Nitrogen‐Doped Graphene‐Supported Mixed Transition‐Metal Oxide Porous Particles to Confine Polysulfides for Lithium–Sulfur Batteries

The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 8; no. 22
Main Authors Sun, Qian, Xi, Baojuan, Li, Jiang‐Ying, Mao, Hongzhi, Ma, Xiaojian, Liang, Jianwen, Feng, Jinkui, Xiong, Shenglin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo2O4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo2O4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo2O4 to Li2S4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo2O4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur. A unique ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) hybrid is composed of interconnected spinel ZnCo2O4 nanocubes anchored on graphene nanosheets. Due to the advantages of the ZnCo2O4@N‐RGO hybrid with a high electrical conductivity and strong immobilization/blocking ability for polysulfides, the ZnCo2O4@N‐RGO‐based electrode displays high sulfur utilization, long cycling life, and high rate performance in Li–S batteries.
AbstractList The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo2O4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo2O4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo2O4 to Li2S4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo2O4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur.
The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo2O4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo2O4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo2O4 to Li2S4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo2O4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur. A unique ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) hybrid is composed of interconnected spinel ZnCo2O4 nanocubes anchored on graphene nanosheets. Due to the advantages of the ZnCo2O4@N‐RGO hybrid with a high electrical conductivity and strong immobilization/blocking ability for polysulfides, the ZnCo2O4@N‐RGO‐based electrode displays high sulfur utilization, long cycling life, and high rate performance in Li–S batteries.
The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo 2 O 4 porous particles@N‐doped reduced graphene oxide (ZnCo 2 O 4 @N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo 2 O 4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo 2 O 4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo 2 O 4 to Li 2 S 4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo 2 O 4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur.
Author Sun, Qian
Liang, Jianwen
Li, Jiang‐Ying
Xi, Baojuan
Xiong, Shenglin
Mao, Hongzhi
Ma, Xiaojian
Feng, Jinkui
Author_xml – sequence: 1
  givenname: Qian
  surname: Sun
  fullname: Sun, Qian
  organization: Shandong University
– sequence: 2
  givenname: Baojuan
  surname: Xi
  fullname: Xi, Baojuan
  email: baojuanxi@sdu.edu.cn
  organization: Shandong University
– sequence: 3
  givenname: Jiang‐Ying
  surname: Li
  fullname: Li, Jiang‐Ying
  organization: Lanzhou University
– sequence: 4
  givenname: Hongzhi
  surname: Mao
  fullname: Mao, Hongzhi
  organization: Shandong University
– sequence: 5
  givenname: Xiaojian
  surname: Ma
  fullname: Ma, Xiaojian
  organization: Shandong University
– sequence: 6
  givenname: Jianwen
  surname: Liang
  fullname: Liang, Jianwen
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Jinkui
  surname: Feng
  fullname: Feng, Jinkui
  organization: Shandong University
– sequence: 8
  givenname: Shenglin
  surname: Xiong
  fullname: Xiong, Shenglin
  organization: Shandong University
BookMark eNqFkMFqGzEQhkVIIWnqa86CnO1Kq9VGOqZu6gZsJxDfF-3uKJZZS1tJS-2bH6CHQt4wT1ItLgkESnUYiX_-b8T8H9GpdRYQuqRkQgnJPiuw20lGqCCES36CzmlB83EhcnL6-mbZGRqFsCHp5JISxs7Rr6WJ3j2BfTn8_uo6aPDMq24NFpLw2Hed8zGJC7NLdeWVDSYaN7gXEFWL73emAfzgvOsDflA-mrqFgKPDU2e1sUOv3Ye-1ckXsHYez01cm377cnh-THLv8RcVI3gD4RP6oFUbYPT3vkCrb7er6ffx_H52N72Zj2tGr_kYtNaS5DorRFoKeCY4aypOKskkrZsCckUJVDVnhOWNVJQ3vKBNpWQlilywC3R1HNt596OHEMuN671NP5YZEawQkguSXPnRVXsXggdd1iaqYfnolWlLSsoh-XJIvnxNPmGTd1jnzVb5_b8BeQR-mhb2_3GXN7fLxRv7B2csnx8
CitedBy_id crossref_primary_10_1007_s10853_022_07625_7
crossref_primary_10_1016_j_electacta_2019_05_001
crossref_primary_10_1002_chem_202303285
crossref_primary_10_1039_C9QM00675C
crossref_primary_10_1016_j_carbon_2022_11_080
crossref_primary_10_1002_aenm_201902096
crossref_primary_10_1039_C9NR03278A
crossref_primary_10_1021_acsami_4c09591
crossref_primary_10_1021_acsami_1c22731
crossref_primary_10_1002_sus2_5
crossref_primary_10_1016_j_jechem_2020_06_009
crossref_primary_10_1016_j_ensm_2023_102999
crossref_primary_10_1016_j_apt_2022_103710
crossref_primary_10_1002_aenm_201904273
crossref_primary_10_1002_smll_202005332
crossref_primary_10_1016_j_cej_2023_148374
crossref_primary_10_1016_j_ensm_2024_103965
crossref_primary_10_1002_ente_202401451
crossref_primary_10_1016_j_cej_2019_123457
crossref_primary_10_1021_acsaem_9b00243
crossref_primary_10_1002_aenm_202002893
crossref_primary_10_1039_D1TA08968D
crossref_primary_10_1039_C9TA12235D
crossref_primary_10_1039_D3CY00487B
crossref_primary_10_1007_s12274_024_6472_1
crossref_primary_10_1016_j_jechem_2023_02_009
crossref_primary_10_1016_j_jallcom_2021_162653
crossref_primary_10_1088_2515_7655_aadef6
crossref_primary_10_1002_aenm_202001304
crossref_primary_10_1016_j_cej_2020_126579
crossref_primary_10_1016_j_materresbull_2019_110625
crossref_primary_10_1016_j_cej_2019_05_119
crossref_primary_10_1016_j_apsusc_2019_144964
crossref_primary_10_1016_j_electacta_2023_141875
crossref_primary_10_1002_adfm_202300143
crossref_primary_10_1021_acs_accounts_4c00244
crossref_primary_10_1039_C9TA11958B
crossref_primary_10_1002_smll_202005227
crossref_primary_10_1002_adfm_202207727
crossref_primary_10_1002_cnma_202000440
crossref_primary_10_1007_s42864_020_00047_5
crossref_primary_10_1016_j_apsusc_2022_153787
crossref_primary_10_1016_j_jelechem_2021_115629
crossref_primary_10_1002_er_5965
crossref_primary_10_1002_admt_202201544
crossref_primary_10_1002_aenm_201802768
crossref_primary_10_1039_D3NJ03695B
crossref_primary_10_1039_D2TA10020G
crossref_primary_10_1016_j_jcis_2023_03_132
crossref_primary_10_1039_D0MH00815J
crossref_primary_10_1039_D1EE01349A
crossref_primary_10_1002_adfm_202408986
crossref_primary_10_1002_aenm_201900219
crossref_primary_10_1016_j_electacta_2022_141000
crossref_primary_10_1016_j_materresbull_2024_112754
crossref_primary_10_1002_asia_202400099
crossref_primary_10_1016_j_solidstatesciences_2022_107025
crossref_primary_10_1016_j_chemosphere_2023_139804
crossref_primary_10_1016_j_susc_2021_121818
crossref_primary_10_1016_j_electacta_2019_134968
crossref_primary_10_1039_D2TC02233H
crossref_primary_10_1016_j_electacta_2021_139275
crossref_primary_10_3390_nano11112882
crossref_primary_10_1002_adfm_202313168
crossref_primary_10_1002_celc_202001052
crossref_primary_10_3390_nano13101612
crossref_primary_10_1021_acsami_3c03929
crossref_primary_10_1016_j_jpowsour_2021_230607
crossref_primary_10_1002_advs_201900958
crossref_primary_10_1002_adma_202003666
crossref_primary_10_1016_j_jallcom_2020_157382
crossref_primary_10_1039_D4RA06366J
crossref_primary_10_1016_j_compositesb_2022_110410
crossref_primary_10_1039_C9TA00458K
crossref_primary_10_1016_j_nanoen_2019_04_006
crossref_primary_10_1016_j_ensm_2020_05_033
crossref_primary_10_1039_C9NJ04581C
crossref_primary_10_1007_s12274_020_2909_3
crossref_primary_10_1016_j_jcis_2019_12_127
crossref_primary_10_1021_acsnano_9b06629
crossref_primary_10_1002_aenm_201803477
crossref_primary_10_1007_s42823_019_00117_w
crossref_primary_10_1021_acsami_1c00974
crossref_primary_10_1016_j_cej_2021_129001
crossref_primary_10_1016_j_jallcom_2022_167916
crossref_primary_10_1016_j_jallcom_2021_162987
crossref_primary_10_1021_acs_energyfuels_0c03671
crossref_primary_10_1016_j_ensm_2019_11_016
crossref_primary_10_3390_batteries10030096
crossref_primary_10_1016_j_est_2024_111663
crossref_primary_10_1039_D0QI00730G
crossref_primary_10_1016_j_jcis_2021_05_125
crossref_primary_10_1021_acsaem_9b00680
crossref_primary_10_1016_j_nanoen_2021_106331
crossref_primary_10_1016_j_nanoen_2021_105761
crossref_primary_10_1016_j_jelechem_2019_04_047
crossref_primary_10_1021_acsami_1c12855
crossref_primary_10_1016_j_jcis_2024_11_101
crossref_primary_10_1016_j_jpowsour_2019_04_010
crossref_primary_10_1007_s41918_021_00110_w
crossref_primary_10_1039_D2YA00106C
crossref_primary_10_1002_adfm_202101285
crossref_primary_10_1021_acsaem_2c02021
crossref_primary_10_1002_ente_201901462
crossref_primary_10_1016_j_electacta_2019_135353
crossref_primary_10_1016_j_elecom_2022_107325
crossref_primary_10_1002_advs_202406475
crossref_primary_10_1016_j_jpowsour_2019_05_055
crossref_primary_10_1002_aenm_201901896
crossref_primary_10_1016_j_electacta_2019_04_113
crossref_primary_10_1002_adfm_201901051
crossref_primary_10_1002_smll_202001468
crossref_primary_10_1016_j_est_2024_110583
crossref_primary_10_1002_smll_201902491
crossref_primary_10_1002_adma_201903813
crossref_primary_10_1016_j_jallcom_2025_179118
crossref_primary_10_1002_admi_201901420
crossref_primary_10_1007_s11581_023_04986_0
crossref_primary_10_1016_j_ensm_2021_08_012
crossref_primary_10_1002_aenm_202100957
crossref_primary_10_1039_C8NR04661A
crossref_primary_10_1021_acsami_0c20519
crossref_primary_10_1002_slct_201902107
crossref_primary_10_3390_batteries9030155
crossref_primary_10_1016_j_jece_2024_112955
crossref_primary_10_1016_j_ceramint_2022_04_233
crossref_primary_10_1016_j_jwpe_2022_102873
crossref_primary_10_1002_adfm_202305991
crossref_primary_10_1039_D0DT02275F
crossref_primary_10_1016_j_apsusc_2021_151634
crossref_primary_10_3390_catal12080851
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1002_cssc_202300135
crossref_primary_10_1016_j_mtnano_2022_100242
crossref_primary_10_1002_adfm_202109462
crossref_primary_10_1021_acsnano_9b04519
crossref_primary_10_1016_j_nanoms_2022_07_004
crossref_primary_10_1021_acsami_2c12841
crossref_primary_10_1002_er_5236
crossref_primary_10_1021_acsaem_2c03017
crossref_primary_10_1002_smtd_201900338
crossref_primary_10_1016_j_jclepro_2022_134030
crossref_primary_10_1021_acsmaterialslett_2c00266
crossref_primary_10_1016_j_jechem_2020_07_007
crossref_primary_10_1016_j_ensm_2021_07_007
crossref_primary_10_1039_D0NJ00195C
crossref_primary_10_1016_j_apsusc_2018_12_169
crossref_primary_10_1021_acsnano_0c08336
crossref_primary_10_1002_eom2_12324
crossref_primary_10_1016_j_jelechem_2022_117046
crossref_primary_10_1039_C9TA08498C
crossref_primary_10_1016_j_micromeso_2020_110749
crossref_primary_10_1016_j_ensm_2020_01_007
crossref_primary_10_3390_nano11112954
crossref_primary_10_1002_er_6956
crossref_primary_10_1039_D0QI00749H
crossref_primary_10_1016_j_jpcs_2022_111057
crossref_primary_10_1016_j_jallcom_2020_155443
crossref_primary_10_1016_j_cej_2021_129166
Cites_doi 10.1002/smll.201600809
10.1038/ncomms6682
10.1103/PhysRevLett.77.3865
10.1002/adfm.201504835
10.1002/smll.201502183
10.1039/C4TA06976E
10.1002/adma.201603040
10.1021/acsami.6b04355
10.1021/acsenergylett.7b00465
10.1038/ncomms11203
10.1039/C4TA06141A
10.1021/nl5020475
10.1021/acs.nanolett.5b01294
10.1038/ncomms2327
10.1002/adfm.201303442
10.1002/anie.201506972
10.1002/adma.201506197
10.1039/C6EE00104A
10.1002/aenm.201502518
10.1039/C5NR04791A
10.1038/ncomms8221
10.1021/acsnano.7b03227
10.1016/j.ensm.2017.07.015
10.1002/aenm.201200990
10.1021/jacs.5b07071
10.1039/C6EE01280A
10.1002/aenm.201200017
10.1016/j.nanoen.2017.01.040
10.1002/adma.201606823
10.1039/C5CP05447H
10.1021/ja01539a017
10.1021/nl502331f
10.1038/ncomms6002
10.1002/aenm.201402290
10.1039/C4CC03410D
10.1021/acs.nanolett.6b01981
10.1002/adfm.201604265
10.1524/zkri.220.5.567.65075
10.1039/C5NR09037G
10.1002/adma.201601759
10.1039/C4TA00483C
10.1021/acs.nanolett.5b03217
10.1038/nmat2460
10.1007/s12274-016-1326-0
10.1002/aenm.201402263
10.1016/j.electacta.2015.02.131
10.1002/aenm.201502059
10.1039/c2ee03495f
10.1002/aenm.201701330
10.1021/acsnano.5b07458
10.1021/acsami.5b11327
10.1002/adma.201601382
10.1021/acsami.6b07607
10.1016/j.jpowsour.2013.11.088
10.1016/j.jpowsour.2015.06.011
10.1038/ncomms8760
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201800595
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201800595
AENM201800595
Genre article
GrantInformation_xml – fundername: Young Scholars Program of Shandong University
  funderid: 2017WLJH15
– fundername: Fundamental Research Funds of Shandong University
  funderid: 2016JC033; 2016GN010
– fundername: National Natural Science Fund of China
  funderid: 21601108; U1764258
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3175-efff904f268683e52853db50b9391cd6e4a10ebc53034d9a15d561dba9b86483
ISSN 1614-6832
IngestDate Fri Jul 25 12:22:49 EDT 2025
Tue Jul 01 01:43:25 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Jan 22 16:21:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-efff904f268683e52853db50b9391cd6e4a10ebc53034d9a15d561dba9b86483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2083689580
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2083689580
crossref_citationtrail_10_1002_aenm_201800595
crossref_primary_10_1002_aenm_201800595
wiley_primary_10_1002_aenm_201800595_AENM201800595
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 6, 2018
PublicationDateYYYYMMDD 2018-08-06
PublicationDate_xml – month: 08
  year: 2018
  text: August 6, 2018
  day: 06
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 163
2015; 15
2015; 6
2013; 3
2015; 5
2013; 4
2017; 2
2015; 3
2015; 54
2016; 10
2017; 29
2015 2016; 3 12
2016; 18
2015 2014; 7 24
2016; 16
2014; 252
2016; 12
1996; 77
2015; 294
2016; 6
2016; 7
2012; 2
2014; 5
2014; 2
2015; 137
2005; 220
2017; 33
2017; 11
2017; 10
2017 2018; 27 8
2014; 14
2009; 8
1958; 80
2016; 28
2018; 10
2014; 50
2016; 26
2012; 5
2016; 8
2016; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_36_2
e_1_2_7_38_1
References_xml – volume: 16
  start-page: 864
  year: 2016
  publication-title: Nano Lett.
– volume: 5
  start-page: 1402263
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 6966
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 18
  start-page: 261
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 163
  start-page: 24
  year: 2015
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 833
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 22261
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 17253
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 252
  start-page: 107
  year: 2014
  publication-title: J. Power Sources
– volume: 14
  start-page: 5288
  year: 2014
  publication-title: Nano Lett.
– volume: 2
  start-page: 1711
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 7274
  year: 2017
  publication-title: ACS Nano
– volume: 28
  start-page: 3777
  year: 2016
  publication-title: Adv. Mater.
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 3283
  year: 2016
  publication-title: Small
– volume: 8
  start-page: 4000
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 10350
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1238
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 5002
  year: 2014
  publication-title: Nat. Commun.
– volume: 7 24
  start-page: 17211 3012
  year: 2015 2014
  publication-title: Nanoscale Adv. Funct. Mater.
– volume: 7
  start-page: 11203
  year: 2016
  publication-title: Nat. Commun.
– volume: 3 12
  start-page: 3059 588
  year: 2015 2016
  publication-title: J. Mater. Chem. A Small
– volume: 294
  start-page: 386
  year: 2015
  publication-title: J. Power Sources
– volume: 10
  start-page: 1
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 1402290
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1502059
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 5682
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1601759
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 344
  year: 2017
  publication-title: Nano Res.
– volume: 10
  start-page: 4192
  year: 2016
  publication-title: ACS Nano
– volume: 6
  start-page: 7221
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1331
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7760
  year: 2015
  publication-title: Nat. Commun.
– volume: 137
  start-page: 12946
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 6926
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1603040
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3188
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 33
  start-page: 306
  year: 2017
  publication-title: Nano Energy
– volume: 14
  start-page: 4821
  year: 2014
  publication-title: Nano Lett.
– volume: 15
  start-page: 5116
  year: 2015
  publication-title: Nano Lett.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 220
  start-page: 567
  year: 2005
  publication-title: Z. Kristallogr.
– volume: 6
  start-page: 1502518
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 8228
  year: 2016
  publication-title: Nanoscale
– volume: 3
  start-page: 7406
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 1571
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1606823
  year: 2017
  publication-title: Adv. Mater.
– volume: 16
  start-page: 5488
  year: 2016
  publication-title: Nano Lett.
– volume: 27 8
  start-page: 1604265 1701330
  year: 2017 2018
  publication-title: Adv. Funct. Mater. Adv. Energy Mater.
– volume: 9
  start-page: 1998
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 12886
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 13231
  year: 2014
  publication-title: Chem. Commun.
– ident: e_1_2_7_48_1
  doi: 10.1002/smll.201600809
– ident: e_1_2_7_32_1
  doi: 10.1038/ncomms6682
– ident: e_1_2_7_53_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201504835
– ident: e_1_2_7_37_2
  doi: 10.1002/smll.201502183
– ident: e_1_2_7_17_1
  doi: 10.1039/C4TA06976E
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201603040
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.6b04355
– ident: e_1_2_7_43_1
  doi: 10.1021/acsenergylett.7b00465
– ident: e_1_2_7_35_1
  doi: 10.1038/ncomms11203
– ident: e_1_2_7_37_1
  doi: 10.1039/C4TA06141A
– ident: e_1_2_7_49_1
  doi: 10.1021/nl5020475
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.nanolett.5b01294
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms2327
– ident: e_1_2_7_36_2
  doi: 10.1002/adfm.201303442
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.201506972
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.201506197
– ident: e_1_2_7_6_1
  doi: 10.1039/C6EE00104A
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201502518
– ident: e_1_2_7_36_1
  doi: 10.1039/C5NR04791A
– ident: e_1_2_7_28_1
  doi: 10.1038/ncomms8221
– ident: e_1_2_7_47_1
  doi: 10.1021/acsnano.7b03227
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ensm.2017.07.015
– ident: e_1_2_7_45_1
  doi: 10.1002/aenm.201200990
– ident: e_1_2_7_2_1
  doi: 10.1021/jacs.5b07071
– ident: e_1_2_7_29_1
  doi: 10.1039/C6EE01280A
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.201200017
– ident: e_1_2_7_38_1
  doi: 10.1016/j.nanoen.2017.01.040
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_7_21_1
  doi: 10.1039/C5CP05447H
– ident: e_1_2_7_50_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_7_31_1
  doi: 10.1021/nl502331f
– ident: e_1_2_7_41_1
  doi: 10.1038/ncomms6002
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.201402290
– ident: e_1_2_7_44_1
  doi: 10.1039/C4CC03410D
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.nanolett.6b01981
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.201604265
– ident: e_1_2_7_52_1
  doi: 10.1524/zkri.220.5.567.65075
– ident: e_1_2_7_40_1
  doi: 10.1039/C5NR09037G
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201601759
– ident: e_1_2_7_19_1
  doi: 10.1039/C4TA00483C
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.nanolett.5b03217
– ident: e_1_2_7_25_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_8_1
  doi: 10.1007/s12274-016-1326-0
– ident: e_1_2_7_1_1
  doi: 10.1002/aenm.201402263
– ident: e_1_2_7_9_1
  doi: 10.1016/j.electacta.2015.02.131
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.201502059
– ident: e_1_2_7_16_1
  doi: 10.1039/c2ee03495f
– ident: e_1_2_7_24_2
  doi: 10.1002/aenm.201701330
– ident: e_1_2_7_3_1
  doi: 10.1021/acsnano.5b07458
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.5b11327
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201601382
– ident: e_1_2_7_7_1
  doi: 10.1021/acsami.6b07607
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jpowsour.2013.11.088
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jpowsour.2015.06.011
– ident: e_1_2_7_39_1
  doi: 10.1038/ncomms8760
SSID ssj0000491033
Score 2.600681
Snippet The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomic structure
Batteries
Bonding strength
Cathodes
Chemical bonds
chemical confinement
Graphene
Hydrothermal treatment
Lithium
Li–S batteries
Nanostructure
Nitrogen
nitrogen‐doped reduced graphene oxides
Organic chemistry
Polysulfides
Refluxing
Structural stability
Sulfur
ZnCo2O4 nanocubes
Title Nitrogen‐Doped Graphene‐Supported Mixed Transition‐Metal Oxide Porous Particles to Confine Polysulfides for Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201800595
https://www.proquest.com/docview/2083689580
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMsFOQDEodVwHEedY4VLVpVZFnURVpOUR4ODVqSaptIpaf-AA5I_DF-Q38JYzt2vOLdi7WyZxPF88Wemcx8RuipF_HU85nnRDQljr-bMid14b1yKSV56ZEyJ6IaOZ6F03f-4TJYjkbfraylrs2e5-e_rCu5ilahD_QqqmT_Q7PmotABv0G_0IKGof0nHc-qdt3AqMlY2G9OuAgwpSJzi5tucXSnSKotJnF1Bq3coGSulhGJuaiKfHNWFXwyb9YiMXauk-aEfSoqA4VBOm9Wn0-7VQlykslBsG4cV90nfSHvCAa79UTxduoMRU1zqxMOuKo4BGtZTdPwaUougm8tzC4r9Vmk-dhZ6UOy87ASwW79BO_1Jizj6zICPG3qD-fHlR3ZcJnMqwutxRhMBydkffyT232K4kmv4MwCKqXWXm52up82CkU8m_JasBG4TNTgBsOWqNMAjGTwZ1lFIHwwi834NbRNwXGBlXd7bz9-fWTifuCRucSTdR_68TSXKKEvNm-yaSsNDpDtRkk7aHEL3ewdGLynsHEbjXh9B92waC3voi8al5cXXyUisUYkdBgsYolFPGARBiUKsUQhVijEBoW4bXCPQmyjEAMKcY_Cy4tvCn_Y4O8eWrw6WLycOv2pH04ubFmHl2UZEb-kIYPJ4QEFg7LIApJFXuTmRcj91CU8ywMwvvwiSt2gAB-gyNIoYyGsOvfRVt3U_AHCESfgL4vTdMLSZzxMWV6CYcB38zATtYZj5OjpTfKeEV8czLJKFJc3TYQ6EqOOMXpm5E8UF8xvJXe0tpJ-vTiFUeaFLAoYGSMqNfiXqyQbiHp4lT89QteHN2sHbbXrjj8GK7rNnvTA_AHLMcNs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen%E2%80%90Doped+Graphene%E2%80%90Supported+Mixed+Transition%E2%80%90Metal+Oxide+Porous+Particles+to+Confine+Polysulfides+for+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Sun%2C+Qian&rft.au=Xi%2C+Baojuan&rft.au=Li%2C+Jiang%E2%80%90Ying&rft.au=Mao%2C+Hongzhi&rft.date=2018-08-06&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201800595&rft.externalDBID=10.1002%252Faenm.201800595&rft.externalDocID=AENM201800595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon