Bitumen‐Like Polymers Prepared via Inverse Vulcanization with Shear Stiffening and Self‐Healing Abilities for Multifunctional Applications

Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the eart...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 51
Main Authors Hou, Ke‐Xin, Zhao, Pei‐Chen, Duan, Lei, Fan, Minjie, Zheng, Pengfei, Li, Cheng‐Hui
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the earth as a kind of industrial waste despite its extensive applications. Herein, a series of bitumen‐like polymers from elemental sulfur is obtained through an inverse vulcanization reaction. The sulfur‐containing polymers exhibit self‐healing, non‐toxic, and adjustable properties depending on the working environment. Based on these features, the applications of sulfur‐containing polymers in self‐healing waterproof sealants, impact‐resistance or shock‐absorption devices, and non‐Newtonian speed bumps are demonstrated. With the method of synthesizing multifunctional bitumen‐like polymers from sulfur wastes, a feasible way is provided to solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization, with the advantages including easy massed‐fabrication, non‐toxicity, extremely low cost (≈2 cents per gram) and environment friendliness. A series of bitumen‐like polymers are obtained through inverse vulcanization. Based on extra shear stiffening performance and self‐healing ability, they show great potential in impact‐resistant devices, energy‐absorption devices, self‐healing waterproof sealants, and non‐Newtonian speed bumps which can solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization.
AbstractList Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the earth as a kind of industrial waste despite its extensive applications. Herein, a series of bitumen‐like polymers from elemental sulfur is obtained through an inverse vulcanization reaction. The sulfur‐containing polymers exhibit self‐healing, non‐toxic, and adjustable properties depending on the working environment. Based on these features, the applications of sulfur‐containing polymers in self‐healing waterproof sealants, impact‐resistance or shock‐absorption devices, and non‐Newtonian speed bumps are demonstrated. With the method of synthesizing multifunctional bitumen‐like polymers from sulfur wastes, a feasible way is provided to solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization, with the advantages including easy massed‐fabrication, non‐toxicity, extremely low cost (≈2 cents per gram) and environment friendliness.
Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the earth as a kind of industrial waste despite its extensive applications. Herein, a series of bitumen‐like polymers from elemental sulfur is obtained through an inverse vulcanization reaction. The sulfur‐containing polymers exhibit self‐healing, non‐toxic, and adjustable properties depending on the working environment. Based on these features, the applications of sulfur‐containing polymers in self‐healing waterproof sealants, impact‐resistance or shock‐absorption devices, and non‐Newtonian speed bumps are demonstrated. With the method of synthesizing multifunctional bitumen‐like polymers from sulfur wastes, a feasible way is provided to solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization, with the advantages including easy massed‐fabrication, non‐toxicity, extremely low cost (≈2 cents per gram) and environment friendliness.
Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace bitumen. However, most of them can not address the unsustainability of bitumen from the roots. On the other hand, sulfur exists widely on the earth as a kind of industrial waste despite its extensive applications. Herein, a series of bitumen‐like polymers from elemental sulfur is obtained through an inverse vulcanization reaction. The sulfur‐containing polymers exhibit self‐healing, non‐toxic, and adjustable properties depending on the working environment. Based on these features, the applications of sulfur‐containing polymers in self‐healing waterproof sealants, impact‐resistance or shock‐absorption devices, and non‐Newtonian speed bumps are demonstrated. With the method of synthesizing multifunctional bitumen‐like polymers from sulfur wastes, a feasible way is provided to solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization, with the advantages including easy massed‐fabrication, non‐toxicity, extremely low cost (≈2 cents per gram) and environment friendliness. A series of bitumen‐like polymers are obtained through inverse vulcanization. Based on extra shear stiffening performance and self‐healing ability, they show great potential in impact‐resistant devices, energy‐absorption devices, self‐healing waterproof sealants, and non‐Newtonian speed bumps which can solve simultaneously the challenging problem of bitumen's unsustainability as well as sulfur's utilization.
Author Zhao, Pei‐Chen
Li, Cheng‐Hui
Hou, Ke‐Xin
Duan, Lei
Fan, Minjie
Zheng, Pengfei
Author_xml – sequence: 1
  givenname: Ke‐Xin
  orcidid: 0000-0002-6510-7998
  surname: Hou
  fullname: Hou, Ke‐Xin
  organization: Nanjing University
– sequence: 2
  givenname: Pei‐Chen
  surname: Zhao
  fullname: Zhao, Pei‐Chen
  organization: Nanjing University
– sequence: 3
  givenname: Lei
  surname: Duan
  fullname: Duan, Lei
  organization: Changzhou Institute of Technology
– sequence: 4
  givenname: Minjie
  surname: Fan
  fullname: Fan, Minjie
  organization: Children's Hospital of Nanjing Medical University
– sequence: 5
  givenname: Pengfei
  surname: Zheng
  fullname: Zheng, Pengfei
  email: zhengpengfei@njmu.edu.cn
  organization: Children's Hospital of Nanjing Medical University
– sequence: 6
  givenname: Cheng‐Hui
  orcidid: 0000-0001-8982-5938
  surname: Li
  fullname: Li, Cheng‐Hui
  email: chli@nju.edu.cn
  organization: Nanjing University
BookMark eNqFkE1LxDAQhoMoqKtXzwHPuyZpm7bH9VvYRWFVvJUxnWg0m9akVdaTv0D8jf4Su64oCOJphuF5XoZ3nSy7yiEhW5wNOGNiB0o9HQgmIiazTC6RNS657EdMZMvfO79aJesh3DHG0zSK18jrrmnaKbr3l7eRuUd6VtnZFH2gZx5r8FjSRwP0xD12N6SXrVXgzDM0pnL0yTS3dHKL4OmkMVqjM-6GgivpBK3uEo8R7Pw0vDbWNAYD1ZWn49Z2dOvUPAQsHda1NeozMmyQFQ024ObX7JGLw4PzveP-6PToZG846quIp7KfQCS10AmPI5UngFkkUMWpBCxZiVhyrXguWAIdk2WJhDgpMwFpHOdZCRKjHtle5Na-emgxNMVd1frum1CIvOsmSQXLOypeUMpXIXjUhTLN56ONB2MLzop588W8-eK7-U4b_NJqb6bgZ38L-UJ4MhZn_9DFcP9w_ON-AHArncw
CitedBy_id crossref_primary_10_1002_ange_202419446
crossref_primary_10_1016_j_compscitech_2024_110964
crossref_primary_10_1002_adfm_202414780
crossref_primary_10_1021_jacs_3c13392
crossref_primary_10_1002_adfm_202405608
crossref_primary_10_1016_j_conbuildmat_2024_138539
crossref_primary_10_1039_D4PY00857J
crossref_primary_10_1016_j_seppur_2025_131902
crossref_primary_10_1021_acsapm_4c02256
crossref_primary_10_1016_j_ijbiomac_2024_135183
crossref_primary_10_1002_anie_202419446
crossref_primary_10_1080_15583724_2024_2382891
crossref_primary_10_1002_chem_202404397
Cites_doi 10.1039/C7QM00083A
10.1038/nmat2460
10.1126/science.1252389
10.1201/9781420008630-c1
10.1038/s41557-022-01049-1
10.1016/j.compscitech.2017.10.019
10.1039/C7GC00014F
10.1016/j.jaad.2022.05.053
10.1016/j.jclepro.2017.09.232
10.1016/j.rser.2020.110124
10.1002/adfm.201303536
10.1038/1781187a0
10.1016/j.jclepro.2022.134119
10.1002/adma.201305607
10.1038/344230a0
10.1039/C3TA14914E
10.1016/j.carbon.2020.05.043
10.1021/ar00155a001
10.1126/sciadv.abk2451
10.1021/acs.nanolett.1c02697
10.1038/nature17646
10.1038/nchem.1624
10.1016/j.jclepro.2022.131240
10.1126/sciadv.abb5320
10.1016/j.resconrec.2022.106776
10.1016/j.resconrec.2022.106160
10.1002/adma.202207587
10.1016/j.conbuildmat.2017.04.062
10.1126/science.139.3551.226
10.1126/science.362.6411.146
10.1038/211402a0
10.1016/j.rser.2017.01.087
10.1016/j.ccr.2021.213913
10.1021/jacs.0c12119
10.1002/adma.202209581
10.1016/j.jclepro.2022.131067
10.1016/j.xcrp.2020.100266
10.1016/j.rser.2021.111552
10.1002/pi.4980120103
10.1021/acs.accounts.1c00511
10.1016/j.resconrec.2022.106184
10.1038/nchem.1100
10.1111/j.1541-4337.2011.00156.x
10.1021/acsnano.2c12025
10.1002/pol.1960.1204614703
10.1016/j.jhazmat.2019.03.025
10.1039/C8RA04446E
10.1016/S0079-6700(03)00024-8
10.1002/aenm.202201585
10.1063/1.4870044
10.1016/j.cis.2021.102565
10.1038/s43017-020-00105-z
10.1002/anie.201902344
10.1360/02ww0123
10.1038/s41467-019-08430-8
10.1016/j.jclepro.2022.135427
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202306886
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202306886
ADFM202306886
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210440
– fundername: National Natural Science Foundation of China
  funderid: 22271139; 21771100
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-5a36f2f5143c95ae832ec476aed0deed1fc19205a2f58856a45d82a74498da6e3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:22:48 EDT 2025
Tue Jul 01 00:30:49 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Jan 22 16:18:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-5a36f2f5143c95ae832ec476aed0deed1fc19205a2f58856a45d82a74498da6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8982-5938
0000-0002-6510-7998
PQID 2901757209
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2901757209
crossref_citationtrail_10_1002_adfm_202306886
crossref_primary_10_1002_adfm_202306886
wiley_primary_10_1002_adfm_202306886_ADFM202306886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2022; 376
2022; 299
2021; 21
2017; 1
2023; 35
2023; 33
2019; 10
1963; 139
2019; 58
2023; 385
1975
2014; 26
2011; 10
2014; 24
2020; 166
2017; 153
1990; 344
2013; 5
1956; 178
2017; 72
2020; 6
2018; 8
2018; 170
2020; 1
2014; 2
1960; 46
2021; 438
2022; 35
2021; 151
2003; 48
2020; 134
2021; 7
1966; 211
1905; 72
2023; 17
1964; 4934
2009
2022; 87
2021; 143
2011; 3
2021; 54
2023; 190
2022; 180
1980; 12
1988; 21
2022; 12
2022; 14
2009; 8
2003; 28
2017; 19
2016; 534
2014
2019; 371
2017; 146
2022; 347
2014; 104
2022; 344
2014; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Richardson C. (e_1_2_8_8_1) 1905; 72
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Klosowski J. M. (e_1_2_8_59_1) 2014
Barth E. J. (e_1_2_8_1_1) 1964; 4934
Garrigue C. (e_1_2_8_32_1) 1975
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
Wang W. (e_1_2_8_54_1) 2023; 33
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2009
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 12
  start-page: 5
  year: 1980
  publication-title: Br. Polym. J.
– year: 1975
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 371
  start-page: 342
  year: 2019
  publication-title: J. Hazard. Mater.
– volume: 1
  start-page: 497
  year: 2020
  publication-title: Nat. Rev. Earth Environ.
– volume: 178
  start-page: 1187
  year: 1956
  publication-title: Nature
– volume: 146
  start-page: 30
  year: 2017
  publication-title: Constr. Build. Mater.
– year: 2014
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2021
  publication-title: Sci Adv
– volume: 347
  year: 2022
  publication-title: J. Cleaner Prod.
– volume: 17
  start-page: 1713
  year: 2023
  publication-title: ACS Nano
– volume: 211
  start-page: 402
  year: 1966
  publication-title: Nature
– volume: 26
  start-page: 3014
  year: 2014
  publication-title: Adv. Mater.
– volume: 344
  start-page: 230
  year: 1990
  publication-title: Nature
– volume: 438
  year: 2021
  publication-title: Coordin. Chem. Rev.
– volume: 180
  year: 2022
  publication-title: Resour., Conserv. Recycl.
– volume: 2
  start-page: 4652
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 3259
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 166
  start-page: 218
  year: 2020
  publication-title: Carbon
– volume: 21
  start-page: 387
  year: 1988
  publication-title: Acc. Chem. Res.
– volume: 87
  start-page: 1042
  year: 2022
  publication-title: J. Am. Acad. Dermatol.
– volume: 72
  start-page: 473
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 190
  year: 2023
  publication-title: Resour. Conserv. Recycl.
– volume: 134
  year: 2020
  publication-title: Renewable Sustainable Energy Rev.
– volume: 299
  year: 2022
  publication-title: Adv. Colloid Interface Sci.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 385
  year: 2023
  publication-title: J. Cleaner Prod.
– volume: 153
  start-page: 168
  year: 2017
  publication-title: Compos. Sci. Technol.
– volume: 35
  year: 2022
  publication-title: Adv. Mater.
– volume: 10
  start-page: 221
  year: 2011
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 28
  start-page: 1205
  year: 2003
  publication-title: Prog. Polym. Sci.
– volume: 14
  start-page: 1249
  year: 2022
  publication-title: Nat. Chem.
– volume: 344
  year: 2022
  publication-title: J. Cleaner Prod.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 170
  start-page: 1279
  year: 2018
  publication-title: J. Cleaner Prod.
– volume: 54
  start-page: 4215
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 362
  start-page: 146
  year: 2018
  publication-title: Science
– volume: 58
  start-page: 7040
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1818
  year: 2017
  publication-title: Mater. Chem. Front.
– volume: 72
  start-page: 316
  year: 1905
  publication-title: Nature
– volume: 48
  start-page: 2391
  year: 2003
  publication-title: Sci. Bull.
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 19
  year: 1960
  publication-title: J. Polym. Sci.
– volume: 5
  start-page: 518
  year: 2013
  publication-title: Nat. Chem.
– volume: 376
  year: 2022
  publication-title: J. Cleaner Prod.
– volume: 344
  start-page: 161
  year: 2014
  publication-title: Science
– volume: 4934
  start-page: 739
  year: 1964
  publication-title: Nature
– volume: 19
  start-page: 2748
  year: 2017
  publication-title: Green Chem.
– volume: 151
  year: 2021
  publication-title: Renewable Sustainable Energy Rev.
– volume: 10
  start-page: 647
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 648
  year: 2011
  publication-title: Nat. Chem.
– volume: 139
  start-page: 226
  year: 1963
  publication-title: Science
– volume: 21
  start-page: 9433
  year: 2021
  publication-title: Nano Lett.
– volume: 143
  start-page: 1162
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 534
  start-page: 91
  year: 2016
  publication-title: Nature
– ident: e_1_2_8_39_1
  doi: 10.1039/C7QM00083A
– ident: e_1_2_8_40_1
  doi: 10.1038/nmat2460
– ident: e_1_2_8_53_1
  doi: 10.1126/science.1252389
– ident: e_1_2_8_58_1
  doi: 10.1201/9781420008630-c1
– ident: e_1_2_8_37_1
  doi: 10.1038/s41557-022-01049-1
– ident: e_1_2_8_55_1
  doi: 10.1016/j.compscitech.2017.10.019
– ident: e_1_2_8_43_1
  doi: 10.1039/C7GC00014F
– volume: 4934
  start-page: 739
  year: 1964
  ident: e_1_2_8_1_1
  publication-title: Nature
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jaad.2022.05.053
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jclepro.2017.09.232
– ident: e_1_2_8_17_1
  doi: 10.1016/j.rser.2020.110124
– ident: e_1_2_8_62_1
  doi: 10.1002/adfm.201303536
– ident: e_1_2_8_45_1
  doi: 10.1038/1781187a0
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jclepro.2022.134119
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201305607
– ident: e_1_2_8_3_1
  doi: 10.1038/344230a0
– ident: e_1_2_8_48_1
  doi: 10.1039/C3TA14914E
– ident: e_1_2_8_6_1
  doi: 10.1016/j.carbon.2020.05.043
– ident: e_1_2_8_20_1
  doi: 10.1021/ar00155a001
– ident: e_1_2_8_61_1
  doi: 10.1126/sciadv.abk2451
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.nanolett.1c02697
– ident: e_1_2_8_14_1
  doi: 10.1038/nature17646
– ident: e_1_2_8_31_1
  doi: 10.1038/nchem.1624
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jclepro.2022.131240
– ident: e_1_2_8_23_1
  doi: 10.1126/sciadv.abb5320
– ident: e_1_2_8_19_1
  doi: 10.1016/j.resconrec.2022.106776
– ident: e_1_2_8_18_1
  doi: 10.1016/j.resconrec.2022.106160
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.202207587
– ident: e_1_2_8_49_1
  doi: 10.1016/j.conbuildmat.2017.04.062
– ident: e_1_2_8_2_1
  doi: 10.1126/science.139.3551.226
– ident: e_1_2_8_22_1
  doi: 10.1126/science.362.6411.146
– volume-title: Sealants in construction
  year: 2014
  ident: e_1_2_8_59_1
– ident: e_1_2_8_4_1
  doi: 10.1038/211402a0
– ident: e_1_2_8_15_1
  doi: 10.1016/j.rser.2017.01.087
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ccr.2021.213913
– ident: e_1_2_8_52_1
  doi: 10.1021/jacs.0c12119
– ident: e_1_2_8_57_1
  doi: 10.1002/adma.202209581
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jclepro.2022.131067
– ident: e_1_2_8_56_1
  doi: 10.1016/j.xcrp.2020.100266
– ident: e_1_2_8_9_1
  doi: 10.1016/j.rser.2021.111552
– ident: e_1_2_8_38_1
  doi: 10.1002/pi.4980120103
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.accounts.1c00511
– ident: e_1_2_8_34_1
  doi: 10.1016/j.resconrec.2022.106184
– ident: e_1_2_8_21_1
  doi: 10.1038/nchem.1100
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1541-4337.2011.00156.x
– ident: e_1_2_8_27_1
  doi: 10.1021/acsnano.2c12025
– ident: e_1_2_8_36_1
  doi: 10.1002/pol.1960.1204614703
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jhazmat.2019.03.025
– ident: e_1_2_8_42_1
  doi: 10.1039/C8RA04446E
– ident: e_1_2_8_60_1
– volume: 33
  year: 2023
  ident: e_1_2_8_54_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_24_1
  doi: 10.1016/S0079-6700(03)00024-8
– ident: e_1_2_8_25_1
  doi: 10.1002/aenm.202201585
– ident: e_1_2_8_50_1
  doi: 10.1063/1.4870044
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cis.2021.102565
– ident: e_1_2_8_10_1
  doi: 10.1038/s43017-020-00105-z
– volume-title: Sulfur /Asphalt Binders for Road Construction, Advances in Chemistry
  year: 1975
  ident: e_1_2_8_32_1
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.201902344
– volume: 72
  start-page: 316
  year: 1905
  ident: e_1_2_8_8_1
  publication-title: Nature
– ident: e_1_2_8_35_1
  doi: 10.1360/02ww0123
– ident: e_1_2_8_46_1
  doi: 10.1038/s41467-019-08430-8
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jclepro.2022.135427
SSID ssj0017734
Score 2.506808
Snippet Bitumen, which is widely used in various applications, is facing the challenge of being unsustainable. Many strategies are proposed to recycle or replace...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bitumens
Healing
Impact resistance
Industrial wastes
Materials science
multifunctional
Polymers
Road humps
self‐healing
shear stiffening
Shock resistance
Stiffening
Sulfur
Vulcanization
Working conditions
Title Bitumen‐Like Polymers Prepared via Inverse Vulcanization with Shear Stiffening and Self‐Healing Abilities for Multifunctional Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202306886
https://www.proquest.com/docview/2901757209
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iL_rgtzi_yIPgU12TtU32WD-GyCbDqeytXJMUhqPK1gn65F8g_o3-JebarZuCCPrWlqS0Se7ud5e7Xwg5RJXHgsR1BFjfxGMJOJLXlcOtx2J8DlJwrHduXQUXt95l1-_OVPEX_BBlwA0lI9fXKOAQD6tT0lDQCVaSI4SWEjm3MWELUdF1yR_FhCi2lQOGCV6sO2FtdHn1a_evVmkKNWcBa25xGisEJt9aJJrcH4-y-Fi9fKNx_M_PrJLlMRylYbF-1sicSdfJ0gxJ4QZ5O-llVoGlH6_vzd69oe2H_jMGu2l7YPL0dfrUA4p8HYOhoXejviqLOylGeWl-aDbtZHgUC0ZhKKSadkw_sW_EKih8FOY5utZrpxZE07wqGC1uEaik4cwu-ya5bZzfnF4441McHGWxSeD4UAsSniAwU3UfjFUhRnkiAKNdbS00S5RFma4Pto2UfgCeryUH4Xl1qSEwtS0ynz6kZpvQmmICHVRtMajHkDtJxKBjxsHViYllhTiTWYzUmOIcT9roRwU5M49wnKNynCvkqGz_WJB7_Nhyb7IoorGQDyPcgha-4G69Qng-u7-8JQrPGq3ybucvnXbJIl4XCTV7ZD4bjMy-hUVZfEAWwrNWs3OQi8AnoEkJhQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQcgJYitjzqA1JPgdib2N7j8lgtdBchXuIWObYjrViFaslWKid-AeI38kvwOJuwVEJI7TGRbSW2Z_zNeOYbgC1UeZRnYSCUs00imqlAspYOmLNYbMyUFAzznfvHvHsRHV3FVTQh5sKU_BC1ww0lw-trFHB0SO-8sIYqk2EqOWJoKfkHmMOy3t6qOq0ZpKgQ5cUypxjiRa8q3saQ7bzu__pcegGb05DVnzmdRUirry1DTa63x0W6re_-InL8r99ZgoUJIiXtcgt9hhmbf4H5KZ7CZXjYHRROh-VP94-9wbUlJzfDP-jvJicj6yPYye-BIkjZMbq15HI81HV-J0FHL_F1s8lZgdVY0BFDVG7ImR1mbkRMhMJXbR-m6wx34nA08YnBeOiWvkrSnrpo_woXnYPzvW4wKeQQaAdPeBCrJs9YhthMt2JlnRaxOhJcWRMad0jTTDugGcbKtZEy5iqKjWRKRFFLGsVtcwVm85vcrgJpairQRjUOhkYU6ZNEqkxKmQpNZlPZgKBaxkRPWM6x2MYwKfmZWYLznNTz3IAfdftfJb_Hmy3Xq12RTOT8NsFbaBELFrYawPzyvjNK0t7v9Ounb__S6Tt87J73e0nv8PjnGnzC92V8zTrMFqOx3XAoqUg3vRw8A8lADAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BkVZw4LHsagsFfEDaU3ZjN7HdY6FUhX2o2tJVb5Hjh1S1Sqs2RYITvwDxG_kleJI27SKtkHaPiWwrsT0zn8cz3wC8R5VHuQsDofzZJKJOBZK1dMD8icXGTEnBMN_54pL3htGXUTzayeIv-SEqhxtKRqGvUcDnxp1uSUOVcZhJjhBaSv4QHkU8lLivO1cVgRQVorxX5hQjvOhoQ9sYstOb_W-apS3W3EWshcnpPgO1-dgy0mRyssrTE_3jHx7H-_zNc3i6xqOkXW6gF_DAZvvwZIel8CX8-jDOvQbL_vz8fT6eWNKfTb-jt5v0F7aIXyffxoogYcdiacn1aqqr7E6Cbl5SVM0mgxxrsaAbhqjMkIGdOj8ipkHhq3YRpOuP7cSjaFKkBaPJLT2VpL1zzX4Aw-6nrx97wbqMQ6A9OOFBrJrcMYfITLdiZb0OsToSXFkTGm-iqdMeZoax8m2kjLmKYiOZElHUkkZx2zyEWjbL7BGQpqYCT6jGg9CIInmSSJVJKVOhcTaVdQg2q5joNcc5ltqYJiU7M0twnpNqnutwXLWfl-wet7ZsbDZFspbyZYJ30CIWLGzVgRWr-59Rknane1E9vbpLp3ew1-90k_PPl2ev4TG-LoNrGlDLFyv7xkOkPH1bSMFfvEoKxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bitumen%E2%80%90Like+Polymers+Prepared+via+Inverse+Vulcanization+with+Shear+Stiffening+and+Self%E2%80%90Healing+Abilities+for+Multifunctional+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Hou%2C+Ke%E2%80%90Xin&rft.au=Zhao%2C+Pei%E2%80%90Chen&rft.au=Duan%2C+Lei&rft.au=Fan%2C+Minjie&rft.date=2023-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=51&rft_id=info:doi/10.1002%2Fadfm.202306886&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202306886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon