Homogeneous Grain Boundary Passivation in Wide‐Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency
Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 19 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of wide‐bandgap perovskites with suitable bandgap, film quality, and optoelectronic properties for front cells. In addition, the development of low‐bandgap organic bulk‐heterojunction (BHJ) rare cells with extended absorption in the infrared range is also critical for improving tandem cells. This work has carefully optimized mixed halide wide‐bandgap perovskite (MWP) films by introducing a small amount of formamidinium (FA+) cations into the basic composition of MA1.06PbI2Br(SCN)0.12, which provides an effective means to modulate the crystallization properties and phase stability of the films. At optimized conditions, the MA0.96FA0.1PbI2Br(SCN)0.12 forms high‐quality films with grain boundaries homogeneously passivated by PbI2, leading to a reduction in defect states and an enhancement in phase stability, enabling the fabrication of perovskite solar cells with a power conversion efficiency(PCE) of 17.4%. By further integrating the MWP front cell with an organic BHJ (PM6:CH1007) rare cell composed of a nonfullerene acceptor with absorption extended to 950 nm, a tandem cell with PCE over 21% is achieved.
The effect of formamidinium (FA+) on modulating methylammonium (MA+) based (mixed‐halide wide‐bandgap preovskites) MWPs (MA1.06PbI2Br(SCN)0.12) crystallization properties for achieving high‐quality perovskite films is evaluated. Based on the optimized MA0.96FA0.1PbI2Br(SCN)0.12 film, a monolithic perovskite/organic tandem solar cells with a new record high‐efficiency of 21.2% is achieved. |
---|---|
AbstractList | Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of wide‐bandgap perovskites with suitable bandgap, film quality, and optoelectronic properties for front cells. In addition, the development of low‐bandgap organic bulk‐heterojunction (BHJ) rare cells with extended absorption in the infrared range is also critical for improving tandem cells. This work has carefully optimized mixed halide wide‐bandgap perovskite (MWP) films by introducing a small amount of formamidinium (FA+) cations into the basic composition of MA1.06PbI2Br(SCN)0.12, which provides an effective means to modulate the crystallization properties and phase stability of the films. At optimized conditions, the MA0.96FA0.1PbI2Br(SCN)0.12 forms high‐quality films with grain boundaries homogeneously passivated by PbI2, leading to a reduction in defect states and an enhancement in phase stability, enabling the fabrication of perovskite solar cells with a power conversion efficiency(PCE) of 17.4%. By further integrating the MWP front cell with an organic BHJ (PM6:CH1007) rare cell composed of a nonfullerene acceptor with absorption extended to 950 nm, a tandem cell with PCE over 21% is achieved.
The effect of formamidinium (FA+) on modulating methylammonium (MA+) based (mixed‐halide wide‐bandgap preovskites) MWPs (MA1.06PbI2Br(SCN)0.12) crystallization properties for achieving high‐quality perovskite films is evaluated. Based on the optimized MA0.96FA0.1PbI2Br(SCN)0.12 film, a monolithic perovskite/organic tandem solar cells with a new record high‐efficiency of 21.2% is achieved. Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of wide‐bandgap perovskites with suitable bandgap, film quality, and optoelectronic properties for front cells. In addition, the development of low‐bandgap organic bulk‐heterojunction (BHJ) rare cells with extended absorption in the infrared range is also critical for improving tandem cells. This work has carefully optimized mixed halide wide‐bandgap perovskite (MWP) films by introducing a small amount of formamidinium (FA + ) cations into the basic composition of MA 1.06 PbI 2 Br(SCN) 0.12 , which provides an effective means to modulate the crystallization properties and phase stability of the films. At optimized conditions, the MA 0.96 FA 0.1 PbI 2 Br(SCN) 0.12 forms high‐quality films with grain boundaries homogeneously passivated by PbI 2 , leading to a reduction in defect states and an enhancement in phase stability, enabling the fabrication of perovskite solar cells with a power conversion efficiency(PCE) of 17.4%. By further integrating the MWP front cell with an organic BHJ (PM6:CH1007) rare cell composed of a nonfullerene acceptor with absorption extended to 950 nm, a tandem cell with PCE over 21% is achieved. Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to facile solution fabrication processes. One of the limiting factors for improving the performance of perovskite/organic tandem cells is the lack of wide‐bandgap perovskites with suitable bandgap, film quality, and optoelectronic properties for front cells. In addition, the development of low‐bandgap organic bulk‐heterojunction (BHJ) rare cells with extended absorption in the infrared range is also critical for improving tandem cells. This work has carefully optimized mixed halide wide‐bandgap perovskite (MWP) films by introducing a small amount of formamidinium (FA+) cations into the basic composition of MA1.06PbI2Br(SCN)0.12, which provides an effective means to modulate the crystallization properties and phase stability of the films. At optimized conditions, the MA0.96FA0.1PbI2Br(SCN)0.12 forms high‐quality films with grain boundaries homogeneously passivated by PbI2, leading to a reduction in defect states and an enhancement in phase stability, enabling the fabrication of perovskite solar cells with a power conversion efficiency(PCE) of 17.4%. By further integrating the MWP front cell with an organic BHJ (PM6:CH1007) rare cell composed of a nonfullerene acceptor with absorption extended to 950 nm, a tandem cell with PCE over 21% is achieved. |
Author | Yao, Qin Zeng, Zixin Xia, Ruoxi Niu, Tianqi Cao, Yong Xie, Yue‐Min Lin, Francis Cheng, Yuanhang Yip, Hin‐Lap Tsang, Sai‐Wing Jen, Alex K.‐Y. Xue, Qifan |
Author_xml | – sequence: 1 givenname: Yue‐Min surname: Xie fullname: Xie, Yue‐Min organization: South China University of Technology – sequence: 2 givenname: Qin surname: Yao fullname: Yao, Qin organization: South China University of Technology – sequence: 3 givenname: Zixin surname: Zeng fullname: Zeng, Zixin organization: City University of Hong Kong – sequence: 4 givenname: Qifan surname: Xue fullname: Xue, Qifan email: qfxue@scut.edu.cn organization: Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology) – sequence: 5 givenname: Tianqi surname: Niu fullname: Niu, Tianqi organization: South China University of Technology – sequence: 6 givenname: Ruoxi surname: Xia fullname: Xia, Ruoxi organization: South China University of Technology – sequence: 7 givenname: Yuanhang surname: Cheng fullname: Cheng, Yuanhang organization: City University of Hong Kong – sequence: 8 givenname: Francis surname: Lin fullname: Lin, Francis organization: City University of Hong Kong – sequence: 9 givenname: Sai‐Wing surname: Tsang fullname: Tsang, Sai‐Wing organization: City University of Hong Kong – sequence: 10 givenname: Alex K.‐Y. surname: Jen fullname: Jen, Alex K.‐Y. organization: City University of Hong Kong – sequence: 11 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: a.yip@cityu.edu.hk organization: City University of Hong Kong – sequence: 12 givenname: Yong surname: Cao fullname: Cao, Yong organization: South China University of Technology |
BookMark | eNqFkcFuEzEQhi1UJNrClbMlxDGpx7vxbo5tSFqkVq1EEdxWs_ZscPHawd6kyq2PwHPwWDwJDkEFISFOM_r1fzOa-Y_YgQ-eGHsJYgxCyBM0XT-WQgJIkOoJOwQFalQIWR889vDxGTtK6U4IqKqiPGTfLkIfluQprBM_j2g9PwtrbzBu-Q2mZDc42OB51j9YQ98fvp6hN0tc8RuKYZM-24H4wro-8bnH1lHiC2yj1XssdPwq-ODs8MnqP5CT67hEn6XbPI16_i44jHxGziV-n808bChyCa_5vOustuT19jl72qFL9OJXPWbvF_Pb2cXo8vr87ez0cqQLqNRoUpVgUEyxKIWiGipChRMFUJmWTEnCTCpNdbvT6xZMIUXWsCajESXq4pi92s9dxfBlTWlo7sI6-ryykUqBnJTldJpd5d6lY0gpUtdoO_w8eshfdA2IZpdKs0uleUwlY-O_sFW0ff72v4HpHri3jrb_cTenbxZXv9kfM4umWQ |
CitedBy_id | crossref_primary_10_1002_cjoc_202200796 crossref_primary_10_1038_s41560_024_01451_8 crossref_primary_10_1016_j_solmat_2024_112768 crossref_primary_10_1002_adma_202208604 crossref_primary_10_1039_D3TA00052D crossref_primary_10_1002_aenm_202400204 crossref_primary_10_3390_nano13232985 crossref_primary_10_1002_smtd_202201255 crossref_primary_10_15541_jim20230116 crossref_primary_10_1016_j_mtener_2023_101424 crossref_primary_10_1002_smll_202205336 crossref_primary_10_1039_D3TA06067E crossref_primary_10_1002_idm2_12023 crossref_primary_10_1016_j_jechem_2023_04_036 crossref_primary_10_1016_j_xcrp_2022_101038 crossref_primary_10_1364_OE_503856 crossref_primary_10_1007_s11664_022_09902_2 crossref_primary_10_1039_D3TC01140B crossref_primary_10_1039_D3TC03466F crossref_primary_10_1002_idm2_12142 crossref_primary_10_1002_solr_202300615 crossref_primary_10_1002_advs_202304790 crossref_primary_10_1088_1674_4926_44_2_020201 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1021_acs_jpcc_4c02109 crossref_primary_10_1088_1402_4896_ad32b3 crossref_primary_10_1002_smll_202204081 crossref_primary_10_1002_solr_202400359 crossref_primary_10_1007_s40843_022_2437_9 crossref_primary_10_1002_adfm_202212599 crossref_primary_10_1007_s11426_022_1426_x crossref_primary_10_26599_EMD_2024_9370037 crossref_primary_10_1002_aenm_202202799 crossref_primary_10_1002_smll_202406824 crossref_primary_10_1007_s40820_023_01040_6 crossref_primary_10_1016_j_scib_2022_09_007 crossref_primary_10_1002_aenm_202204347 crossref_primary_10_1016_j_nanoen_2024_109708 crossref_primary_10_1016_j_jallcom_2023_172459 crossref_primary_10_1021_acsnano_4c11036 crossref_primary_10_1016_j_nanoen_2023_108653 crossref_primary_10_1002_pip_3610 crossref_primary_10_1002_adma_202402143 crossref_primary_10_1007_s11082_024_07168_y crossref_primary_10_1039_D3EE02940A crossref_primary_10_1039_D2TA04448J crossref_primary_10_1016_j_mtener_2023_101473 crossref_primary_10_1016_j_jpcs_2023_111636 crossref_primary_10_3390_nano14020202 crossref_primary_10_1021_acsnano_4c11888 crossref_primary_10_1002_adma_202212236 crossref_primary_10_1016_j_joule_2023_02_014 crossref_primary_10_1039_D3NR06602A crossref_primary_10_1016_j_mtener_2022_101139 |
Cites_doi | 10.1002/advs.201700031 10.3390/ma9030123 10.1021/acsami.9b06315 10.1021/acs.nanolett.8b00505 10.1021/acsenergylett.7b00525 10.1039/c3sm52862f 10.1021/nl501838y 10.1002/aenm.202100784 10.1038/s41467-019-09909-0 10.1039/C8TA08900K 10.1039/C6EE00030D 10.1021/jacs.0c07083 10.1039/C8TA01642A 10.1016/j.nanoen.2020.105238 10.1021/acs.jpclett.1c02065 10.1002/adfm.201909754 10.1002/adma.201901152 10.1038/s41467-020-15451-1 10.1021/acsenergylett.7b00357 10.1021/acsenergylett.7b00282 10.1039/C4MH00237G 10.1002/nano.202000287 10.1002/adma.201607039 10.1016/j.nanoen.2019.04.051 10.1038/s41467-019-09093-1 10.1002/adma.201600594 10.1016/j.nanoen.2016.05.003 10.1038/s41467-018-05531-8 10.1002/aenm.201502458 10.1016/j.joule.2019.10.011 10.1002/adma.202000571 10.1039/c3ee43822h 10.1002/adfm.202001764 10.1002/adma.201603021 10.1038/s41560-020-00705-5 10.1038/s41427-018-0055-0 10.1039/C7TA11345E 10.1002/advs.201500301 10.1002/anie.201902959 10.1039/C6EE03014A 10.1002/aenm.201903587 10.1016/j.scib.2019.05.015 10.1126/science.aan2301 10.1021/acsaem.9b00206 10.1557/mrs.2015.167 10.1038/s41560-018-0278-x 10.1016/j.orgel.2020.106027 10.1016/j.nanoen.2020.104803 10.1021/acs.chemmater.6b05372 10.1007/s12274-019-2336-5 10.1038/s41467-018-06915-6 10.1002/smtd.202000290 10.1016/j.optmat.2021.110819 10.1002/smll.201907226 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202112126 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202112126 ADFM202112126 |
Genre | article |
GrantInformation_xml | – fundername: South China University of Technology funderid: 2019B030301003 – fundername: Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar funderid: 2021B1515020028 – fundername: National Natural Science Foundation of China funderid: 52003090 – fundername: Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates – fundername: Ministry of Science and Technology funderid: 2017YFA0206600; 2019YFA0705900 – fundername: China Postdoctoral Science Foundation funderid: 2020M682703 – fundername: Science and Technology Program of Guangzhou, China funderid: 201904010147 – fundername: Natural Science Foundation of China funderid: 51973063; 91733302; 51803060 – fundername: Guangdong Major Project of Basic and Applied Basic Research funderid: 2019B030302007 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-5741da09a3406e817ea6a56117dbed4e0d57ce8b7ea68b1d320e0da8edcaa2ac3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 00:01:46 EDT 2025 Tue Jul 01 00:30:25 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Jan 22 16:24:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-5741da09a3406e817ea6a56117dbed4e0d57ce8b7ea68b1d320e0da8edcaa2ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5750-9751 |
PQID | 2661254499 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2661254499 crossref_citationtrail_10_1002_adfm_202112126 crossref_primary_10_1002_adfm_202112126 wiley_primary_10_1002_adfm_202112126_ADFM202112126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2021; 7 2017; 2 2021; 89 2021; 2 2017; 4 2019; 31 2019; 11 2019; 2 2020; 142 2019; 10 2019; 12 2019; 58 2020; 16 2017; 29 2020; 78 2020; 11 2020; 10 2020; 32 2017; 356 2018; 6 2016; 6 2018; 9 2018; 18 2020; 5 2020; 4 2018; 3 2021; 12 2021; 11 2016; 3 2019; 61 2019; 64 2021; 113 2020; 30 2015; 40 2020; 73 2017; 10 2014; 14 2016; 28 2014; 7 2018; 10 2016; 26 2016; 9 2014; 10 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Lin P.‐Y. (e_1_2_8_48_1) 2021; 11 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Zhichun Yang W. Z. (e_1_2_8_39_1) 2021; 7 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 9 start-page: 4544 year: 2018 publication-title: Nat. Commun. – volume: 89 year: 2021 publication-title: Org. Electron. – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 10 start-page: 3218 year: 2014 publication-title: Soft Matter – volume: 7 start-page: 3749 year: 2021 publication-title: Science – volume: 12 start-page: 7964 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 1093 year: 2018 publication-title: Nat. Energy – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 113 year: 2021 publication-title: Opt. Mater. – volume: 6 start-page: 9081 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 start-page: 3400 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 61 start-page: 126 year: 2019 publication-title: Nano Energy – volume: 2 start-page: 1266 year: 2021 publication-title: Nano Sel. – volume: 16 year: 2020 publication-title: Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 26 start-page: 50 year: 2016 publication-title: Nano Energy – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 18 start-page: 2172 year: 2018 publication-title: Nano Lett. – volume: 14 start-page: 4158 year: 2014 publication-title: Nano Lett. – volume: 28 start-page: 5214 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 6806 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 11 start-page: 1672 year: 2020 publication-title: Nat. Commun. – volume: 28 start-page: 9862 year: 2016 publication-title: Adv. Mater. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 3100 year: 2018 publication-title: Nat. Commun. – volume: 58 start-page: 9409 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 1841 year: 2017 publication-title: ACS Energy Lett. – volume: 29 start-page: 3507 year: 2017 publication-title: Chem. Mater. – volume: 40 start-page: 681 year: 2015 publication-title: MRS Bull. – volume: 10 start-page: 552 year: 2018 publication-title: NPG Asia Mater. – volume: 9 start-page: 1706 year: 2016 publication-title: Energy Environ. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 start-page: 1507 year: 2017 publication-title: ACS Energy Lett. – volume: 4 start-page: 1 year: 2020 publication-title: Joule – volume: 73 year: 2020 publication-title: Nano Energy – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 2196 year: 2019 publication-title: Nat. Commun. – volume: 4 year: 2020 publication-title: Small Methods – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 start-page: 870 year: 2020 publication-title: Nat. Energy – volume: 10 start-page: 1112 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 1033 year: 2019 publication-title: Nano Res. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 2 start-page: 1416 year: 2017 publication-title: ACS Energy Lett. – volume: 2 start-page: 203 year: 2015 publication-title: Mater. Horiz. – volume: 64 start-page: 885 year: 2019 publication-title: Sci. Bull. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 123 year: 2016 publication-title: Materials – volume: 10 start-page: 361 year: 2017 publication-title: Energy Environ. Sci. – ident: e_1_2_8_54_1 doi: 10.1002/advs.201700031 – ident: e_1_2_8_30_1 doi: 10.3390/ma9030123 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.9b06315 – ident: e_1_2_8_44_1 doi: 10.1021/acs.nanolett.8b00505 – ident: e_1_2_8_17_1 doi: 10.1021/acsenergylett.7b00525 – ident: e_1_2_8_38_1 doi: 10.1039/c3sm52862f – ident: e_1_2_8_46_1 doi: 10.1021/nl501838y – ident: e_1_2_8_23_1 doi: 10.1002/aenm.202100784 – ident: e_1_2_8_28_1 doi: 10.1038/s41467-019-09909-0 – volume: 7 start-page: 3749 year: 2021 ident: e_1_2_8_39_1 publication-title: Science – ident: e_1_2_8_10_1 doi: 10.1039/C8TA08900K – ident: e_1_2_8_21_1 doi: 10.1039/C6EE00030D – ident: e_1_2_8_55_1 doi: 10.1021/jacs.0c07083 – ident: e_1_2_8_31_1 doi: 10.1039/C8TA01642A – ident: e_1_2_8_56_1 doi: 10.1016/j.nanoen.2020.105238 – ident: e_1_2_8_52_1 doi: 10.1021/acs.jpclett.1c02065 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201909754 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201901152 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-020-15451-1 – ident: e_1_2_8_24_1 doi: 10.1021/acsenergylett.7b00357 – ident: e_1_2_8_25_1 doi: 10.1021/acsenergylett.7b00282 – ident: e_1_2_8_5_1 doi: 10.1039/C4MH00237G – ident: e_1_2_8_7_1 doi: 10.1002/nano.202000287 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201607039 – ident: e_1_2_8_57_1 doi: 10.1016/j.nanoen.2019.04.051 – ident: e_1_2_8_41_1 doi: 10.1038/s41467-019-09093-1 – volume: 11 year: 2021 ident: e_1_2_8_48_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_47_1 doi: 10.1002/adma.201600594 – ident: e_1_2_8_29_1 doi: 10.1016/j.nanoen.2016.05.003 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-018-05531-8 – ident: e_1_2_8_11_1 doi: 10.1002/aenm.201502458 – ident: e_1_2_8_3_1 doi: 10.1016/j.joule.2019.10.011 – ident: e_1_2_8_50_1 doi: 10.1002/adma.202000571 – ident: e_1_2_8_20_1 doi: 10.1039/c3ee43822h – ident: e_1_2_8_45_1 doi: 10.1002/adfm.202001764 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201603021 – ident: e_1_2_8_9_1 doi: 10.1038/s41560-020-00705-5 – ident: e_1_2_8_49_1 doi: 10.1038/s41427-018-0055-0 – ident: e_1_2_8_51_1 doi: 10.1039/C7TA11345E – ident: e_1_2_8_1_1 – ident: e_1_2_8_26_1 doi: 10.1002/advs.201500301 – ident: e_1_2_8_36_1 doi: 10.1002/anie.201902959 – ident: e_1_2_8_15_1 doi: 10.1039/C6EE03014A – ident: e_1_2_8_43_1 doi: 10.1002/aenm.201903587 – ident: e_1_2_8_6_1 doi: 10.1016/j.scib.2019.05.015 – ident: e_1_2_8_40_1 doi: 10.1126/science.aan2301 – ident: e_1_2_8_42_1 doi: 10.1021/acsaem.9b00206 – ident: e_1_2_8_2_1 doi: 10.1557/mrs.2015.167 – ident: e_1_2_8_4_1 doi: 10.1038/s41560-018-0278-x – ident: e_1_2_8_33_1 doi: 10.1016/j.orgel.2020.106027 – ident: e_1_2_8_12_1 doi: 10.1016/j.nanoen.2020.104803 – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemmater.6b05372 – ident: e_1_2_8_19_1 doi: 10.1007/s12274-019-2336-5 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-018-06915-6 – ident: e_1_2_8_53_1 doi: 10.1002/smtd.202000290 – ident: e_1_2_8_8_1 doi: 10.1016/j.optmat.2021.110819 – ident: e_1_2_8_22_1 doi: 10.1002/smll.201907226 |
SSID | ssj0017734 |
Score | 2.5963986 |
Snippet | Monolithic perovskite/organic tandem solar cells have attracted increasing attention due to their potential of being highly efficient while compatible to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Absorption Crystallization crystallization kinetics crystallization modulation Energy conversion efficiency Energy gap Grain boundaries Heterojunctions Materials science mixed‐halide wide‐bandgap perovskites monolithic perovskite/organic tandem solar cells Optoelectronics Perovskites Phase stability Photovoltaic cells Solar cells |
Title | Homogeneous Grain Boundary Passivation in Wide‐Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202112126 https://www.proquest.com/docview/2661254499 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6h9gIH_hGhpZoDiJMb7_o3x7SNiRBBFW1Fbtbsj0tEEldxUomeeASeg8fqk3Rn7bgpEkKCo0e7lq3Zmf12duYbxt6ghQwijrSHPJRe2IuNJ1MZeXZ3sHg4jI103RpGn-LhWfhhHI03qvhrfog24EaW4fw1GTjKqntLGoq6oEpye4Cx3pc4tylhi1DR55Y_iidJfa0cc0rw4uM1a6Mvunen392VbqHmJmB1O072iOH6W-tEk2_7q6XcV1e_0Tj-z888Zg8bOAr9ev08YffM_Cl7sEFS-Iz9Gpaz0i4zU64qeE8dJeDA9WJafIdjC72b9mhg5V8m2lz_-HmAc32OF3BsFuVlReFhyCbTWQUDV6hVQYZy0cQKoSzA-hXKwvs6URtTunWVqIJTCnPP4ITO4HBoptMKKHgMlHsKgr-FgWPBoBLS5-wsG5weDr2mw4OnLG6JvcjiGY1-DwOLK0zKE4MxWkTHEy2NDo2vo0SZVJI8lVwHwrcyTI1WiAJV8IJtzcu5eclApEWQYCCLwg9DwQMZKqmF5ErSTTD3O8xbazhXDf05deGY5jVxs8hJB3mrgw57146_qIk__jhyd71g8sYBVDnhHmJ_6_U6TDjN_-Utef8oG7VPr_5l0g67L6g4w6Vj7rKt5WJlXlvItJR7bLt_NPp4sufM4wYb6RIX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOQAH3hWBAnMAcXLjXT9zbEtMgKaqIBW9WfsyRCRxFSdIcOIn8Dv4WfwSdtaPpkgICY5e7Vq2Znf229mZ7wN4Kixk4HGkPcFC6YWD2HgylZFndweLh8PYSKfWMD6KRyfh69OozSakWpiaH6ILuNHKcP6aFjgFpPvnrKFCF1RKbk8w1v3Gl-EKyXq7U9XbjkGKJUl9sRwzSvFipy1vo8_7F8df3JfOweYmZHV7TnYTZPu1darJp931Su6qr78ROf7X79yCGw0ixb16Ct2GS2ZxB65v8BTehR-jcl7amWbKdYUvSVQC950c0_ILHlv03SikoW1_P9Xm57fv-2KhP4gzPDbL8nNFEWLMprN5hUNXq1VhJuSyCRdiWaB1LZSI93GqNob060JRhROKdM_xHR3D8cDMZhVS_Bgp_RQ5e4ZDR4RBVaT34CQbTg5GXiPy4CkLXWIvspBGC38gAgstTMoSI2JhQR1LtDQ6NL6OEmVSSe2pZDrgvm0TqdFKCC5UsA1bi3Jh7gPytAgSEcii8MOQs0CGSmoumZJ0Gcz8HnitiXPVMKCTEMcsr7mbeU42yDsb9OB51_-s5v74Y8-ddsbkjQ-ocoI-RAA3GPSAO9P_5S353ots3D09-JdBT-DqaDI-zA9fHb15CNc41Wq47Mwd2Fot1-aRRVAr-ditkV-ItBSe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgkRAc-F9RWGAOIE7Zxo7jpMfdbUP52VUFu6K3yH-BirapmhYJTjwCz8Fj8SR4nDTbRUJIcIzliRLNePx5PPMNIU-lgwxMxCaQlKuA94QNVKriwO0ODg9zYZXv1nB8IoZn_NU4Hm9V8df8EG3ADVeG99e4wBem6J6ThkpTYCW5O8A47ysukytchCnadf9tSyBFk6S-VxYUM7zoeEPbGLLuRfmL29I51txGrH7LyW4SufnYOtPk0_56pfb11994HP_nb26RGw0ehYPagG6TS3Z-h1zfYim8S34My1np7MyW6wpeYEsJOPTNmJZfYOSwd9MfDdz4-4mxP799P5Rz80EuYGSX5ecK48OQTaazCga-UquCTKplEyyEsgDnWDAN7-NEb4l06zJRDacY557BOzyEw5GdTivA6DFg8ikw-gwGngYDa0jvkbNscHo0DJoWD4F2wEUEsQM0RoY9GTlgYVOaWCmkg3Q0McoabkMTJ9qmCsdTRU3EQjcmU2u0lEzqaJfszMu5vU-ApUWUyEgVRcg5o5HiWhmmqFZ4FUzDDgk2Gs51w3-ObTimec3czHLUQd7qoEOet_MXNfPHH2fubQwmbzxAlSPwQfq3Xq9DmNf8X96SH_Sz4_bpwb8IPSFXR_0sf_Py5PVDco1hoYZPzdwjO6vl2j5y8GmlHvsV8gtZNRNW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneous+Grain+Boundary+Passivation+in+Wide%E2%80%90Bandgap+Perovskite+Films+Enables+Fabrication+of+Monolithic+Perovskite%2FOrganic+Tandem+Solar+Cells+with+over+21%25+Efficiency&rft.jtitle=Advanced+functional+materials&rft.au=Xie%2C+Yue%E2%80%90Min&rft.au=Yao%2C+Qin&rft.au=Zeng%2C+Zixin&rft.au=Xue%2C+Qifan&rft.date=2022-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202112126&rft.externalDBID=10.1002%252Fadfm.202112126&rft.externalDocID=ADFM202112126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |