Nitrogen‐Doped Graphene‐Supported Mixed Transition‐Metal Oxide Porous Particles to Confine Polysulfides for Lithium–Sulfur Batteries
The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and...
Saved in:
Published in | Advanced energy materials Vol. 8; no. 22 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo2O4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo2O4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo2O4 to Li2S4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo2O4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur.
A unique ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) hybrid is composed of interconnected spinel ZnCo2O4 nanocubes anchored on graphene nanosheets. Due to the advantages of the ZnCo2O4@N‐RGO hybrid with a high electrical conductivity and strong immobilization/blocking ability for polysulfides, the ZnCo2O4@N‐RGO‐based electrode displays high sulfur utilization, long cycling life, and high rate performance in Li–S batteries. |
---|---|
AbstractList | The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo2O4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo2O4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo2O4 to Li2S4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo2O4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur. The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo2O4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo2O4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo2O4 to Li2S4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo2O4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur. A unique ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) hybrid is composed of interconnected spinel ZnCo2O4 nanocubes anchored on graphene nanosheets. Due to the advantages of the ZnCo2O4@N‐RGO hybrid with a high electrical conductivity and strong immobilization/blocking ability for polysulfides, the ZnCo2O4@N‐RGO‐based electrode displays high sulfur utilization, long cycling life, and high rate performance in Li–S batteries. The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo 2 O 4 porous particles@N‐doped reduced graphene oxide (ZnCo 2 O 4 @N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo 2 O 4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo 2 O 4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo 2 O 4 to Li 2 S 4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo 2 O 4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur. |
Author | Sun, Qian Liang, Jianwen Li, Jiang‐Ying Xi, Baojuan Xiong, Shenglin Mao, Hongzhi Ma, Xiaojian Feng, Jinkui |
Author_xml | – sequence: 1 givenname: Qian surname: Sun fullname: Sun, Qian organization: Shandong University – sequence: 2 givenname: Baojuan surname: Xi fullname: Xi, Baojuan email: baojuanxi@sdu.edu.cn organization: Shandong University – sequence: 3 givenname: Jiang‐Ying surname: Li fullname: Li, Jiang‐Ying organization: Lanzhou University – sequence: 4 givenname: Hongzhi surname: Mao fullname: Mao, Hongzhi organization: Shandong University – sequence: 5 givenname: Xiaojian surname: Ma fullname: Ma, Xiaojian organization: Shandong University – sequence: 6 givenname: Jianwen surname: Liang fullname: Liang, Jianwen organization: University of Science and Technology of China – sequence: 7 givenname: Jinkui surname: Feng fullname: Feng, Jinkui organization: Shandong University – sequence: 8 givenname: Shenglin surname: Xiong fullname: Xiong, Shenglin organization: Shandong University |
BookMark | eNqFkMFqGzEQhkVIIWnqa86CnO1Kq9VGOqZu6gZsJxDfF-3uKJZZS1tJS-2bH6CHQt4wT1ItLgkESnUYiX_-b8T8H9GpdRYQuqRkQgnJPiuw20lGqCCES36CzmlB83EhcnL6-mbZGRqFsCHp5JISxs7Rr6WJ3j2BfTn8_uo6aPDMq24NFpLw2Hed8zGJC7NLdeWVDSYaN7gXEFWL73emAfzgvOsDflA-mrqFgKPDU2e1sUOv3Ye-1ckXsHYez01cm377cnh-THLv8RcVI3gD4RP6oFUbYPT3vkCrb7er6ffx_H52N72Zj2tGr_kYtNaS5DorRFoKeCY4aypOKskkrZsCckUJVDVnhOWNVJQ3vKBNpWQlilywC3R1HNt596OHEMuN671NP5YZEawQkguSXPnRVXsXggdd1iaqYfnolWlLSsoh-XJIvnxNPmGTd1jnzVb5_b8BeQR-mhb2_3GXN7fLxRv7B2csnx8 |
CitedBy_id | crossref_primary_10_1007_s10853_022_07625_7 crossref_primary_10_1016_j_electacta_2019_05_001 crossref_primary_10_1002_chem_202303285 crossref_primary_10_1039_C9QM00675C crossref_primary_10_1016_j_carbon_2022_11_080 crossref_primary_10_1002_aenm_201902096 crossref_primary_10_1039_C9NR03278A crossref_primary_10_1021_acsami_4c09591 crossref_primary_10_1021_acsami_1c22731 crossref_primary_10_1002_sus2_5 crossref_primary_10_1016_j_jechem_2020_06_009 crossref_primary_10_1016_j_ensm_2023_102999 crossref_primary_10_1016_j_apt_2022_103710 crossref_primary_10_1002_aenm_201904273 crossref_primary_10_1002_smll_202005332 crossref_primary_10_1016_j_cej_2023_148374 crossref_primary_10_1016_j_ensm_2024_103965 crossref_primary_10_1002_ente_202401451 crossref_primary_10_1016_j_cej_2019_123457 crossref_primary_10_1021_acsaem_9b00243 crossref_primary_10_1002_aenm_202002893 crossref_primary_10_1039_D1TA08968D crossref_primary_10_1039_C9TA12235D crossref_primary_10_1039_D3CY00487B crossref_primary_10_1007_s12274_024_6472_1 crossref_primary_10_1016_j_jechem_2023_02_009 crossref_primary_10_1016_j_jallcom_2021_162653 crossref_primary_10_1088_2515_7655_aadef6 crossref_primary_10_1002_aenm_202001304 crossref_primary_10_1016_j_cej_2020_126579 crossref_primary_10_1016_j_materresbull_2019_110625 crossref_primary_10_1016_j_cej_2019_05_119 crossref_primary_10_1016_j_apsusc_2019_144964 crossref_primary_10_1016_j_electacta_2023_141875 crossref_primary_10_1002_adfm_202300143 crossref_primary_10_1021_acs_accounts_4c00244 crossref_primary_10_1039_C9TA11958B crossref_primary_10_1002_smll_202005227 crossref_primary_10_1002_adfm_202207727 crossref_primary_10_1002_cnma_202000440 crossref_primary_10_1007_s42864_020_00047_5 crossref_primary_10_1016_j_apsusc_2022_153787 crossref_primary_10_1016_j_jelechem_2021_115629 crossref_primary_10_1002_er_5965 crossref_primary_10_1002_admt_202201544 crossref_primary_10_1002_aenm_201802768 crossref_primary_10_1039_D3NJ03695B crossref_primary_10_1039_D2TA10020G crossref_primary_10_1016_j_jcis_2023_03_132 crossref_primary_10_1039_D0MH00815J crossref_primary_10_1039_D1EE01349A crossref_primary_10_1002_adfm_202408986 crossref_primary_10_1002_aenm_201900219 crossref_primary_10_1016_j_electacta_2022_141000 crossref_primary_10_1016_j_materresbull_2024_112754 crossref_primary_10_1002_asia_202400099 crossref_primary_10_1016_j_solidstatesciences_2022_107025 crossref_primary_10_1016_j_chemosphere_2023_139804 crossref_primary_10_1016_j_susc_2021_121818 crossref_primary_10_1016_j_electacta_2019_134968 crossref_primary_10_1039_D2TC02233H crossref_primary_10_1016_j_electacta_2021_139275 crossref_primary_10_3390_nano11112882 crossref_primary_10_1002_adfm_202313168 crossref_primary_10_1002_celc_202001052 crossref_primary_10_3390_nano13101612 crossref_primary_10_1021_acsami_3c03929 crossref_primary_10_1016_j_jpowsour_2021_230607 crossref_primary_10_1002_advs_201900958 crossref_primary_10_1002_adma_202003666 crossref_primary_10_1016_j_jallcom_2020_157382 crossref_primary_10_1039_D4RA06366J crossref_primary_10_1016_j_compositesb_2022_110410 crossref_primary_10_1039_C9TA00458K crossref_primary_10_1016_j_nanoen_2019_04_006 crossref_primary_10_1016_j_ensm_2020_05_033 crossref_primary_10_1039_C9NJ04581C crossref_primary_10_1007_s12274_020_2909_3 crossref_primary_10_1016_j_jcis_2019_12_127 crossref_primary_10_1021_acsnano_9b06629 crossref_primary_10_1002_aenm_201803477 crossref_primary_10_1007_s42823_019_00117_w crossref_primary_10_1021_acsami_1c00974 crossref_primary_10_1016_j_cej_2021_129001 crossref_primary_10_1016_j_jallcom_2022_167916 crossref_primary_10_1016_j_jallcom_2021_162987 crossref_primary_10_1021_acs_energyfuels_0c03671 crossref_primary_10_1016_j_ensm_2019_11_016 crossref_primary_10_3390_batteries10030096 crossref_primary_10_1016_j_est_2024_111663 crossref_primary_10_1039_D0QI00730G crossref_primary_10_1016_j_jcis_2021_05_125 crossref_primary_10_1021_acsaem_9b00680 crossref_primary_10_1016_j_nanoen_2021_106331 crossref_primary_10_1016_j_nanoen_2021_105761 crossref_primary_10_1016_j_jelechem_2019_04_047 crossref_primary_10_1021_acsami_1c12855 crossref_primary_10_1016_j_jcis_2024_11_101 crossref_primary_10_1016_j_jpowsour_2019_04_010 crossref_primary_10_1007_s41918_021_00110_w crossref_primary_10_1039_D2YA00106C crossref_primary_10_1002_adfm_202101285 crossref_primary_10_1021_acsaem_2c02021 crossref_primary_10_1002_ente_201901462 crossref_primary_10_1016_j_electacta_2019_135353 crossref_primary_10_1016_j_elecom_2022_107325 crossref_primary_10_1002_advs_202406475 crossref_primary_10_1016_j_jpowsour_2019_05_055 crossref_primary_10_1002_aenm_201901896 crossref_primary_10_1016_j_electacta_2019_04_113 crossref_primary_10_1002_adfm_201901051 crossref_primary_10_1002_smll_202001468 crossref_primary_10_1016_j_est_2024_110583 crossref_primary_10_1002_smll_201902491 crossref_primary_10_1002_adma_201903813 crossref_primary_10_1016_j_jallcom_2025_179118 crossref_primary_10_1002_admi_201901420 crossref_primary_10_1007_s11581_023_04986_0 crossref_primary_10_1016_j_ensm_2021_08_012 crossref_primary_10_1002_aenm_202100957 crossref_primary_10_1039_C8NR04661A crossref_primary_10_1021_acsami_0c20519 crossref_primary_10_1002_slct_201902107 crossref_primary_10_3390_batteries9030155 crossref_primary_10_1016_j_jece_2024_112955 crossref_primary_10_1016_j_ceramint_2022_04_233 crossref_primary_10_1016_j_jwpe_2022_102873 crossref_primary_10_1002_adfm_202305991 crossref_primary_10_1039_D0DT02275F crossref_primary_10_1016_j_apsusc_2021_151634 crossref_primary_10_3390_catal12080851 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1002_cssc_202300135 crossref_primary_10_1016_j_mtnano_2022_100242 crossref_primary_10_1002_adfm_202109462 crossref_primary_10_1021_acsnano_9b04519 crossref_primary_10_1016_j_nanoms_2022_07_004 crossref_primary_10_1021_acsami_2c12841 crossref_primary_10_1002_er_5236 crossref_primary_10_1021_acsaem_2c03017 crossref_primary_10_1002_smtd_201900338 crossref_primary_10_1016_j_jclepro_2022_134030 crossref_primary_10_1021_acsmaterialslett_2c00266 crossref_primary_10_1016_j_jechem_2020_07_007 crossref_primary_10_1016_j_ensm_2021_07_007 crossref_primary_10_1039_D0NJ00195C crossref_primary_10_1016_j_apsusc_2018_12_169 crossref_primary_10_1021_acsnano_0c08336 crossref_primary_10_1002_eom2_12324 crossref_primary_10_1016_j_jelechem_2022_117046 crossref_primary_10_1039_C9TA08498C crossref_primary_10_1016_j_micromeso_2020_110749 crossref_primary_10_1016_j_ensm_2020_01_007 crossref_primary_10_3390_nano11112954 crossref_primary_10_1002_er_6956 crossref_primary_10_1039_D0QI00749H crossref_primary_10_1016_j_jpcs_2022_111057 crossref_primary_10_1016_j_jallcom_2020_155443 crossref_primary_10_1016_j_cej_2021_129166 |
Cites_doi | 10.1002/smll.201600809 10.1038/ncomms6682 10.1103/PhysRevLett.77.3865 10.1002/adfm.201504835 10.1002/smll.201502183 10.1039/C4TA06976E 10.1002/adma.201603040 10.1021/acsami.6b04355 10.1021/acsenergylett.7b00465 10.1038/ncomms11203 10.1039/C4TA06141A 10.1021/nl5020475 10.1021/acs.nanolett.5b01294 10.1038/ncomms2327 10.1002/adfm.201303442 10.1002/anie.201506972 10.1002/adma.201506197 10.1039/C6EE00104A 10.1002/aenm.201502518 10.1039/C5NR04791A 10.1038/ncomms8221 10.1021/acsnano.7b03227 10.1016/j.ensm.2017.07.015 10.1002/aenm.201200990 10.1021/jacs.5b07071 10.1039/C6EE01280A 10.1002/aenm.201200017 10.1016/j.nanoen.2017.01.040 10.1002/adma.201606823 10.1039/C5CP05447H 10.1021/ja01539a017 10.1021/nl502331f 10.1038/ncomms6002 10.1002/aenm.201402290 10.1039/C4CC03410D 10.1021/acs.nanolett.6b01981 10.1002/adfm.201604265 10.1524/zkri.220.5.567.65075 10.1039/C5NR09037G 10.1002/adma.201601759 10.1039/C4TA00483C 10.1021/acs.nanolett.5b03217 10.1038/nmat2460 10.1007/s12274-016-1326-0 10.1002/aenm.201402263 10.1016/j.electacta.2015.02.131 10.1002/aenm.201502059 10.1039/c2ee03495f 10.1002/aenm.201701330 10.1021/acsnano.5b07458 10.1021/acsami.5b11327 10.1002/adma.201601382 10.1021/acsami.6b07607 10.1016/j.jpowsour.2013.11.088 10.1016/j.jpowsour.2015.06.011 10.1038/ncomms8760 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201800595 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201800595 AENM201800595 |
Genre | article |
GrantInformation_xml | – fundername: Young Scholars Program of Shandong University funderid: 2017WLJH15 – fundername: Fundamental Research Funds of Shandong University funderid: 2016JC033; 2016GN010 – fundername: National Natural Science Fund of China funderid: 21601108; U1764258 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3175-efff904f268683e52853db50b9391cd6e4a10ebc53034d9a15d561dba9b86483 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:22:49 EDT 2025 Tue Jul 01 01:43:25 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Jan 22 16:21:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3175-efff904f268683e52853db50b9391cd6e4a10ebc53034d9a15d561dba9b86483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2083689580 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2083689580 crossref_citationtrail_10_1002_aenm_201800595 crossref_primary_10_1002_aenm_201800595 wiley_primary_10_1002_aenm_201800595_AENM201800595 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 6, 2018 |
PublicationDateYYYYMMDD | 2018-08-06 |
PublicationDate_xml | – month: 08 year: 2018 text: August 6, 2018 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 163 2015; 15 2015; 6 2013; 3 2015; 5 2013; 4 2017; 2 2015; 3 2015; 54 2016; 10 2017; 29 2015 2016; 3 12 2016; 18 2015 2014; 7 24 2016; 16 2014; 252 2016; 12 1996; 77 2015; 294 2016; 6 2016; 7 2012; 2 2014; 5 2014; 2 2015; 137 2005; 220 2017; 33 2017; 11 2017; 10 2017 2018; 27 8 2014; 14 2009; 8 1958; 80 2016; 28 2018; 10 2014; 50 2016; 26 2012; 5 2016; 8 2016; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_36_2 e_1_2_7_38_1 |
References_xml | – volume: 16 start-page: 864 year: 2016 publication-title: Nano Lett. – volume: 5 start-page: 1402263 year: 2015 publication-title: Adv. Energy Mater. – volume: 5 start-page: 6966 year: 2012 publication-title: Energy Environ. Sci. – volume: 18 start-page: 261 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 163 start-page: 24 year: 2015 publication-title: Electrochim. Acta – volume: 3 start-page: 833 year: 2013 publication-title: Adv. Energy Mater. – volume: 8 start-page: 22261 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 17253 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 252 start-page: 107 year: 2014 publication-title: J. Power Sources – volume: 14 start-page: 5288 year: 2014 publication-title: Nano Lett. – volume: 2 start-page: 1711 year: 2017 publication-title: ACS Energy Lett. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 7274 year: 2017 publication-title: ACS Nano – volume: 28 start-page: 3777 year: 2016 publication-title: Adv. Mater. – volume: 80 start-page: 1339 year: 1958 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 3283 year: 2016 publication-title: Small – volume: 8 start-page: 4000 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 10350 year: 2014 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1238 year: 2012 publication-title: Adv. Energy Mater. – volume: 5 start-page: 5002 year: 2014 publication-title: Nat. Commun. – volume: 7 24 start-page: 17211 3012 year: 2015 2014 publication-title: Nanoscale Adv. Funct. Mater. – volume: 7 start-page: 11203 year: 2016 publication-title: Nat. Commun. – volume: 3 12 start-page: 3059 588 year: 2015 2016 publication-title: J. Mater. Chem. A Small – volume: 294 start-page: 386 year: 2015 publication-title: J. Power Sources – volume: 10 start-page: 1 year: 2018 publication-title: Energy Storage Mater. – volume: 5 start-page: 1402290 year: 2015 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1502059 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 5682 year: 2015 publication-title: Nat. Commun. – volume: 29 start-page: 1601759 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 344 year: 2017 publication-title: Nano Res. – volume: 10 start-page: 4192 year: 2016 publication-title: ACS Nano – volume: 6 start-page: 7221 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 1331 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 7760 year: 2015 publication-title: Nat. Commun. – volume: 137 start-page: 12946 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 6926 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1603040 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 3188 year: 2016 publication-title: Energy Environ. Sci. – volume: 33 start-page: 306 year: 2017 publication-title: Nano Energy – volume: 14 start-page: 4821 year: 2014 publication-title: Nano Lett. – volume: 15 start-page: 5116 year: 2015 publication-title: Nano Lett. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 220 start-page: 567 year: 2005 publication-title: Z. Kristallogr. – volume: 6 start-page: 1502518 year: 2016 publication-title: Adv. Energy Mater. – volume: 8 start-page: 8228 year: 2016 publication-title: Nanoscale – volume: 3 start-page: 7406 year: 2015 publication-title: J. Mater. Chem. A – volume: 26 start-page: 1571 year: 2016 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1606823 year: 2017 publication-title: Adv. Mater. – volume: 16 start-page: 5488 year: 2016 publication-title: Nano Lett. – volume: 27 8 start-page: 1604265 1701330 year: 2017 2018 publication-title: Adv. Funct. Mater. Adv. Energy Mater. – volume: 9 start-page: 1998 year: 2016 publication-title: Energy Environ. Sci. – volume: 54 start-page: 12886 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 13231 year: 2014 publication-title: Chem. Commun. – ident: e_1_2_7_48_1 doi: 10.1002/smll.201600809 – ident: e_1_2_7_32_1 doi: 10.1038/ncomms6682 – ident: e_1_2_7_53_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201504835 – ident: e_1_2_7_37_2 doi: 10.1002/smll.201502183 – ident: e_1_2_7_17_1 doi: 10.1039/C4TA06976E – ident: e_1_2_7_13_1 doi: 10.1002/adma.201603040 – ident: e_1_2_7_12_1 doi: 10.1021/acsami.6b04355 – ident: e_1_2_7_43_1 doi: 10.1021/acsenergylett.7b00465 – ident: e_1_2_7_35_1 doi: 10.1038/ncomms11203 – ident: e_1_2_7_37_1 doi: 10.1039/C4TA06141A – ident: e_1_2_7_49_1 doi: 10.1021/nl5020475 – ident: e_1_2_7_20_1 doi: 10.1021/acs.nanolett.5b01294 – ident: e_1_2_7_30_1 doi: 10.1038/ncomms2327 – ident: e_1_2_7_36_2 doi: 10.1002/adfm.201303442 – ident: e_1_2_7_33_1 doi: 10.1002/anie.201506972 – ident: e_1_2_7_51_1 doi: 10.1002/adma.201506197 – ident: e_1_2_7_6_1 doi: 10.1039/C6EE00104A – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201502518 – ident: e_1_2_7_36_1 doi: 10.1039/C5NR04791A – ident: e_1_2_7_28_1 doi: 10.1038/ncomms8221 – ident: e_1_2_7_47_1 doi: 10.1021/acsnano.7b03227 – ident: e_1_2_7_27_1 doi: 10.1016/j.ensm.2017.07.015 – ident: e_1_2_7_45_1 doi: 10.1002/aenm.201200990 – ident: e_1_2_7_2_1 doi: 10.1021/jacs.5b07071 – ident: e_1_2_7_29_1 doi: 10.1039/C6EE01280A – ident: e_1_2_7_22_1 doi: 10.1002/aenm.201200017 – ident: e_1_2_7_38_1 doi: 10.1016/j.nanoen.2017.01.040 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201606823 – ident: e_1_2_7_21_1 doi: 10.1039/C5CP05447H – ident: e_1_2_7_50_1 doi: 10.1021/ja01539a017 – ident: e_1_2_7_31_1 doi: 10.1021/nl502331f – ident: e_1_2_7_41_1 doi: 10.1038/ncomms6002 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.201402290 – ident: e_1_2_7_44_1 doi: 10.1039/C4CC03410D – ident: e_1_2_7_15_1 doi: 10.1021/acs.nanolett.6b01981 – ident: e_1_2_7_24_1 doi: 10.1002/adfm.201604265 – ident: e_1_2_7_52_1 doi: 10.1524/zkri.220.5.567.65075 – ident: e_1_2_7_40_1 doi: 10.1039/C5NR09037G – ident: e_1_2_7_4_1 doi: 10.1002/adma.201601759 – ident: e_1_2_7_19_1 doi: 10.1039/C4TA00483C – ident: e_1_2_7_26_1 doi: 10.1021/acs.nanolett.5b03217 – ident: e_1_2_7_25_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_8_1 doi: 10.1007/s12274-016-1326-0 – ident: e_1_2_7_1_1 doi: 10.1002/aenm.201402263 – ident: e_1_2_7_9_1 doi: 10.1016/j.electacta.2015.02.131 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.201502059 – ident: e_1_2_7_16_1 doi: 10.1039/c2ee03495f – ident: e_1_2_7_24_2 doi: 10.1002/aenm.201701330 – ident: e_1_2_7_3_1 doi: 10.1021/acsnano.5b07458 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.5b11327 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201601382 – ident: e_1_2_7_7_1 doi: 10.1021/acsami.6b07607 – ident: e_1_2_7_18_1 doi: 10.1016/j.jpowsour.2013.11.088 – ident: e_1_2_7_23_1 doi: 10.1016/j.jpowsour.2015.06.011 – ident: e_1_2_7_39_1 doi: 10.1038/ncomms8760 |
SSID | ssj0000491033 |
Score | 2.600681 |
Snippet | The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomic structure Batteries Bonding strength Cathodes Chemical bonds chemical confinement Graphene Hydrothermal treatment Lithium Li–S batteries Nanostructure Nitrogen nitrogen‐doped reduced graphene oxides Organic chemistry Polysulfides Refluxing Structural stability Sulfur ZnCo2O4 nanocubes |
Title | Nitrogen‐Doped Graphene‐Supported Mixed Transition‐Metal Oxide Porous Particles to Confine Polysulfides for Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201800595 https://www.proquest.com/docview/2083689580 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMsFOQDEodVwHEedY4VLVpVZFnURVpOUR4ODVqSaptIpaf-AA5I_DF-Q38JYzt2vOLdi7WyZxPF88Wemcx8RuipF_HU85nnRDQljr-bMid14b1yKSV56ZEyJ6IaOZ6F03f-4TJYjkbfraylrs2e5-e_rCu5ilahD_QqqmT_Q7PmotABv0G_0IKGof0nHc-qdt3AqMlY2G9OuAgwpSJzi5tucXSnSKotJnF1Bq3coGSulhGJuaiKfHNWFXwyb9YiMXauk-aEfSoqA4VBOm9Wn0-7VQlykslBsG4cV90nfSHvCAa79UTxduoMRU1zqxMOuKo4BGtZTdPwaUougm8tzC4r9Vmk-dhZ6UOy87ASwW79BO_1Jizj6zICPG3qD-fHlR3ZcJnMqwutxRhMBydkffyT232K4kmv4MwCKqXWXm52up82CkU8m_JasBG4TNTgBsOWqNMAjGTwZ1lFIHwwi834NbRNwXGBlXd7bz9-fWTifuCRucSTdR_68TSXKKEvNm-yaSsNDpDtRkk7aHEL3ewdGLynsHEbjXh9B92waC3voi8al5cXXyUisUYkdBgsYolFPGARBiUKsUQhVijEBoW4bXCPQmyjEAMKcY_Cy4tvCn_Y4O8eWrw6WLycOv2pH04ubFmHl2UZEb-kIYPJ4QEFg7LIApJFXuTmRcj91CU8ywMwvvwiSt2gAB-gyNIoYyGsOvfRVt3U_AHCESfgL4vTdMLSZzxMWV6CYcB38zATtYZj5OjpTfKeEV8czLJKFJc3TYQ6EqOOMXpm5E8UF8xvJXe0tpJ-vTiFUeaFLAoYGSMqNfiXqyQbiHp4lT89QteHN2sHbbXrjj8GK7rNnvTA_AHLMcNs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen%E2%80%90Doped+Graphene%E2%80%90Supported+Mixed+Transition%E2%80%90Metal+Oxide+Porous+Particles+to+Confine+Polysulfides+for+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Sun%2C+Qian&rft.au=Xi%2C+Baojuan&rft.au=Li%2C+Jiang%E2%80%90Ying&rft.au=Mao%2C+Hongzhi&rft.date=2018-08-06&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201800595&rft.externalDBID=10.1002%252Faenm.201800595&rft.externalDocID=AENM201800595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |