All‐in‐One: Photo‐Responsive Lanthanide‐Organic Framework for Simultaneous Sensing, Adsorption, and Photocatalytic Reduction of Uranium

The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (IHEP‐24) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 41
Main Authors Huang, Zhi‐Wei, Li, Xiao‐Bo, Mei, Lei, Han, Yi‐Zhi, Song, Yu‐Ting, Fu, Xuan, Zhang, Zhi‐Hui, Guo, Zhi‐Jun, Zeng, Jian‐Rong, Bian, Feng‐Gang, Wu, Wang‐Suo, Hu, Kong‐Qiu, Shi, Wei‐Qun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (IHEP‐24) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic reduction of uranium, integrating three different functions in one material. The confined space formed by the coordination assembly of viologen derivative ligands and metal‐oxygen clusters can act as precise recognition sites for uranyl, allowing IHEP‐24 to efficiently detect and capture uranyl ions. In addition, the presence of a viologen‐based radical ligand enables IHEP‐24 to a further photocatalytic reduction of the adsorbed uranyl to amorphous UO2. The mechanisms of adsorption and photocatalysis are revealed by batch experiments, photoelectrochemical characterizations, and theoretical calculations. This study provides a reference for the construction of robust multi‐functional MOF materials and also provides support for the deep removal and immobilization of radionuclides from aqueous solution. A series of robust viologen‐based photo‐responsive metal–organic frameworks with isomorphic structures are reported, capable of achieving simultaneous fluorescence sensing, adsorption, and photocatalytic reduction of uranium. The presence of viologen‐based radical ligands enhances the efficiency of the photocatalytic reduction of adsorbed uranyl to amorphous UO2, facilitating the deep purification of uranyl in aqueous solution.
AbstractList The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material ( IHEP‐24 ) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic reduction of uranium, integrating three different functions in one material. The confined space formed by the coordination assembly of viologen derivative ligands and metal‐oxygen clusters can act as precise recognition sites for uranyl, allowing IHEP‐24 to efficiently detect and capture uranyl ions. In addition, the presence of a viologen‐based radical ligand enables IHEP‐24 to a further photocatalytic reduction of the adsorbed uranyl to amorphous UO 2 . The mechanisms of adsorption and photocatalysis are revealed by batch experiments, photoelectrochemical characterizations, and theoretical calculations. This study provides a reference for the construction of robust multi‐functional MOF materials and also provides support for the deep removal and immobilization of radionuclides from aqueous solution.
The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (IHEP‐24) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic reduction of uranium, integrating three different functions in one material. The confined space formed by the coordination assembly of viologen derivative ligands and metal‐oxygen clusters can act as precise recognition sites for uranyl, allowing IHEP‐24 to efficiently detect and capture uranyl ions. In addition, the presence of a viologen‐based radical ligand enables IHEP‐24 to a further photocatalytic reduction of the adsorbed uranyl to amorphous UO2. The mechanisms of adsorption and photocatalysis are revealed by batch experiments, photoelectrochemical characterizations, and theoretical calculations. This study provides a reference for the construction of robust multi‐functional MOF materials and also provides support for the deep removal and immobilization of radionuclides from aqueous solution. A series of robust viologen‐based photo‐responsive metal–organic frameworks with isomorphic structures are reported, capable of achieving simultaneous fluorescence sensing, adsorption, and photocatalytic reduction of uranium. The presence of viologen‐based radical ligands enhances the efficiency of the photocatalytic reduction of adsorbed uranyl to amorphous UO2, facilitating the deep purification of uranyl in aqueous solution.
The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (IHEP‐24) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic reduction of uranium, integrating three different functions in one material. The confined space formed by the coordination assembly of viologen derivative ligands and metal‐oxygen clusters can act as precise recognition sites for uranyl, allowing IHEP‐24 to efficiently detect and capture uranyl ions. In addition, the presence of a viologen‐based radical ligand enables IHEP‐24 to a further photocatalytic reduction of the adsorbed uranyl to amorphous UO2. The mechanisms of adsorption and photocatalysis are revealed by batch experiments, photoelectrochemical characterizations, and theoretical calculations. This study provides a reference for the construction of robust multi‐functional MOF materials and also provides support for the deep removal and immobilization of radionuclides from aqueous solution.
Author Han, Yi‐Zhi
Fu, Xuan
Hu, Kong‐Qiu
Zhang, Zhi‐Hui
Guo, Zhi‐Jun
Li, Xiao‐Bo
Shi, Wei‐Qun
Bian, Feng‐Gang
Mei, Lei
Huang, Zhi‐Wei
Zeng, Jian‐Rong
Wu, Wang‐Suo
Song, Yu‐Ting
Author_xml – sequence: 1
  givenname: Zhi‐Wei
  surname: Huang
  fullname: Huang, Zhi‐Wei
  organization: Lanzhou University
– sequence: 2
  givenname: Xiao‐Bo
  surname: Li
  fullname: Li, Xiao‐Bo
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Lei
  surname: Mei
  fullname: Mei, Lei
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Yi‐Zhi
  surname: Han
  fullname: Han, Yi‐Zhi
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yu‐Ting
  surname: Song
  fullname: Song, Yu‐Ting
  organization: Northeast Normal University
– sequence: 6
  givenname: Xuan
  surname: Fu
  fullname: Fu, Xuan
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Zhi‐Hui
  surname: Zhang
  fullname: Zhang, Zhi‐Hui
  organization: Changzhou University
– sequence: 8
  givenname: Zhi‐Jun
  surname: Guo
  fullname: Guo, Zhi‐Jun
  organization: Lanzhou University
– sequence: 9
  givenname: Jian‐Rong
  surname: Zeng
  fullname: Zeng, Jian‐Rong
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Feng‐Gang
  surname: Bian
  fullname: Bian, Feng‐Gang
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Wang‐Suo
  surname: Wu
  fullname: Wu, Wang‐Suo
  email: wuws@lzu.edu.cn
  organization: Lanzhou University
– sequence: 12
  givenname: Kong‐Qiu
  surname: Hu
  fullname: Hu, Kong‐Qiu
  email: hukq@ihep.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Wei‐Qun
  orcidid: 0000-0001-9929-9732
  surname: Shi
  fullname: Shi, Wei‐Qun
  email: shiwq@ihep.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkM1KAzEUhYMoWH-2rgNu25pM0snUXVGrQkWxFtwNmZk7bXQmqUlG6c430Gf0ScxQURDETXIuOd-54eygTW00IHRASZ8SEh3Joqz7EYk44TSKN1CHxjTuMRIlm9-a3m-jHeceCKFCMN5Bb6Oq-nh9Vzoc1xqO8c3CeBOGW3BLo516BjyR2i-kVgW0JjsPMsdjK2t4MfYRl8biqaqbyksNpnF4CoHT8y4eFc7YpVdGd7HUxTo7l15WKx8ibqFo8vYVmxLPbIht6j20VcrKwf7XvYtm47O7k4ve5Pr88mQ06eWMirhHkyHQAXAxyAoiqEjYoORDEWV8MBSQ8ZJJBpKzjJUZlSwqMgE8gyTiEuK4iNkuOlznLq15asD59ME0VoeVKaOU8SS0mAQXX7tya5yzUKa58rL9srdSVSklaVt92lafflcfsP4vbGlVLe3qb2C4Bl5UBat_3OnodHz1w34CqgefQw
CitedBy_id crossref_primary_10_1002_adma_202410067
crossref_primary_10_1002_smll_202407272
crossref_primary_10_1002_adfm_202421623
crossref_primary_10_1088_1361_6528_ad7d14
crossref_primary_10_1039_D4QI02128B
crossref_primary_10_1002_adhm_202401743
crossref_primary_10_1021_acsmaterialslett_4c02121
crossref_primary_10_1016_j_seppur_2024_128172
crossref_primary_10_1039_D4CC02093F
crossref_primary_10_1039_D4CE00732H
crossref_primary_10_1002_adma_202418952
crossref_primary_10_1039_D4TA08292C
crossref_primary_10_1016_j_apcatb_2024_124721
crossref_primary_10_1039_D4MA00862F
Cites_doi 10.1002/adfm.202301773
10.1016/j.ccr.2017.10.029
10.1103/PhysRevB.54.11169
10.31635/ccschem.022.202202054
10.1002/adma.202102354
10.1016/j.envres.2023.116536
10.1021/acs.inorgchem.2c01594
10.1002/cplu.202100315
10.1021/ja808995d
10.1039/D1QI01248G
10.1016/j.envpol.2019.01.050
10.1039/C9DT04158C
10.1021/acs.inorgchem.0c02674
10.1039/D2IM00063F
10.1002/anie.202105491
10.1016/j.seppur.2023.126126
10.1002/chem.201704478
10.1016/j.seppur.2022.121966
10.1021/acsnano.2c06173
10.1016/j.apcatb.2019.04.087
10.1016/j.ccr.2023.215097
10.1002/adfm.202212819
10.1002/smll.202208002
10.1016/j.cej.2023.146222
10.1016/j.jhazmat.2021.127851
10.1039/D2TC03143D
10.1039/D3TA03446A
10.1016/j.ccr.2022.214917
10.1016/j.cej.2017.07.067
10.1039/D2CC04064F
10.1039/D2CE01484J
10.1016/j.talanta.2022.123501
10.1002/advs.202201735
10.1002/adfm.202213039
10.1016/j.apcatb.2021.120819
10.1038/s41467-023-36710-x
10.1021/acssuschemeng.2c01363
10.1016/j.apcatb.2022.122202
10.1016/j.talanta.2019.04.018
10.1002/adma.202004414
10.1021/acs.est.3c02916
10.1016/j.cej.2020.124648
10.1016/j.seppur.2022.122670
10.1016/j.xcrp.2022.100892
10.1021/acs.inorgchem.3c00647
10.1016/j.jhazmat.2021.125884
10.1016/j.watres.2023.120666
10.1021/jacsau.2c00614
10.1039/D1CE00060H
10.1002/cjoc.202100149
10.1002/ange.202217601
10.1002/anie.201909718
10.1107/S0021889808012016
10.1021/acsami.1c16742
10.1002/advs.202205542
10.1103/PhysRevLett.77.3865
10.1063/1.3382344
10.1016/j.enchem.2023.100101
10.1002/anie.202205403
10.1039/D1EN00929J
10.1016/j.cej.2021.133256
10.1002/anie.202009630
10.1016/j.cej.2022.134623
10.1016/j.ccr.2021.214365
10.31635/ccschem.021.202000610
10.1002/ejic.202100819
10.1016/j.xcrp.2022.101220
10.1038/s41893-021-00709-3
10.1002/ejic.202100748
10.1038/s41467-022-33948-9
10.1002/adfm.202302913
10.1016/j.cej.2023.145598
10.1016/j.ccr.2022.214615
10.1016/j.envres.2023.115349
10.1016/j.cej.2023.146264
10.1021/acsami.8b04480
10.1039/C6QI00013D
10.1016/j.apcatb.2022.121815
10.1039/D3QI00769C
10.1016/j.apcatb.2020.119523
10.1021/jacs.3c07047
10.1021/acs.inorgchem.2c01850
10.1039/C8EN00677F
10.1021/acs.inorgchem.1c04033
10.1016/0927-0256(96)00008-0
10.1021/acsami.0c02121
10.1007/s11426-022-1466-9
10.1039/D2CS00595F
10.1016/j.seppur.2022.121329
10.1021/acs.energyfuels.0c01919
10.1039/D3QO00940H
10.1016/j.supmat.2021.100002
10.1021/acs.est.8b03711
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202404126
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202404126
ADFM202404126
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22076187; 22122609; U2167218
– fundername: Postdoctoral Fellowship Program of CPSF
  funderid: GZB20230277
– fundername: National Science Fund for Distinguished Young Scholars
  funderid: 21925603
– fundername: China Postdoctoral Science Foundation
  funderid: 2023M731457
– fundername: Natural Science Foundation of Gansu Province
  funderid: 23JRRA1124
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3176-189e15e475bd0717835f4972b4597eb4f3a3ea43b3fb1a32db7e4be824ae66d63
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 04:23:12 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Tue Jul 01 00:31:01 EDT 2025
Wed Jan 22 17:14:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-189e15e475bd0717835f4972b4597eb4f3a3ea43b3fb1a32db7e4be824ae66d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9929-9732
PQID 3113484048
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_journals_3113484048
crossref_citationtrail_10_1002_adfm_202404126
crossref_primary_10_1002_adfm_202404126
wiley_primary_10_1002_adfm_202404126_ADFM202404126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2022; 431
2023 2023; 10 14
2020 2022; 12 10
2009 2018; 131 10
2022 2023 2018 2023; 61 34 52 4
2022 2022 2023; 13 58 11
2023 2023 2023 2019 2022; 245 474 3 58 1
2023 2020 2021; 33 59 60
2023 2022 2022; 57 426 301
2016 2017; 3 23
2023 2021 2023 2023; 52 39 10
2023 2023; 62 475
2023; 306
2020; 32
2022 2023 2021 2022 2023 2018 2023; 467 234 4 318 324 5 5
2019 2021; 378 3
2023 2023 2023 2022; 475 483 19 3
1996 1996; 54 6
2022 2017 2023; 296 328 5
2022 2022; 10 455
2019 2021; 201 13
2022; 9
2022 2021 2021; 9 416 35
2022; 34
2023 2022; 475 434
2021 2022; 282 9
2008; 41
2023 2022; 25 61
1996 2010; 77 132
2019 2021 2020; 248 86 390
2023 2023 2023 2023 2022 2019; 33 33 66 135 16 254
2022 2023 2022 2023 2023 2020 2024 2021 2022; 61 222 2022 145 1 49 334 60 31
2020 2021 2021; 59 2021 23
2022; 246
2022; 301
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_4
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_7_1
Huang Z. W. (e_1_2_8_8_8) 2021; 60
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_3_6
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_15_3
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_17_3
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_30_3
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_30_4
e_1_2_8_32_2
e_1_2_8_30_1
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_8_4
e_1_2_8_6_5
e_1_2_8_8_3
e_1_2_8_8_6
e_1_2_8_8_5
e_1_2_8_8_7
e_1_2_8_8_9
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_2_6
e_1_2_8_6_2
e_1_2_8_2_5
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_6_4
e_1_2_8_8_2
e_1_2_8_2_7
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
Yang H. (e_1_2_8_30_2) 2023; 34
e_1_2_8_16_2
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_10_3
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 12 10
  start-page: 9359
  year: 2020 2022
  publication-title: ACS Appl. Mater. Interfaces ACS Sustainable Chem. Eng.
– volume: 10 14
  start-page: 1106
  year: 2023 2023
  publication-title: Adv. Sci. Nat. Commun.
– volume: 296 328 5
  start-page: 1066 1144
  year: 2022 2017 2023
  publication-title: Sep. Purif. Technol. Chem. Eng. J. CCS Chem
– volume: 248 86 390
  start-page: 82 1177
  year: 2019 2021 2020
  publication-title: Environ. Pollut. ChemPlusChem Chem. Eng. J.
– volume: 378 3
  start-page: 533 50
  year: 2019 2021
  publication-title: Coordin. Chem. Rev. CCS Chem
– volume: 25 61
  start-page: 1186
  year: 2023 2022
  publication-title: CrystEngComm Angew. Chem., Int. Ed.
– volume: 41
  start-page: 653
  year: 2008
  publication-title: J. Appl. Crystallogr.
– volume: 61 34 52 4
  year: 2022 2023 2018 2023
  publication-title: Inorg. Chem. Angew. Chem., Int. Ed. Environ. Sci. Technol. Cell. Rep. Phys. Sci.
– volume: 10
  start-page: 4754
  year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 62 475
  start-page: 9807
  year: 2023 2023
  publication-title: Inorg. Chem. Chem. Eng. J.
– volume: 10 455
  year: 2022 2022
  publication-title: J. Mater. Chem. C Coordin. Chem. Rev.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 54 6
  start-page: 15
  year: 1996 1996
  publication-title: Phys. Rev. B Comp. Mater. Sci.
– volume: 201 13
  start-page: 317
  year: 2019 2021
  publication-title: Talanta ACS Appl. Mater. Interfaces
– volume: 245 474 3 58 1
  start-page: 239
  year: 2023 2023 2023 2019 2022
  publication-title: Water Res. Chem. Eng. J. JACS Au Angew. Chem., Int. Ed. Supramol. Mater.
– volume: 467 234 4 318 324 5 5
  start-page: 708 2077
  year: 2022 2023 2021 2022 2023 2018 2023
  publication-title: Coordin. Chem. Rev. Environ. Res. Nat. Sustain. Appl. Catal. B: Environ. Appl. Catal. B: Environ. Environ. Sci. : Nano EnergyChem
– volume: 131 10
  start-page: 3814
  year: 2009 2018
  publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces
– volume: 301
  year: 2022
  publication-title: Sep. Purif. Technol.
– volume: 9 416 35
  start-page: 81 4762
  year: 2022 2021 2021
  publication-title: Environ. Sci. Nano J. Hazard. Mater. Energ Fuel
– volume: 9
  start-page: 678
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 77 132
  start-page: 3865
  year: 1996 2010
  publication-title: Phys. Rev. Lett. J. Chem. Phys.
– volume: 33 33 66 135 16 254
  start-page: 562 47
  year: 2023 2023 2023 2023 2022 2019
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Sci. China Chem. Angew. Chem., Int. Ed. ACS Nano Appl. Catal. B: Environ.
– volume: 282 9
  year: 2021 2022
  publication-title: Appl. Catal. B: Environ. Adv. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 475 434
  year: 2023 2022
  publication-title: Chem. Eng. J. Chem. Eng. J.
– volume: 59 2021 23
  start-page: 5077 1898
  year: 2020 2021 2021
  publication-title: Inorg. Chem. Eur. J. Inorg. Chem. CrystEngComm
– volume: 246
  year: 2022
  publication-title: Talanta
– volume: 13 58 11
  start-page: 6116
  year: 2022 2022 2023
  publication-title: Nat. Commun. Chem. Commun. J. Mater. Chem. A
– volume: 57 426 301
  start-page: 9615
  year: 2023 2022 2022
  publication-title: Environ. Sci. Technol. J. Hazard. Mater. Appl. Catal. B: Environ.
– volume: 52 39 10
  start-page: 97 2125 5130
  year: 2023 2021 2023 2023
  publication-title: Chem. Soc. Rev. Chin. J. Chem. Org. Chem. Front. Adv. Funct. Mater.
– volume: 61 222 2022 145 1 49 334 60 31
  start-page: 3368 9 983 652
  year: 2022 2023 2022 2023 2023 2020 2024 2021 2022
  publication-title: Inorg. Chem. Environ. Res. Eur. J. Inorg. Chem. J. Am. Chem. Soc. Ind. Chem. Mater. Dalton Trans. Sep. Purif. Technol. Inorg. Chem. Inorg. Chem.
– volume: 33 59 60
  year: 2023 2020 2021
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 306
  year: 2023
  publication-title: Sep. Purif. Technol.
– volume: 3 23
  start-page: 814
  year: 2016 2017
  publication-title: Inorg. Chem. Front. Chem. ‐ Eur. J.
– volume: 475 483 19 3
  year: 2023 2023 2023 2022
  publication-title: Coordin. Chem. Rev. Coordin. Chem. Rev. Small Cell. Rep. Phys. Sci.
– ident: e_1_2_8_3_2
  doi: 10.1002/adfm.202301773
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ccr.2017.10.029
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_11_3
  doi: 10.31635/ccschem.022.202202054
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202102354
– ident: e_1_2_8_2_2
  doi: 10.1016/j.envres.2023.116536
– ident: e_1_2_8_8_9
  doi: 10.1021/acs.inorgchem.2c01594
– ident: e_1_2_8_17_2
  doi: 10.1002/cplu.202100315
– ident: e_1_2_8_21_1
  doi: 10.1021/ja808995d
– ident: e_1_2_8_25_1
  doi: 10.1039/D1QI01248G
– ident: e_1_2_8_17_1
  doi: 10.1016/j.envpol.2019.01.050
– ident: e_1_2_8_8_6
  doi: 10.1039/C9DT04158C
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.inorgchem.0c02674
– ident: e_1_2_8_8_5
  doi: 10.1039/D2IM00063F
– ident: e_1_2_8_10_3
  doi: 10.1002/anie.202105491
– ident: e_1_2_8_8_7
  doi: 10.1016/j.seppur.2023.126126
– ident: e_1_2_8_33_2
  doi: 10.1002/chem.201704478
– ident: e_1_2_8_31_1
  doi: 10.1016/j.seppur.2022.121966
– ident: e_1_2_8_3_5
  doi: 10.1021/acsnano.2c06173
– ident: e_1_2_8_3_6
  doi: 10.1016/j.apcatb.2019.04.087
– ident: e_1_2_8_9_2
  doi: 10.1016/j.ccr.2023.215097
– ident: e_1_2_8_1_4
  doi: 10.1002/adfm.202212819
– ident: e_1_2_8_9_3
  doi: 10.1002/smll.202208002
– ident: e_1_2_8_19_2
  doi: 10.1016/j.cej.2023.146222
– ident: e_1_2_8_27_2
  doi: 10.1016/j.jhazmat.2021.127851
– ident: e_1_2_8_12_1
  doi: 10.1039/D2TC03143D
– ident: e_1_2_8_13_3
  doi: 10.1039/D3TA03446A
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ccr.2022.214917
– ident: e_1_2_8_11_2
  doi: 10.1016/j.cej.2017.07.067
– ident: e_1_2_8_13_2
  doi: 10.1039/D2CC04064F
– ident: e_1_2_8_16_1
  doi: 10.1039/D2CE01484J
– ident: e_1_2_8_20_1
  doi: 10.1016/j.talanta.2022.123501
– ident: e_1_2_8_5_2
  doi: 10.1002/advs.202201735
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.202213039
– ident: e_1_2_8_27_3
  doi: 10.1016/j.apcatb.2021.120819
– ident: e_1_2_8_32_2
  doi: 10.1038/s41467-023-36710-x
– ident: e_1_2_8_23_2
  doi: 10.1021/acssuschemeng.2c01363
– ident: e_1_2_8_2_5
  doi: 10.1016/j.apcatb.2022.122202
– ident: e_1_2_8_14_1
  doi: 10.1016/j.talanta.2019.04.018
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202004414
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.est.3c02916
– ident: e_1_2_8_17_3
  doi: 10.1016/j.cej.2020.124648
– ident: e_1_2_8_26_1
  doi: 10.1016/j.seppur.2022.122670
– ident: e_1_2_8_9_4
  doi: 10.1016/j.xcrp.2022.100892
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.inorgchem.3c00647
– ident: e_1_2_8_4_2
  doi: 10.1016/j.jhazmat.2021.125884
– ident: e_1_2_8_6_1
  doi: 10.1016/j.watres.2023.120666
– ident: e_1_2_8_6_3
  doi: 10.1021/jacsau.2c00614
– ident: e_1_2_8_15_3
  doi: 10.1039/D1CE00060H
– ident: e_1_2_8_1_2
  doi: 10.1002/cjoc.202100149
– ident: e_1_2_8_3_4
  doi: 10.1002/ange.202217601
– ident: e_1_2_8_6_4
  doi: 10.1002/anie.201909718
– ident: e_1_2_8_36_1
  doi: 10.1107/S0021889808012016
– ident: e_1_2_8_14_2
  doi: 10.1021/acsami.1c16742
– ident: e_1_2_8_32_1
  doi: 10.1002/advs.202205542
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_35_2
  doi: 10.1063/1.3382344
– ident: e_1_2_8_2_7
  doi: 10.1016/j.enchem.2023.100101
– ident: e_1_2_8_16_2
  doi: 10.1002/anie.202205403
– ident: e_1_2_8_4_1
  doi: 10.1039/D1EN00929J
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cej.2021.133256
– ident: e_1_2_8_10_2
  doi: 10.1002/anie.202009630
– ident: e_1_2_8_18_2
  doi: 10.1016/j.cej.2022.134623
– ident: e_1_2_8_12_2
  doi: 10.1016/j.ccr.2021.214365
– ident: e_1_2_8_22_2
  doi: 10.31635/ccschem.021.202000610
– ident: e_1_2_8_15_2
  doi: 10.1002/ejic.202100819
– ident: e_1_2_8_30_4
  doi: 10.1016/j.xcrp.2022.101220
– ident: e_1_2_8_2_3
  doi: 10.1038/s41893-021-00709-3
– ident: e_1_2_8_8_3
  doi: 10.1002/ejic.202100748
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-022-33948-9
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.202302913
– ident: e_1_2_8_6_2
  doi: 10.1016/j.cej.2023.145598
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ccr.2022.214615
– ident: e_1_2_8_8_2
  doi: 10.1016/j.envres.2023.115349
– volume: 60
  start-page: 652
  year: 2021
  ident: e_1_2_8_8_8
  publication-title: Inorg. Chem.
– ident: e_1_2_8_18_1
  doi: 10.1016/j.cej.2023.146264
– ident: e_1_2_8_21_2
  doi: 10.1021/acsami.8b04480
– ident: e_1_2_8_33_1
  doi: 10.1039/C6QI00013D
– ident: e_1_2_8_2_4
  doi: 10.1016/j.apcatb.2022.121815
– ident: e_1_2_8_24_1
  doi: 10.1039/D3QI00769C
– ident: e_1_2_8_5_1
  doi: 10.1016/j.apcatb.2020.119523
– ident: e_1_2_8_8_4
  doi: 10.1021/jacs.3c07047
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.inorgchem.2c01850
– ident: e_1_2_8_2_6
  doi: 10.1039/C8EN00677F
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.inorgchem.1c04033
– ident: e_1_2_8_34_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.0c02121
– ident: e_1_2_8_3_3
  doi: 10.1007/s11426-022-1466-9
– ident: e_1_2_8_1_1
  doi: 10.1039/D2CS00595F
– ident: e_1_2_8_11_1
  doi: 10.1016/j.seppur.2022.121329
– ident: e_1_2_8_4_3
  doi: 10.1021/acs.energyfuels.0c01919
– volume: 34
  year: 2023
  ident: e_1_2_8_30_2
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_1_3
  doi: 10.1039/D3QO00940H
– ident: e_1_2_8_6_5
  doi: 10.1016/j.supmat.2021.100002
– ident: e_1_2_8_30_3
  doi: 10.1021/acs.est.8b03711
SSID ssj0017734
Score 2.5952396
Snippet The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms adsorption
Amorphous materials
Aqueous solutions
Confined spaces
Immobilization
lanthanide metal‐organic frameworks
Ligands
Nuclear reactor components
Photocatalysis
photocatalytic reduction
Radioisotopes
Robustness (mathematics)
Selective adsorption
Sustainable development
Uranium
uranium decontamination
Uranium dioxide
viologen
Title All‐in‐One: Photo‐Responsive Lanthanide‐Organic Framework for Simultaneous Sensing, Adsorption, and Photocatalytic Reduction of Uranium
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202404126
https://www.proquest.com/docview/3113484048
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWqrtoFUApioEVeIHXTtPUjzqS7ETCqEAU0ZaTZRX5c01EHB3VmkNpV_6B8I1-Cb16dIiEk2ERxYluOr-177BwfE_KKgxeIyxPLVJ7ITEBimLJJPwee-5yJVOLm5NMP6mQs303Sycou_lofoltww55RjdfYwbWZH96JhmrncSd59EiScdTcRsIWoqJRpx_Fsqz-rawYErzYpFVtPOKH95Pf90p3UHMVsFYeZ_iQ6LasNdHk4mC5MAf2-jcZx__5mEfkQQNH6aBuP1tkDcJjsrkiUrhNbgez2c-bH9MQLx8DHNNP5-WijIFRQ6_9DvR9tM-5DlMHGKna3mnpsOV90QiM6dkUuYs6QLmc0zOkzYcv-3Tg5uVlNWrtUx1cnXe1pHQVS0RHKCyLb2np6Ti61eny6xMyHr79_PokaY5xSGwEJyph0e4sBZmlxuHsMWI-L_OMGxknM2CkF1qAlsIIb5gWHAWfpYE-lxqUcko8JeuhDPCMUGa9Yi4H67iVLveGc6ZSy8HmRzI-6ZGkNWNhG41zPGpjVtTqzLzAii66iu6RvS7-t1rd448xd9pWUTS9fF4IxoSMM2TZ7xFemfcvuRSDN8PTLvT8XxK9IBt4X_MJd8j64nIJuxEXLczLqu3_AtAKCjk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKewAO5S1SWvABiUu3rR_rzXKLoFGApKC0kXpbre0xjZp6qyapBCf-AfxGfgmefbVFQkhwWcle2_J6PPY33pnPhLzk4ATi8sgwlUYyERBppkzUTYGnLmUilhicPDpQg4l8fxw33oQYC1PxQ7QHbqgZ5XqNCo4H0rtXrKG5dRhKHrYkybi6RdbwWu_Sqhq3DFIsSaofy4qhixc7bngb9_juzfo396UrsHkdspZ7Tv8e0U1vK1eT053lQu-Yr78ROf7X59wn6zUipb1qCj0gK-AfkrvXeAofke-92ezntx9THx4fPbymn06KRRES49rD9hLoMIjoJPdTC1iojPA0tN-4ftGAjenhFN0Xcw_Fck4P0XPef96mPTsvLsqFa5vm3lZtl6dKX0KP6Bi5ZfEtLRydhJ11ujx7TCb9_aM3g6i-ySEyAZ-oiAXRsxhkEmuLBmSAfU6mCdcy2DOgpRO5gFwKLZxmueDI-Sw1dLnMQSmrxBOy6gsPTwllxilmUzCWG2lTpzlnKjYcTLonQ06HRI0cM1PTnONtG7OsImjmGQ501g50h7xqy59XBB9_LLnZTIusVvR5JhgTMhjJstshvJTvX1rJem_7oza18S-VXpDbg6PRMBu-O_jwjNzB_Mq9cJOsLi6WsBVg0kI_LxXhF10wDlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BkRAcKE8R2lIfkLh02_ix3iy3iHTVQluqlEi5rfykUVNv1SRI9MQ_gN_YX4K9r6ZICAkuK9lrW16Px_PZO_MZ4A0xlgZcHinM04gl1EQScxX1UkNSm2IasxCcfHjE90bswzgeL0XxV_wQ7YFb0IxyvQ4KfqHtzg1pqNA2RJJ7i8Qw4XfhHuPdXpjXg2FLIIWTpPqvzHHw8MLjhraxS3Zu179tlm6w5jJiLU1Otgqi6WzlaXK2vZjLbXX1G4_j_3zNY3hU41HUrybQE7hj3FN4uMRS-Ax-9KfT6-8_J84_PjnzDh2fFvPCJ4a1f-1Xgw68gE6Fm2gTCpXxnQpljeMX8sgYnUyC86JwpljM0Enwm3dftlBfz4rLctnaQsLpqu3yTOmb7xEaBmbZ8BYVFo28XZ0szp_DKNv9_H4vqu9xiJRHJzzCXvA4NiyJpQ7bRw_6LEsTIpnfzRjJLBXUCEYltRILSgLjM5OmR5gwnGtOX8CKK5x5CQgry7FOjdJEMZ1aSQjmsSJGpV3mczoQNWLMVU1yHu7amOYVPTPJw0Dn7UB34G1b_qKi9_hjyfVmVuS1ms9yijFlfovMeh0gpXj_0kreH2SHberVv1TahPvHgyw_2D_6uAYPQnblW7gOK_PLhdnwGGkuX5dq8AtMoQ0M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All%E2%80%90in%E2%80%90One%3A+Photo%E2%80%90Responsive+Lanthanide%E2%80%90Organic+Framework+for+Simultaneous+Sensing%2C+Adsorption%2C+and+Photocatalytic+Reduction+of+Uranium&rft.jtitle=Advanced+functional+materials&rft.au=Huang%2C+Zhi%E2%80%90Wei&rft.au=Li%2C+Xiao%E2%80%90Bo&rft.au=Mei%2C+Lei&rft.au=Han%2C+Yi%E2%80%90Zhi&rft.date=2024-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202404126&rft.externalDBID=10.1002%252Fadfm.202404126&rft.externalDocID=ADFM202404126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon