Temperature‐Mediated Dynamic Lithium Loss and its Implications for High‐Efficiency Lithium Metal Anodes
Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperatu...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded.
This work quantitatively decouples the dynamic evolution of Li loss at different temperatures by titration gas chromatograph. The opposite effects of temperature on SEI properties and Li deposition behavior determined intricate temperature‐dependent growth modes of SEI‐Li+ and dead Li0 capacity loss. The cognition provides guidance towards high‐efficiency Li metal anode under practical condition. |
---|---|
AbstractList | Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li
+
and dead Li
0
capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded. Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded. This work quantitatively decouples the dynamic evolution of Li loss at different temperatures by titration gas chromatograph. The opposite effects of temperature on SEI properties and Li deposition behavior determined intricate temperature‐dependent growth modes of SEI‐Li+ and dead Li0 capacity loss. The cognition provides guidance towards high‐efficiency Li metal anode under practical condition. Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded. |
Author | Huang, Jia‐Qi Zhang, Shuo Xu, Rui Xiao, Ye Ding, Jun‐Fan Yan, Chong |
Author_xml | – sequence: 1 givenname: Shuo surname: Zhang fullname: Zhang, Shuo organization: Beijing Institute of Technology – sequence: 2 givenname: Jun‐Fan surname: Ding fullname: Ding, Jun‐Fan organization: Beijing Institute of Technology – sequence: 3 givenname: Rui surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 4 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 5 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 6 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Yonsei University |
BookMark | eNqFkM9OAjEQhxuDiYhcPTfxDPbfLuyRIArJohc8b0o7leJuF9sSw81H8Bl9EhcxmJgY5zJz-H0zme8ctVztAKFLSvqUEHYtwVV9RhgnfMDSE9SmKRW9dChI6zhzdoa6IaxJUyKjhPM2el5AtQEv49bDx9v7HLSVETS-2TlZWYVzG1d2W-G8DgFLp7GNAc-qTWmVjLZ2AZva46l9WjX0xBirLDi1O3JziLLEI1drCBfo1MgyQPe7d9Dj7WQxnvbyh7vZeJT3FKeDtMdSwpRRy6EeJAJURlimiRCagE4ETwzlXEshQYPRmihJNdPLJDFDSPVwkBLeQVeHvRtfv2whxGJdb71rThYs41ywxhNrUv1DSvnmNw-m2HhbSb8rKCn2Tou90-LotAHEL0DZ-CUhemnLv7HsgL3aEnb_HClGk_v5D_sJnfqQ_g |
CitedBy_id | crossref_primary_10_1002_batt_202400505 crossref_primary_10_1021_jacs_4c07806 crossref_primary_10_1039_D4CC03056G crossref_primary_10_3389_fenrg_2024_1327955 crossref_primary_10_1039_D4CC06494A crossref_primary_10_1002_ange_202412239 crossref_primary_10_1002_anie_202412239 crossref_primary_10_1016_j_compositesb_2025_112328 crossref_primary_10_1002_eem2_12831 crossref_primary_10_1002_adfm_202414835 crossref_primary_10_1039_D4SC08045A crossref_primary_10_1002_batt_202400304 |
Cites_doi | 10.1039/D1FD00043H 10.1038/451652a 10.1038/s41586-019-1481-z 10.1021/acsami.6b13859 10.1002/adma.202105962 10.1149/2.0521509jes 10.1039/C3EE40795K 10.1016/j.trechm.2020.10.008 10.1016/j.jechem.2021.12.020 10.1016/j.joule.2018.08.004 10.1002/aenm.202100046 10.1002/aenm.202003118 10.1126/sciadv.aau9245 10.1073/pnas.1712895115 10.1126/sciadv.abj3423 10.1002/aenm.202002297 10.1002/adfm.201904629 10.1002/anie.202115602 10.1002/aenm.201902254 10.1021/acsenergylett.0c01209 10.1038/s41467-021-21683-6 10.1021/jacs.2c08182 10.1021/cm901452z 10.1002/adma.202004128 10.1038/s41560-019-0413-3 10.1002/adfm.201909887 10.1002/adfm.201704391 10.1038/s41560-020-0640-7 10.1002/aenm.201903645 10.1039/C9CC04897A 10.1021/acs.nanolett.9b03330 10.1002/advs.201500213 10.1002/anie.202100494 10.1016/j.electacta.2014.05.120 10.1021/acs.chemrev.7b00115 10.1039/D1EE00767J 10.1002/sstr.202200400 10.1002/anie.201905251 10.1021/cr500003w 10.1149/1945-7111/ac7ef2 10.1002/anie.202210365 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202303726 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202303726 AENM202303726 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2021YFB2500300 – fundername: National Natural Science Foundation of China funderid: 22379014 – fundername: Beijing Natural Science Foundation funderid: JQ20004 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3176-2602cfcb8d754ec9029d044d0ed5435f133da4aedefdd0ca1d2db55f8e6d87603 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 10:37:53 EDT 2025 Tue Jul 01 01:43:55 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 16:14:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3176-2602cfcb8d754ec9029d044d0ed5435f133da4aedefdd0ca1d2db55f8e6d87603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7394-9186 |
PQID | 2933422022 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2933422022 crossref_primary_10_1002_aenm_202303726 crossref_citationtrail_10_1002_aenm_202303726 wiley_primary_10_1002_aenm_202303726_AENM202303726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 1, 2024 2024-03-00 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2017 2021; 7 117 14 2021; 33 2023; 4 2019 2019 2020 2020; 55 19 5 5 2022; 61 2022 2014 2015 2020 2020; 233 114 162 10 3 2019 2021; 572 61 2021 2021 2018 2018; 11 11 4 115 2021 2021 2021 2016 2021; 12 7 71 3 60 2019 2019; 4 58 2019; 29 2014 2018 2020; 136 2 30 2020; 10 2008; 451 2017 2017 2019 2021 2022; 27 9 9 33 144 2022 2009; 1 22 2022; 169 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_6_5 e_1_2_7_8_3 e_1_2_7_5_5 e_1_2_7_6_4 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_5_3 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_15_4 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_13_4 e_1_2_7_15_2 e_1_2_7_16_1 e_1_2_7_13_3 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_8_5 e_1_2_7_8_4 Yang Y. (e_1_2_7_2_1) 2022; 1 |
References_xml | – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 7 71 3 60 start-page: 1452 29 8521 year: 2021 2021 2021 2016 2021 publication-title: Nat. Commun. Sci. Adv. J. Energy Chem. Adv. Sci. Angew. Chem., Int. Ed. – volume: 7 117 14 start-page: 513 5289 year: 2014 2017 2021 publication-title: Energy Environ. Sci. Chem. Rev. Energy Environ. Sci. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 55 19 5 5 start-page: 9773 8664 534 2411 year: 2019 2019 2020 2020 publication-title: Chem. Commun. Nano Lett. Nat. Energy ACS Energy Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 27 9 9 33 144 start-page: 7003 year: 2017 2017 2019 2021 2022 publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces Adv. Energy Mater. Adv. Mater. J. Am. Chem. Soc. – volume: 11 11 4 115 start-page: 1156 year: 2021 2021 2018 2018 publication-title: Adv. Energy Mater. Adv. Energy Mater. Sci. Adv. Proc. Natl. Acad. Sci. USA. – volume: 4 58 start-page: 664 year: 2019 2019 publication-title: Nat. Energy Angew. Chem. Int. Ed. – volume: 572 61 start-page: 511 year: 2019 2021 publication-title: Nature Angew. Chem. Int. Ed. – volume: 1 22 start-page: 587 year: 2022 2009 publication-title: Energy Lab Chem. Mater. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 136 2 30 start-page: 529 2167 year: 2014 2018 2020 publication-title: Electrochim. Acta Joule Adv. Funct. Mater. – volume: 233 114 162 10 3 start-page: 190 5 year: 2022 2014 2015 2020 2020 publication-title: Faraday Discuss. Chem. Rev. J. Electrochem. Soc. Adv. Energy Mater. Trends Chem – volume: 4 year: 2023 publication-title: Small Struct. – ident: e_1_2_7_6_1 doi: 10.1039/D1FD00043H – ident: e_1_2_7_1_1 doi: 10.1038/451652a – ident: e_1_2_7_14_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_7_8_2 doi: 10.1021/acsami.6b13859 – ident: e_1_2_7_4_1 doi: 10.1002/adma.202105962 – ident: e_1_2_7_6_3 doi: 10.1149/2.0521509jes – ident: e_1_2_7_3_1 doi: 10.1039/C3EE40795K – ident: e_1_2_7_6_5 doi: 10.1016/j.trechm.2020.10.008 – ident: e_1_2_7_5_3 doi: 10.1016/j.jechem.2021.12.020 – ident: e_1_2_7_7_2 doi: 10.1016/j.joule.2018.08.004 – ident: e_1_2_7_15_2 doi: 10.1002/aenm.202100046 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.202003118 – ident: e_1_2_7_15_3 doi: 10.1126/sciadv.aau9245 – ident: e_1_2_7_15_4 doi: 10.1073/pnas.1712895115 – ident: e_1_2_7_5_2 doi: 10.1126/sciadv.abj3423 – ident: e_1_2_7_6_4 doi: 10.1002/aenm.202002297 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201904629 – ident: e_1_2_7_14_2 doi: 10.1002/anie.202115602 – ident: e_1_2_7_8_3 doi: 10.1002/aenm.201902254 – ident: e_1_2_7_13_4 doi: 10.1021/acsenergylett.0c01209 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-021-21683-6 – ident: e_1_2_7_8_5 doi: 10.1021/jacs.2c08182 – ident: e_1_2_7_2_2 doi: 10.1021/cm901452z – ident: e_1_2_7_8_4 doi: 10.1002/adma.202004128 – ident: e_1_2_7_12_1 doi: 10.1038/s41560-019-0413-3 – ident: e_1_2_7_7_3 doi: 10.1002/adfm.201909887 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.201704391 – ident: e_1_2_7_13_3 doi: 10.1038/s41560-020-0640-7 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201903645 – ident: e_1_2_7_13_1 doi: 10.1039/C9CC04897A – ident: e_1_2_7_13_2 doi: 10.1021/acs.nanolett.9b03330 – ident: e_1_2_7_5_4 doi: 10.1002/advs.201500213 – ident: e_1_2_7_5_5 doi: 10.1002/anie.202100494 – ident: e_1_2_7_7_1 doi: 10.1016/j.electacta.2014.05.120 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_3_3 doi: 10.1039/D1EE00767J – ident: e_1_2_7_11_1 doi: 10.1002/sstr.202200400 – ident: e_1_2_7_12_2 doi: 10.1002/anie.201905251 – ident: e_1_2_7_6_2 doi: 10.1021/cr500003w – volume: 1 year: 2022 ident: e_1_2_7_2_1 publication-title: Energy Lab – ident: e_1_2_7_9_1 doi: 10.1149/1945-7111/ac7ef2 – ident: e_1_2_7_17_1 doi: 10.1002/anie.202210365 |
SSID | ssj0000491033 |
Score | 2.5653996 |
Snippet | Lithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes dead lithium Deposition dynamic lithium loss Gas chromatography Lithium Lithium batteries lithium metal anode Microscopy solid electrolyte interphase Solid electrolytes temperature Temperature dependence Temperature effects Titration |
Title | Temperature‐Mediated Dynamic Lithium Loss and its Implications for High‐Efficiency Lithium Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303726 https://www.proquest.com/docview/2933422022 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW9gKHik-xpSAfkDigQOI42exxRbcqVbcXWmk5RbE9VldAFsHmwqk_gd_IL2H8EceFRRQuUWLZTrLzYs943zwT8lwKjBGmoBOmeZNwhbZohMqSSoFIgfO8aixB9qw8vuAny2I5Gl1FrKVuI17Jb1vzSv7HqliGdjVZsv9g2dApFuA52hePaGE83szGgE6vE0UOpIWF3XsD3chDt9e8kcW4XHWfXp7idBj-KngbE8kN09DwPUIfc6srYZMy-9YLMFmTs3atPOmwV67tOQTgkgjRAXZv_vuK9GW3Dm6z30nlpGvDTY8GnC47a_luFQpWjV3SfQ_xKgXjA03LD6zoBiRl5dcyIS5zck1hNOYR6qZbB3knGttAa5QEMITKJ2yLmvYvs1zgHjqdZlab9nVof4vsMgw0cKTcnR0uTt-FdTqMoLI0t3ka_Sv02p8pe339Ia77NkPAEoc91m85v0v2fMBBZw4998gI2vvkTiRD-YB8iHD04-p7jyDqEUQ9BqhBEEUEUUQQjRFEEUHUIAhbD9gJ7Sx2qMPOQ3JxND9_c5z4TTgSia5lmWC8y6SWolKTgoOcpmyqUs5VCqpAV1tnea4a3oACrVQqm0wxJYpCV1AqnGnT_BHZadctPCY0U5kAPWE61ymXDasKKA0ZoxRCSDkpxiTpf75aeoV6s1HKx3q7zcbkRaj_2Wmz_LHmQW-N2n-_X2t0dHPOsA4bE2Yt9Jde6tn8bBGu9m989yfk9vBJHJCdzZcOnqIruxHPPNp-AjuNnAM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature%E2%80%90Mediated+Dynamic+Lithium+Loss+and+its+Implications+for+High%E2%80%90Efficiency+Lithium+Metal+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Zhang%2C+Shuo&rft.au=Ding%2C+Jun%E2%80%90Fan&rft.au=Xu%2C+Rui&rft.au=Xiao%2C+Ye&rft.date=2024-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=9&rft_id=info:doi/10.1002%2Faenm.202303726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202303726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |