Temperature‐Mediated Dynamic Lithium Loss and its Implications for High‐Efficiency Lithium Metal Anodes

Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperatu...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 9
Main Authors Zhang, Shuo, Ding, Jun‐Fan, Xu, Rui, Xiao, Ye, Yan, Chong, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded. This work quantitatively decouples the dynamic evolution of Li loss at different temperatures by titration gas chromatograph. The opposite effects of temperature on SEI properties and Li deposition behavior determined intricate temperature‐dependent growth modes of SEI‐Li+ and dead Li0 capacity loss. The cognition provides guidance towards high‐efficiency Li metal anode under practical condition.
AbstractList Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li + and dead Li 0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded.
Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded. This work quantitatively decouples the dynamic evolution of Li loss at different temperatures by titration gas chromatograph. The opposite effects of temperature on SEI properties and Li deposition behavior determined intricate temperature‐dependent growth modes of SEI‐Li+ and dead Li0 capacity loss. The cognition provides guidance towards high‐efficiency Li metal anode under practical condition.
Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded.
Author Huang, Jia‐Qi
Zhang, Shuo
Xu, Rui
Xiao, Ye
Ding, Jun‐Fan
Yan, Chong
Author_xml – sequence: 1
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Jun‐Fan
  surname: Ding
  fullname: Ding, Jun‐Fan
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Yonsei University
BookMark eNqFkM9OAjEQhxuDiYhcPTfxDPbfLuyRIArJohc8b0o7leJuF9sSw81H8Bl9EhcxmJgY5zJz-H0zme8ctVztAKFLSvqUEHYtwVV9RhgnfMDSE9SmKRW9dChI6zhzdoa6IaxJUyKjhPM2el5AtQEv49bDx9v7HLSVETS-2TlZWYVzG1d2W-G8DgFLp7GNAc-qTWmVjLZ2AZva46l9WjX0xBirLDi1O3JziLLEI1drCBfo1MgyQPe7d9Dj7WQxnvbyh7vZeJT3FKeDtMdSwpRRy6EeJAJURlimiRCagE4ETwzlXEshQYPRmihJNdPLJDFDSPVwkBLeQVeHvRtfv2whxGJdb71rThYs41ywxhNrUv1DSvnmNw-m2HhbSb8rKCn2Tou90-LotAHEL0DZ-CUhemnLv7HsgL3aEnb_HClGk_v5D_sJnfqQ_g
CitedBy_id crossref_primary_10_1002_batt_202400505
crossref_primary_10_1021_jacs_4c07806
crossref_primary_10_1039_D4CC03056G
crossref_primary_10_3389_fenrg_2024_1327955
crossref_primary_10_1039_D4CC06494A
crossref_primary_10_1002_ange_202412239
crossref_primary_10_1002_anie_202412239
crossref_primary_10_1016_j_compositesb_2025_112328
crossref_primary_10_1002_eem2_12831
crossref_primary_10_1002_adfm_202414835
crossref_primary_10_1039_D4SC08045A
crossref_primary_10_1002_batt_202400304
Cites_doi 10.1039/D1FD00043H
10.1038/451652a
10.1038/s41586-019-1481-z
10.1021/acsami.6b13859
10.1002/adma.202105962
10.1149/2.0521509jes
10.1039/C3EE40795K
10.1016/j.trechm.2020.10.008
10.1016/j.jechem.2021.12.020
10.1016/j.joule.2018.08.004
10.1002/aenm.202100046
10.1002/aenm.202003118
10.1126/sciadv.aau9245
10.1073/pnas.1712895115
10.1126/sciadv.abj3423
10.1002/aenm.202002297
10.1002/adfm.201904629
10.1002/anie.202115602
10.1002/aenm.201902254
10.1021/acsenergylett.0c01209
10.1038/s41467-021-21683-6
10.1021/jacs.2c08182
10.1021/cm901452z
10.1002/adma.202004128
10.1038/s41560-019-0413-3
10.1002/adfm.201909887
10.1002/adfm.201704391
10.1038/s41560-020-0640-7
10.1002/aenm.201903645
10.1039/C9CC04897A
10.1021/acs.nanolett.9b03330
10.1002/advs.201500213
10.1002/anie.202100494
10.1016/j.electacta.2014.05.120
10.1021/acs.chemrev.7b00115
10.1039/D1EE00767J
10.1002/sstr.202200400
10.1002/anie.201905251
10.1021/cr500003w
10.1149/1945-7111/ac7ef2
10.1002/anie.202210365
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202303726
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202303726
AENM202303726
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2021YFB2500300
– fundername: National Natural Science Foundation of China
  funderid: 22379014
– fundername: Beijing Natural Science Foundation
  funderid: JQ20004
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3176-2602cfcb8d754ec9029d044d0ed5435f133da4aedefdd0ca1d2db55f8e6d87603
ISSN 1614-6832
IngestDate Fri Jul 25 10:37:53 EDT 2025
Tue Jul 01 01:43:55 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 16:14:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3176-2602cfcb8d754ec9029d044d0ed5435f133da4aedefdd0ca1d2db55f8e6d87603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7394-9186
PQID 2933422022
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_2933422022
crossref_primary_10_1002_aenm_202303726
crossref_citationtrail_10_1002_aenm_202303726
wiley_primary_10_1002_aenm_202303726_AENM202303726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 1, 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2017 2021; 7 117 14
2021; 33
2023; 4
2019 2019 2020 2020; 55 19 5 5
2022; 61
2022 2014 2015 2020 2020; 233 114 162 10 3
2019 2021; 572 61
2021 2021 2018 2018; 11 11 4 115
2021 2021 2021 2016 2021; 12 7 71 3 60
2019 2019; 4 58
2019; 29
2014 2018 2020; 136 2 30
2020; 10
2008; 451
2017 2017 2019 2021 2022; 27 9 9 33 144
2022 2009; 1 22
2022; 169
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_6_5
e_1_2_7_8_3
e_1_2_7_5_5
e_1_2_7_6_4
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_5_3
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_15_4
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_13_4
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_13_3
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_8_5
e_1_2_7_8_4
Yang Y. (e_1_2_7_2_1) 2022; 1
References_xml – volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12 7 71 3 60
  start-page: 1452 29 8521
  year: 2021 2021 2021 2016 2021
  publication-title: Nat. Commun. Sci. Adv. J. Energy Chem. Adv. Sci. Angew. Chem., Int. Ed.
– volume: 7 117 14
  start-page: 513 5289
  year: 2014 2017 2021
  publication-title: Energy Environ. Sci. Chem. Rev. Energy Environ. Sci.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 55 19 5 5
  start-page: 9773 8664 534 2411
  year: 2019 2019 2020 2020
  publication-title: Chem. Commun. Nano Lett. Nat. Energy ACS Energy Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 27 9 9 33 144
  start-page: 7003
  year: 2017 2017 2019 2021 2022
  publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces Adv. Energy Mater. Adv. Mater. J. Am. Chem. Soc.
– volume: 11 11 4 115
  start-page: 1156
  year: 2021 2021 2018 2018
  publication-title: Adv. Energy Mater. Adv. Energy Mater. Sci. Adv. Proc. Natl. Acad. Sci. USA.
– volume: 4 58
  start-page: 664
  year: 2019 2019
  publication-title: Nat. Energy Angew. Chem. Int. Ed.
– volume: 572 61
  start-page: 511
  year: 2019 2021
  publication-title: Nature Angew. Chem. Int. Ed.
– volume: 1 22
  start-page: 587
  year: 2022 2009
  publication-title: Energy Lab Chem. Mater.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 136 2 30
  start-page: 529 2167
  year: 2014 2018 2020
  publication-title: Electrochim. Acta Joule Adv. Funct. Mater.
– volume: 233 114 162 10 3
  start-page: 190 5
  year: 2022 2014 2015 2020 2020
  publication-title: Faraday Discuss. Chem. Rev. J. Electrochem. Soc. Adv. Energy Mater. Trends Chem
– volume: 4
  year: 2023
  publication-title: Small Struct.
– ident: e_1_2_7_6_1
  doi: 10.1039/D1FD00043H
– ident: e_1_2_7_1_1
  doi: 10.1038/451652a
– ident: e_1_2_7_14_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_7_8_2
  doi: 10.1021/acsami.6b13859
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.202105962
– ident: e_1_2_7_6_3
  doi: 10.1149/2.0521509jes
– ident: e_1_2_7_3_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_6_5
  doi: 10.1016/j.trechm.2020.10.008
– ident: e_1_2_7_5_3
  doi: 10.1016/j.jechem.2021.12.020
– ident: e_1_2_7_7_2
  doi: 10.1016/j.joule.2018.08.004
– ident: e_1_2_7_15_2
  doi: 10.1002/aenm.202100046
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.202003118
– ident: e_1_2_7_15_3
  doi: 10.1126/sciadv.aau9245
– ident: e_1_2_7_15_4
  doi: 10.1073/pnas.1712895115
– ident: e_1_2_7_5_2
  doi: 10.1126/sciadv.abj3423
– ident: e_1_2_7_6_4
  doi: 10.1002/aenm.202002297
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201904629
– ident: e_1_2_7_14_2
  doi: 10.1002/anie.202115602
– ident: e_1_2_7_8_3
  doi: 10.1002/aenm.201902254
– ident: e_1_2_7_13_4
  doi: 10.1021/acsenergylett.0c01209
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-021-21683-6
– ident: e_1_2_7_8_5
  doi: 10.1021/jacs.2c08182
– ident: e_1_2_7_2_2
  doi: 10.1021/cm901452z
– ident: e_1_2_7_8_4
  doi: 10.1002/adma.202004128
– ident: e_1_2_7_12_1
  doi: 10.1038/s41560-019-0413-3
– ident: e_1_2_7_7_3
  doi: 10.1002/adfm.201909887
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201704391
– ident: e_1_2_7_13_3
  doi: 10.1038/s41560-020-0640-7
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201903645
– ident: e_1_2_7_13_1
  doi: 10.1039/C9CC04897A
– ident: e_1_2_7_13_2
  doi: 10.1021/acs.nanolett.9b03330
– ident: e_1_2_7_5_4
  doi: 10.1002/advs.201500213
– ident: e_1_2_7_5_5
  doi: 10.1002/anie.202100494
– ident: e_1_2_7_7_1
  doi: 10.1016/j.electacta.2014.05.120
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_3_3
  doi: 10.1039/D1EE00767J
– ident: e_1_2_7_11_1
  doi: 10.1002/sstr.202200400
– ident: e_1_2_7_12_2
  doi: 10.1002/anie.201905251
– ident: e_1_2_7_6_2
  doi: 10.1021/cr500003w
– volume: 1
  year: 2022
  ident: e_1_2_7_2_1
  publication-title: Energy Lab
– ident: e_1_2_7_9_1
  doi: 10.1149/1945-7111/ac7ef2
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.202210365
SSID ssj0000491033
Score 2.5653996
Snippet Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
dead lithium
Deposition
dynamic lithium loss
Gas chromatography
Lithium
Lithium batteries
lithium metal anode
Microscopy
solid electrolyte interphase
Solid electrolytes
temperature
Temperature dependence
Temperature effects
Titration
Title Temperature‐Mediated Dynamic Lithium Loss and its Implications for High‐Efficiency Lithium Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303726
https://www.proquest.com/docview/2933422022
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW9gKHik-xpSAfkDigQOI42exxRbcqVbcXWmk5RbE9VldAFsHmwqk_gd_IL2H8EceFRRQuUWLZTrLzYs943zwT8lwKjBGmoBOmeZNwhbZohMqSSoFIgfO8aixB9qw8vuAny2I5Gl1FrKVuI17Jb1vzSv7HqliGdjVZsv9g2dApFuA52hePaGE83szGgE6vE0UOpIWF3XsD3chDt9e8kcW4XHWfXp7idBj-KngbE8kN09DwPUIfc6srYZMy-9YLMFmTs3atPOmwV67tOQTgkgjRAXZv_vuK9GW3Dm6z30nlpGvDTY8GnC47a_luFQpWjV3SfQ_xKgXjA03LD6zoBiRl5dcyIS5zck1hNOYR6qZbB3knGttAa5QEMITKJ2yLmvYvs1zgHjqdZlab9nVof4vsMgw0cKTcnR0uTt-FdTqMoLI0t3ka_Sv02p8pe339Ia77NkPAEoc91m85v0v2fMBBZw4998gI2vvkTiRD-YB8iHD04-p7jyDqEUQ9BqhBEEUEUUQQjRFEEUHUIAhbD9gJ7Sx2qMPOQ3JxND9_c5z4TTgSia5lmWC8y6SWolKTgoOcpmyqUs5VCqpAV1tnea4a3oACrVQqm0wxJYpCV1AqnGnT_BHZadctPCY0U5kAPWE61ymXDasKKA0ZoxRCSDkpxiTpf75aeoV6s1HKx3q7zcbkRaj_2Wmz_LHmQW-N2n-_X2t0dHPOsA4bE2Yt9Jde6tn8bBGu9m989yfk9vBJHJCdzZcOnqIruxHPPNp-AjuNnAM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature%E2%80%90Mediated+Dynamic+Lithium+Loss+and+its+Implications+for+High%E2%80%90Efficiency+Lithium+Metal+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Zhang%2C+Shuo&rft.au=Ding%2C+Jun%E2%80%90Fan&rft.au=Xu%2C+Rui&rft.au=Xiao%2C+Ye&rft.date=2024-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=9&rft_id=info:doi/10.1002%2Faenm.202303726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202303726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon