Homogeneous Grain Boundary Passivation in Wide‐Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency

Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 19
Main Authors Xie, Yue‐Min, Yao, Qin, Zeng, Zixin, Xue, Qifan, Niu, Tianqi, Xia, Ruoxi, Cheng, Yuanhang, Lin, Francis, Tsang, Sai‐Wing, Jen, Alex K.‐Y., Yip, Hin‐Lap, Cao, Yong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of wide‐bandgap perovskites with suitable bandgap, film quality, and optoelectronic properties for front cells. In addition, the development of low‐bandgap organic bulk‐heterojunction (BHJ) rare cells with extended absorption in the infrared range is also critical for improving tandem cells. This work has carefully optimized mixed halide wide‐bandgap perovskite (MWP) films by introducing a small amount of formamidinium (FA+) cations into the basic composition of MA1.06PbI2Br(SCN)0.12, which provides an effective means to modulate the crystallization properties and phase stability of the films. At optimized conditions, the MA0.96FA0.1PbI2Br(SCN)0.12 forms high‐quality films with grain boundaries homogeneously passivated by PbI2, leading to a reduction in defect states and an enhancement in phase stability, enabling the fabrication of perovskite solar cells with a power conversion efficiency(PCE) of 17.4%. By further integrating the MWP front cell with an organic BHJ (PM6:CH1007) rare cell composed of a nonfullerene acceptor with absorption extended to 950 nm, a tandem cell with PCE over 21% is achieved. The effect of formamidinium (FA+) on modulating methylammonium (MA+) based (mixed‐halide wide‐bandgap preovskites) MWPs (MA1.06PbI2Br(SCN)0.12) crystallization properties for achieving high‐quality perovskite films is evaluated. Based on the optimized MA0.96FA0.1PbI2Br(SCN)0.12 film, a monolithic perovskite/organic tandem solar cells with a new record high‐efficiency of 21.2% is achieved.
AbstractList Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of wide‐bandgap perovskites with suitable bandgap, film quality, and optoelectronic properties for front cells. In addition, the development of low‐bandgap organic bulk‐heterojunction (BHJ) rare cells with extended absorption in the infrared range is also critical for improving tandem cells. This work has carefully optimized mixed halide wide‐bandgap perovskite (MWP) films by introducing a small amount of formamidinium (FA+) cations into the basic composition of MA1.06PbI2Br(SCN)0.12, which provides an effective means to modulate the crystallization properties and phase stability of the films. At optimized conditions, the MA0.96FA0.1PbI2Br(SCN)0.12 forms high‐quality films with grain boundaries homogeneously passivated by PbI2, leading to a reduction in defect states and an enhancement in phase stability, enabling the fabrication of perovskite solar cells with a power conversion efficiency(PCE) of 17.4%. By further integrating the MWP front cell with an organic BHJ (PM6:CH1007) rare cell composed of a nonfullerene acceptor with absorption extended to 950 nm, a tandem cell with PCE over 21% is achieved. The effect of formamidinium (FA+) on modulating methylammonium (MA+) based (mixed‐halide wide‐bandgap preovskites) MWPs (MA1.06PbI2Br(SCN)0.12) crystallization properties for achieving high‐quality perovskite films is evaluated. Based on the optimized MA0.96FA0.1PbI2Br(SCN)0.12 film, a monolithic perovskite/organic tandem solar cells with a new record high‐efficiency of 21.2% is achieved.
Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of wide‐bandgap perovskites with suitable bandgap, film quality, and optoelectronic properties for front cells. In addition, the development of low‐bandgap organic bulk‐heterojunction (BHJ) rare cells with extended absorption in the infrared range is also critical for improving tandem cells. This work has carefully optimized mixed halide wide‐bandgap perovskite (MWP) films by introducing a small amount of formamidinium (FA + ) cations into the basic composition of MA 1.06 PbI 2 Br(SCN) 0.12 , which provides an effective means to modulate the crystallization properties and phase stability of the films. At optimized conditions, the MA 0.96 FA 0.1 PbI 2 Br(SCN) 0.12 forms high‐quality films with grain boundaries homogeneously passivated by PbI 2 , leading to a reduction in defect states and an enhancement in phase stability, enabling the fabrication of perovskite solar cells with a power conversion efficiency(PCE) of 17.4%. By further integrating the MWP front cell with an organic BHJ (PM6:CH1007) rare cell composed of a nonfullerene acceptor with absorption extended to 950 nm, a tandem cell with PCE over 21% is achieved.
Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of wide‐bandgap perovskites with suitable bandgap, film quality, and optoelectronic properties for front cells. In addition, the development of low‐bandgap organic bulk‐heterojunction (BHJ) rare cells with extended absorption in the infrared range is also critical for improving tandem cells. This work has carefully optimized mixed halide wide‐bandgap perovskite (MWP) films by introducing a small amount of formamidinium (FA+) cations into the basic composition of MA1.06PbI2Br(SCN)0.12, which provides an effective means to modulate the crystallization properties and phase stability of the films. At optimized conditions, the MA0.96FA0.1PbI2Br(SCN)0.12 forms high‐quality films with grain boundaries homogeneously passivated by PbI2, leading to a reduction in defect states and an enhancement in phase stability, enabling the fabrication of perovskite solar cells with a power conversion efficiency(PCE) of 17.4%. By further integrating the MWP front cell with an organic BHJ (PM6:CH1007) rare cell composed of a nonfullerene acceptor with absorption extended to 950 nm, a tandem cell with PCE over 21% is achieved.
Author Yao, Qin
Zeng, Zixin
Xia, Ruoxi
Niu, Tianqi
Cao, Yong
Xie, Yue‐Min
Lin, Francis
Cheng, Yuanhang
Yip, Hin‐Lap
Tsang, Sai‐Wing
Jen, Alex K.‐Y.
Xue, Qifan
Author_xml – sequence: 1
  givenname: Yue‐Min
  surname: Xie
  fullname: Xie, Yue‐Min
  organization: South China University of Technology
– sequence: 2
  givenname: Qin
  surname: Yao
  fullname: Yao, Qin
  organization: South China University of Technology
– sequence: 3
  givenname: Zixin
  surname: Zeng
  fullname: Zeng, Zixin
  organization: City University of Hong Kong
– sequence: 4
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology)
– sequence: 5
  givenname: Tianqi
  surname: Niu
  fullname: Niu, Tianqi
  organization: South China University of Technology
– sequence: 6
  givenname: Ruoxi
  surname: Xia
  fullname: Xia, Ruoxi
  organization: South China University of Technology
– sequence: 7
  givenname: Yuanhang
  surname: Cheng
  fullname: Cheng, Yuanhang
  organization: City University of Hong Kong
– sequence: 8
  givenname: Francis
  surname: Lin
  fullname: Lin, Francis
  organization: City University of Hong Kong
– sequence: 9
  givenname: Sai‐Wing
  surname: Tsang
  fullname: Tsang, Sai‐Wing
  organization: City University of Hong Kong
– sequence: 10
  givenname: Alex K.‐Y.
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  organization: City University of Hong Kong
– sequence: 11
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: a.yip@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 12
  givenname: Yong
  surname: Cao
  fullname: Cao, Yong
  organization: South China University of Technology
BookMark eNqFkcFuEzEQhi1UJNrClbMlxDGpx7vxbo5tSFqkVq1EEdxWs_ZscPHawd6kyq2PwHPwWDwJDkEFISFOM_r1fzOa-Y_YgQ-eGHsJYgxCyBM0XT-WQgJIkOoJOwQFalQIWR889vDxGTtK6U4IqKqiPGTfLkIfluQprBM_j2g9PwtrbzBu-Q2mZDc42OB51j9YQ98fvp6hN0tc8RuKYZM-24H4wro-8bnH1lHiC2yj1XssdPwq-ODs8MnqP5CT67hEn6XbPI16_i44jHxGziV-n808bChyCa_5vOustuT19jl72qFL9OJXPWbvF_Pb2cXo8vr87ez0cqQLqNRoUpVgUEyxKIWiGipChRMFUJmWTEnCTCpNdbvT6xZMIUXWsCajESXq4pi92s9dxfBlTWlo7sI6-ryykUqBnJTldJpd5d6lY0gpUtdoO_w8eshfdA2IZpdKs0uleUwlY-O_sFW0ff72v4HpHri3jrb_cTenbxZXv9kfM4umWQ
CitedBy_id crossref_primary_10_1002_cjoc_202200796
crossref_primary_10_1038_s41560_024_01451_8
crossref_primary_10_1016_j_solmat_2024_112768
crossref_primary_10_1002_adma_202208604
crossref_primary_10_1039_D3TA00052D
crossref_primary_10_1002_aenm_202400204
crossref_primary_10_3390_nano13232985
crossref_primary_10_1002_smtd_202201255
crossref_primary_10_15541_jim20230116
crossref_primary_10_1016_j_mtener_2023_101424
crossref_primary_10_1002_smll_202205336
crossref_primary_10_1039_D3TA06067E
crossref_primary_10_1002_idm2_12023
crossref_primary_10_1016_j_jechem_2023_04_036
crossref_primary_10_1016_j_xcrp_2022_101038
crossref_primary_10_1364_OE_503856
crossref_primary_10_1007_s11664_022_09902_2
crossref_primary_10_1039_D3TC01140B
crossref_primary_10_1039_D3TC03466F
crossref_primary_10_1002_idm2_12142
crossref_primary_10_1002_solr_202300615
crossref_primary_10_1002_advs_202304790
crossref_primary_10_1088_1674_4926_44_2_020201
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1021_acs_jpcc_4c02109
crossref_primary_10_1088_1402_4896_ad32b3
crossref_primary_10_1002_smll_202204081
crossref_primary_10_1002_solr_202400359
crossref_primary_10_1007_s40843_022_2437_9
crossref_primary_10_1002_adfm_202212599
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_26599_EMD_2024_9370037
crossref_primary_10_1002_aenm_202202799
crossref_primary_10_1002_smll_202406824
crossref_primary_10_1007_s40820_023_01040_6
crossref_primary_10_1016_j_scib_2022_09_007
crossref_primary_10_1002_aenm_202204347
crossref_primary_10_1016_j_nanoen_2024_109708
crossref_primary_10_1016_j_jallcom_2023_172459
crossref_primary_10_1021_acsnano_4c11036
crossref_primary_10_1016_j_nanoen_2023_108653
crossref_primary_10_1002_pip_3610
crossref_primary_10_1002_adma_202402143
crossref_primary_10_1007_s11082_024_07168_y
crossref_primary_10_1039_D3EE02940A
crossref_primary_10_1039_D2TA04448J
crossref_primary_10_1016_j_mtener_2023_101473
crossref_primary_10_1016_j_jpcs_2023_111636
crossref_primary_10_3390_nano14020202
crossref_primary_10_1021_acsnano_4c11888
crossref_primary_10_1002_adma_202212236
crossref_primary_10_1016_j_joule_2023_02_014
crossref_primary_10_1039_D3NR06602A
crossref_primary_10_1016_j_mtener_2022_101139
Cites_doi 10.1002/advs.201700031
10.3390/ma9030123
10.1021/acsami.9b06315
10.1021/acs.nanolett.8b00505
10.1021/acsenergylett.7b00525
10.1039/c3sm52862f
10.1021/nl501838y
10.1002/aenm.202100784
10.1038/s41467-019-09909-0
10.1039/C8TA08900K
10.1039/C6EE00030D
10.1021/jacs.0c07083
10.1039/C8TA01642A
10.1016/j.nanoen.2020.105238
10.1021/acs.jpclett.1c02065
10.1002/adfm.201909754
10.1002/adma.201901152
10.1038/s41467-020-15451-1
10.1021/acsenergylett.7b00357
10.1021/acsenergylett.7b00282
10.1039/C4MH00237G
10.1002/nano.202000287
10.1002/adma.201607039
10.1016/j.nanoen.2019.04.051
10.1038/s41467-019-09093-1
10.1002/adma.201600594
10.1016/j.nanoen.2016.05.003
10.1038/s41467-018-05531-8
10.1002/aenm.201502458
10.1016/j.joule.2019.10.011
10.1002/adma.202000571
10.1039/c3ee43822h
10.1002/adfm.202001764
10.1002/adma.201603021
10.1038/s41560-020-00705-5
10.1038/s41427-018-0055-0
10.1039/C7TA11345E
10.1002/advs.201500301
10.1002/anie.201902959
10.1039/C6EE03014A
10.1002/aenm.201903587
10.1016/j.scib.2019.05.015
10.1126/science.aan2301
10.1021/acsaem.9b00206
10.1557/mrs.2015.167
10.1038/s41560-018-0278-x
10.1016/j.orgel.2020.106027
10.1016/j.nanoen.2020.104803
10.1021/acs.chemmater.6b05372
10.1007/s12274-019-2336-5
10.1038/s41467-018-06915-6
10.1002/smtd.202000290
10.1016/j.optmat.2021.110819
10.1002/smll.201907226
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202112126
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202112126
ADFM202112126
Genre article
GrantInformation_xml – fundername: South China University of Technology
  funderid: 2019B030301003
– fundername: Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar
  funderid: 2021B1515020028
– fundername: National Natural Science Foundation of China
  funderid: 52003090
– fundername: Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
– fundername: Ministry of Science and Technology
  funderid: 2017YFA0206600; 2019YFA0705900
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M682703
– fundername: Science and Technology Program of Guangzhou, China
  funderid: 201904010147
– fundername: Natural Science Foundation of China
  funderid: 51973063; 91733302; 51803060
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2019B030302007
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-5741da09a3406e817ea6a56117dbed4e0d57ce8b7ea68b1d320e0da8edcaa2ac3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 00:01:46 EDT 2025
Tue Jul 01 00:30:25 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Jan 22 16:24:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-5741da09a3406e817ea6a56117dbed4e0d57ce8b7ea68b1d320e0da8edcaa2ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5750-9751
PQID 2661254499
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2661254499
crossref_citationtrail_10_1002_adfm_202112126
crossref_primary_10_1002_adfm_202112126
wiley_primary_10_1002_adfm_202112126_ADFM202112126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2021; 7
2017; 2
2021; 89
2021; 2
2017; 4
2019; 31
2019; 11
2019; 2
2020; 142
2019; 10
2019; 12
2019; 58
2020; 16
2017; 29
2020; 78
2020; 11
2020; 10
2020; 32
2017; 356
2018; 6
2016; 6
2018; 9
2018; 18
2020; 5
2020; 4
2018; 3
2021; 12
2021; 11
2016; 3
2019; 61
2019; 64
2021; 113
2020; 30
2015; 40
2020; 73
2017; 10
2014; 14
2016; 28
2014; 7
2018; 10
2016; 26
2016; 9
2014; 10
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Lin P.‐Y. (e_1_2_8_48_1) 2021; 11
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Zhichun Yang W. Z. (e_1_2_8_39_1) 2021; 7
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 4544
  year: 2018
  publication-title: Nat. Commun.
– volume: 89
  year: 2021
  publication-title: Org. Electron.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 10
  start-page: 3218
  year: 2014
  publication-title: Soft Matter
– volume: 7
  start-page: 3749
  year: 2021
  publication-title: Science
– volume: 12
  start-page: 7964
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 1093
  year: 2018
  publication-title: Nat. Energy
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 113
  year: 2021
  publication-title: Opt. Mater.
– volume: 6
  start-page: 9081
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 3400
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 61
  start-page: 126
  year: 2019
  publication-title: Nano Energy
– volume: 2
  start-page: 1266
  year: 2021
  publication-title: Nano Sel.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 50
  year: 2016
  publication-title: Nano Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 2172
  year: 2018
  publication-title: Nano Lett.
– volume: 14
  start-page: 4158
  year: 2014
  publication-title: Nano Lett.
– volume: 28
  start-page: 5214
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6806
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 1672
  year: 2020
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9862
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3100
  year: 2018
  publication-title: Nat. Commun.
– volume: 58
  start-page: 9409
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 1841
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 29
  start-page: 3507
  year: 2017
  publication-title: Chem. Mater.
– volume: 40
  start-page: 681
  year: 2015
  publication-title: MRS Bull.
– volume: 10
  start-page: 552
  year: 2018
  publication-title: NPG Asia Mater.
– volume: 9
  start-page: 1706
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1507
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 1
  year: 2020
  publication-title: Joule
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 2196
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 870
  year: 2020
  publication-title: Nat. Energy
– volume: 10
  start-page: 1112
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1033
  year: 2019
  publication-title: Nano Res.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 2
  start-page: 1416
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 203
  year: 2015
  publication-title: Mater. Horiz.
– volume: 64
  start-page: 885
  year: 2019
  publication-title: Sci. Bull.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 123
  year: 2016
  publication-title: Materials
– volume: 10
  start-page: 361
  year: 2017
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_54_1
  doi: 10.1002/advs.201700031
– ident: e_1_2_8_30_1
  doi: 10.3390/ma9030123
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.9b06315
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.nanolett.8b00505
– ident: e_1_2_8_17_1
  doi: 10.1021/acsenergylett.7b00525
– ident: e_1_2_8_38_1
  doi: 10.1039/c3sm52862f
– ident: e_1_2_8_46_1
  doi: 10.1021/nl501838y
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.202100784
– ident: e_1_2_8_28_1
  doi: 10.1038/s41467-019-09909-0
– volume: 7
  start-page: 3749
  year: 2021
  ident: e_1_2_8_39_1
  publication-title: Science
– ident: e_1_2_8_10_1
  doi: 10.1039/C8TA08900K
– ident: e_1_2_8_21_1
  doi: 10.1039/C6EE00030D
– ident: e_1_2_8_55_1
  doi: 10.1021/jacs.0c07083
– ident: e_1_2_8_31_1
  doi: 10.1039/C8TA01642A
– ident: e_1_2_8_56_1
  doi: 10.1016/j.nanoen.2020.105238
– ident: e_1_2_8_52_1
  doi: 10.1021/acs.jpclett.1c02065
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201909754
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201901152
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-020-15451-1
– ident: e_1_2_8_24_1
  doi: 10.1021/acsenergylett.7b00357
– ident: e_1_2_8_25_1
  doi: 10.1021/acsenergylett.7b00282
– ident: e_1_2_8_5_1
  doi: 10.1039/C4MH00237G
– ident: e_1_2_8_7_1
  doi: 10.1002/nano.202000287
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201607039
– ident: e_1_2_8_57_1
  doi: 10.1016/j.nanoen.2019.04.051
– ident: e_1_2_8_41_1
  doi: 10.1038/s41467-019-09093-1
– volume: 11
  year: 2021
  ident: e_1_2_8_48_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201600594
– ident: e_1_2_8_29_1
  doi: 10.1016/j.nanoen.2016.05.003
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-018-05531-8
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.201502458
– ident: e_1_2_8_3_1
  doi: 10.1016/j.joule.2019.10.011
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.202000571
– ident: e_1_2_8_20_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.202001764
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201603021
– ident: e_1_2_8_9_1
  doi: 10.1038/s41560-020-00705-5
– ident: e_1_2_8_49_1
  doi: 10.1038/s41427-018-0055-0
– ident: e_1_2_8_51_1
  doi: 10.1039/C7TA11345E
– ident: e_1_2_8_1_1
– ident: e_1_2_8_26_1
  doi: 10.1002/advs.201500301
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.201902959
– ident: e_1_2_8_15_1
  doi: 10.1039/C6EE03014A
– ident: e_1_2_8_43_1
  doi: 10.1002/aenm.201903587
– ident: e_1_2_8_6_1
  doi: 10.1016/j.scib.2019.05.015
– ident: e_1_2_8_40_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_8_42_1
  doi: 10.1021/acsaem.9b00206
– ident: e_1_2_8_2_1
  doi: 10.1557/mrs.2015.167
– ident: e_1_2_8_4_1
  doi: 10.1038/s41560-018-0278-x
– ident: e_1_2_8_33_1
  doi: 10.1016/j.orgel.2020.106027
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nanoen.2020.104803
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemmater.6b05372
– ident: e_1_2_8_19_1
  doi: 10.1007/s12274-019-2336-5
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-018-06915-6
– ident: e_1_2_8_53_1
  doi: 10.1002/smtd.202000290
– ident: e_1_2_8_8_1
  doi: 10.1016/j.optmat.2021.110819
– ident: e_1_2_8_22_1
  doi: 10.1002/smll.201907226
SSID ssj0017734
Score 2.5963986
Snippet Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorption
Crystallization
crystallization kinetics
crystallization modulation
Energy conversion efficiency
Energy gap
Grain boundaries
Heterojunctions
Materials science
mixed‐halide wide‐bandgap perovskites
monolithic perovskite/organic tandem solar cells
Optoelectronics
Perovskites
Phase stability
Photovoltaic cells
Solar cells
Title Homogeneous Grain Boundary Passivation in Wide‐Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202112126
https://www.proquest.com/docview/2661254499
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6h9gIH_hGhpZoDiJMb7_o3x7SNiRBBFW1Fbtbsj0tEEldxUomeeASeg8fqk3Rn7bgpEkKCo0e7lq3Zmf12duYbxt6ghQwijrSHPJRe2IuNJ1MZeXZ3sHg4jI103RpGn-LhWfhhHI03qvhrfog24EaW4fw1GTjKqntLGoq6oEpye4Cx3pc4tylhi1DR55Y_iidJfa0cc0rw4uM1a6Mvunen392VbqHmJmB1O072iOH6W-tEk2_7q6XcV1e_0Tj-z888Zg8bOAr9ev08YffM_Cl7sEFS-Iz9Gpaz0i4zU64qeE8dJeDA9WJafIdjC72b9mhg5V8m2lz_-HmAc32OF3BsFuVlReFhyCbTWQUDV6hVQYZy0cQKoSzA-hXKwvs6URtTunWVqIJTCnPP4ITO4HBoptMKKHgMlHsKgr-FgWPBoBLS5-wsG5weDr2mw4OnLG6JvcjiGY1-DwOLK0zKE4MxWkTHEy2NDo2vo0SZVJI8lVwHwrcyTI1WiAJV8IJtzcu5eclApEWQYCCLwg9DwQMZKqmF5ErSTTD3O8xbazhXDf05deGY5jVxs8hJB3mrgw57146_qIk__jhyd71g8sYBVDnhHmJ_6_U6TDjN_-Utef8oG7VPr_5l0g67L6g4w6Vj7rKt5WJlXlvItJR7bLt_NPp4sufM4wYb6RIX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOQAH3hWBAnMAcXLjXT9zbEtMgKaqIBW9WfsyRCRxFSdIcOIn8Dv4WfwSdtaPpkgICY5e7Vq2Znf229mZ7wN4Kixk4HGkPcFC6YWD2HgylZFndweLh8PYSKfWMD6KRyfh69OozSakWpiaH6ILuNHKcP6aFjgFpPvnrKFCF1RKbk8w1v3Gl-EKyXq7U9XbjkGKJUl9sRwzSvFipy1vo8_7F8df3JfOweYmZHV7TnYTZPu1darJp931Su6qr78ROf7X79yCGw0ixb16Ct2GS2ZxB65v8BTehR-jcl7amWbKdYUvSVQC950c0_ILHlv03SikoW1_P9Xm57fv-2KhP4gzPDbL8nNFEWLMprN5hUNXq1VhJuSyCRdiWaB1LZSI93GqNob060JRhROKdM_xHR3D8cDMZhVS_Bgp_RQ5e4ZDR4RBVaT34CQbTg5GXiPy4CkLXWIvspBGC38gAgstTMoSI2JhQR1LtDQ6NL6OEmVSSe2pZDrgvm0TqdFKCC5UsA1bi3Jh7gPytAgSEcii8MOQs0CGSmoumZJ0Gcz8HnitiXPVMKCTEMcsr7mbeU42yDsb9OB51_-s5v74Y8-ddsbkjQ-ocoI-RAA3GPSAO9P_5S353ots3D09-JdBT-DqaDI-zA9fHb15CNc41Wq47Mwd2Fot1-aRRVAr-ditkV-ItBSe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgkRAc-F9RWGAOIE7Zxo7jpMfdbUP52VUFu6K3yH-BirapmhYJTjwCz8Fj8SR4nDTbRUJIcIzliRLNePx5PPMNIU-lgwxMxCaQlKuA94QNVKriwO0ODg9zYZXv1nB8IoZn_NU4Hm9V8df8EG3ADVeG99e4wBem6J6ThkpTYCW5O8A47ysukytchCnadf9tSyBFk6S-VxYUM7zoeEPbGLLuRfmL29I51txGrH7LyW4SufnYOtPk0_56pfb11994HP_nb26RGw0ehYPagG6TS3Z-h1zfYim8S34My1np7MyW6wpeYEsJOPTNmJZfYOSwd9MfDdz4-4mxP799P5Rz80EuYGSX5ecK48OQTaazCga-UquCTKplEyyEsgDnWDAN7-NEb4l06zJRDacY557BOzyEw5GdTivA6DFg8ikw-gwGngYDa0jvkbNscHo0DJoWD4F2wEUEsQM0RoY9GTlgYVOaWCmkg3Q0McoabkMTJ9qmCsdTRU3EQjcmU2u0lEzqaJfszMu5vU-ApUWUyEgVRcg5o5HiWhmmqFZ4FUzDDgk2Gs51w3-ObTimec3czHLUQd7qoEOet_MXNfPHH2fubQwmbzxAlSPwQfq3Xq9DmNf8X96SH_Sz4_bpwb8IPSFXR_0sf_Py5PVDco1hoYZPzdwjO6vl2j5y8GmlHvsV8gtZNRNW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneous+Grain+Boundary+Passivation+in+Wide%E2%80%90Bandgap+Perovskite+Films+Enables+Fabrication+of+Monolithic+Perovskite%2FOrganic+Tandem+Solar+Cells+with+over+21%25+Efficiency&rft.jtitle=Advanced+functional+materials&rft.au=Xie%2C+Yue%E2%80%90Min&rft.au=Yao%2C+Qin&rft.au=Zeng%2C+Zixin&rft.au=Xue%2C+Qifan&rft.date=2022-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202112126&rft.externalDBID=10.1002%252Fadfm.202112126&rft.externalDocID=ADFM202112126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon