High Performance and Stackable Trampoline Like‐Triboelectric Vibration Energy Harvester for In‐Situ Powering Sensor Node with Data Wirelessly Transmitted Over 1000‐m
Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 24 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The unique structural design and material selection enables T‐TVEH to represent a breakthrough in terms of both working bandwidth and power density compared to recent research efforts of vibration energy harvesting. Specifically, the working bandwidth and the peak power density of T‐TVEH is 192 Hz and 5.9 W m−2, which are higher than previous related studies by 156% and 59.2%, respectively. Based on the excellent performance of the T‐TVEH, a wireless sensor node for monitoring machinery condition is constructed. Temperature, humidity, and frequency information are successfully acquired and transmitted to 1000‐m through the wireless sensor node, which is nine times improved compared to related studies. Meanwhile, it achieves fully self‐powered wireless operation monitoring and abnormal alarm on a real ship's marine diesel engine. Overall, this study proposed an innovative solution for in‐situ power supply of wireless sensor nodes, which has broad application prospects in the field of the IOT.
This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The T‐TVEH represents a breakthrough in terms of both working bandwidth and power density compared to recent research efforts in the field of vibration energy harvesting. |
---|---|
AbstractList | Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The unique structural design and material selection enables T‐TVEH to represent a breakthrough in terms of both working bandwidth and power density compared to recent research efforts of vibration energy harvesting. Specifically, the working bandwidth and the peak power density of T‐TVEH is 192 Hz and 5.9 W m−2, which are higher than previous related studies by 156% and 59.2%, respectively. Based on the excellent performance of the T‐TVEH, a wireless sensor node for monitoring machinery condition is constructed. Temperature, humidity, and frequency information are successfully acquired and transmitted to 1000‐m through the wireless sensor node, which is nine times improved compared to related studies. Meanwhile, it achieves fully self‐powered wireless operation monitoring and abnormal alarm on a real ship's marine diesel engine. Overall, this study proposed an innovative solution for in‐situ power supply of wireless sensor nodes, which has broad application prospects in the field of the IOT. Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The unique structural design and material selection enables T‐TVEH to represent a breakthrough in terms of both working bandwidth and power density compared to recent research efforts of vibration energy harvesting. Specifically, the working bandwidth and the peak power density of T‐TVEH is 192 Hz and 5.9 W m −2 , which are higher than previous related studies by 156% and 59.2%, respectively. Based on the excellent performance of the T‐TVEH, a wireless sensor node for monitoring machinery condition is constructed. Temperature, humidity, and frequency information are successfully acquired and transmitted to 1000‐m through the wireless sensor node, which is nine times improved compared to related studies. Meanwhile, it achieves fully self‐powered wireless operation monitoring and abnormal alarm on a real ship's marine diesel engine. Overall, this study proposed an innovative solution for in‐situ power supply of wireless sensor nodes, which has broad application prospects in the field of the IOT. Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The unique structural design and material selection enables T‐TVEH to represent a breakthrough in terms of both working bandwidth and power density compared to recent research efforts of vibration energy harvesting. Specifically, the working bandwidth and the peak power density of T‐TVEH is 192 Hz and 5.9 W m−2, which are higher than previous related studies by 156% and 59.2%, respectively. Based on the excellent performance of the T‐TVEH, a wireless sensor node for monitoring machinery condition is constructed. Temperature, humidity, and frequency information are successfully acquired and transmitted to 1000‐m through the wireless sensor node, which is nine times improved compared to related studies. Meanwhile, it achieves fully self‐powered wireless operation monitoring and abnormal alarm on a real ship's marine diesel engine. Overall, this study proposed an innovative solution for in‐situ power supply of wireless sensor nodes, which has broad application prospects in the field of the IOT. This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The T‐TVEH represents a breakthrough in terms of both working bandwidth and power density compared to recent research efforts in the field of vibration energy harvesting. |
Author | Xi, Ziyue Qian, Zian Huang, Yue Du, Taili Yang, Hengyi Yu, Hongyong Guo, Yuanye Guo, Xinyang Xu, Minyi Du, Hengxu |
Author_xml | – sequence: 1 givenname: Hongyong surname: Yu fullname: Yu, Hongyong organization: Dalian Maritime University – sequence: 2 givenname: Ziyue surname: Xi fullname: Xi, Ziyue organization: Dalian Maritime University – sequence: 3 givenname: Hengxu surname: Du fullname: Du, Hengxu organization: Dalian Maritime University – sequence: 4 givenname: Hengyi surname: Yang fullname: Yang, Hengyi organization: Dalian Maritime University – sequence: 5 givenname: Zian surname: Qian fullname: Qian, Zian organization: Dalian Maritime University – sequence: 6 givenname: Xinyang surname: Guo fullname: Guo, Xinyang organization: Dalian Maritime University – sequence: 7 givenname: Yuanye surname: Guo fullname: Guo, Yuanye organization: Dalian Maritime University – sequence: 8 givenname: Yue surname: Huang fullname: Huang, Yue organization: Dalian Maritime University – sequence: 9 givenname: Taili surname: Du fullname: Du, Taili email: dutaili@dlmu.edu.cn organization: Dalian Maritime University – sequence: 10 givenname: Minyi orcidid: 0000-0002-3772-8340 surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn organization: Dalian Maritime University |
BookMark | eNqFkc9qGzEQxpeSQtM0154FPduVVtL-OYbUjQPOH7CbHBetduQo2ZXckRzjWx-h79G3ypNUrksKgVBdRjDf7xtmvvfZgfMOsuwjo2NGaf5ZgRvGOc0FpbKSb7JDVjAxKipBD57_PH-XHYdwT9MTNaOcH2a_pnZ5R64BjcdBOQ1EuY7Mo9IPqu2BLFANK99bB2RmH-Dpx88F2tZDDzqi1eTGtqii9Y5MHOByS6YKHyFEQJIcyblLxNzGNbn2G0DrlmQOLqTOpe-AbGy8I19UVOTWYvIMod_uRrow2BihI1ePySgtSJPN8CF7a1Qf4PhvPcq-fZ0sTqej2dXZ-enJbKQ5K-XIKF5zEJJKWneVVFVtuDIi19Caghpd8jYXWmvOq0KWqbRKCV5KWnbMAJT8KPu0912h_75OyzT3fo0ujWw4LfNcFqwWSSX2Ko0-BATTaBv_nCKisn3DaLNLptkl0zwnk7DxC2yFdlC4fR2o98DG9rD9j7o5mVxe_GN_A-p9qJE |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2025_110754 crossref_primary_10_1063_5_0244410 crossref_primary_10_1002_admt_202401840 crossref_primary_10_1016_j_apenergy_2025_125701 crossref_primary_10_1002_ece2_52 crossref_primary_10_1016_j_seta_2024_104148 crossref_primary_10_3390_nanoenergyadv4040023 |
Cites_doi | 10.1126/sciadv.aay9842 10.1016/j.apenergy.2022.120092 10.1016/j.comnet.2014.03.027 10.1177/1475921719854528 10.1002/aenm.202300557 10.1021/acsami.1c06031 10.1021/acsnano.6b07633 10.1021/am504110u 10.1002/aenm.201902460 10.1016/j.nanoen.2017.01.059 10.1109/TITS.2014.2366512 10.1021/acsnano.0c09803 10.1002/admt.202200465 10.1039/c3ee42571a 10.1007/s12274-015-0827-6 10.1002/aenm.202300051 10.1002/aenm.202301665 10.1126/sciadv.abi6751 10.1016/j.nanoen.2015.06.012 10.1002/adma.202004178 10.1002/aenm.202302353 10.1016/j.rser.2017.01.073 10.1002/aenm.201702736 10.1002/aenm.201902824 10.1002/aenm.202103654 10.1016/j.energy.2020.118462 10.1016/j.nanoen.2019.103911 10.1016/j.jnca.2015.09.008 10.1002/aenm.201702432 10.1016/j.nanoen.2018.08.015 10.1002/smll.202300401 10.1038/s41578-022-00441-0 10.1002/aenm.201301322 10.1016/j.nanoen.2014.11.050 10.1016/j.joule.2021.03.013 10.1016/j.nanoen.2014.11.034 10.1016/j.nanoen.2020.105555 10.1016/j.nanoen.2022.107427 10.1021/acsami.0c21246 10.1016/j.knosys.2018.12.019 10.1109/TII.2018.2852491 10.1021/acsnano.8b03824 10.1016/j.compeleceng.2019.106522 10.1002/adma.201302397 10.1016/j.nanoen.2021.106304 10.1016/j.ijengsci.2018.02.003 10.1002/adfm.202306381 10.1002/adma.202109355 10.1016/j.nanoen.2021.106199 10.1039/D2EE00900E 10.1109/SURV.2012.040412.00105 10.1038/s41467-022-31042-8 10.1021/acsami.1c23309 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202400585 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202400585 AENM202400585 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52101345; 52371345 – fundername: Scientific Research Fund of the Educational Department of Liaoning Province funderid: LJKMZ20220359 – fundername: Dalian Outstanding Young Scientific and Technological Talents Project funderid: 2021RJ11 – fundername: Application Research Program of Liaoning Province funderid: 2022JH2/01300219 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3175-fa393e450509d85a89f3af42cebf60fc73b24ccc338657c33baa437507d1fee73 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:21:54 EDT 2025 Tue Jul 01 01:43:57 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Wed Jan 22 17:18:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3175-fa393e450509d85a89f3af42cebf60fc73b24ccc338657c33baa437507d1fee73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3772-8340 |
PQID | 3072256194 |
PQPubID | 886389 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3072256194 crossref_citationtrail_10_1002_aenm_202400585 crossref_primary_10_1002_aenm_202400585 wiley_primary_10_1002_aenm_202400585_AENM202400585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 7 2019; 9 2015; 14 2021; 5 2023; 13 2015; 16 2013; 25 2023; 33 2021; 88 2018; 127 2023; 8 2020; 81 2023; 19 2015; 8 2013; 6 2014; 67 2020; 19 2019; 165 2021; 13 2020; 6 2017; 74 2018; 8 2021; 15 2013; 15 2014; 4 2021; 33 2023 2019; 64 2022; 7 2017; 11 2017; 33 2015; 252 2022; 12 2022; 34 2022; 13 2022; 14 2022; 15 2018; 52 2016; 60 2022; 99 2020; 212 2018; 12 2022; 327 2014; 6 2018; 14 2021; 80 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 El‐Thalji I. (e_1_2_8_6_1) 2015; 252 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Wang Z. (e_1_2_8_53_1) 2023; 8 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 Du T. L. (e_1_2_8_35_1) 2023 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 127 start-page: 162 year: 2018 publication-title: Int. J. Eng. Sci. – volume: 13 start-page: 3325 year: 2022 publication-title: Nat. Commun. – volume: 6 start-page: 9842 year: 2020 publication-title: Sci. Adv. – volume: 14 start-page: 161 year: 2015 publication-title: Nano Energy – volume: 67 start-page: 104 year: 2014 publication-title: Comput. Networks – volume: 64 year: 2019 publication-title: Nano Energy – year: 2023 publication-title: Nano Res. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 99 year: 2022 publication-title: Nano Energy – volume: 327 year: 2022 publication-title: Appl. Energy – volume: 8 start-page: 3272 year: 2015 publication-title: Nano Res. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1391 year: 2021 publication-title: Joule – volume: 7 start-page: 870 year: 2022 publication-title: Nat. Rev. Mater. – volume: 25 start-page: 6094 year: 2013 publication-title: Adv. Mater. – volume: 14 start-page: 126 year: 2015 publication-title: Nano Energy – volume: 74 start-page: 1 year: 2017 publication-title: Renew Sustain. Energy Rev. – volume: 16 start-page: 1088 year: 2015 publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 33 start-page: 515 year: 2017 publication-title: Nano Energy – volume: 11 start-page: 1728 year: 2017 publication-title: ACS Nano – volume: 15 start-page: 2983 year: 2022 publication-title: Energy Environ. Sci. – volume: 15 start-page: 101 year: 2013 publication-title: IEEE Commun. Surveys Tuts. – volume: 19 year: 2023 publication-title: Small – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 60 start-page: 192 year: 2016 publication-title: J. Network Comput. Appl. – volume: 12 start-page: 9947 year: 2018 publication-title: ACS Nano – volume: 8 year: 2023 publication-title: Adv. Mater. Technol. – volume: 15 start-page: 258 year: 2021 publication-title: ACS Nano – volume: 165 start-page: 474 year: 2019 publication-title: Knowledge Based Syst. – volume: 14 start-page: 5497 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 16 start-page: 516 year: 2015 publication-title: Nano Energy – volume: 14 start-page: 4724 year: 2018 publication-title: IEEE Trans. Ind. Informat. – volume: 6 start-page: 3576 year: 2013 publication-title: Energy Environ. Sci. – volume: 13 start-page: 6331 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 88 year: 2021 publication-title: Nano Energy – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 80 year: 2021 publication-title: Nano Energy – volume: 19 start-page: 693 year: 2020 publication-title: Struct. Health Monit. – volume: 252 start-page: 60 year: 2015 publication-title: Mech. Syst. Signal Process – volume: 81 year: 2020 publication-title: Comput. Electr. Eng. – volume: 212 year: 2020 publication-title: Energy – volume: 52 start-page: 517 year: 2018 publication-title: Nano Energy – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_47_1 doi: 10.1126/sciadv.aay9842 – ident: e_1_2_8_41_1 doi: 10.1016/j.apenergy.2022.120092 – ident: e_1_2_8_13_1 doi: 10.1016/j.comnet.2014.03.027 – ident: e_1_2_8_3_1 doi: 10.1177/1475921719854528 – ident: e_1_2_8_22_1 doi: 10.1002/aenm.202300557 – ident: e_1_2_8_29_1 doi: 10.1021/acsami.1c06031 – ident: e_1_2_8_32_1 doi: 10.1021/acsnano.6b07633 – ident: e_1_2_8_56_1 doi: 10.1021/am504110u – ident: e_1_2_8_31_1 doi: 10.1002/aenm.201902460 – ident: e_1_2_8_45_1 doi: 10.1016/j.nanoen.2017.01.059 – ident: e_1_2_8_5_1 doi: 10.1109/TITS.2014.2366512 – ident: e_1_2_8_55_1 doi: 10.1021/acsnano.0c09803 – ident: e_1_2_8_46_1 doi: 10.1002/admt.202200465 – ident: e_1_2_8_25_1 doi: 10.1039/c3ee42571a – volume: 8 year: 2023 ident: e_1_2_8_53_1 publication-title: Adv. Mater. Technol. – ident: e_1_2_8_30_1 doi: 10.1007/s12274-015-0827-6 – ident: e_1_2_8_37_1 doi: 10.1002/aenm.202300051 – ident: e_1_2_8_14_1 doi: 10.1002/aenm.202301665 – ident: e_1_2_8_51_1 doi: 10.1126/sciadv.abi6751 – ident: e_1_2_8_43_1 doi: 10.1016/j.nanoen.2015.06.012 – ident: e_1_2_8_15_1 doi: 10.1002/adma.202004178 – ident: e_1_2_8_42_1 doi: 10.1002/aenm.202302353 – ident: e_1_2_8_20_1 doi: 10.1016/j.rser.2017.01.073 – ident: e_1_2_8_50_1 doi: 10.1002/aenm.201702736 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201902824 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.202103654 – ident: e_1_2_8_36_1 doi: 10.1016/j.energy.2020.118462 – ident: e_1_2_8_49_1 doi: 10.1016/j.nanoen.2019.103911 – ident: e_1_2_8_9_1 doi: 10.1016/j.jnca.2015.09.008 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.201702432 – ident: e_1_2_8_24_1 doi: 10.1016/j.nanoen.2018.08.015 – ident: e_1_2_8_4_1 doi: 10.1002/smll.202300401 – ident: e_1_2_8_12_1 doi: 10.1038/s41578-022-00441-0 – ident: e_1_2_8_18_1 doi: 10.1002/aenm.201301322 – ident: e_1_2_8_23_1 doi: 10.1016/j.nanoen.2014.11.050 – ident: e_1_2_8_8_1 doi: 10.1016/j.joule.2021.03.013 – ident: e_1_2_8_54_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_8_48_1 doi: 10.1016/j.nanoen.2020.105555 – ident: e_1_2_8_34_1 doi: 10.1016/j.nanoen.2022.107427 – ident: e_1_2_8_39_1 doi: 10.1021/acsami.0c21246 – ident: e_1_2_8_7_1 doi: 10.1016/j.knosys.2018.12.019 – ident: e_1_2_8_2_1 doi: 10.1109/TII.2018.2852491 – ident: e_1_2_8_33_1 doi: 10.1021/acsnano.8b03824 – ident: e_1_2_8_1_1 doi: 10.1016/j.compeleceng.2019.106522 – ident: e_1_2_8_44_1 doi: 10.1002/adma.201302397 – ident: e_1_2_8_17_1 doi: 10.1016/j.nanoen.2021.106304 – year: 2023 ident: e_1_2_8_35_1 publication-title: Nano Res. – ident: e_1_2_8_38_1 doi: 10.1016/j.ijengsci.2018.02.003 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.202306381 – ident: e_1_2_8_28_1 doi: 10.1002/adma.202109355 – ident: e_1_2_8_26_1 doi: 10.1016/j.nanoen.2021.106199 – ident: e_1_2_8_52_1 doi: 10.1039/D2EE00900E – ident: e_1_2_8_16_1 doi: 10.1109/SURV.2012.040412.00105 – ident: e_1_2_8_27_1 doi: 10.1038/s41467-022-31042-8 – volume: 252 start-page: 60 year: 2015 ident: e_1_2_8_6_1 publication-title: Mech. Syst. Signal Process – ident: e_1_2_8_40_1 doi: 10.1021/acsami.1c23309 |
SSID | ssj0000491033 |
Score | 2.4657896 |
Snippet | Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bandwidths Diesel engines Energy harvesting Internet of Things in‐situ energy supply Machinery condition monitoring Materials selection Nodes Power supply Sensors Structural design triboelectric nanogenerators ultra‐wideband Vibration vibration energy harvester wireless sensor node |
Title | High Performance and Stackable Trampoline Like‐Triboelectric Vibration Energy Harvester for In‐Situ Powering Sensor Node with Data Wirelessly Transmitted Over 1000‐m |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202400585 https://www.proquest.com/docview/3072256194 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gIHxK8ILWgOSBwqQ-xdO_ExIkEtasKhLYq4WOv1urLaOIg6KuHEI_AePAZvwpMws2tvHCiicHGSze7G2fm886PZbxh7FmVc6AwfQC4D6YkcfVaZcelpGccqFH4WG56CyTTaPxFvZuGs0_neylpaVukL9fnKcyX_I1VsQ7nSKdl_kKybFBvwPcoXryhhvF5LxpSkQTnsG6n_aD6qM3MgCvXQnIowoB15WJxpl9dAbCELW_-mUHvvyGE2KBjbc4BULsjwJ5gUxIPSjTsqKqrue2nYC3GXKS_w--ki0zaaO5KVNNm052S9rixv-ryoyKZ9i2u7R0F-N9m8bRYPm0wEbW8BzWi7fm5TWhoduShPV4ta12LrzKQivC9WSwfPke2oy9NPSze4jolT66poxzkCsc7HqrdmNCS8aFBHQ3W7zRI-uf1ctHBrD2j_pics76zUJZERUBptaAsHbRJy_6IoXfqipXoOEhqfuPE32HaAvgputtvD0eTwyIX60Anze9wc9Wj-Q0Mf2gtebt7Epnm09nnanpMxfY7vsNu1zwJDC8C7rKPLe-xWi8nyPvtGUIQWFAGhCA6KsIYiEBR_fPm6AUJwIAQLQnAgBJwRDkocQfCDBn5g4QcEPyD4AcEP1vCDFvyA4AcEP5xm_oCdvB4fv9r36jogniLr1sslj7kWIVEVZYNQDuKcy1wESqd51MtVn6eBUEpxql_bx5dUSsHRFO5nfq51nz9kW-Wi1I8YiCyP0h4KSaVK9EM_TZWPfaM06OXxwA-7zGuWP1E1ST7VajlPrpZ5lz13_T9Yepg_9txtpJnUW8hFggoW9SkFErssMBL-yyzJcDyduE-Pr_3rO-zm-pnaZVvVx6V-gtZ0lT6t0foThaDL4Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Performance+and+Stackable+Trampoline+Like%E2%80%90Triboelectric+Vibration+Energy+Harvester+for+In%E2%80%90Situ+Powering+Sensor+Node+with+Data+Wirelessly+Transmitted+Over+1000%E2%80%90m&rft.jtitle=Advanced+energy+materials&rft.au=Yu%2C+Hongyong&rft.au=Xi%2C+Ziyue&rft.au=Du%2C+Hengxu&rft.au=Yang%2C+Hengyi&rft.date=2024-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=24&rft_id=info:doi/10.1002%2Faenm.202400585&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202400585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |