Bitumen‐Like Polymers Prepared via Inverse Vulcanization with Shear Stiffening and Self‐Healing Abilities for Multifunctional Applications
Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the eart...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 51 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the earth as a kind of industrial waste despite its extensive applications. Herein, a series of bitumen‐like polymers from elemental sulfur is obtained through an inverse vulcanization reaction. The sulfur‐containing polymers exhibit self‐healing, non‐toxic, and adjustable properties depending on the working environment. Based on these features, the applications of sulfur‐containing polymers in self‐healing waterproof sealants, impact‐resistance or shock‐absorption devices, and non‐Newtonian speed bumps are demonstrated. With the method of synthesizing multifunctional bitumen‐like polymers from sulfur wastes, a feasible way is provided to solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization, with the advantages including easy massed‐fabrication, non‐toxicity, extremely low cost (≈2 cents per gram) and environment friendliness.
A series of bitumen‐like polymers are obtained through inverse vulcanization. Based on extra shear stiffening performance and self‐healing ability, they show great potential in impact‐resistant devices, energy‐absorption devices, self‐healing waterproof sealants, and non‐Newtonian speed bumps which can solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization. |
---|---|
AbstractList | Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the earth as a kind of industrial waste despite its extensive applications. Herein, a series of bitumen‐like polymers from elemental sulfur is obtained through an inverse vulcanization reaction. The sulfur‐containing polymers exhibit self‐healing, non‐toxic, and adjustable properties depending on the working environment. Based on these features, the applications of sulfur‐containing polymers in self‐healing waterproof sealants, impact‐resistance or shock‐absorption devices, and non‐Newtonian speed bumps are demonstrated. With the method of synthesizing multifunctional bitumen‐like polymers from sulfur wastes, a feasible way is provided to solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization, with the advantages including easy massed‐fabrication, non‐toxicity, extremely low cost (≈2 cents per gram) and environment friendliness. Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the earth as a kind of industrial waste despite its extensive applications. Herein, a series of bitumen‐like polymers from elemental sulfur is obtained through an inverse vulcanization reaction. The sulfur‐containing polymers exhibit self‐healing, non‐toxic, and adjustable properties depending on the working environment. Based on these features, the applications of sulfur‐containing polymers in self‐healing waterproof sealants, impact‐resistance or shock‐absorption devices, and non‐Newtonian speed bumps are demonstrated. With the method of synthesizing multifunctional bitumen‐like polymers from sulfur wastes, a feasible way is provided to solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization, with the advantages including easy massed‐fabrication, non‐toxicity, extremely low cost (≈2 cents per gram) and environment friendliness. Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the earth as a kind of industrial waste despite its extensive applications. Herein, a series of bitumen‐like polymers from elemental sulfur is obtained through an inverse vulcanization reaction. The sulfur‐containing polymers exhibit self‐healing, non‐toxic, and adjustable properties depending on the working environment. Based on these features, the applications of sulfur‐containing polymers in self‐healing waterproof sealants, impact‐resistance or shock‐absorption devices, and non‐Newtonian speed bumps are demonstrated. With the method of synthesizing multifunctional bitumen‐like polymers from sulfur wastes, a feasible way is provided to solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization, with the advantages including easy massed‐fabrication, non‐toxicity, extremely low cost (≈2 cents per gram) and environment friendliness. A series of bitumen‐like polymers are obtained through inverse vulcanization. Based on extra shear stiffening performance and self‐healing ability, they show great potential in impact‐resistant devices, energy‐absorption devices, self‐healing waterproof sealants, and non‐Newtonian speed bumps which can solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization. |
Author | Zhao, Pei‐Chen Li, Cheng‐Hui Hou, Ke‐Xin Duan, Lei Fan, Minjie Zheng, Pengfei |
Author_xml | – sequence: 1 givenname: Ke‐Xin orcidid: 0000-0002-6510-7998 surname: Hou fullname: Hou, Ke‐Xin organization: Nanjing University – sequence: 2 givenname: Pei‐Chen surname: Zhao fullname: Zhao, Pei‐Chen organization: Nanjing University – sequence: 3 givenname: Lei surname: Duan fullname: Duan, Lei organization: Changzhou Institute of Technology – sequence: 4 givenname: Minjie surname: Fan fullname: Fan, Minjie organization: Children's Hospital of Nanjing Medical University – sequence: 5 givenname: Pengfei surname: Zheng fullname: Zheng, Pengfei email: zhengpengfei@njmu.edu.cn organization: Children's Hospital of Nanjing Medical University – sequence: 6 givenname: Cheng‐Hui orcidid: 0000-0001-8982-5938 surname: Li fullname: Li, Cheng‐Hui email: chli@nju.edu.cn organization: Nanjing University |
BookMark | eNqFkE1LxDAQhoMoqKtXzwHPuyZpm7bH9VvYRWFVvJUxnWg0m9akVdaTv0D8jf4Su64oCOJphuF5XoZ3nSy7yiEhW5wNOGNiB0o9HQgmIiazTC6RNS657EdMZMvfO79aJesh3DHG0zSK18jrrmnaKbr3l7eRuUd6VtnZFH2gZx5r8FjSRwP0xD12N6SXrVXgzDM0pnL0yTS3dHKL4OmkMVqjM-6GgivpBK3uEo8R7Pw0vDbWNAYD1ZWn49Z2dOvUPAQsHda1NeozMmyQFQ024ObX7JGLw4PzveP-6PToZG846quIp7KfQCS10AmPI5UngFkkUMWpBCxZiVhyrXguWAIdk2WJhDgpMwFpHOdZCRKjHtle5Na-emgxNMVd1frum1CIvOsmSQXLOypeUMpXIXjUhTLN56ONB2MLzop588W8-eK7-U4b_NJqb6bgZ38L-UJ4MhZn_9DFcP9w_ON-AHArncw |
CitedBy_id | crossref_primary_10_1002_ange_202419446 crossref_primary_10_1016_j_compscitech_2024_110964 crossref_primary_10_1002_adfm_202414780 crossref_primary_10_1021_jacs_3c13392 crossref_primary_10_1002_adfm_202405608 crossref_primary_10_1016_j_conbuildmat_2024_138539 crossref_primary_10_1039_D4PY00857J crossref_primary_10_1016_j_seppur_2025_131902 crossref_primary_10_1021_acsapm_4c02256 crossref_primary_10_1016_j_ijbiomac_2024_135183 crossref_primary_10_1002_anie_202419446 crossref_primary_10_1080_15583724_2024_2382891 crossref_primary_10_1002_chem_202404397 |
Cites_doi | 10.1039/C7QM00083A 10.1038/nmat2460 10.1126/science.1252389 10.1201/9781420008630-c1 10.1038/s41557-022-01049-1 10.1016/j.compscitech.2017.10.019 10.1039/C7GC00014F 10.1016/j.jaad.2022.05.053 10.1016/j.jclepro.2017.09.232 10.1016/j.rser.2020.110124 10.1002/adfm.201303536 10.1038/1781187a0 10.1016/j.jclepro.2022.134119 10.1002/adma.201305607 10.1038/344230a0 10.1039/C3TA14914E 10.1016/j.carbon.2020.05.043 10.1021/ar00155a001 10.1126/sciadv.abk2451 10.1021/acs.nanolett.1c02697 10.1038/nature17646 10.1038/nchem.1624 10.1016/j.jclepro.2022.131240 10.1126/sciadv.abb5320 10.1016/j.resconrec.2022.106776 10.1016/j.resconrec.2022.106160 10.1002/adma.202207587 10.1016/j.conbuildmat.2017.04.062 10.1126/science.139.3551.226 10.1126/science.362.6411.146 10.1038/211402a0 10.1016/j.rser.2017.01.087 10.1016/j.ccr.2021.213913 10.1021/jacs.0c12119 10.1002/adma.202209581 10.1016/j.jclepro.2022.131067 10.1016/j.xcrp.2020.100266 10.1016/j.rser.2021.111552 10.1002/pi.4980120103 10.1021/acs.accounts.1c00511 10.1016/j.resconrec.2022.106184 10.1038/nchem.1100 10.1111/j.1541-4337.2011.00156.x 10.1021/acsnano.2c12025 10.1002/pol.1960.1204614703 10.1016/j.jhazmat.2019.03.025 10.1039/C8RA04446E 10.1016/S0079-6700(03)00024-8 10.1002/aenm.202201585 10.1063/1.4870044 10.1016/j.cis.2021.102565 10.1038/s43017-020-00105-z 10.1002/anie.201902344 10.1360/02ww0123 10.1038/s41467-019-08430-8 10.1016/j.jclepro.2022.135427 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202306886 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202306886 ADFM202306886 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210440 – fundername: National Natural Science Foundation of China funderid: 22271139; 21771100 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-5a36f2f5143c95ae832ec476aed0deed1fc19205a2f58856a45d82a74498da6e3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:22:48 EDT 2025 Tue Jul 01 00:30:49 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Jan 22 16:18:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-5a36f2f5143c95ae832ec476aed0deed1fc19205a2f58856a45d82a74498da6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8982-5938 0000-0002-6510-7998 |
PQID | 2901757209 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2901757209 crossref_citationtrail_10_1002_adfm_202306886 crossref_primary_10_1002_adfm_202306886 wiley_primary_10_1002_adfm_202306886_ADFM202306886 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2022; 376 2022; 299 2021; 21 2017; 1 2023; 35 2023; 33 2019; 10 1963; 139 2019; 58 2023; 385 1975 2014; 26 2011; 10 2014; 24 2020; 166 2017; 153 1990; 344 2013; 5 1956; 178 2017; 72 2020; 6 2018; 8 2018; 170 2020; 1 2014; 2 1960; 46 2021; 438 2022; 35 2021; 151 2003; 48 2020; 134 2021; 7 1966; 211 1905; 72 2023; 17 1964; 4934 2009 2022; 87 2021; 143 2011; 3 2021; 54 2023; 190 2022; 180 1980; 12 1988; 21 2022; 12 2022; 14 2009; 8 2003; 28 2017; 19 2016; 534 2014 2019; 371 2017; 146 2022; 347 2014; 104 2022; 344 2014; 344 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Richardson C. (e_1_2_8_8_1) 1905; 72 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Klosowski J. M. (e_1_2_8_59_1) 2014 Barth E. J. (e_1_2_8_1_1) 1964; 4934 Garrigue C. (e_1_2_8_32_1) 1975 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 Wang W. (e_1_2_8_54_1) 2023; 33 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – year: 2009 – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 12 start-page: 5 year: 1980 publication-title: Br. Polym. J. – year: 1975 – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 371 start-page: 342 year: 2019 publication-title: J. Hazard. Mater. – volume: 1 start-page: 497 year: 2020 publication-title: Nat. Rev. Earth Environ. – volume: 178 start-page: 1187 year: 1956 publication-title: Nature – volume: 146 start-page: 30 year: 2017 publication-title: Constr. Build. Mater. – year: 2014 – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 7 year: 2021 publication-title: Sci Adv – volume: 347 year: 2022 publication-title: J. Cleaner Prod. – volume: 17 start-page: 1713 year: 2023 publication-title: ACS Nano – volume: 211 start-page: 402 year: 1966 publication-title: Nature – volume: 26 start-page: 3014 year: 2014 publication-title: Adv. Mater. – volume: 344 start-page: 230 year: 1990 publication-title: Nature – volume: 438 year: 2021 publication-title: Coordin. Chem. Rev. – volume: 180 year: 2022 publication-title: Resour., Conserv. Recycl. – volume: 2 start-page: 4652 year: 2014 publication-title: J. Mater. Chem. A – volume: 24 start-page: 3259 year: 2014 publication-title: Adv. Funct. Mater. – volume: 166 start-page: 218 year: 2020 publication-title: Carbon – volume: 21 start-page: 387 year: 1988 publication-title: Acc. Chem. Res. – volume: 87 start-page: 1042 year: 2022 publication-title: J. Am. Acad. Dermatol. – volume: 72 start-page: 473 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 190 year: 2023 publication-title: Resour. Conserv. Recycl. – volume: 134 year: 2020 publication-title: Renewable Sustainable Energy Rev. – volume: 299 year: 2022 publication-title: Adv. Colloid Interface Sci. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 385 year: 2023 publication-title: J. Cleaner Prod. – volume: 153 start-page: 168 year: 2017 publication-title: Compos. Sci. Technol. – volume: 35 year: 2022 publication-title: Adv. Mater. – volume: 10 start-page: 221 year: 2011 publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 28 start-page: 1205 year: 2003 publication-title: Prog. Polym. Sci. – volume: 14 start-page: 1249 year: 2022 publication-title: Nat. Chem. – volume: 344 year: 2022 publication-title: J. Cleaner Prod. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 170 start-page: 1279 year: 2018 publication-title: J. Cleaner Prod. – volume: 54 start-page: 4215 year: 2021 publication-title: Acc. Chem. Res. – volume: 362 start-page: 146 year: 2018 publication-title: Science – volume: 58 start-page: 7040 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 1 start-page: 1818 year: 2017 publication-title: Mater. Chem. Front. – volume: 72 start-page: 316 year: 1905 publication-title: Nature – volume: 48 start-page: 2391 year: 2003 publication-title: Sci. Bull. – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 46 start-page: 19 year: 1960 publication-title: J. Polym. Sci. – volume: 5 start-page: 518 year: 2013 publication-title: Nat. Chem. – volume: 376 year: 2022 publication-title: J. Cleaner Prod. – volume: 344 start-page: 161 year: 2014 publication-title: Science – volume: 4934 start-page: 739 year: 1964 publication-title: Nature – volume: 19 start-page: 2748 year: 2017 publication-title: Green Chem. – volume: 151 year: 2021 publication-title: Renewable Sustainable Energy Rev. – volume: 10 start-page: 647 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 648 year: 2011 publication-title: Nat. Chem. – volume: 139 start-page: 226 year: 1963 publication-title: Science – volume: 21 start-page: 9433 year: 2021 publication-title: Nano Lett. – volume: 143 start-page: 1162 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 534 start-page: 91 year: 2016 publication-title: Nature – ident: e_1_2_8_39_1 doi: 10.1039/C7QM00083A – ident: e_1_2_8_40_1 doi: 10.1038/nmat2460 – ident: e_1_2_8_53_1 doi: 10.1126/science.1252389 – ident: e_1_2_8_58_1 doi: 10.1201/9781420008630-c1 – ident: e_1_2_8_37_1 doi: 10.1038/s41557-022-01049-1 – ident: e_1_2_8_55_1 doi: 10.1016/j.compscitech.2017.10.019 – ident: e_1_2_8_43_1 doi: 10.1039/C7GC00014F – volume: 4934 start-page: 739 year: 1964 ident: e_1_2_8_1_1 publication-title: Nature – ident: e_1_2_8_44_1 doi: 10.1016/j.jaad.2022.05.053 – ident: e_1_2_8_16_1 doi: 10.1016/j.jclepro.2017.09.232 – ident: e_1_2_8_17_1 doi: 10.1016/j.rser.2020.110124 – ident: e_1_2_8_62_1 doi: 10.1002/adfm.201303536 – ident: e_1_2_8_45_1 doi: 10.1038/1781187a0 – ident: e_1_2_8_5_1 doi: 10.1016/j.jclepro.2022.134119 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201305607 – ident: e_1_2_8_3_1 doi: 10.1038/344230a0 – ident: e_1_2_8_48_1 doi: 10.1039/C3TA14914E – ident: e_1_2_8_6_1 doi: 10.1016/j.carbon.2020.05.043 – ident: e_1_2_8_20_1 doi: 10.1021/ar00155a001 – ident: e_1_2_8_61_1 doi: 10.1126/sciadv.abk2451 – ident: e_1_2_8_28_1 doi: 10.1021/acs.nanolett.1c02697 – ident: e_1_2_8_14_1 doi: 10.1038/nature17646 – ident: e_1_2_8_31_1 doi: 10.1038/nchem.1624 – ident: e_1_2_8_13_1 doi: 10.1016/j.jclepro.2022.131240 – ident: e_1_2_8_23_1 doi: 10.1126/sciadv.abb5320 – ident: e_1_2_8_19_1 doi: 10.1016/j.resconrec.2022.106776 – ident: e_1_2_8_18_1 doi: 10.1016/j.resconrec.2022.106160 – ident: e_1_2_8_51_1 doi: 10.1002/adma.202207587 – ident: e_1_2_8_49_1 doi: 10.1016/j.conbuildmat.2017.04.062 – ident: e_1_2_8_2_1 doi: 10.1126/science.139.3551.226 – ident: e_1_2_8_22_1 doi: 10.1126/science.362.6411.146 – volume-title: Sealants in construction year: 2014 ident: e_1_2_8_59_1 – ident: e_1_2_8_4_1 doi: 10.1038/211402a0 – ident: e_1_2_8_15_1 doi: 10.1016/j.rser.2017.01.087 – ident: e_1_2_8_30_1 doi: 10.1016/j.ccr.2021.213913 – ident: e_1_2_8_52_1 doi: 10.1021/jacs.0c12119 – ident: e_1_2_8_57_1 doi: 10.1002/adma.202209581 – ident: e_1_2_8_12_1 doi: 10.1016/j.jclepro.2022.131067 – ident: e_1_2_8_56_1 doi: 10.1016/j.xcrp.2020.100266 – ident: e_1_2_8_9_1 doi: 10.1016/j.rser.2021.111552 – ident: e_1_2_8_38_1 doi: 10.1002/pi.4980120103 – ident: e_1_2_8_29_1 doi: 10.1021/acs.accounts.1c00511 – ident: e_1_2_8_34_1 doi: 10.1016/j.resconrec.2022.106184 – ident: e_1_2_8_21_1 doi: 10.1038/nchem.1100 – ident: e_1_2_8_41_1 doi: 10.1111/j.1541-4337.2011.00156.x – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.2c12025 – ident: e_1_2_8_36_1 doi: 10.1002/pol.1960.1204614703 – ident: e_1_2_8_11_1 doi: 10.1016/j.jhazmat.2019.03.025 – ident: e_1_2_8_42_1 doi: 10.1039/C8RA04446E – ident: e_1_2_8_60_1 – volume: 33 year: 2023 ident: e_1_2_8_54_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_24_1 doi: 10.1016/S0079-6700(03)00024-8 – ident: e_1_2_8_25_1 doi: 10.1002/aenm.202201585 – ident: e_1_2_8_50_1 doi: 10.1063/1.4870044 – ident: e_1_2_8_7_1 doi: 10.1016/j.cis.2021.102565 – ident: e_1_2_8_10_1 doi: 10.1038/s43017-020-00105-z – volume-title: Sulfur /Asphalt Binders for Road Construction, Advances in Chemistry year: 1975 ident: e_1_2_8_32_1 – ident: e_1_2_8_26_1 doi: 10.1002/anie.201902344 – volume: 72 start-page: 316 year: 1905 ident: e_1_2_8_8_1 publication-title: Nature – ident: e_1_2_8_35_1 doi: 10.1360/02ww0123 – ident: e_1_2_8_46_1 doi: 10.1038/s41467-019-08430-8 – ident: e_1_2_8_33_1 doi: 10.1016/j.jclepro.2022.135427 |
SSID | ssj0017734 |
Score | 2.506808 |
Snippet | Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bitumens Healing Impact resistance Industrial wastes Materials science multifunctional Polymers Road humps self‐healing shear stiffening Shock resistance Stiffening Sulfur Vulcanization Working conditions |
Title | Bitumen‐Like Polymers Prepared via Inverse Vulcanization with Shear Stiffening and Self‐Healing Abilities for Multifunctional Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202306886 https://www.proquest.com/docview/2901757209 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iL_rgtzi_yIPgU12TtU32WD-GyCbDqeytXJMUhqPK1gn65F8g_o3-JebarZuCCPrWlqS0Se7ud5e7Xwg5RJXHgsR1BFjfxGMJOJLXlcOtx2J8DlJwrHduXQUXt95l1-_OVPEX_BBlwA0lI9fXKOAQD6tT0lDQCVaSI4SWEjm3MWELUdF1yR_FhCi2lQOGCV6sO2FtdHn1a_evVmkKNWcBa25xGisEJt9aJJrcH4-y-Fi9fKNx_M_PrJLlMRylYbF-1sicSdfJ0gxJ4QZ5O-llVoGlH6_vzd69oe2H_jMGu2l7YPL0dfrUA4p8HYOhoXejviqLOylGeWl-aDbtZHgUC0ZhKKSadkw_sW_EKih8FOY5utZrpxZE07wqGC1uEaik4cwu-ya5bZzfnF4441McHGWxSeD4UAsSniAwU3UfjFUhRnkiAKNdbS00S5RFma4Pto2UfgCeryUH4Xl1qSEwtS0ynz6kZpvQmmICHVRtMajHkDtJxKBjxsHViYllhTiTWYzUmOIcT9roRwU5M49wnKNynCvkqGz_WJB7_Nhyb7IoorGQDyPcgha-4G69Qng-u7-8JQrPGq3ybucvnXbJIl4XCTV7ZD4bjMy-hUVZfEAWwrNWs3OQi8AnoEkJhQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQcgJYitjzqA1JPgdib2N7j8lgtdBchXuIWObYjrViFaslWKid-AeI38kvwOJuwVEJI7TGRbSW2Z_zNeOYbgC1UeZRnYSCUs00imqlAspYOmLNYbMyUFAzznfvHvHsRHV3FVTQh5sKU_BC1ww0lw-trFHB0SO-8sIYqk2EqOWJoKfkHmMOy3t6qOq0ZpKgQ5cUypxjiRa8q3saQ7bzu__pcegGb05DVnzmdRUirry1DTa63x0W6re_-InL8r99ZgoUJIiXtcgt9hhmbf4H5KZ7CZXjYHRROh-VP94-9wbUlJzfDP-jvJicj6yPYye-BIkjZMbq15HI81HV-J0FHL_F1s8lZgdVY0BFDVG7ImR1mbkRMhMJXbR-m6wx34nA08YnBeOiWvkrSnrpo_woXnYPzvW4wKeQQaAdPeBCrJs9YhthMt2JlnRaxOhJcWRMad0jTTDugGcbKtZEy5iqKjWRKRFFLGsVtcwVm85vcrgJpairQRjUOhkYU6ZNEqkxKmQpNZlPZgKBaxkRPWM6x2MYwKfmZWYLznNTz3IAfdftfJb_Hmy3Xq12RTOT8NsFbaBELFrYawPzyvjNK0t7v9Ounb__S6Tt87J73e0nv8PjnGnzC92V8zTrMFqOx3XAoqUg3vRw8A8lADAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BkVZw4LHsagsFfEDaU3ZjN7HdY6FUhX2o2tJVb5Hjh1S1Sqs2RYITvwDxG_kleJI27SKtkHaPiWwrsT0zn8cz3wC8R5VHuQsDofzZJKJOBZK1dMD8icXGTEnBMN_54pL3htGXUTzayeIv-SEqhxtKRqGvUcDnxp1uSUOVcZhJjhBaSv4QHkU8lLivO1cVgRQVorxX5hQjvOhoQ9sYstOb_W-apS3W3EWshcnpPgO1-dgy0mRyssrTE_3jHx7H-_zNc3i6xqOkXW6gF_DAZvvwZIel8CX8-jDOvQbL_vz8fT6eWNKfTb-jt5v0F7aIXyffxoogYcdiacn1aqqr7E6Cbl5SVM0mgxxrsaAbhqjMkIGdOj8ipkHhq3YRpOuP7cSjaFKkBaPJLT2VpL1zzX4Aw-6nrx97wbqMQ6A9OOFBrJrcMYfITLdiZb0OsToSXFkTGm-iqdMeZoax8m2kjLmKYiOZElHUkkZx2zyEWjbL7BGQpqYCT6jGg9CIInmSSJVJKVOhcTaVdQg2q5joNcc5ltqYJiU7M0twnpNqnutwXLWfl-wet7ZsbDZFspbyZYJ30CIWLGzVgRWr-59Rknane1E9vbpLp3ew1-90k_PPl2ev4TG-LoNrGlDLFyv7xkOkPH1bSMFfvEoKxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bitumen%E2%80%90Like+Polymers+Prepared+via+Inverse+Vulcanization+with+Shear+Stiffening+and+Self%E2%80%90Healing+Abilities+for+Multifunctional+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Hou%2C+Ke%E2%80%90Xin&rft.au=Zhao%2C+Pei%E2%80%90Chen&rft.au=Duan%2C+Lei&rft.au=Fan%2C+Minjie&rft.date=2023-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=51&rft_id=info:doi/10.1002%2Fadfm.202306886&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202306886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |