All‐in‐One: Photo‐Responsive Lanthanide‐Organic Framework for Simultaneous Sensing, Adsorption, and Photocatalytic Reduction of Uranium
The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (IHEP‐24) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 41 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (IHEP‐24) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic reduction of uranium, integrating three different functions in one material. The confined space formed by the coordination assembly of viologen derivative ligands and metal‐oxygen clusters can act as precise recognition sites for uranyl, allowing IHEP‐24 to efficiently detect and capture uranyl ions. In addition, the presence of a viologen‐based radical ligand enables IHEP‐24 to a further photocatalytic reduction of the adsorbed uranyl to amorphous UO2. The mechanisms of adsorption and photocatalysis are revealed by batch experiments, photoelectrochemical characterizations, and theoretical calculations. This study provides a reference for the construction of robust multi‐functional MOF materials and also provides support for the deep removal and immobilization of radionuclides from aqueous solution.
A series of robust viologen‐based photo‐responsive metal–organic frameworks with isomorphic structures are reported, capable of achieving simultaneous fluorescence sensing, adsorption, and photocatalytic reduction of uranium. The presence of viologen‐based radical ligands enhances the efficiency of the photocatalytic reduction of adsorbed uranyl to amorphous UO2, facilitating the deep purification of uranyl in aqueous solution. |
---|---|
AbstractList | The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (
IHEP‐24
) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic reduction of uranium, integrating three different functions in one material. The confined space formed by the coordination assembly of viologen derivative ligands and metal‐oxygen clusters can act as precise recognition sites for uranyl, allowing
IHEP‐24
to efficiently detect and capture uranyl ions. In addition, the presence of a viologen‐based radical ligand enables
IHEP‐24
to a further photocatalytic reduction of the adsorbed uranyl to amorphous UO
2
. The mechanisms of adsorption and photocatalysis are revealed by batch experiments, photoelectrochemical characterizations, and theoretical calculations. This study provides a reference for the construction of robust multi‐functional MOF materials and also provides support for the deep removal and immobilization of radionuclides from aqueous solution. The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (IHEP‐24) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic reduction of uranium, integrating three different functions in one material. The confined space formed by the coordination assembly of viologen derivative ligands and metal‐oxygen clusters can act as precise recognition sites for uranyl, allowing IHEP‐24 to efficiently detect and capture uranyl ions. In addition, the presence of a viologen‐based radical ligand enables IHEP‐24 to a further photocatalytic reduction of the adsorbed uranyl to amorphous UO2. The mechanisms of adsorption and photocatalysis are revealed by batch experiments, photoelectrochemical characterizations, and theoretical calculations. This study provides a reference for the construction of robust multi‐functional MOF materials and also provides support for the deep removal and immobilization of radionuclides from aqueous solution. A series of robust viologen‐based photo‐responsive metal–organic frameworks with isomorphic structures are reported, capable of achieving simultaneous fluorescence sensing, adsorption, and photocatalytic reduction of uranium. The presence of viologen‐based radical ligands enhances the efficiency of the photocatalytic reduction of adsorbed uranyl to amorphous UO2, facilitating the deep purification of uranyl in aqueous solution. The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust lanthanide‐organic framework material (IHEP‐24) is developed for simultaneous fluorescence sensing, selective adsorption, and photocatalytic reduction of uranium, integrating three different functions in one material. The confined space formed by the coordination assembly of viologen derivative ligands and metal‐oxygen clusters can act as precise recognition sites for uranyl, allowing IHEP‐24 to efficiently detect and capture uranyl ions. In addition, the presence of a viologen‐based radical ligand enables IHEP‐24 to a further photocatalytic reduction of the adsorbed uranyl to amorphous UO2. The mechanisms of adsorption and photocatalysis are revealed by batch experiments, photoelectrochemical characterizations, and theoretical calculations. This study provides a reference for the construction of robust multi‐functional MOF materials and also provides support for the deep removal and immobilization of radionuclides from aqueous solution. |
Author | Han, Yi‐Zhi Fu, Xuan Hu, Kong‐Qiu Zhang, Zhi‐Hui Guo, Zhi‐Jun Li, Xiao‐Bo Shi, Wei‐Qun Bian, Feng‐Gang Mei, Lei Huang, Zhi‐Wei Zeng, Jian‐Rong Wu, Wang‐Suo Song, Yu‐Ting |
Author_xml | – sequence: 1 givenname: Zhi‐Wei surname: Huang fullname: Huang, Zhi‐Wei organization: Lanzhou University – sequence: 2 givenname: Xiao‐Bo surname: Li fullname: Li, Xiao‐Bo organization: Chinese Academy of Sciences – sequence: 3 givenname: Lei surname: Mei fullname: Mei, Lei organization: Chinese Academy of Sciences – sequence: 4 givenname: Yi‐Zhi surname: Han fullname: Han, Yi‐Zhi organization: Chinese Academy of Sciences – sequence: 5 givenname: Yu‐Ting surname: Song fullname: Song, Yu‐Ting organization: Northeast Normal University – sequence: 6 givenname: Xuan surname: Fu fullname: Fu, Xuan organization: Chinese Academy of Sciences – sequence: 7 givenname: Zhi‐Hui surname: Zhang fullname: Zhang, Zhi‐Hui organization: Changzhou University – sequence: 8 givenname: Zhi‐Jun surname: Guo fullname: Guo, Zhi‐Jun organization: Lanzhou University – sequence: 9 givenname: Jian‐Rong surname: Zeng fullname: Zeng, Jian‐Rong organization: Chinese Academy of Sciences – sequence: 10 givenname: Feng‐Gang surname: Bian fullname: Bian, Feng‐Gang organization: Chinese Academy of Sciences – sequence: 11 givenname: Wang‐Suo surname: Wu fullname: Wu, Wang‐Suo email: wuws@lzu.edu.cn organization: Lanzhou University – sequence: 12 givenname: Kong‐Qiu surname: Hu fullname: Hu, Kong‐Qiu email: hukq@ihep.ac.cn organization: Chinese Academy of Sciences – sequence: 13 givenname: Wei‐Qun orcidid: 0000-0001-9929-9732 surname: Shi fullname: Shi, Wei‐Qun email: shiwq@ihep.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkM1KAzEUhYMoWH-2rgNu25pM0snUXVGrQkWxFtwNmZk7bXQmqUlG6c430Gf0ScxQURDETXIuOd-54eygTW00IHRASZ8SEh3Joqz7EYk44TSKN1CHxjTuMRIlm9-a3m-jHeceCKFCMN5Bb6Oq-nh9Vzoc1xqO8c3CeBOGW3BLo516BjyR2i-kVgW0JjsPMsdjK2t4MfYRl8biqaqbyksNpnF4CoHT8y4eFc7YpVdGd7HUxTo7l15WKx8ibqFo8vYVmxLPbIht6j20VcrKwf7XvYtm47O7k4ve5Pr88mQ06eWMirhHkyHQAXAxyAoiqEjYoORDEWV8MBSQ8ZJJBpKzjJUZlSwqMgE8gyTiEuK4iNkuOlznLq15asD59ME0VoeVKaOU8SS0mAQXX7tya5yzUKa58rL9srdSVSklaVt92lafflcfsP4vbGlVLe3qb2C4Bl5UBat_3OnodHz1w34CqgefQw |
CitedBy_id | crossref_primary_10_1002_adma_202410067 crossref_primary_10_1002_smll_202407272 crossref_primary_10_1002_adfm_202421623 crossref_primary_10_1088_1361_6528_ad7d14 crossref_primary_10_1039_D4QI02128B crossref_primary_10_1002_adhm_202401743 crossref_primary_10_1021_acsmaterialslett_4c02121 crossref_primary_10_1016_j_seppur_2024_128172 crossref_primary_10_1039_D4CC02093F crossref_primary_10_1039_D4CE00732H crossref_primary_10_1002_adma_202418952 crossref_primary_10_1039_D4TA08292C crossref_primary_10_1016_j_apcatb_2024_124721 crossref_primary_10_1039_D4MA00862F |
Cites_doi | 10.1002/adfm.202301773 10.1016/j.ccr.2017.10.029 10.1103/PhysRevB.54.11169 10.31635/ccschem.022.202202054 10.1002/adma.202102354 10.1016/j.envres.2023.116536 10.1021/acs.inorgchem.2c01594 10.1002/cplu.202100315 10.1021/ja808995d 10.1039/D1QI01248G 10.1016/j.envpol.2019.01.050 10.1039/C9DT04158C 10.1021/acs.inorgchem.0c02674 10.1039/D2IM00063F 10.1002/anie.202105491 10.1016/j.seppur.2023.126126 10.1002/chem.201704478 10.1016/j.seppur.2022.121966 10.1021/acsnano.2c06173 10.1016/j.apcatb.2019.04.087 10.1016/j.ccr.2023.215097 10.1002/adfm.202212819 10.1002/smll.202208002 10.1016/j.cej.2023.146222 10.1016/j.jhazmat.2021.127851 10.1039/D2TC03143D 10.1039/D3TA03446A 10.1016/j.ccr.2022.214917 10.1016/j.cej.2017.07.067 10.1039/D2CC04064F 10.1039/D2CE01484J 10.1016/j.talanta.2022.123501 10.1002/advs.202201735 10.1002/adfm.202213039 10.1016/j.apcatb.2021.120819 10.1038/s41467-023-36710-x 10.1021/acssuschemeng.2c01363 10.1016/j.apcatb.2022.122202 10.1016/j.talanta.2019.04.018 10.1002/adma.202004414 10.1021/acs.est.3c02916 10.1016/j.cej.2020.124648 10.1016/j.seppur.2022.122670 10.1016/j.xcrp.2022.100892 10.1021/acs.inorgchem.3c00647 10.1016/j.jhazmat.2021.125884 10.1016/j.watres.2023.120666 10.1021/jacsau.2c00614 10.1039/D1CE00060H 10.1002/cjoc.202100149 10.1002/ange.202217601 10.1002/anie.201909718 10.1107/S0021889808012016 10.1021/acsami.1c16742 10.1002/advs.202205542 10.1103/PhysRevLett.77.3865 10.1063/1.3382344 10.1016/j.enchem.2023.100101 10.1002/anie.202205403 10.1039/D1EN00929J 10.1016/j.cej.2021.133256 10.1002/anie.202009630 10.1016/j.cej.2022.134623 10.1016/j.ccr.2021.214365 10.31635/ccschem.021.202000610 10.1002/ejic.202100819 10.1016/j.xcrp.2022.101220 10.1038/s41893-021-00709-3 10.1002/ejic.202100748 10.1038/s41467-022-33948-9 10.1002/adfm.202302913 10.1016/j.cej.2023.145598 10.1016/j.ccr.2022.214615 10.1016/j.envres.2023.115349 10.1016/j.cej.2023.146264 10.1021/acsami.8b04480 10.1039/C6QI00013D 10.1016/j.apcatb.2022.121815 10.1039/D3QI00769C 10.1016/j.apcatb.2020.119523 10.1021/jacs.3c07047 10.1021/acs.inorgchem.2c01850 10.1039/C8EN00677F 10.1021/acs.inorgchem.1c04033 10.1016/0927-0256(96)00008-0 10.1021/acsami.0c02121 10.1007/s11426-022-1466-9 10.1039/D2CS00595F 10.1016/j.seppur.2022.121329 10.1021/acs.energyfuels.0c01919 10.1039/D3QO00940H 10.1016/j.supmat.2021.100002 10.1021/acs.est.8b03711 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202404126 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202404126 ADFM202404126 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22076187; 22122609; U2167218 – fundername: Postdoctoral Fellowship Program of CPSF funderid: GZB20230277 – fundername: National Science Fund for Distinguished Young Scholars funderid: 21925603 – fundername: China Postdoctoral Science Foundation funderid: 2023M731457 – fundername: Natural Science Foundation of Gansu Province funderid: 23JRRA1124 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3176-189e15e475bd0717835f4972b4597eb4f3a3ea43b3fb1a32db7e4be824ae66d63 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 04:23:12 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 00:31:01 EDT 2025 Wed Jan 22 17:14:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-189e15e475bd0717835f4972b4597eb4f3a3ea43b3fb1a32db7e4be824ae66d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9929-9732 |
PQID | 3113484048 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3113484048 crossref_citationtrail_10_1002_adfm_202404126 crossref_primary_10_1002_adfm_202404126 wiley_primary_10_1002_adfm_202404126_ADFM202404126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 10 2022; 431 2023 2023; 10 14 2020 2022; 12 10 2009 2018; 131 10 2022 2023 2018 2023; 61 34 52 4 2022 2022 2023; 13 58 11 2023 2023 2023 2019 2022; 245 474 3 58 1 2023 2020 2021; 33 59 60 2023 2022 2022; 57 426 301 2016 2017; 3 23 2023 2021 2023 2023; 52 39 10 2023 2023; 62 475 2023; 306 2020; 32 2022 2023 2021 2022 2023 2018 2023; 467 234 4 318 324 5 5 2019 2021; 378 3 2023 2023 2023 2022; 475 483 19 3 1996 1996; 54 6 2022 2017 2023; 296 328 5 2022 2022; 10 455 2019 2021; 201 13 2022; 9 2022 2021 2021; 9 416 35 2022; 34 2023 2022; 475 434 2021 2022; 282 9 2008; 41 2023 2022; 25 61 1996 2010; 77 132 2019 2021 2020; 248 86 390 2023 2023 2023 2023 2022 2019; 33 33 66 135 16 254 2022 2023 2022 2023 2023 2020 2024 2021 2022; 61 222 2022 145 1 49 334 60 31 2020 2021 2021; 59 2021 23 2022; 246 2022; 301 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_4 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_7_1 Huang Z. W. (e_1_2_8_8_8) 2021; 60 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_3_6 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_15_3 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_30_3 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_30_4 e_1_2_8_32_2 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_8_4 e_1_2_8_6_5 e_1_2_8_8_3 e_1_2_8_8_6 e_1_2_8_8_5 e_1_2_8_8_7 e_1_2_8_8_9 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_2_6 e_1_2_8_6_2 e_1_2_8_2_5 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_6_4 e_1_2_8_8_2 e_1_2_8_2_7 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 Yang H. (e_1_2_8_30_2) 2023; 34 e_1_2_8_16_2 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_10_3 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 12 10 start-page: 9359 year: 2020 2022 publication-title: ACS Appl. Mater. Interfaces ACS Sustainable Chem. Eng. – volume: 10 14 start-page: 1106 year: 2023 2023 publication-title: Adv. Sci. Nat. Commun. – volume: 296 328 5 start-page: 1066 1144 year: 2022 2017 2023 publication-title: Sep. Purif. Technol. Chem. Eng. J. CCS Chem – volume: 248 86 390 start-page: 82 1177 year: 2019 2021 2020 publication-title: Environ. Pollut. ChemPlusChem Chem. Eng. J. – volume: 378 3 start-page: 533 50 year: 2019 2021 publication-title: Coordin. Chem. Rev. CCS Chem – volume: 25 61 start-page: 1186 year: 2023 2022 publication-title: CrystEngComm Angew. Chem., Int. Ed. – volume: 41 start-page: 653 year: 2008 publication-title: J. Appl. Crystallogr. – volume: 61 34 52 4 year: 2022 2023 2018 2023 publication-title: Inorg. Chem. Angew. Chem., Int. Ed. Environ. Sci. Technol. Cell. Rep. Phys. Sci. – volume: 10 start-page: 4754 year: 2023 publication-title: Inorg. Chem. Front. – volume: 62 475 start-page: 9807 year: 2023 2023 publication-title: Inorg. Chem. Chem. Eng. J. – volume: 10 455 year: 2022 2022 publication-title: J. Mater. Chem. C Coordin. Chem. Rev. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 54 6 start-page: 15 year: 1996 1996 publication-title: Phys. Rev. B Comp. Mater. Sci. – volume: 201 13 start-page: 317 year: 2019 2021 publication-title: Talanta ACS Appl. Mater. Interfaces – volume: 245 474 3 58 1 start-page: 239 year: 2023 2023 2023 2019 2022 publication-title: Water Res. Chem. Eng. J. JACS Au Angew. Chem., Int. Ed. Supramol. Mater. – volume: 467 234 4 318 324 5 5 start-page: 708 2077 year: 2022 2023 2021 2022 2023 2018 2023 publication-title: Coordin. Chem. Rev. Environ. Res. Nat. Sustain. Appl. Catal. B: Environ. Appl. Catal. B: Environ. Environ. Sci. : Nano EnergyChem – volume: 131 10 start-page: 3814 year: 2009 2018 publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces – volume: 301 year: 2022 publication-title: Sep. Purif. Technol. – volume: 9 416 35 start-page: 81 4762 year: 2022 2021 2021 publication-title: Environ. Sci. Nano J. Hazard. Mater. Energ Fuel – volume: 9 start-page: 678 year: 2022 publication-title: Inorg. Chem. Front. – volume: 77 132 start-page: 3865 year: 1996 2010 publication-title: Phys. Rev. Lett. J. Chem. Phys. – volume: 33 33 66 135 16 254 start-page: 562 47 year: 2023 2023 2023 2023 2022 2019 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Sci. China Chem. Angew. Chem., Int. Ed. ACS Nano Appl. Catal. B: Environ. – volume: 282 9 year: 2021 2022 publication-title: Appl. Catal. B: Environ. Adv. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 475 434 year: 2023 2022 publication-title: Chem. Eng. J. Chem. Eng. J. – volume: 59 2021 23 start-page: 5077 1898 year: 2020 2021 2021 publication-title: Inorg. Chem. Eur. J. Inorg. Chem. CrystEngComm – volume: 246 year: 2022 publication-title: Talanta – volume: 13 58 11 start-page: 6116 year: 2022 2022 2023 publication-title: Nat. Commun. Chem. Commun. J. Mater. Chem. A – volume: 57 426 301 start-page: 9615 year: 2023 2022 2022 publication-title: Environ. Sci. Technol. J. Hazard. Mater. Appl. Catal. B: Environ. – volume: 52 39 10 start-page: 97 2125 5130 year: 2023 2021 2023 2023 publication-title: Chem. Soc. Rev. Chin. J. Chem. Org. Chem. Front. Adv. Funct. Mater. – volume: 61 222 2022 145 1 49 334 60 31 start-page: 3368 9 983 652 year: 2022 2023 2022 2023 2023 2020 2024 2021 2022 publication-title: Inorg. Chem. Environ. Res. Eur. J. Inorg. Chem. J. Am. Chem. Soc. Ind. Chem. Mater. Dalton Trans. Sep. Purif. Technol. Inorg. Chem. Inorg. Chem. – volume: 33 59 60 year: 2023 2020 2021 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 431 year: 2022 publication-title: Chem. Eng. J. – volume: 306 year: 2023 publication-title: Sep. Purif. Technol. – volume: 3 23 start-page: 814 year: 2016 2017 publication-title: Inorg. Chem. Front. Chem. ‐ Eur. J. – volume: 475 483 19 3 year: 2023 2023 2023 2022 publication-title: Coordin. Chem. Rev. Coordin. Chem. Rev. Small Cell. Rep. Phys. Sci. – ident: e_1_2_8_3_2 doi: 10.1002/adfm.202301773 – ident: e_1_2_8_22_1 doi: 10.1016/j.ccr.2017.10.029 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_11_3 doi: 10.31635/ccschem.022.202202054 – ident: e_1_2_8_28_1 doi: 10.1002/adma.202102354 – ident: e_1_2_8_2_2 doi: 10.1016/j.envres.2023.116536 – ident: e_1_2_8_8_9 doi: 10.1021/acs.inorgchem.2c01594 – ident: e_1_2_8_17_2 doi: 10.1002/cplu.202100315 – ident: e_1_2_8_21_1 doi: 10.1021/ja808995d – ident: e_1_2_8_25_1 doi: 10.1039/D1QI01248G – ident: e_1_2_8_17_1 doi: 10.1016/j.envpol.2019.01.050 – ident: e_1_2_8_8_6 doi: 10.1039/C9DT04158C – ident: e_1_2_8_15_1 doi: 10.1021/acs.inorgchem.0c02674 – ident: e_1_2_8_8_5 doi: 10.1039/D2IM00063F – ident: e_1_2_8_10_3 doi: 10.1002/anie.202105491 – ident: e_1_2_8_8_7 doi: 10.1016/j.seppur.2023.126126 – ident: e_1_2_8_33_2 doi: 10.1002/chem.201704478 – ident: e_1_2_8_31_1 doi: 10.1016/j.seppur.2022.121966 – ident: e_1_2_8_3_5 doi: 10.1021/acsnano.2c06173 – ident: e_1_2_8_3_6 doi: 10.1016/j.apcatb.2019.04.087 – ident: e_1_2_8_9_2 doi: 10.1016/j.ccr.2023.215097 – ident: e_1_2_8_1_4 doi: 10.1002/adfm.202212819 – ident: e_1_2_8_9_3 doi: 10.1002/smll.202208002 – ident: e_1_2_8_19_2 doi: 10.1016/j.cej.2023.146222 – ident: e_1_2_8_27_2 doi: 10.1016/j.jhazmat.2021.127851 – ident: e_1_2_8_12_1 doi: 10.1039/D2TC03143D – ident: e_1_2_8_13_3 doi: 10.1039/D3TA03446A – ident: e_1_2_8_9_1 doi: 10.1016/j.ccr.2022.214917 – ident: e_1_2_8_11_2 doi: 10.1016/j.cej.2017.07.067 – ident: e_1_2_8_13_2 doi: 10.1039/D2CC04064F – ident: e_1_2_8_16_1 doi: 10.1039/D2CE01484J – ident: e_1_2_8_20_1 doi: 10.1016/j.talanta.2022.123501 – ident: e_1_2_8_5_2 doi: 10.1002/advs.202201735 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.202213039 – ident: e_1_2_8_27_3 doi: 10.1016/j.apcatb.2021.120819 – ident: e_1_2_8_32_2 doi: 10.1038/s41467-023-36710-x – ident: e_1_2_8_23_2 doi: 10.1021/acssuschemeng.2c01363 – ident: e_1_2_8_2_5 doi: 10.1016/j.apcatb.2022.122202 – ident: e_1_2_8_14_1 doi: 10.1016/j.talanta.2019.04.018 – ident: e_1_2_8_7_1 doi: 10.1002/adma.202004414 – ident: e_1_2_8_27_1 doi: 10.1021/acs.est.3c02916 – ident: e_1_2_8_17_3 doi: 10.1016/j.cej.2020.124648 – ident: e_1_2_8_26_1 doi: 10.1016/j.seppur.2022.122670 – ident: e_1_2_8_9_4 doi: 10.1016/j.xcrp.2022.100892 – ident: e_1_2_8_19_1 doi: 10.1021/acs.inorgchem.3c00647 – ident: e_1_2_8_4_2 doi: 10.1016/j.jhazmat.2021.125884 – ident: e_1_2_8_6_1 doi: 10.1016/j.watres.2023.120666 – ident: e_1_2_8_6_3 doi: 10.1021/jacsau.2c00614 – ident: e_1_2_8_15_3 doi: 10.1039/D1CE00060H – ident: e_1_2_8_1_2 doi: 10.1002/cjoc.202100149 – ident: e_1_2_8_3_4 doi: 10.1002/ange.202217601 – ident: e_1_2_8_6_4 doi: 10.1002/anie.201909718 – ident: e_1_2_8_36_1 doi: 10.1107/S0021889808012016 – ident: e_1_2_8_14_2 doi: 10.1021/acsami.1c16742 – ident: e_1_2_8_32_1 doi: 10.1002/advs.202205542 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_35_2 doi: 10.1063/1.3382344 – ident: e_1_2_8_2_7 doi: 10.1016/j.enchem.2023.100101 – ident: e_1_2_8_16_2 doi: 10.1002/anie.202205403 – ident: e_1_2_8_4_1 doi: 10.1039/D1EN00929J – ident: e_1_2_8_29_1 doi: 10.1016/j.cej.2021.133256 – ident: e_1_2_8_10_2 doi: 10.1002/anie.202009630 – ident: e_1_2_8_18_2 doi: 10.1016/j.cej.2022.134623 – ident: e_1_2_8_12_2 doi: 10.1016/j.ccr.2021.214365 – ident: e_1_2_8_22_2 doi: 10.31635/ccschem.021.202000610 – ident: e_1_2_8_15_2 doi: 10.1002/ejic.202100819 – ident: e_1_2_8_30_4 doi: 10.1016/j.xcrp.2022.101220 – ident: e_1_2_8_2_3 doi: 10.1038/s41893-021-00709-3 – ident: e_1_2_8_8_3 doi: 10.1002/ejic.202100748 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-022-33948-9 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.202302913 – ident: e_1_2_8_6_2 doi: 10.1016/j.cej.2023.145598 – ident: e_1_2_8_2_1 doi: 10.1016/j.ccr.2022.214615 – ident: e_1_2_8_8_2 doi: 10.1016/j.envres.2023.115349 – volume: 60 start-page: 652 year: 2021 ident: e_1_2_8_8_8 publication-title: Inorg. Chem. – ident: e_1_2_8_18_1 doi: 10.1016/j.cej.2023.146264 – ident: e_1_2_8_21_2 doi: 10.1021/acsami.8b04480 – ident: e_1_2_8_33_1 doi: 10.1039/C6QI00013D – ident: e_1_2_8_2_4 doi: 10.1016/j.apcatb.2022.121815 – ident: e_1_2_8_24_1 doi: 10.1039/D3QI00769C – ident: e_1_2_8_5_1 doi: 10.1016/j.apcatb.2020.119523 – ident: e_1_2_8_8_4 doi: 10.1021/jacs.3c07047 – ident: e_1_2_8_30_1 doi: 10.1021/acs.inorgchem.2c01850 – ident: e_1_2_8_2_6 doi: 10.1039/C8EN00677F – ident: e_1_2_8_8_1 doi: 10.1021/acs.inorgchem.1c04033 – ident: e_1_2_8_34_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.0c02121 – ident: e_1_2_8_3_3 doi: 10.1007/s11426-022-1466-9 – ident: e_1_2_8_1_1 doi: 10.1039/D2CS00595F – ident: e_1_2_8_11_1 doi: 10.1016/j.seppur.2022.121329 – ident: e_1_2_8_4_3 doi: 10.1021/acs.energyfuels.0c01919 – volume: 34 year: 2023 ident: e_1_2_8_30_2 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_1_3 doi: 10.1039/D3QO00940H – ident: e_1_2_8_6_5 doi: 10.1016/j.supmat.2021.100002 – ident: e_1_2_8_30_3 doi: 10.1021/acs.est.8b03711 |
SSID | ssj0017734 |
Score | 2.5952396 |
Snippet | The selective removal and immobilization of uranyl ions from aqueous solutions is essential for the sustainable development of nuclear energy. Herein, a robust... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | adsorption Amorphous materials Aqueous solutions Confined spaces Immobilization lanthanide metal‐organic frameworks Ligands Nuclear reactor components Photocatalysis photocatalytic reduction Radioisotopes Robustness (mathematics) Selective adsorption Sustainable development Uranium uranium decontamination Uranium dioxide viologen |
Title | All‐in‐One: Photo‐Responsive Lanthanide‐Organic Framework for Simultaneous Sensing, Adsorption, and Photocatalytic Reduction of Uranium |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202404126 https://www.proquest.com/docview/3113484048 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWqrtoFUApioEVeIHXTtPUjzqS7ETCqEAU0ZaTZRX5c01EHB3VmkNpV_6B8I1-Cb16dIiEk2ERxYluOr-177BwfE_KKgxeIyxPLVJ7ITEBimLJJPwee-5yJVOLm5NMP6mQs303Sycou_lofoltww55RjdfYwbWZH96JhmrncSd59EiScdTcRsIWoqJRpx_Fsqz-rawYErzYpFVtPOKH95Pf90p3UHMVsFYeZ_iQ6LasNdHk4mC5MAf2-jcZx__5mEfkQQNH6aBuP1tkDcJjsrkiUrhNbgez2c-bH9MQLx8DHNNP5-WijIFRQ6_9DvR9tM-5DlMHGKna3mnpsOV90QiM6dkUuYs6QLmc0zOkzYcv-3Tg5uVlNWrtUx1cnXe1pHQVS0RHKCyLb2np6Ti61eny6xMyHr79_PokaY5xSGwEJyph0e4sBZmlxuHsMWI-L_OMGxknM2CkF1qAlsIIb5gWHAWfpYE-lxqUcko8JeuhDPCMUGa9Yi4H67iVLveGc6ZSy8HmRzI-6ZGkNWNhG41zPGpjVtTqzLzAii66iu6RvS7-t1rd448xd9pWUTS9fF4IxoSMM2TZ7xFemfcvuRSDN8PTLvT8XxK9IBt4X_MJd8j64nIJuxEXLczLqu3_AtAKCjk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKewAO5S1SWvABiUu3rR_rzXKLoFGApKC0kXpbre0xjZp6qyapBCf-AfxGfgmefbVFQkhwWcle2_J6PPY33pnPhLzk4ATi8sgwlUYyERBppkzUTYGnLmUilhicPDpQg4l8fxw33oQYC1PxQ7QHbqgZ5XqNCo4H0rtXrKG5dRhKHrYkybi6RdbwWu_Sqhq3DFIsSaofy4qhixc7bngb9_juzfo396UrsHkdspZ7Tv8e0U1vK1eT053lQu-Yr78ROf7X59wn6zUipb1qCj0gK-AfkrvXeAofke-92ezntx9THx4fPbymn06KRRES49rD9hLoMIjoJPdTC1iojPA0tN-4ftGAjenhFN0Xcw_Fck4P0XPef96mPTsvLsqFa5vm3lZtl6dKX0KP6Bi5ZfEtLRydhJ11ujx7TCb9_aM3g6i-ySEyAZ-oiAXRsxhkEmuLBmSAfU6mCdcy2DOgpRO5gFwKLZxmueDI-Sw1dLnMQSmrxBOy6gsPTwllxilmUzCWG2lTpzlnKjYcTLonQ06HRI0cM1PTnONtG7OsImjmGQ501g50h7xqy59XBB9_LLnZTIusVvR5JhgTMhjJstshvJTvX1rJem_7oza18S-VXpDbg6PRMBu-O_jwjNzB_Mq9cJOsLi6WsBVg0kI_LxXhF10wDlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BkRAcKE8R2lIfkLh02_ix3iy3iHTVQluqlEi5rfykUVNv1SRI9MQ_gN_YX4K9r6ZICAkuK9lrW16Px_PZO_MZ4A0xlgZcHinM04gl1EQScxX1UkNSm2IasxCcfHjE90bswzgeL0XxV_wQ7YFb0IxyvQ4KfqHtzg1pqNA2RJJ7i8Qw4XfhHuPdXpjXg2FLIIWTpPqvzHHw8MLjhraxS3Zu179tlm6w5jJiLU1Otgqi6WzlaXK2vZjLbXX1G4_j_3zNY3hU41HUrybQE7hj3FN4uMRS-Ax-9KfT6-8_J84_PjnzDh2fFvPCJ4a1f-1Xgw68gE6Fm2gTCpXxnQpljeMX8sgYnUyC86JwpljM0Enwm3dftlBfz4rLctnaQsLpqu3yTOmb7xEaBmbZ8BYVFo28XZ0szp_DKNv9_H4vqu9xiJRHJzzCXvA4NiyJpQ7bRw_6LEsTIpnfzRjJLBXUCEYltRILSgLjM5OmR5gwnGtOX8CKK5x5CQgry7FOjdJEMZ1aSQjmsSJGpV3mczoQNWLMVU1yHu7amOYVPTPJw0Dn7UB34G1b_qKi9_hjyfVmVuS1ms9yijFlfovMeh0gpXj_0kreH2SHberVv1TahPvHgyw_2D_6uAYPQnblW7gOK_PLhdnwGGkuX5dq8AtMoQ0M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All%E2%80%90in%E2%80%90One%3A+Photo%E2%80%90Responsive+Lanthanide%E2%80%90Organic+Framework+for+Simultaneous+Sensing%2C+Adsorption%2C+and+Photocatalytic+Reduction+of+Uranium&rft.jtitle=Advanced+functional+materials&rft.au=Huang%2C+Zhi%E2%80%90Wei&rft.au=Li%2C+Xiao%E2%80%90Bo&rft.au=Mei%2C+Lei&rft.au=Han%2C+Yi%E2%80%90Zhi&rft.date=2024-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202404126&rft.externalDBID=10.1002%252Fadfm.202404126&rft.externalDocID=ADFM202404126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |