Dynamic Galvanic Corrosion of Working Lithium Metal Anode Under Practical Conditions

The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 21
Main Authors Ding, Jun‐Fan, Xu, Rui, Xiao, Ye, Zhang, Shuo, Song, Ting‐Lu, Yan, Chong, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution, a dynamic galvanic corrosion mechanism under realistic working conditions is described, through which an extended solid electrolyte interphase (SEI) is progressively generated on the successively exposed copper substrate during the dynamic Li removal process. As determined by the titration gas chromatography method, the dynamic galvanic corrosion reaction is unveiled to induce an unfavorable extra Li loss and hence a reduced cell reversibility, especially at sluggish Li stripping rates. Systematic investigations reveal that three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are responsible form odulating the extent of dynamic galvanic corrosion in practical batteries. This work provides an important complement to current knowledge regarding the corrosion processes of working Li metal anodes, affording fresh insights into the design strategies toward high‐reversibility Li cycling. Dynamic galvanic corrosion dominates solid electrolyte interphase SEI Li+ loss under practical conditions (high‐areal‐capacity Li deposition), through which extended SEIs are progressively generated on the gradually exposed Cu surface during Li removal. Three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are identified to determine the extent of dynamic galvanic corrosion.
AbstractList The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution, a dynamic galvanic corrosion mechanism under realistic working conditions is described, through which an extended solid electrolyte interphase (SEI) is progressively generated on the successively exposed copper substrate during the dynamic Li removal process. As determined by the titration gas chromatography method, the dynamic galvanic corrosion reaction is unveiled to induce an unfavorable extra Li loss and hence a reduced cell reversibility, especially at sluggish Li stripping rates. Systematic investigations reveal that three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are responsible form odulating the extent of dynamic galvanic corrosion in practical batteries. This work provides an important complement to current knowledge regarding the corrosion processes of working Li metal anodes, affording fresh insights into the design strategies toward high‐reversibility Li cycling.
The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution, a dynamic galvanic corrosion mechanism under realistic working conditions is described, through which an extended solid electrolyte interphase (SEI) is progressively generated on the successively exposed copper substrate during the dynamic Li removal process. As determined by the titration gas chromatography method, the dynamic galvanic corrosion reaction is unveiled to induce an unfavorable extra Li loss and hence a reduced cell reversibility, especially at sluggish Li stripping rates. Systematic investigations reveal that three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are responsible form odulating the extent of dynamic galvanic corrosion in practical batteries. This work provides an important complement to current knowledge regarding the corrosion processes of working Li metal anodes, affording fresh insights into the design strategies toward high‐reversibility Li cycling. Dynamic galvanic corrosion dominates solid electrolyte interphase SEI Li+ loss under practical conditions (high‐areal‐capacity Li deposition), through which extended SEIs are progressively generated on the gradually exposed Cu surface during Li removal. Three critical factors, including total step length of Li stripping, dynamic corrosion current (icorrosion) degradation speed, and SEI chemistry, are identified to determine the extent of dynamic galvanic corrosion.
The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely stemms from their high susceptibility to corrosion. Inan effort to complete the real picture of Li corrosion pathways, in this contribution, a dynamic galvanic corrosion mechanism under realistic working conditions is described, through which an extended solid electrolyte interphase (SEI) is progressively generated on the successively exposed copper substrate during the dynamic Li removal process. As determined by the titration gas chromatography method, the dynamic galvanic corrosion reaction is unveiled to induce an unfavorable extra Li loss and hence a reduced cell reversibility, especially at sluggish Li stripping rates. Systematic investigations reveal that three critical factors, including total step length of Li stripping, dynamic corrosion current (i corrosion ) degradation speed, and SEI chemistry, are responsible form odulating the extent of dynamic galvanic corrosion in practical batteries. This work provides an important complement to current knowledge regarding the corrosion processes of working Li metal anodes, affording fresh insights into the design strategies toward high‐reversibility Li cycling.
Author Huang, Jia‐Qi
Xu, Rui
Zhang, Shuo
Xiao, Ye
Song, Ting‐Lu
Ding, Jun‐Fan
Yan, Chong
Author_xml – sequence: 1
  givenname: Jun‐Fan
  surname: Ding
  fullname: Ding, Jun‐Fan
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Ting‐Lu
  surname: Song
  fullname: Song, Ting‐Lu
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkE1LAzEQhoNUsNZePQc8b83XprvHstYqtOqhxWPIJllN3U1qdqv035tSqSCIc5lheJ_5eM9Bz3lnALjEaIQRItfSuGZEECGIUZSegD7mmCU8Y6h3rCk5A8O2XaMYLMeI0j5Y3uycbKyCM1l_SBeLwofgW-sd9BV89uHNuhc4t92r3TZwYTpZw4nz2sCV0ybApyBVZ1XsFt5p20WwvQCnlaxbM_zOA7C6nS6Lu2T-OLsvJvNEUTxOk0ozMzY5pQRrmudjLU3Gy0xRyUtqlMI8NSWRnJeEaMNQFbspzyueUqSjmA7A1WHuJvj3rWk7sfbb4OJKQTKC0zg0xVHFDioV_2qDqYSyndwf2gVpa4GR2Fso9haKo4URG_3CNsE2Muz-BvID8Glrs_tHLSbTh8UP-wX-uoZe
CitedBy_id crossref_primary_10_1016_j_joule_2023_08_007
crossref_primary_10_1002_adfm_202421952
crossref_primary_10_1016_j_ensm_2024_103192
crossref_primary_10_1021_acsnano_4c02329
crossref_primary_10_1039_D4EE06096B
crossref_primary_10_1021_acsnano_4c00720
crossref_primary_10_1016_j_ensm_2024_103592
crossref_primary_10_1002_batt_202400304
crossref_primary_10_1002_batt_202400505
crossref_primary_10_1016_j_cej_2024_152110
crossref_primary_10_1021_acsenergylett_4c00363
crossref_primary_10_1039_D4EB00034J
crossref_primary_10_1039_D4TA02158D
crossref_primary_10_1002_adfm_202311212
crossref_primary_10_1002_aenm_202304366
crossref_primary_10_1002_eem2_12831
crossref_primary_10_1039_D4EE03468F
crossref_primary_10_1002_aenm_202304321
crossref_primary_10_1016_j_etran_2024_100364
crossref_primary_10_1021_acsenergylett_3c01887
crossref_primary_10_1002_adfm_202316561
Cites_doi 10.1039/D1EE03103A
10.1002/anie.202012005
10.1039/C8EE00364E
10.1002/adma.201806620
10.1039/D1EE00110H
10.1149/1.2407470
10.1126/science.abi8703
10.1039/C3EE40795K
10.1016/j.trechm.2019.02.015
10.1021/acs.chemrev.2c00097
10.1149/1945-7111/ac0a21
10.1016/j.jechem.2021.03.048
10.1038/s41560-019-0474-3
10.1021/jacs.0c10258
10.1002/anie.202115602
10.1002/inf2.12000
10.1016/j.matt.2019.05.016
10.1021/acsmaterialslett.9b00118
10.1016/j.trechm.2020.10.008
10.1016/j.electacta.2022.140353
10.1016/j.jechem.2020.11.016
10.1149/1.2128859
10.1021/cm901452z
10.1038/s41560-021-00787-9
10.1016/j.joule.2018.08.004
10.1016/j.ensm.2019.12.024
10.1021/acs.chemrev.7b00115
10.1021/acs.chemmater.9b04550
10.1039/C9EE02538C
10.1016/j.ensm.2022.12.016
10.1002/anie.202101627
10.1038/s41560-022-01051-4
10.1038/s41557-018-0203-8
10.1039/C7CS00180K
10.1002/aenm.201801427
10.1038/s41578-021-00345-5
10.1038/s41560-020-0640-7
10.1039/D1TA07860G
10.1002/adma.202105962
10.1038/nnano.2017.16
10.1002/aenm.202101021
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202204305
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202204305
AENM202204305
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22109083
– fundername: National Key Research and Development Program
  funderid: 2021YFB2400300
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
– fundername: Beijing Natural Science Foundation
  funderid: JQ20004
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3175-fd4e7e93321d3997dae86b8c3a6b3ecc165eb2a66b22de40fb3e569f6530ddae3
ISSN 1614-6832
IngestDate Fri Jul 25 12:17:14 EDT 2025
Tue Jul 01 01:43:50 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Wed Jan 22 16:21:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-fd4e7e93321d3997dae86b8c3a6b3ecc165eb2a66b22de40fb3e569f6530ddae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7394-9186
PQID 2821539951
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2821539951
crossref_citationtrail_10_1002_aenm_202204305
crossref_primary_10_1002_aenm_202204305
wiley_primary_10_1002_aenm_202204305_AENM202204305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2017 2014; 12 7
2020; 5
2021 2018 2018 2019; 14 2 47 31
2021 2020 2021; 6 3 9
2020 2021 2021 2020 2019 2019; 60 60 6 13 4 1
2020 2010; 26 22
2019; 1
2017 2019 2022; 117 1 15
2021 2022 2018 2022; 33 7 11 61
2021 2020 2018; 6 32 8
2019 2021 2020 2022; 11 11 142 419
2021 1979 1970; 168 126 117
2019 2022 2021 2023; 1 122 59 55
2021; 62
e_1_2_7_4_3
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_5_3
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_11_3
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_10_3
e_1_2_7_11_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_8_6
e_1_2_7_8_5
e_1_2_7_9_4
e_1_2_7_8_4
e_1_2_7_9_3
Zheng X. (e_1_2_7_8_3) 2021; 6
References_xml – volume: 1 122 59 55
  start-page: 152 306 708
  year: 2019 2022 2021 2023
  publication-title: Trends Chem. Chem. Rev. J. Energy Chem. Energy Storage Mater.
– volume: 375
  start-page: 66
  year: 2022
  publication-title: Science
– volume: 11 11 142 419
  start-page: 382
  year: 2019 2021 2020 2022
  publication-title: Nat. Chem. Adv. Energy Mater. J. Am. Chem. Soc. Electrochim. Acta
– volume: 62
  start-page: 289
  year: 2021
  publication-title: J. Energy Chem.
– volume: 5
  start-page: 534
  year: 2020
  publication-title: Nat. Energy
– volume: 168 126 117
  start-page: 2047 222
  year: 2021 1979 1970
  publication-title: J. Electrochem. Soc. J. Electrochem. Soc. J. Electrochem. Soc.
– volume: 1
  start-page: 6
  year: 2019
  publication-title: InfoMat
– volume: 6 32 8
  start-page: 1036 2341
  year: 2021 2020 2018
  publication-title: Nat. Rev. Mater. Chem. Mater. Adv. Energy Mater.
– volume: 60 60 6 13 4 1
  start-page: 3661 212 882 317
  year: 2020 2021 2021 2020 2019 2019
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. ACS Energy Lett. Energy Environ. Sci. Nat. Energy Matter
– volume: 33 7 11 61
  start-page: 548 2600
  year: 2021 2022 2018 2022
  publication-title: Adv. Mater. Nat. Energy Energy Environ. Sci. Angew. Chem., Int. Ed.
– volume: 12 7
  start-page: 194 513
  year: 2017 2014
  publication-title: Nat. Nanotechnol. Energy Environ. Sci.
– volume: 6 3 9
  start-page: 487 5
  year: 2021 2020 2021
  publication-title: Nat. Energy Trends Chem. J. Mater. Chem. A
– volume: 14 2 47 31
  start-page: 3872 2167 736
  year: 2021 2018 2018 2019
  publication-title: Energy Environ. Sci. Joule Chem. Soc. Rev. Adv. Mater.
– volume: 26 22
  start-page: 46 587
  year: 2020 2010
  publication-title: Energy Storage Mater. Chem. Mater.
– volume: 117 1 15
  start-page: 217 843
  year: 2017 2019 2022
  publication-title: Chem. Rev. ACS Mater. Lett. Energy Environ. Sci.
– ident: e_1_2_7_4_3
  doi: 10.1039/D1EE03103A
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.202012005
– ident: e_1_2_7_10_3
  doi: 10.1039/C8EE00364E
– ident: e_1_2_7_9_4
  doi: 10.1002/adma.201806620
– ident: e_1_2_7_9_1
  doi: 10.1039/D1EE00110H
– ident: e_1_2_7_7_3
  doi: 10.1149/1.2407470
– ident: e_1_2_7_15_1
  doi: 10.1126/science.abi8703
– ident: e_1_2_7_1_2
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_5_1
  doi: 10.1016/j.trechm.2019.02.015
– ident: e_1_2_7_5_2
  doi: 10.1021/acs.chemrev.2c00097
– ident: e_1_2_7_7_1
  doi: 10.1149/1945-7111/ac0a21
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jechem.2021.03.048
– ident: e_1_2_7_8_5
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_7_12_3
  doi: 10.1021/jacs.0c10258
– ident: e_1_2_7_10_4
  doi: 10.1002/anie.202115602
– ident: e_1_2_7_2_1
  doi: 10.1002/inf2.12000
– ident: e_1_2_7_8_6
  doi: 10.1016/j.matt.2019.05.016
– ident: e_1_2_7_4_2
  doi: 10.1021/acsmaterialslett.9b00118
– ident: e_1_2_7_6_2
  doi: 10.1016/j.trechm.2020.10.008
– ident: e_1_2_7_12_4
  doi: 10.1016/j.electacta.2022.140353
– ident: e_1_2_7_5_3
  doi: 10.1016/j.jechem.2020.11.016
– volume: 6
  year: 2021
  ident: e_1_2_7_8_3
  publication-title: ACS Energy Lett.
– ident: e_1_2_7_7_2
  doi: 10.1149/1.2128859
– ident: e_1_2_7_3_2
  doi: 10.1021/cm901452z
– ident: e_1_2_7_6_1
  doi: 10.1038/s41560-021-00787-9
– ident: e_1_2_7_9_2
  doi: 10.1016/j.joule.2018.08.004
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ensm.2019.12.024
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_11_2
  doi: 10.1021/acs.chemmater.9b04550
– ident: e_1_2_7_8_4
  doi: 10.1039/C9EE02538C
– ident: e_1_2_7_5_4
  doi: 10.1016/j.ensm.2022.12.016
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.202101627
– ident: e_1_2_7_10_2
  doi: 10.1038/s41560-022-01051-4
– ident: e_1_2_7_12_1
  doi: 10.1038/s41557-018-0203-8
– ident: e_1_2_7_9_3
  doi: 10.1039/C7CS00180K
– ident: e_1_2_7_11_3
  doi: 10.1002/aenm.201801427
– ident: e_1_2_7_11_1
  doi: 10.1038/s41578-021-00345-5
– ident: e_1_2_7_13_1
  doi: 10.1038/s41560-020-0640-7
– ident: e_1_2_7_6_3
  doi: 10.1039/D1TA07860G
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202105962
– ident: e_1_2_7_1_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_12_2
  doi: 10.1002/aenm.202101021
SSID ssj0000491033
Score 2.5309367
Snippet The practical deployment of lithium metal anodes in rechargeable batteries has been significantly restricted by poor electrochemical performance, which largely...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Batteries
Corrosion
Corrosion currents
Corrosion mechanisms
Corrosion rate
dynamic galvanic corrosion
Electrochemical analysis
Galvanic corrosion
Gas chromatography
Li metal batteries
Li stripping process
Lithium
Rechargeable batteries
solid electrolyte interphases
Solid electrolytes
Substrates
Titration
Title Dynamic Galvanic Corrosion of Working Lithium Metal Anode Under Practical Conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202204305
https://www.proquest.com/docview/2821539951
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbaZGmHok_UbVpwKNAhUGtTEi2NRmwnCGx3qAxoI_gSYiCRitRa-ut7fIhSkD6SLIJME5TN-0R-d-R9ROhTohLKKRER4YJHic5UlCsqzCKvSX2UlayMo7je0LNtcl6mZb9tzGaX7MUX-euPeSUPsSqUgV1Nluw9LBsahQK4B_vCFSwM1zvZeO6Okz8-5ZdAiOHmpLmGWc9zQB8HN7oYF7v26nitTeIj-PvKUE2jIeHEiqSNH5il6xC762Rpuw0C2mUIArt1fyvsu2nrsFtiCSPFvJsI4buyteZrd31Y1hSUO97cjlZftM0w_kDifp_UHUe5wegKXCCimQ9o6mGZ02wKQ3I8gJ7LoL411DvpWK5roydAiNUu6ye1biF_840tt6sVKxZl8RgdEnAmYDQ8nM3Xq-8hFgde0mQc21yM7hd2-p5j8vXmI27yl94pGbo2lpsUz9Ez71TgmUPIC_RI1y_R04HU5CtUeKzgDis4YAU3FfZYwR4r2GIFW6xgixUcsIJ7rLxG2-WiODmL_IkakTQ8MapUoqc6j2MyUcBMp4rrjIpMxpyKGF7mCU21IJxSQYjSybiC0pTmFU3jsYLK8Rt0UDe1fouwAtcCuI3MZSKB5aV5JXVSgXcxVZUAt3eEoq6fmPRy8-bUk0vmhLIJM_3KQr-O0OdQ_4cTWvlrzaOu25l_GX8ykgF3NWnakxEi1hT_aYXNFpt1-PTu322-R0966B-hg_11qz8AGd2Ljx5LvwHBg4h2
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Galvanic+Corrosion+of+Working+Lithium+Metal+Anode+Under+Practical+Conditions&rft.jtitle=Advanced+energy+materials&rft.au=Jun%E2%80%90Fan+Ding&rft.au=Xu%2C+Rui&rft.au=Ye%2C+Xiao&rft.au=Zhang%2C+Shuo&rft.date=2023-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=21&rft_id=info:doi/10.1002%2Faenm.202204305&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon