Dynamic Galvanic Corrosion of Working Lithium Metal Anode Under Practical Conditions
The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution,...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 21 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution, a dynamic galvanic corrosion mechanism under realistic working conditions is described, through which an extended solid electrolyte interphase (SEI) is progressively generated on the successively exposed copper substrate during the dynamic Li removal process. As determined by the titration gas chromatography method, the dynamic galvanic corrosion reaction is unveiled to induce an unfavorable extra Li loss and hence a reduced cell reversibility, especially at sluggish Li stripping rates. Systematic investigations reveal that three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are responsible form odulating the extent of dynamic galvanic corrosion in practical batteries. This work provides an important complement to current knowledge regarding the corrosion processes of working Li metal anodes, affording fresh insights into the design strategies toward high‐reversibility Li cycling.
Dynamic galvanic corrosion dominates solid electrolyte interphase SEI Li+ loss under practical conditions (high‐areal‐capacity Li deposition), through which extended SEIs are progressively generated on the gradually exposed Cu surface during Li removal. Three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are identified to determine the extent of dynamic galvanic corrosion. |
---|---|
AbstractList | The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution, a dynamic galvanic corrosion mechanism under realistic working conditions is described, through which an extended solid electrolyte interphase (SEI) is progressively generated on the successively exposed copper substrate during the dynamic Li removal process. As determined by the titration gas chromatography method, the dynamic galvanic corrosion reaction is unveiled to induce an unfavorable extra Li loss and hence a reduced cell reversibility, especially at sluggish Li stripping rates. Systematic investigations reveal that three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are responsible form odulating the extent of dynamic galvanic corrosion in practical batteries. This work provides an important complement to current knowledge regarding the corrosion processes of working Li metal anodes, affording fresh insights into the design strategies toward high‐reversibility Li cycling. The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution, a dynamic galvanic corrosion mechanism under realistic working conditions is described, through which an extended solid electrolyte interphase (SEI) is progressively generated on the successively exposed copper substrate during the dynamic Li removal process. As determined by the titration gas chromatography method, the dynamic galvanic corrosion reaction is unveiled to induce an unfavorable extra Li loss and hence a reduced cell reversibility, especially at sluggish Li stripping rates. Systematic investigations reveal that three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are responsible form odulating the extent of dynamic galvanic corrosion in practical batteries. This work provides an important complement to current knowledge regarding the corrosion processes of working Li metal anodes, affording fresh insights into the design strategies toward high‐reversibility Li cycling. Dynamic galvanic corrosion dominates solid electrolyte interphase SEI Li+ loss under practical conditions (high‐areal‐capacity Li deposition), through which extended SEIs are progressively generated on the gradually exposed Cu surface during Li removal. Three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are identified to determine the extent of dynamic galvanic corrosion. The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution, a dynamic galvanic corrosion mechanism under realistic working conditions is described, through which an extended solid electrolyte interphase (SEI) is progressively generated on the successively exposed copper substrate during the dynamic Li removal process. As determined by the titration gas chromatography method, the dynamic galvanic corrosion reaction is unveiled to induce an unfavorable extra Li loss and hence a reduced cell reversibility, especially at sluggish Li stripping rates. Systematic investigations reveal that three critical factors, including total step length of Li stripping, dynamic corrosion current (i corrosion ) degradation speed, and SEI chemistry, are responsible form odulating the extent of dynamic galvanic corrosion in practical batteries. This work provides an important complement to current knowledge regarding the corrosion processes of working Li metal anodes, affording fresh insights into the design strategies toward high‐reversibility Li cycling. |
Author | Huang, Jia‐Qi Xu, Rui Zhang, Shuo Xiao, Ye Song, Ting‐Lu Ding, Jun‐Fan Yan, Chong |
Author_xml | – sequence: 1 givenname: Jun‐Fan surname: Ding fullname: Ding, Jun‐Fan organization: Beijing Institute of Technology – sequence: 2 givenname: Rui surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 3 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 4 givenname: Shuo surname: Zhang fullname: Zhang, Shuo organization: Beijing Institute of Technology – sequence: 5 givenname: Ting‐Lu surname: Song fullname: Song, Ting‐Lu organization: Beijing Institute of Technology – sequence: 6 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 7 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNqFkE1LAzEQhoNUsNZePQc8b83XprvHstYqtOqhxWPIJllN3U1qdqv035tSqSCIc5lheJ_5eM9Bz3lnALjEaIQRItfSuGZEECGIUZSegD7mmCU8Y6h3rCk5A8O2XaMYLMeI0j5Y3uycbKyCM1l_SBeLwofgW-sd9BV89uHNuhc4t92r3TZwYTpZw4nz2sCV0ybApyBVZ1XsFt5p20WwvQCnlaxbM_zOA7C6nS6Lu2T-OLsvJvNEUTxOk0ozMzY5pQRrmudjLU3Gy0xRyUtqlMI8NSWRnJeEaMNQFbspzyueUqSjmA7A1WHuJvj3rWk7sfbb4OJKQTKC0zg0xVHFDioV_2qDqYSyndwf2gVpa4GR2Fso9haKo4URG_3CNsE2Muz-BvID8Glrs_tHLSbTh8UP-wX-uoZe |
CitedBy_id | crossref_primary_10_1016_j_joule_2023_08_007 crossref_primary_10_1002_adfm_202421952 crossref_primary_10_1016_j_ensm_2024_103192 crossref_primary_10_1021_acsnano_4c02329 crossref_primary_10_1039_D4EE06096B crossref_primary_10_1021_acsnano_4c00720 crossref_primary_10_1016_j_ensm_2024_103592 crossref_primary_10_1002_batt_202400304 crossref_primary_10_1002_batt_202400505 crossref_primary_10_1016_j_cej_2024_152110 crossref_primary_10_1021_acsenergylett_4c00363 crossref_primary_10_1039_D4EB00034J crossref_primary_10_1039_D4TA02158D crossref_primary_10_1002_adfm_202311212 crossref_primary_10_1002_aenm_202304366 crossref_primary_10_1002_eem2_12831 crossref_primary_10_1039_D4EE03468F crossref_primary_10_1002_aenm_202304321 crossref_primary_10_1016_j_etran_2024_100364 crossref_primary_10_1021_acsenergylett_3c01887 crossref_primary_10_1002_adfm_202316561 |
Cites_doi | 10.1039/D1EE03103A 10.1002/anie.202012005 10.1039/C8EE00364E 10.1002/adma.201806620 10.1039/D1EE00110H 10.1149/1.2407470 10.1126/science.abi8703 10.1039/C3EE40795K 10.1016/j.trechm.2019.02.015 10.1021/acs.chemrev.2c00097 10.1149/1945-7111/ac0a21 10.1016/j.jechem.2021.03.048 10.1038/s41560-019-0474-3 10.1021/jacs.0c10258 10.1002/anie.202115602 10.1002/inf2.12000 10.1016/j.matt.2019.05.016 10.1021/acsmaterialslett.9b00118 10.1016/j.trechm.2020.10.008 10.1016/j.electacta.2022.140353 10.1016/j.jechem.2020.11.016 10.1149/1.2128859 10.1021/cm901452z 10.1038/s41560-021-00787-9 10.1016/j.joule.2018.08.004 10.1016/j.ensm.2019.12.024 10.1021/acs.chemrev.7b00115 10.1021/acs.chemmater.9b04550 10.1039/C9EE02538C 10.1016/j.ensm.2022.12.016 10.1002/anie.202101627 10.1038/s41560-022-01051-4 10.1038/s41557-018-0203-8 10.1039/C7CS00180K 10.1002/aenm.201801427 10.1038/s41578-021-00345-5 10.1038/s41560-020-0640-7 10.1039/D1TA07860G 10.1002/adma.202105962 10.1038/nnano.2017.16 10.1002/aenm.202101021 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202204305 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202204305 AENM202204305 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22109083 – fundername: National Key Research and Development Program funderid: 2021YFB2400300 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars – fundername: Beijing Natural Science Foundation funderid: JQ20004 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3175-fd4e7e93321d3997dae86b8c3a6b3ecc165eb2a66b22de40fb3e569f6530ddae3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:17:14 EDT 2025 Tue Jul 01 01:43:50 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Wed Jan 22 16:21:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3175-fd4e7e93321d3997dae86b8c3a6b3ecc165eb2a66b22de40fb3e569f6530ddae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7394-9186 |
PQID | 2821539951 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2821539951 crossref_citationtrail_10_1002_aenm_202204305 crossref_primary_10_1002_aenm_202204305 wiley_primary_10_1002_aenm_202204305_AENM202204305 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 375 2017 2014; 12 7 2020; 5 2021 2018 2018 2019; 14 2 47 31 2021 2020 2021; 6 3 9 2020 2021 2021 2020 2019 2019; 60 60 6 13 4 1 2020 2010; 26 22 2019; 1 2017 2019 2022; 117 1 15 2021 2022 2018 2022; 33 7 11 61 2021 2020 2018; 6 32 8 2019 2021 2020 2022; 11 11 142 419 2021 1979 1970; 168 126 117 2019 2022 2021 2023; 1 122 59 55 2021; 62 e_1_2_7_4_3 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_5_3 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_11_3 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_10_3 e_1_2_7_11_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_8_6 e_1_2_7_8_5 e_1_2_7_9_4 e_1_2_7_8_4 e_1_2_7_9_3 Zheng X. (e_1_2_7_8_3) 2021; 6 |
References_xml | – volume: 1 122 59 55 start-page: 152 306 708 year: 2019 2022 2021 2023 publication-title: Trends Chem. Chem. Rev. J. Energy Chem. Energy Storage Mater. – volume: 375 start-page: 66 year: 2022 publication-title: Science – volume: 11 11 142 419 start-page: 382 year: 2019 2021 2020 2022 publication-title: Nat. Chem. Adv. Energy Mater. J. Am. Chem. Soc. Electrochim. Acta – volume: 62 start-page: 289 year: 2021 publication-title: J. Energy Chem. – volume: 5 start-page: 534 year: 2020 publication-title: Nat. Energy – volume: 168 126 117 start-page: 2047 222 year: 2021 1979 1970 publication-title: J. Electrochem. Soc. J. Electrochem. Soc. J. Electrochem. Soc. – volume: 1 start-page: 6 year: 2019 publication-title: InfoMat – volume: 6 32 8 start-page: 1036 2341 year: 2021 2020 2018 publication-title: Nat. Rev. Mater. Chem. Mater. Adv. Energy Mater. – volume: 60 60 6 13 4 1 start-page: 3661 212 882 317 year: 2020 2021 2021 2020 2019 2019 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. ACS Energy Lett. Energy Environ. Sci. Nat. Energy Matter – volume: 33 7 11 61 start-page: 548 2600 year: 2021 2022 2018 2022 publication-title: Adv. Mater. Nat. Energy Energy Environ. Sci. Angew. Chem., Int. Ed. – volume: 12 7 start-page: 194 513 year: 2017 2014 publication-title: Nat. Nanotechnol. Energy Environ. Sci. – volume: 6 3 9 start-page: 487 5 year: 2021 2020 2021 publication-title: Nat. Energy Trends Chem. J. Mater. Chem. A – volume: 14 2 47 31 start-page: 3872 2167 736 year: 2021 2018 2018 2019 publication-title: Energy Environ. Sci. Joule Chem. Soc. Rev. Adv. Mater. – volume: 26 22 start-page: 46 587 year: 2020 2010 publication-title: Energy Storage Mater. Chem. Mater. – volume: 117 1 15 start-page: 217 843 year: 2017 2019 2022 publication-title: Chem. Rev. ACS Mater. Lett. Energy Environ. Sci. – ident: e_1_2_7_4_3 doi: 10.1039/D1EE03103A – ident: e_1_2_7_8_1 doi: 10.1002/anie.202012005 – ident: e_1_2_7_10_3 doi: 10.1039/C8EE00364E – ident: e_1_2_7_9_4 doi: 10.1002/adma.201806620 – ident: e_1_2_7_9_1 doi: 10.1039/D1EE00110H – ident: e_1_2_7_7_3 doi: 10.1149/1.2407470 – ident: e_1_2_7_15_1 doi: 10.1126/science.abi8703 – ident: e_1_2_7_1_2 doi: 10.1039/C3EE40795K – ident: e_1_2_7_5_1 doi: 10.1016/j.trechm.2019.02.015 – ident: e_1_2_7_5_2 doi: 10.1021/acs.chemrev.2c00097 – ident: e_1_2_7_7_1 doi: 10.1149/1945-7111/ac0a21 – ident: e_1_2_7_14_1 doi: 10.1016/j.jechem.2021.03.048 – ident: e_1_2_7_8_5 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_7_12_3 doi: 10.1021/jacs.0c10258 – ident: e_1_2_7_10_4 doi: 10.1002/anie.202115602 – ident: e_1_2_7_2_1 doi: 10.1002/inf2.12000 – ident: e_1_2_7_8_6 doi: 10.1016/j.matt.2019.05.016 – ident: e_1_2_7_4_2 doi: 10.1021/acsmaterialslett.9b00118 – ident: e_1_2_7_6_2 doi: 10.1016/j.trechm.2020.10.008 – ident: e_1_2_7_12_4 doi: 10.1016/j.electacta.2022.140353 – ident: e_1_2_7_5_3 doi: 10.1016/j.jechem.2020.11.016 – volume: 6 year: 2021 ident: e_1_2_7_8_3 publication-title: ACS Energy Lett. – ident: e_1_2_7_7_2 doi: 10.1149/1.2128859 – ident: e_1_2_7_3_2 doi: 10.1021/cm901452z – ident: e_1_2_7_6_1 doi: 10.1038/s41560-021-00787-9 – ident: e_1_2_7_9_2 doi: 10.1016/j.joule.2018.08.004 – ident: e_1_2_7_3_1 doi: 10.1016/j.ensm.2019.12.024 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_11_2 doi: 10.1021/acs.chemmater.9b04550 – ident: e_1_2_7_8_4 doi: 10.1039/C9EE02538C – ident: e_1_2_7_5_4 doi: 10.1016/j.ensm.2022.12.016 – ident: e_1_2_7_8_2 doi: 10.1002/anie.202101627 – ident: e_1_2_7_10_2 doi: 10.1038/s41560-022-01051-4 – ident: e_1_2_7_12_1 doi: 10.1038/s41557-018-0203-8 – ident: e_1_2_7_9_3 doi: 10.1039/C7CS00180K – ident: e_1_2_7_11_3 doi: 10.1002/aenm.201801427 – ident: e_1_2_7_11_1 doi: 10.1038/s41578-021-00345-5 – ident: e_1_2_7_13_1 doi: 10.1038/s41560-020-0640-7 – ident: e_1_2_7_6_3 doi: 10.1039/D1TA07860G – ident: e_1_2_7_10_1 doi: 10.1002/adma.202105962 – ident: e_1_2_7_1_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_12_2 doi: 10.1002/aenm.202101021 |
SSID | ssj0000491033 |
Score | 2.5309367 |
Snippet | The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Batteries Corrosion Corrosion currents Corrosion mechanisms Corrosion rate dynamic galvanic corrosion Electrochemical analysis Galvanic corrosion Gas chromatography Li metal batteries Li stripping process Lithium Rechargeable batteries solid electrolyte interphases Solid electrolytes Substrates Titration |
Title | Dynamic Galvanic Corrosion of Working Lithium Metal Anode Under Practical Conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202204305 https://www.proquest.com/docview/2821539951 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbaZGmHok_UbVpwKNAhUGtTEi2NRmwnCGx3qAxoI_gSYiCRitRa-ut7fIhSkD6SLIJME5TN-0R-d-R9ROhTohLKKRER4YJHic5UlCsqzCKvSX2UlayMo7je0LNtcl6mZb9tzGaX7MUX-euPeSUPsSqUgV1Nluw9LBsahQK4B_vCFSwM1zvZeO6Okz8-5ZdAiOHmpLmGWc9zQB8HN7oYF7v26nitTeIj-PvKUE2jIeHEiqSNH5il6xC762Rpuw0C2mUIArt1fyvsu2nrsFtiCSPFvJsI4buyteZrd31Y1hSUO97cjlZftM0w_kDifp_UHUe5wegKXCCimQ9o6mGZ02wKQ3I8gJ7LoL411DvpWK5roydAiNUu6ye1biF_840tt6sVKxZl8RgdEnAmYDQ8nM3Xq-8hFgde0mQc21yM7hd2-p5j8vXmI27yl94pGbo2lpsUz9Ez71TgmUPIC_RI1y_R04HU5CtUeKzgDis4YAU3FfZYwR4r2GIFW6xgixUcsIJ7rLxG2-WiODmL_IkakTQ8MapUoqc6j2MyUcBMp4rrjIpMxpyKGF7mCU21IJxSQYjSybiC0pTmFU3jsYLK8Rt0UDe1fouwAtcCuI3MZSKB5aV5JXVSgXcxVZUAt3eEoq6fmPRy8-bUk0vmhLIJM_3KQr-O0OdQ_4cTWvlrzaOu25l_GX8ykgF3NWnakxEi1hT_aYXNFpt1-PTu322-R0966B-hg_11qz8AGd2Ljx5LvwHBg4h2 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Galvanic+Corrosion+of+Working+Lithium+Metal+Anode+Under+Practical+Conditions&rft.jtitle=Advanced+energy+materials&rft.au=Jun%E2%80%90Fan+Ding&rft.au=Xu%2C+Rui&rft.au=Ye%2C+Xiao&rft.au=Zhang%2C+Shuo&rft.date=2023-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=21&rft_id=info:doi/10.1002%2Faenm.202204305&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |