High Performance and Stackable Trampoline Like‐Triboelectric Vibration Energy Harvester for In‐Situ Powering Sensor Node with Data Wirelessly Transmitted Over 1000‐m

Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 24
Main Authors Yu, Hongyong, Xi, Ziyue, Du, Hengxu, Yang, Hengyi, Qian, Zian, Guo, Xinyang, Guo, Yuanye, Huang, Yue, Du, Taili, Xu, Minyi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The unique structural design and material selection enables T‐TVEH to represent a breakthrough in terms of both working bandwidth and power density compared to recent research efforts of vibration energy harvesting. Specifically, the working bandwidth and the peak power density of T‐TVEH is 192 Hz and 5.9 W m−2, which are higher than previous related studies by 156% and 59.2%, respectively. Based on the excellent performance of the T‐TVEH, a wireless sensor node for monitoring machinery condition is constructed. Temperature, humidity, and frequency information are successfully acquired and transmitted to 1000‐m through the wireless sensor node, which is nine times improved compared to related studies. Meanwhile, it achieves fully self‐powered wireless operation monitoring and abnormal alarm on a real ship's marine diesel engine. Overall, this study proposed an innovative solution for in‐situ power supply of wireless sensor nodes, which has broad application prospects in the field of the IOT. This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The T‐TVEH represents a breakthrough in terms of both working bandwidth and power density compared to recent research efforts in the field of vibration energy harvesting.
AbstractList Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The unique structural design and material selection enables T‐TVEH to represent a breakthrough in terms of both working bandwidth and power density compared to recent research efforts of vibration energy harvesting. Specifically, the working bandwidth and the peak power density of T‐TVEH is 192 Hz and 5.9 W m−2, which are higher than previous related studies by 156% and 59.2%, respectively. Based on the excellent performance of the T‐TVEH, a wireless sensor node for monitoring machinery condition is constructed. Temperature, humidity, and frequency information are successfully acquired and transmitted to 1000‐m through the wireless sensor node, which is nine times improved compared to related studies. Meanwhile, it achieves fully self‐powered wireless operation monitoring and abnormal alarm on a real ship's marine diesel engine. Overall, this study proposed an innovative solution for in‐situ power supply of wireless sensor nodes, which has broad application prospects in the field of the IOT.
Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The unique structural design and material selection enables T‐TVEH to represent a breakthrough in terms of both working bandwidth and power density compared to recent research efforts of vibration energy harvesting. Specifically, the working bandwidth and the peak power density of T‐TVEH is 192 Hz and 5.9 W m −2 , which are higher than previous related studies by 156% and 59.2%, respectively. Based on the excellent performance of the T‐TVEH, a wireless sensor node for monitoring machinery condition is constructed. Temperature, humidity, and frequency information are successfully acquired and transmitted to 1000‐m through the wireless sensor node, which is nine times improved compared to related studies. Meanwhile, it achieves fully self‐powered wireless operation monitoring and abnormal alarm on a real ship's marine diesel engine. Overall, this study proposed an innovative solution for in‐situ power supply of wireless sensor nodes, which has broad application prospects in the field of the IOT.
Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The unique structural design and material selection enables T‐TVEH to represent a breakthrough in terms of both working bandwidth and power density compared to recent research efforts of vibration energy harvesting. Specifically, the working bandwidth and the peak power density of T‐TVEH is 192 Hz and 5.9 W m−2, which are higher than previous related studies by 156% and 59.2%, respectively. Based on the excellent performance of the T‐TVEH, a wireless sensor node for monitoring machinery condition is constructed. Temperature, humidity, and frequency information are successfully acquired and transmitted to 1000‐m through the wireless sensor node, which is nine times improved compared to related studies. Meanwhile, it achieves fully self‐powered wireless operation monitoring and abnormal alarm on a real ship's marine diesel engine. Overall, this study proposed an innovative solution for in‐situ power supply of wireless sensor nodes, which has broad application prospects in the field of the IOT. This work proposes a high performance and stackable trampoline like‐triboelectric vibration energy harvester (T‐TVEH) that can efficiently harvest ultra‐wideband vibrational energy for in‐situ powering of sensor nodes. The T‐TVEH represents a breakthrough in terms of both working bandwidth and power density compared to recent research efforts in the field of vibration energy harvesting.
Author Xi, Ziyue
Qian, Zian
Huang, Yue
Du, Taili
Yang, Hengyi
Yu, Hongyong
Guo, Yuanye
Guo, Xinyang
Xu, Minyi
Du, Hengxu
Author_xml – sequence: 1
  givenname: Hongyong
  surname: Yu
  fullname: Yu, Hongyong
  organization: Dalian Maritime University
– sequence: 2
  givenname: Ziyue
  surname: Xi
  fullname: Xi, Ziyue
  organization: Dalian Maritime University
– sequence: 3
  givenname: Hengxu
  surname: Du
  fullname: Du, Hengxu
  organization: Dalian Maritime University
– sequence: 4
  givenname: Hengyi
  surname: Yang
  fullname: Yang, Hengyi
  organization: Dalian Maritime University
– sequence: 5
  givenname: Zian
  surname: Qian
  fullname: Qian, Zian
  organization: Dalian Maritime University
– sequence: 6
  givenname: Xinyang
  surname: Guo
  fullname: Guo, Xinyang
  organization: Dalian Maritime University
– sequence: 7
  givenname: Yuanye
  surname: Guo
  fullname: Guo, Yuanye
  organization: Dalian Maritime University
– sequence: 8
  givenname: Yue
  surname: Huang
  fullname: Huang, Yue
  organization: Dalian Maritime University
– sequence: 9
  givenname: Taili
  surname: Du
  fullname: Du, Taili
  email: dutaili@dlmu.edu.cn
  organization: Dalian Maritime University
– sequence: 10
  givenname: Minyi
  orcidid: 0000-0002-3772-8340
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
  organization: Dalian Maritime University
BookMark eNqFkc9qGzEQxpeSQtM0154FPduVVtL-OYbUjQPOH7CbHBetduQo2ZXckRzjWx-h79G3ypNUrksKgVBdRjDf7xtmvvfZgfMOsuwjo2NGaf5ZgRvGOc0FpbKSb7JDVjAxKipBD57_PH-XHYdwT9MTNaOcH2a_pnZ5R64BjcdBOQ1EuY7Mo9IPqu2BLFANK99bB2RmH-Dpx88F2tZDDzqi1eTGtqii9Y5MHOByS6YKHyFEQJIcyblLxNzGNbn2G0DrlmQOLqTOpe-AbGy8I19UVOTWYvIMod_uRrow2BihI1ePySgtSJPN8CF7a1Qf4PhvPcq-fZ0sTqej2dXZ-enJbKQ5K-XIKF5zEJJKWneVVFVtuDIi19Caghpd8jYXWmvOq0KWqbRKCV5KWnbMAJT8KPu0912h_75OyzT3fo0ujWw4LfNcFqwWSSX2Ko0-BATTaBv_nCKisn3DaLNLptkl0zwnk7DxC2yFdlC4fR2o98DG9rD9j7o5mVxe_GN_A-p9qJE
CitedBy_id crossref_primary_10_1016_j_nanoen_2025_110754
crossref_primary_10_1063_5_0244410
crossref_primary_10_1002_admt_202401840
crossref_primary_10_1016_j_apenergy_2025_125701
crossref_primary_10_1002_ece2_52
crossref_primary_10_1016_j_seta_2024_104148
crossref_primary_10_3390_nanoenergyadv4040023
Cites_doi 10.1126/sciadv.aay9842
10.1016/j.apenergy.2022.120092
10.1016/j.comnet.2014.03.027
10.1177/1475921719854528
10.1002/aenm.202300557
10.1021/acsami.1c06031
10.1021/acsnano.6b07633
10.1021/am504110u
10.1002/aenm.201902460
10.1016/j.nanoen.2017.01.059
10.1109/TITS.2014.2366512
10.1021/acsnano.0c09803
10.1002/admt.202200465
10.1039/c3ee42571a
10.1007/s12274-015-0827-6
10.1002/aenm.202300051
10.1002/aenm.202301665
10.1126/sciadv.abi6751
10.1016/j.nanoen.2015.06.012
10.1002/adma.202004178
10.1002/aenm.202302353
10.1016/j.rser.2017.01.073
10.1002/aenm.201702736
10.1002/aenm.201902824
10.1002/aenm.202103654
10.1016/j.energy.2020.118462
10.1016/j.nanoen.2019.103911
10.1016/j.jnca.2015.09.008
10.1002/aenm.201702432
10.1016/j.nanoen.2018.08.015
10.1002/smll.202300401
10.1038/s41578-022-00441-0
10.1002/aenm.201301322
10.1016/j.nanoen.2014.11.050
10.1016/j.joule.2021.03.013
10.1016/j.nanoen.2014.11.034
10.1016/j.nanoen.2020.105555
10.1016/j.nanoen.2022.107427
10.1021/acsami.0c21246
10.1016/j.knosys.2018.12.019
10.1109/TII.2018.2852491
10.1021/acsnano.8b03824
10.1016/j.compeleceng.2019.106522
10.1002/adma.201302397
10.1016/j.nanoen.2021.106304
10.1016/j.ijengsci.2018.02.003
10.1002/adfm.202306381
10.1002/adma.202109355
10.1016/j.nanoen.2021.106199
10.1039/D2EE00900E
10.1109/SURV.2012.040412.00105
10.1038/s41467-022-31042-8
10.1021/acsami.1c23309
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202400585
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202400585
AENM202400585
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52101345; 52371345
– fundername: Scientific Research Fund of the Educational Department of Liaoning Province
  funderid: LJKMZ20220359
– fundername: Dalian Outstanding Young Scientific and Technological Talents Project
  funderid: 2021RJ11
– fundername: Application Research Program of Liaoning Province
  funderid: 2022JH2/01300219
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3175-fa393e450509d85a89f3af42cebf60fc73b24ccc338657c33baa437507d1fee73
ISSN 1614-6832
IngestDate Fri Jul 25 12:21:54 EDT 2025
Tue Jul 01 01:43:57 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Wed Jan 22 17:18:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-fa393e450509d85a89f3af42cebf60fc73b24ccc338657c33baa437507d1fee73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3772-8340
PQID 3072256194
PQPubID 886389
PageCount 13
ParticipantIDs proquest_journals_3072256194
crossref_citationtrail_10_1002_aenm_202400585
crossref_primary_10_1002_aenm_202400585
wiley_primary_10_1002_aenm_202400585_AENM202400585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 7
2019; 9
2015; 14
2021; 5
2023; 13
2015; 16
2013; 25
2023; 33
2021; 88
2018; 127
2023; 8
2020; 81
2023; 19
2015; 8
2013; 6
2014; 67
2020; 19
2019; 165
2021; 13
2020; 6
2017; 74
2018; 8
2021; 15
2013; 15
2014; 4
2021; 33
2023
2019; 64
2022; 7
2017; 11
2017; 33
2015; 252
2022; 12
2022; 34
2022; 13
2022; 14
2022; 15
2018; 52
2016; 60
2022; 99
2020; 212
2018; 12
2022; 327
2014; 6
2018; 14
2021; 80
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
El‐Thalji I. (e_1_2_8_6_1) 2015; 252
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Wang Z. (e_1_2_8_53_1) 2023; 8
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
Du T. L. (e_1_2_8_35_1) 2023
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 127
  start-page: 162
  year: 2018
  publication-title: Int. J. Eng. Sci.
– volume: 13
  start-page: 3325
  year: 2022
  publication-title: Nat. Commun.
– volume: 6
  start-page: 9842
  year: 2020
  publication-title: Sci. Adv.
– volume: 14
  start-page: 161
  year: 2015
  publication-title: Nano Energy
– volume: 67
  start-page: 104
  year: 2014
  publication-title: Comput. Networks
– volume: 64
  year: 2019
  publication-title: Nano Energy
– year: 2023
  publication-title: Nano Res.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 99
  year: 2022
  publication-title: Nano Energy
– volume: 327
  year: 2022
  publication-title: Appl. Energy
– volume: 8
  start-page: 3272
  year: 2015
  publication-title: Nano Res.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1391
  year: 2021
  publication-title: Joule
– volume: 7
  start-page: 870
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 25
  start-page: 6094
  year: 2013
  publication-title: Adv. Mater.
– volume: 14
  start-page: 126
  year: 2015
  publication-title: Nano Energy
– volume: 74
  start-page: 1
  year: 2017
  publication-title: Renew Sustain. Energy Rev.
– volume: 16
  start-page: 1088
  year: 2015
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 33
  start-page: 515
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 1728
  year: 2017
  publication-title: ACS Nano
– volume: 15
  start-page: 2983
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 101
  year: 2013
  publication-title: IEEE Commun. Surveys Tuts.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 60
  start-page: 192
  year: 2016
  publication-title: J. Network Comput. Appl.
– volume: 12
  start-page: 9947
  year: 2018
  publication-title: ACS Nano
– volume: 8
  year: 2023
  publication-title: Adv. Mater. Technol.
– volume: 15
  start-page: 258
  year: 2021
  publication-title: ACS Nano
– volume: 165
  start-page: 474
  year: 2019
  publication-title: Knowledge Based Syst.
– volume: 14
  start-page: 5497
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 516
  year: 2015
  publication-title: Nano Energy
– volume: 14
  start-page: 4724
  year: 2018
  publication-title: IEEE Trans. Ind. Informat.
– volume: 6
  start-page: 3576
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 6331
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 88
  year: 2021
  publication-title: Nano Energy
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 19
  start-page: 693
  year: 2020
  publication-title: Struct. Health Monit.
– volume: 252
  start-page: 60
  year: 2015
  publication-title: Mech. Syst. Signal Process
– volume: 81
  year: 2020
  publication-title: Comput. Electr. Eng.
– volume: 212
  year: 2020
  publication-title: Energy
– volume: 52
  start-page: 517
  year: 2018
  publication-title: Nano Energy
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_47_1
  doi: 10.1126/sciadv.aay9842
– ident: e_1_2_8_41_1
  doi: 10.1016/j.apenergy.2022.120092
– ident: e_1_2_8_13_1
  doi: 10.1016/j.comnet.2014.03.027
– ident: e_1_2_8_3_1
  doi: 10.1177/1475921719854528
– ident: e_1_2_8_22_1
  doi: 10.1002/aenm.202300557
– ident: e_1_2_8_29_1
  doi: 10.1021/acsami.1c06031
– ident: e_1_2_8_32_1
  doi: 10.1021/acsnano.6b07633
– ident: e_1_2_8_56_1
  doi: 10.1021/am504110u
– ident: e_1_2_8_31_1
  doi: 10.1002/aenm.201902460
– ident: e_1_2_8_45_1
  doi: 10.1016/j.nanoen.2017.01.059
– ident: e_1_2_8_5_1
  doi: 10.1109/TITS.2014.2366512
– ident: e_1_2_8_55_1
  doi: 10.1021/acsnano.0c09803
– ident: e_1_2_8_46_1
  doi: 10.1002/admt.202200465
– ident: e_1_2_8_25_1
  doi: 10.1039/c3ee42571a
– volume: 8
  year: 2023
  ident: e_1_2_8_53_1
  publication-title: Adv. Mater. Technol.
– ident: e_1_2_8_30_1
  doi: 10.1007/s12274-015-0827-6
– ident: e_1_2_8_37_1
  doi: 10.1002/aenm.202300051
– ident: e_1_2_8_14_1
  doi: 10.1002/aenm.202301665
– ident: e_1_2_8_51_1
  doi: 10.1126/sciadv.abi6751
– ident: e_1_2_8_43_1
  doi: 10.1016/j.nanoen.2015.06.012
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.202004178
– ident: e_1_2_8_42_1
  doi: 10.1002/aenm.202302353
– ident: e_1_2_8_20_1
  doi: 10.1016/j.rser.2017.01.073
– ident: e_1_2_8_50_1
  doi: 10.1002/aenm.201702736
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201902824
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.202103654
– ident: e_1_2_8_36_1
  doi: 10.1016/j.energy.2020.118462
– ident: e_1_2_8_49_1
  doi: 10.1016/j.nanoen.2019.103911
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jnca.2015.09.008
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.201702432
– ident: e_1_2_8_24_1
  doi: 10.1016/j.nanoen.2018.08.015
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.202300401
– ident: e_1_2_8_12_1
  doi: 10.1038/s41578-022-00441-0
– ident: e_1_2_8_18_1
  doi: 10.1002/aenm.201301322
– ident: e_1_2_8_23_1
  doi: 10.1016/j.nanoen.2014.11.050
– ident: e_1_2_8_8_1
  doi: 10.1016/j.joule.2021.03.013
– ident: e_1_2_8_54_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_8_48_1
  doi: 10.1016/j.nanoen.2020.105555
– ident: e_1_2_8_34_1
  doi: 10.1016/j.nanoen.2022.107427
– ident: e_1_2_8_39_1
  doi: 10.1021/acsami.0c21246
– ident: e_1_2_8_7_1
  doi: 10.1016/j.knosys.2018.12.019
– ident: e_1_2_8_2_1
  doi: 10.1109/TII.2018.2852491
– ident: e_1_2_8_33_1
  doi: 10.1021/acsnano.8b03824
– ident: e_1_2_8_1_1
  doi: 10.1016/j.compeleceng.2019.106522
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.201302397
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2021.106304
– year: 2023
  ident: e_1_2_8_35_1
  publication-title: Nano Res.
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ijengsci.2018.02.003
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.202306381
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202109355
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nanoen.2021.106199
– ident: e_1_2_8_52_1
  doi: 10.1039/D2EE00900E
– ident: e_1_2_8_16_1
  doi: 10.1109/SURV.2012.040412.00105
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-022-31042-8
– volume: 252
  start-page: 60
  year: 2015
  ident: e_1_2_8_6_1
  publication-title: Mech. Syst. Signal Process
– ident: e_1_2_8_40_1
  doi: 10.1021/acsami.1c23309
SSID ssj0000491033
Score 2.4657896
Snippet Addressing the power supply challenges of wireless sensor nodes is pivotal for advancing the development of the Internet of Things (IoT). This work proposes a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bandwidths
Diesel engines
Energy harvesting
Internet of Things
in‐situ energy supply
Machinery condition monitoring
Materials selection
Nodes
Power supply
Sensors
Structural design
triboelectric nanogenerators
ultra‐wideband
Vibration
vibration energy harvester
wireless sensor node
Title High Performance and Stackable Trampoline Like‐Triboelectric Vibration Energy Harvester for In‐Situ Powering Sensor Node with Data Wirelessly Transmitted Over 1000‐m
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202400585
https://www.proquest.com/docview/3072256194
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gIHxK8ILWgOSBwqQ-xdO_ExIkEtasKhLYq4WOv1urLaOIg6KuHEI_AePAZvwpMws2tvHCiicHGSze7G2fm886PZbxh7FmVc6AwfQC4D6YkcfVaZcelpGccqFH4WG56CyTTaPxFvZuGs0_neylpaVukL9fnKcyX_I1VsQ7nSKdl_kKybFBvwPcoXryhhvF5LxpSkQTnsG6n_aD6qM3MgCvXQnIowoB15WJxpl9dAbCELW_-mUHvvyGE2KBjbc4BULsjwJ5gUxIPSjTsqKqrue2nYC3GXKS_w--ki0zaaO5KVNNm052S9rixv-ryoyKZ9i2u7R0F-N9m8bRYPm0wEbW8BzWi7fm5TWhoduShPV4ta12LrzKQivC9WSwfPke2oy9NPSze4jolT66poxzkCsc7HqrdmNCS8aFBHQ3W7zRI-uf1ctHBrD2j_pics76zUJZERUBptaAsHbRJy_6IoXfqipXoOEhqfuPE32HaAvgputtvD0eTwyIX60Anze9wc9Wj-Q0Mf2gtebt7Epnm09nnanpMxfY7vsNu1zwJDC8C7rKPLe-xWi8nyPvtGUIQWFAGhCA6KsIYiEBR_fPm6AUJwIAQLQnAgBJwRDkocQfCDBn5g4QcEPyD4AcEP1vCDFvyA4AcEP5xm_oCdvB4fv9r36jogniLr1sslj7kWIVEVZYNQDuKcy1wESqd51MtVn6eBUEpxql_bx5dUSsHRFO5nfq51nz9kW-Wi1I8YiCyP0h4KSaVK9EM_TZWPfaM06OXxwA-7zGuWP1E1ST7VajlPrpZ5lz13_T9Yepg_9txtpJnUW8hFggoW9SkFErssMBL-yyzJcDyduE-Pr_3rO-zm-pnaZVvVx6V-gtZ0lT6t0foThaDL4Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Performance+and+Stackable+Trampoline+Like%E2%80%90Triboelectric+Vibration+Energy+Harvester+for+In%E2%80%90Situ+Powering+Sensor+Node+with+Data+Wirelessly+Transmitted+Over+1000%E2%80%90m&rft.jtitle=Advanced+energy+materials&rft.au=Yu%2C+Hongyong&rft.au=Xi%2C+Ziyue&rft.au=Du%2C+Hengxu&rft.au=Yang%2C+Hengyi&rft.date=2024-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=24&rft_id=info:doi/10.1002%2Faenm.202400585&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202400585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon