Tunable Emission in Heteroepitaxial Ln‐SURMOFs
By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In particular, the LbL approach allows manufacturing of heteroepitaxial Tb(III)‐Eu(III)(BTC) coatings with precise thickness control. Adjusting the...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 37 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In particular, the LbL approach allows manufacturing of heteroepitaxial Tb(III)‐Eu(III)(BTC) coatings with precise thickness control. Adjusting the Tb(III)‐to‐Eu(III) ratio allows tuning of the emission color. The hetero‐multilayer architecture makes it possible to suppress the direct Tb(III)‐to‐Eu(III) energy transfer, an unwanted phenomenon present in the corresponding mixed‐metal bulk MOF structures. The resulting Ln‐MOF thin films, or Ln‐surface‐anchored MOFs (SURMOFs), are characterized by X‐ray diffraction, infra‐red reflection absorption spectroscopy, UV–vis, and photoluminescence measurements. The results demonstrate that the heteroepitaxial SURMOF architectures carry huge potential for fabricating optical coatings for a wide range of applications.
The first lanthanide‐based, oriented and crystalline surface‐anchored metal–organic frameworks (MOFs) are fabricated via a layer‐by‐layer approach. Adjusting the ratio of the heteroepitaxial bilayer Tb(III)‐Eu(III)(BTC) can tune the emission color. The hetero‐multilayer architecture reduces the Tb(III)‐to‐Eu(III) energy transfer and results in an optimized fabrication of Ln‐MOF thin films with straightforward modulation of the emission color. |
---|---|
AbstractList | By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In particular, the LbL approach allows manufacturing of heteroepitaxial Tb(III)‐Eu(III)(BTC) coatings with precise thickness control. Adjusting the Tb(III)‐to‐Eu(III) ratio allows tuning of the emission color. The hetero‐multilayer architecture makes it possible to suppress the direct Tb(III)‐to‐Eu(III) energy transfer, an unwanted phenomenon present in the corresponding mixed‐metal bulk MOF structures. The resulting Ln‐MOF thin films, or Ln‐surface‐anchored MOFs (SURMOFs), are characterized by X‐ray diffraction, infra‐red reflection absorption spectroscopy, UV–vis, and photoluminescence measurements. The results demonstrate that the heteroepitaxial SURMOF architectures carry huge potential for fabricating optical coatings for a wide range of applications. By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In particular, the LbL approach allows manufacturing of heteroepitaxial Tb(III)‐Eu(III)(BTC) coatings with precise thickness control. Adjusting the Tb(III)‐to‐Eu(III) ratio allows tuning of the emission color. The hetero‐multilayer architecture makes it possible to suppress the direct Tb(III)‐to‐Eu(III) energy transfer, an unwanted phenomenon present in the corresponding mixed‐metal bulk MOF structures. The resulting Ln‐MOF thin films, or Ln‐surface‐anchored MOFs (SURMOFs), are characterized by X‐ray diffraction, infra‐red reflection absorption spectroscopy, UV–vis, and photoluminescence measurements. The results demonstrate that the heteroepitaxial SURMOF architectures carry huge potential for fabricating optical coatings for a wide range of applications. The first lanthanide‐based, oriented and crystalline surface‐anchored metal–organic frameworks (MOFs) are fabricated via a layer‐by‐layer approach. Adjusting the ratio of the heteroepitaxial bilayer Tb(III)‐Eu(III)(BTC) can tune the emission color. The hetero‐multilayer architecture reduces the Tb(III)‐to‐Eu(III) energy transfer and results in an optimized fabrication of Ln‐MOF thin films with straightforward modulation of the emission color. |
Author | Feldmann, Claus Haldar, Ritesh Chen, Dong‐Hui Redel, Engelbert Wöll, Christof Fu, Zhi‐Hua Neumeier, Beatrice Lilli |
Author_xml | – sequence: 1 givenname: Dong‐Hui surname: Chen fullname: Chen, Dong‐Hui organization: Karlsruhe Institute of Technology (KIT) – sequence: 2 givenname: Ritesh surname: Haldar fullname: Haldar, Ritesh organization: Karlsruhe Institute of Technology (KIT) – sequence: 3 givenname: Beatrice Lilli surname: Neumeier fullname: Neumeier, Beatrice Lilli organization: Karlsruhe Institute of Technology (KIT) – sequence: 4 givenname: Zhi‐Hua surname: Fu fullname: Fu, Zhi‐Hua organization: Karlsruhe Institute of Technology (KIT) – sequence: 5 givenname: Claus surname: Feldmann fullname: Feldmann, Claus organization: Karlsruhe Institute of Technology (KIT) – sequence: 6 givenname: Christof surname: Wöll fullname: Wöll, Christof organization: Karlsruhe Institute of Technology (KIT) – sequence: 7 givenname: Engelbert orcidid: 0000-0001-7687-5637 surname: Redel fullname: Redel, Engelbert email: engelbert.redel@kit.edu organization: Karlsruhe Institute of Technology (KIT) |
BookMark | eNqFkM1KAzEUhYNUsK1uXQ-4nnrzMzPJstTWCi0FbcFdyGQykDLN1GSKducj-Iw-iVMqFQRxc-9dnO8ezumhjqudQegawwADkFtVlJsBASyAAk_PUBenOI0pEN453fj5AvVCWAPgLKOsi2C5cyqvTDTe2BBs7SLroqlpjK_N1jbqzaoqmrnP94-n1eN8MQmX6LxUVTBX37uPVpPxcjSNZ4v7h9FwFmuKszROcVFQSIhghDOmFKWEFQkmXGtliNCaK5rrRBFegm5HIcDkNBc405SJLKd9dHP8u_X1y86ERq7rnXetpSSEZywhHEOrGhxV2tcheFPKrbcb5fcSgzy0Ig-tyFMrLcB-AbpN2bTBG69s9Tcmjtirrcz-HxM5vJvMf9gvnmN4Tw |
CitedBy_id | crossref_primary_10_1007_s40843_024_2894_4 crossref_primary_10_1021_acsami_3c00860 crossref_primary_10_1038_s41467_022_35429_5 crossref_primary_10_3390_cryst10020069 crossref_primary_10_1039_C9TA13932J crossref_primary_10_1002_smll_202305251 crossref_primary_10_1002_sstr_202000019 crossref_primary_10_1002_anie_202318559 crossref_primary_10_1063_5_0004699 crossref_primary_10_1002_adom_202300867 crossref_primary_10_1016_j_aca_2020_10_062 crossref_primary_10_1021_acs_chemmater_2c00323 crossref_primary_10_1002_admi_202000929 crossref_primary_10_1021_acs_jpclett_0c01735 crossref_primary_10_1002_adfm_202109541 crossref_primary_10_1007_s40820_020_00470_w crossref_primary_10_1002_adom_202200852 crossref_primary_10_1002_ange_202011559 crossref_primary_10_1021_acs_langmuir_1c00245 crossref_primary_10_1002_anie_202216269 crossref_primary_10_1007_s12274_020_2953_z crossref_primary_10_1039_D1DT01860D crossref_primary_10_1002_anie_202011559 crossref_primary_10_1016_j_ica_2020_119926 crossref_primary_10_1039_D0CC08403D crossref_primary_10_1021_acsami_4c18478 crossref_primary_10_1039_D1TC01213D crossref_primary_10_1063_5_0135019 crossref_primary_10_3389_fchem_2020_624592 crossref_primary_10_1002_ange_202318559 crossref_primary_10_1002_ange_202216269 crossref_primary_10_1021_acsami_1c16173 crossref_primary_10_1002_adfm_201908004 crossref_primary_10_1039_D0CC04733C crossref_primary_10_3390_inorganics11100376 crossref_primary_10_1016_j_jallcom_2023_171811 crossref_primary_10_1007_s12274_023_5505_5 crossref_primary_10_1021_acsami_0c15392 crossref_primary_10_1021_acs_chemrev_1c00644 crossref_primary_10_1002_smll_202100607 crossref_primary_10_1021_acsami_1c08078 crossref_primary_10_7498_aps_69_20200274 |
Cites_doi | 10.1021/ja2108036 10.1002/cite.201600061 10.1039/c4cc00848k 10.1021/acs.chemrev.8b00222 10.1039/b802352m 10.1021/acs.langmuir.7b03170 10.1038/s41467-018-06829-3 10.1002/chem.201002381 10.1021/acsami.8b04937 10.1021/ic300237e 10.1002/admt.201800413 10.1002/ejic.201700099 10.1021/acs.inorgchem.7b00074 10.1016/j.ccr.2018.08.024 10.1039/C7NJ04048B 10.1021/ja076210u 10.1002/adma.201000844 10.1021/ja802035e 10.1039/C7CS00122C 10.1039/b817735j 10.1016/j.jphotochemrev.2017.11.001 10.1021/ic062019u 10.1039/C8CC02824A 10.1002/adma.201804644 10.1039/C7CC00961E 10.1038/s42004-018-0016-0 10.1002/anie.201708802 10.1039/b406082m 10.1021/acs.inorgchem.8b00912 10.1039/C6CS00930A 10.1039/C7CS00315C 10.1039/C6CC00519E 10.1002/anie.200804836 10.1021/acsami.6b07724 10.1039/C7DT01790A 10.1016/j.ccr.2014.03.035 10.1039/C5RA23681A 10.1002/adma.201601718 10.1016/j.ccr.2017.06.007 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201903086 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201903086 ADFM201903086 |
Genre | article |
GrantInformation_xml | – fundername: Priority Program Metal Organic Frameworks funderid: SPP 1362 – fundername: China Scholarship Council – fundername: COORNET funderid: SPP 1928 – fundername: Deutsche Forschungsgemeinschaft – fundername: Collaborative Research Center 1176 funderid: SFB 1176 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-61dd3052942844aa3324d5128ccae29cc8a3bc5a28f0c28fd90eb3b917c3497b3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:47:14 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Tue Jul 01 04:12:01 EDT 2025 Wed Jan 22 16:41:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-61dd3052942844aa3324d5128ccae29cc8a3bc5a28f0c28fd90eb3b917c3497b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7687-5637 |
PQID | 2287452810 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2287452810 crossref_primary_10_1002_adfm_201903086 crossref_citationtrail_10_1002_adfm_201903086 wiley_primary_10_1002_adfm_201903086_ADFM201903086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 129 2017; 2017 2017; 46 2016; 52 2011; 17 2018; 42 2009; 48 2012; 51 2010; 22 2017; 53 2018; 9 2016; 6 2012; 134 2018; 4 2018; 1 2018; 118 2017; 33 2018; 377 2018; 354 2017; 56 2018; 30 2016; 28 2018; 54 2018; 10 2014; 50 2014; 273–274 2009; 38 2008; 130 2016; 8 2007; 46 2005; 34 2018; 57 2016; 88 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 46 start-page: 5730 year: 2017 publication-title: Chem. Soc. Rev. – volume: 2017 start-page: 2321 year: 2017 publication-title: Eur. J. Inorg. Chem. – volume: 28 start-page: 8477 year: 2016 publication-title: Adv. Mater. – volume: 88 start-page: 1798 year: 2016 publication-title: Chem. Ing. Tech. – volume: 273–274 start-page: 139 year: 2014 publication-title: Coord. Chem. Rev. – volume: 118 start-page: 8889 year: 2018 publication-title: Chem. Rev. – volume: 354 start-page: 28 year: 2018 publication-title: Coord. Chem. Rev. – volume: 377 start-page: 259 year: 2018 publication-title: Coord. Chem. Rev. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 8070 year: 2017 publication-title: Chem. Commun. – volume: 9 start-page: 4332 year: 2018 publication-title: Nat. Commun. – volume: 56 start-page: 2345 year: 2017 publication-title: Inorg. Chem. – volume: 52 start-page: 3951 year: 2016 publication-title: Chem. Commun. – volume: 50 start-page: 8093 year: 2014 publication-title: Chem. Commun. – volume: 34 start-page: 1048 year: 2005 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 3960 year: 2007 publication-title: Inorg. Chem. – volume: 42 start-page: 2830 year: 2018 publication-title: New J. Chem. – volume: 46 start-page: 9859 year: 2017 publication-title: Dalton Trans. – volume: 22 start-page: 4190 year: 2010 publication-title: Adv. Mater. – volume: 48 start-page: 1766 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 38 start-page: 1257 year: 2009 publication-title: Chem. Soc. Rev. – volume: 4 year: 2018 publication-title: Adv. Mater. Technol. – volume: 33 start-page: 109 year: 2017 publication-title: J. Photochem. Photobiol., C – volume: 46 start-page: 3185 year: 2017 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 12 year: 2018 publication-title: Commun. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 130 start-page: 6718 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 3242 year: 2017 publication-title: Chem. Soc. Rev. – volume: 33 year: 2017 publication-title: Langmuir – volume: 57 start-page: 7815 year: 2018 publication-title: Inorg. Chem. – volume: 38 start-page: 1330 year: 2009 publication-title: Chem. Soc. Rev. – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 4891 year: 2012 publication-title: Inorg. Chem. – volume: 54 start-page: 6635 year: 2018 publication-title: Chem. Commun. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 3979 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1448 year: 2011 publication-title: Chem. ‐ Eur. J. – ident: e_1_2_7_13_1 doi: 10.1021/ja2108036 – ident: e_1_2_7_27_1 doi: 10.1002/cite.201600061 – ident: e_1_2_7_39_1 doi: 10.1039/c4cc00848k – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.8b00222 – ident: e_1_2_7_9_1 doi: 10.1039/b802352m – ident: e_1_2_7_17_1 doi: 10.1021/acs.langmuir.7b03170 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-018-06829-3 – ident: e_1_2_7_24_1 doi: 10.1002/chem.201002381 – ident: e_1_2_7_11_1 doi: 10.1021/acsami.8b04937 – ident: e_1_2_7_22_1 doi: 10.1021/ic300237e – ident: e_1_2_7_32_1 doi: 10.1002/admt.201800413 – ident: e_1_2_7_21_1 doi: 10.1002/ejic.201700099 – ident: e_1_2_7_6_1 doi: 10.1021/acs.inorgchem.7b00074 – ident: e_1_2_7_4_1 doi: 10.1016/j.ccr.2018.08.024 – ident: e_1_2_7_7_1 doi: 10.1039/C7NJ04048B – ident: e_1_2_7_31_1 doi: 10.1021/ja076210u – ident: e_1_2_7_38_1 doi: 10.1002/adma.201000844 – ident: e_1_2_7_29_1 doi: 10.1021/ja802035e – ident: e_1_2_7_15_1 doi: 10.1039/C7CS00122C – ident: e_1_2_7_10_1 doi: 10.1039/b817735j – ident: e_1_2_7_2_1 doi: 10.1016/j.jphotochemrev.2017.11.001 – ident: e_1_2_7_36_1 doi: 10.1021/ic062019u – ident: e_1_2_7_3_1 doi: 10.1039/C8CC02824A – ident: e_1_2_7_35_1 doi: 10.1002/adma.201804644 – ident: e_1_2_7_26_1 doi: 10.1039/C7CC00961E – ident: e_1_2_7_20_1 doi: 10.1038/s42004-018-0016-0 – ident: e_1_2_7_37_1 doi: 10.1002/anie.201708802 – ident: e_1_2_7_33_1 doi: 10.1039/b406082m – ident: e_1_2_7_12_1 doi: 10.1021/acs.inorgchem.8b00912 – ident: e_1_2_7_19_1 doi: 10.1039/C6CS00930A – ident: e_1_2_7_25_1 doi: 10.1039/C7CS00315C – ident: e_1_2_7_16_1 doi: 10.1039/C6CC00519E – ident: e_1_2_7_23_1 doi: 10.1002/anie.200804836 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.6b07724 – ident: e_1_2_7_5_1 doi: 10.1039/C7DT01790A – ident: e_1_2_7_8_1 doi: 10.1016/j.ccr.2014.03.035 – ident: e_1_2_7_30_1 doi: 10.1039/C5RA23681A – ident: e_1_2_7_14_1 doi: 10.1002/adma.201601718 – ident: e_1_2_7_18_1 doi: 10.1016/j.ccr.2017.06.007 |
SSID | ssj0017734 |
Score | 2.499779 |
Snippet | By using a layer‐by‐layer (LbL) approach, lanthanide‐based, monolithic metal–organic framework (MOF) thin films are fabricated for optical applications. In... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Coatings Energy transfer heteroepitaxial thin films lanthanides LbL liquid‐phase epitaxy (LPE) Materials science Metal-organic frameworks Multilayers Optical coatings Photoluminescence Thin films tunable photoluminescence |
Title | Tunable Emission in Heteroepitaxial Ln‐SURMOFs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201903086 https://www.proquest.com/docview/2287452810 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kXvTgW6zWkoPgKW2ym-ZxLLahSKvQB_QW9hUQJRXbgnjyJ_gb_SXO5tVWEEEvIYHdkMzM7nyzO_sNwBXq1KVCembMpW86wo5NBPXMRGcfB4wpFqRVFAZ3bm_i3E5b07VT_Bk_RLngpkdGOl_rAc74vLkiDWUy1ifJ0aFRhOU4CeuELY2KhiV_lO152baya-sEL3tasDZapLnZfdMrraDmOmBNPU64D6z41izR5LGxXPCGePtG4_ifnzmAvRyOGu3Mfg5hSyVHsLtGUngM1niZnq8yumgSem3NeEiMns6imSldcuQVLdjoJ5_vH6PJcHAfzk9gEnbHNz0zr7NgCkQPLkaPUlK944ehiOMwRhFkSQQCPmpXkUAIn1EuWoz4sSXwIgMLQ3COgZ6gTuBxegqVZJaoMzCIpKrFOUeUKR2MpJirXFv40guE66tYVsEs5ByJnIRc18J4ijL6ZBJpSUSlJKpwXbZ_zug3fmxZK9QW5cNwHpGUzZ_4tlUFksr_l7dE7U44KJ_O_9LpAnb0fZaHVoPK4mWpLhG4LHgdttudQX9UT430CyEQ5ag |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSDb7FaNQfBU9q8msex2IaoTYXaQm9hXwFRUrEtiCd_gr_RX-JsXm0FEfQSSNgN2Z3ZzDezs98AXKBMbZNxR40pd1WL6bGKoJ6oaOxjjxBBvLSKQtizg6F1M2oW2YTyLEzGD1EG3OTKSP_XcoHLgHRjzhpKeCyPkqNFMxGXr8KaLOst6fPb_ZJBSnecbGPZ1mWKlz4qeBs1o7Hcf9kuzcHmImRNbY6_DbT42izV5LE-m9I6e_tG5Piv4ezAVo5IlVamQruwIpI92FzgKdwHbTBLj1gpHdQKGV5THhIlkIk0YyGrjryiEivd5PP9437YD-_8yQEM_c7gKlDzUgsqQwBhowPJuSk3_dAbsSxCTMRZHLGAiwIWhseYS0zKmsRwY43hhXsaeuEUfT1mWp5DzUOoJONEHIFicFM0KaUINLmFzhSxha0zlzses10R8yqoxURHLOchl-UwnqKMQdmI5ExE5UxU4bJs_5wxcPzYslbILcpX4iQyUkJ_w9W1KhipAH55S9Rq-2F5d_yXTuewHgzCbtS97t2ewIZ8nqWl1aAyfZmJU8QxU3qWauoXT_7oMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gujBt1itmoPgKW2ySfM4FttQta1SW-gt7CsgSlpsC-LJn-Bv9Jc4m6RpK4igl0DCbsjOzma-2Z35BuAC59SxuHD1iAlPt7kZ6QjqqY7GPvIpldRPqii0O06zb98MqoOFLP6UHyLfcFMrI_lfqwU-ElFlThpKRaQyydGgWQjLV2HNdgxfFW-od3MCKdN103Nlx1QRXuZgRttokMpy_2WzNMeai4g1MTnBNtDZx6aRJk_l6YSV-ds3Hsf_jGYHtjI8qtVSBdqFFRnvweYCS-E-GL1pkmClNVAn1Oaa9hhrTRVGM5Sq5sgrqrDWij_fPx763fZdMD6AftDoXTX1rNCCzhE-OOg-CmGpIz_0RWybUgtRlkAk4OH0SuJz7lGL8SolXmRwvAjfQB-coafHLdt3mXUIhXgYyyPQiLBklTGGMFPY6EpRRzom94Trc8eTkSiCPpNzyDMWclUM4zlM-ZNJqCQR5pIowmXefpTyb_zYsjSbtjBbh-OQJHT-xDONIpBE_r-8JazVg3Z-d_yXTuewfl8PwtZ15_YENtTjNCatBIXJy1SeIoiZsLNET78Ao1fm3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Emission+in+Heteroepitaxial+Ln%E2%80%90SURMOFs&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Dong%E2%80%90Hui&rft.au=Haldar%2C+Ritesh&rft.au=Neumeier%2C+Beatrice+Lilli&rft.au=Fu%2C+Zhi%E2%80%90Hua&rft.date=2019-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=37&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201903086&rft.externalDBID=10.1002%252Fadfm.201903086&rft.externalDocID=ADFM201903086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |