXGtliNCaK5rrRBFegm5HIcDkNBc405SJLKd9dHP8u_X1y86ERq7rnXetpSSEZywhHEOrGhxV2tcheFPKrbcb5fcSgzy0Ig-tyFMrLcB-AbpN2bTBG69s9Tcmjtirrcz-HxM5vJvMf9gvnmN4Tw
CitedBy_id crossref_primary_10_1007_s40843_024_2894_4
crossref_primary_10_1021_acsami_3c00860
crossref_primary_10_1038_s41467_022_35429_5
crossref_primary_10_3390_cryst10020069
crossref_primary_10_1039_C9TA13932J
crossref_primary_10_1002_smll_202305251
crossref_primary_10_1002_sstr_202000019
crossref_primary_10_1002_anie_202318559
crossref_primary_10_1063_5_0004699
crossref_primary_10_1002_adom_202300867
crossref_primary_10_1016_j_aca_2020_10_062
crossref_primary_10_1021_acs_chemmater_2c00323
crossref_primary_10_1002_admi_202000929
crossref_primary_10_1021_acs_jpclett_0c01735
crossref_primary_10_1002_adfm_202109541
crossref_primary_10_1007_s40820_020_00470_w
crossref_primary_10_1002_adom_202200852
crossref_primary_10_1002_ange_202011559
crossref_primary_10_1021_acs_langmuir_1c00245
crossref_primary_10_1002_anie_202216269
crossref_primary_10_1007_s12274_020_2953_z
crossref_primary_10_1039_D1DT01860D
crossref_primary_10_1002_anie_202011559
crossref_primary_10_1016_j_ica_2020_119926
crossref_primary_10_1039_D0CC08403D
crossref_primary_10_1021_acsami_4c18478
crossref_primary_10_1039_D1TC01213D
crossref_primary_10_1063_5_0135019
crossref_primary_10_3389_fchem_2020_624592
crossref_primary_10_1002_ange_202318559
crossref_primary_10_1002_ange_202216269
crossref_primary_10_1021_acsami_1c16173
crossref_primary_10_1002_adfm_201908004
crossref_primary_10_1039_D0CC04733C
crossref_primary_10_3390_inorganics11100376
crossref_primary_10_1016_j_jallcom_2023_171811
crossref_primary_10_1007_s12274_023_5505_5
crossref_primary_10_1021_acsami_0c15392
crossref_primary_10_1021_acs_chemrev_1c00644
crossref_primary_10_1002_smll_202100607
crossref_primary_10_1021_acsami_1c08078
crossref_primary_10_7498_aps_69_20200274
Cites_doi 10.1021/ja2108036
10.1002/cite.201600061
10.1039/c4cc00848k
10.1021/acs.chemrev.8b00222
10.1039/b802352m
10.1021/acs.langmuir.7b03170
10.1038/s41467-018-06829-3
10.1002/chem.201002381
10.1021/acsami.8b04937
10.1021/ic300237e
10.1002/admt.201800413
10.1002/ejic.201700099
10.1021/acs.inorgchem.7b00074
10.1016/j.ccr.2018.08.024
10.1039/C7NJ04048B
10.1021/ja076210u
10.1002/adma.201000844
10.1021/ja802035e
10.1039/C7CS00122C
10.1039/b817735j
10.1016/j.jphotochemrev.2017.11.001
10.1021/ic062019u
10.1039/C8CC02824A
10.1002/adma.201804644
10.1039/C7CC00961E
10.1038/s42004-018-0016-0
10.1002/anie.201708802
10.1039/b406082m
10.1021/acs.inorgchem.8b00912
10.1039/C6CS00930A
10.1039/C7CS00315C
10.1039/C6CC00519E
10.1002/anie.200804836
10.1021/acsami.6b07724
10.1039/C7DT01790A
10.1016/j.ccr.2014.03.035
10.1039/C5RA23681A
10.1002/adma.201601718
10.1016/j.ccr.2017.06.007
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201903086
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201903086
ADFM201903086
Genre article
GrantInformation_xml – fundername: Priority Program Metal Organic Frameworks
  funderid: SPP 1362
– fundername: China Scholarship Council
– fundername: COORNET
  funderid: SPP 1928
– fundername: Deutsche Forschungsgemeinschaft
– fundername: Collaborative Research Center 1176
  funderid: SFB 1176
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-61dd3052942844aa3324d5128ccae29cc8a3bc5a28f0c28fd90eb3b917c3497b3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 02:47:14 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Tue Jul 01 04:12:01 EDT 2025
Wed Jan 22 16:41:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-61dd3052942844aa3324d5128ccae29cc8a3bc5a28f0c28fd90eb3b917c3497b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7687-5637
PQID 2287452810
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_journals_2287452810
crossref_primary_10_1002_adfm_201903086
crossref_citationtrail_10_1002_adfm_201903086
wiley_primary_10_1002_adfm_201903086_ADFM201903086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 129
2017; 2017
2017; 46
2016; 52
2011; 17
2018; 42
2009; 48
2012; 51
2010; 22
2017; 53
2018; 9
2016; 6
2012; 134
2018; 4
2018; 1
2018; 118
2017; 33
2018; 377
2018; 354
2017; 56
2018; 30
2016; 28
2018; 54
2018; 10
2014; 50
2014; 273–274
2009; 38
2008; 130
2016; 8
2007; 46
2005; 34
2018; 57
2016; 88
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 46
  start-page: 5730
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 2017
  start-page: 2321
  year: 2017
  publication-title: Eur. J. Inorg. Chem.
– volume: 28
  start-page: 8477
  year: 2016
  publication-title: Adv. Mater.
– volume: 88
  start-page: 1798
  year: 2016
  publication-title: Chem. Ing. Tech.
– volume: 273–274
  start-page: 139
  year: 2014
  publication-title: Coord. Chem. Rev.
– volume: 118
  start-page: 8889
  year: 2018
  publication-title: Chem. Rev.
– volume: 354
  start-page: 28
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 377
  start-page: 259
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 8070
  year: 2017
  publication-title: Chem. Commun.
– volume: 9
  start-page: 4332
  year: 2018
  publication-title: Nat. Commun.
– volume: 56
  start-page: 2345
  year: 2017
  publication-title: Inorg. Chem.
– volume: 52
  start-page: 3951
  year: 2016
  publication-title: Chem. Commun.
– volume: 50
  start-page: 8093
  year: 2014
  publication-title: Chem. Commun.
– volume: 34
  start-page: 1048
  year: 2005
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 3960
  year: 2007
  publication-title: Inorg. Chem.
– volume: 42
  start-page: 2830
  year: 2018
  publication-title: New J. Chem.
– volume: 46
  start-page: 9859
  year: 2017
  publication-title: Dalton Trans.
– volume: 22
  start-page: 4190
  year: 2010
  publication-title: Adv. Mater.
– volume: 48
  start-page: 1766
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 38
  start-page: 1257
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 33
  start-page: 109
  year: 2017
  publication-title: J. Photochem. Photobiol., C
– volume: 46
  start-page: 3185
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 12
  year: 2018
  publication-title: Commun. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 130
  start-page: 6718
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 3242
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 33
  year: 2017
  publication-title: Langmuir
– volume: 57
  start-page: 7815
  year: 2018
  publication-title: Inorg. Chem.
– volume: 38
  start-page: 1330
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 4891
  year: 2012
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 6635
  year: 2018
  publication-title: Chem. Commun.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 3979
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1448
  year: 2011
  publication-title: Chem. ‐ Eur. J.
– ident: e_1_2_7_13_1
  doi: 10.1021/ja2108036
– ident: e_1_2_7_27_1
  doi: 10.1002/cite.201600061
– ident: e_1_2_7_39_1
  doi: 10.1039/c4cc00848k
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.8b00222
– ident: e_1_2_7_9_1
  doi: 10.1039/b802352m
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.langmuir.7b03170
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-018-06829-3
– ident: e_1_2_7_24_1
  doi: 10.1002/chem.201002381
– ident: e_1_2_7_11_1
  doi: 10.1021/acsami.8b04937
– ident: e_1_2_7_22_1
  doi: 10.1021/ic300237e
– ident: e_1_2_7_32_1
  doi: 10.1002/admt.201800413
– ident: e_1_2_7_21_1
  doi: 10.1002/ejic.201700099
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.inorgchem.7b00074
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ccr.2018.08.024
– ident: e_1_2_7_7_1
  doi: 10.1039/C7NJ04048B
– ident: e_1_2_7_31_1
  doi: 10.1021/ja076210u
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201000844
– ident: e_1_2_7_29_1
  doi: 10.1021/ja802035e
– ident: e_1_2_7_15_1
  doi: 10.1039/C7CS00122C
– ident: e_1_2_7_10_1
  doi: 10.1039/b817735j
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jphotochemrev.2017.11.001
– ident: e_1_2_7_36_1
  doi: 10.1021/ic062019u
– ident: e_1_2_7_3_1
  doi: 10.1039/C8CC02824A
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201804644
– ident: e_1_2_7_26_1
  doi: 10.1039/C7CC00961E
– ident: e_1_2_7_20_1
  doi: 10.1038/s42004-018-0016-0
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.201708802
– ident: e_1_2_7_33_1
  doi: 10.1039/b406082m
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.inorgchem.8b00912
– ident: e_1_2_7_19_1
  doi: 10.1039/C6CS00930A
– ident: e_1_2_7_25_1
  doi: 10.1039/C7CS00315C
– ident: e_1_2_7_16_1
  doi: 10.1039/C6CC00519E
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.200804836
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.6b07724
– ident: e_1_2_7_5_1
  doi: 10.1039/C7DT01790A
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ccr.2014.03.035
– ident: e_1_2_7_30_1
  doi: 10.1039/C5RA23681A
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201601718
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ccr.2017.06.007
SSID ssj0017734
Score 2.499779
Snippet By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Coatings
Energy transfer
heteroepitaxial thin films
lanthanides
LbL liquid‐phase epitaxy (LPE)
Materials science
Metal-organic frameworks
Multilayers
Optical coatings
Photoluminescence
Thin films
tunable photoluminescence
Title Tunable Emission in Heteroepitaxial Ln‐SURMOFs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201903086
https://www.proquest.com/docview/2287452810
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kXvTgW6zWkoPgKW2ym-ZxLLahSKvQB_QW9hUQJRXbgnjyJ_gb_SXO5tVWEEEvIYHdkMzM7nyzO_sNwBXq1KVCembMpW86wo5NBPXMRGcfB4wpFqRVFAZ3bm_i3E5b07VT_Bk_RLngpkdGOl_rAc74vLkiDWUy1ifJ0aFRhOU4CeuELY2KhiV_lO152baya-sEL3tasDZapLnZfdMrraDmOmBNPU64D6z41izR5LGxXPCGePtG4_ifnzmAvRyOGu3Mfg5hSyVHsLtGUngM1niZnq8yumgSem3NeEiMns6imSldcuQVLdjoJ5_vH6PJcHAfzk9gEnbHNz0zr7NgCkQPLkaPUlK944ehiOMwRhFkSQQCPmpXkUAIn1EuWoz4sSXwIgMLQ3COgZ6gTuBxegqVZJaoMzCIpKrFOUeUKR2MpJirXFv40guE66tYVsEs5ByJnIRc18J4ijL6ZBJpSUSlJKpwXbZ_zug3fmxZK9QW5cNwHpGUzZ_4tlUFksr_l7dE7U44KJ_O_9LpAnb0fZaHVoPK4mWpLhG4LHgdttudQX9UT430CyEQ5ag
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSDb7FaNQfBU9q8msex2IaoTYXaQm9hXwFRUrEtiCd_gr_RX-JsXm0FEfQSSNgN2Z3ZzDezs98AXKBMbZNxR40pd1WL6bGKoJ6oaOxjjxBBvLSKQtizg6F1M2oW2YTyLEzGD1EG3OTKSP_XcoHLgHRjzhpKeCyPkqNFMxGXr8KaLOst6fPb_ZJBSnecbGPZ1mWKlz4qeBs1o7Hcf9kuzcHmImRNbY6_DbT42izV5LE-m9I6e_tG5Piv4ezAVo5IlVamQruwIpI92FzgKdwHbTBLj1gpHdQKGV5THhIlkIk0YyGrjryiEivd5PP9437YD-_8yQEM_c7gKlDzUgsqQwBhowPJuSk3_dAbsSxCTMRZHLGAiwIWhseYS0zKmsRwY43hhXsaeuEUfT1mWp5DzUOoJONEHIFicFM0KaUINLmFzhSxha0zlzses10R8yqoxURHLOchl-UwnqKMQdmI5ExE5UxU4bJs_5wxcPzYslbILcpX4iQyUkJ_w9W1KhipAH55S9Rq-2F5d_yXTuewHgzCbtS97t2ewIZ8nqWl1aAyfZmJU8QxU3qWauoXT_7oMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gujBt1itmoPgKW2ySfM4FttQta1SW-gt7CsgSlpsC-LJn-Bv9Jc4m6RpK4igl0DCbsjOzma-2Z35BuAC59SxuHD1iAlPt7kZ6QjqqY7GPvIpldRPqii0O06zb98MqoOFLP6UHyLfcFMrI_lfqwU-ElFlThpKRaQyydGgWQjLV2HNdgxfFW-od3MCKdN103Nlx1QRXuZgRttokMpy_2WzNMeai4g1MTnBNtDZx6aRJk_l6YSV-ds3Hsf_jGYHtjI8qtVSBdqFFRnvweYCS-E-GL1pkmClNVAn1Oaa9hhrTRVGM5Sq5sgrqrDWij_fPx763fZdMD6AftDoXTX1rNCCzhE-OOg-CmGpIz_0RWybUgtRlkAk4OH0SuJz7lGL8SolXmRwvAjfQB-coafHLdt3mXUIhXgYyyPQiLBklTGGMFPY6EpRRzom94Trc8eTkSiCPpNzyDMWclUM4zlM-ZNJqCQR5pIowmXefpTyb_zYsjSbtjBbh-OQJHT-xDONIpBE_r-8JazVg3Z-d_yXTuewfl8PwtZ15_YENtTjNCatBIXJy1SeIoiZsLNET78Ao1fm3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Emission+in+Heteroepitaxial+Ln%E2%80%90SURMOFs&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Dong%E2%80%90Hui&rft.au=Haldar%2C+Ritesh&rft.au=Neumeier%2C+Beatrice+Lilli&rft.au=Fu%2C+Zhi%E2%80%90Hua&rft.date=2019-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=37&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201903086&rft.externalDBID=10.1002%252Fadfm.201903086&rft.externalDocID=ADFM201903086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon