Manipulating Ionic Behavior with Bifunctional Additives for Efficient Sky‐Blue Perovskite Light‐Emitting Diodes

Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 27
Main Authors Zhou, Wei, Shen, Yang, Cao, Long‐Xue, Lu, Yu, Tang, Ying‐Yi, Zhang, Kai, Ren, Hao, Xie, Feng‐Ming, Li, Yan‐Qing, Tang, Jian‐Xin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed‐halide blue perovskite materials. Herein, efficient sky‐blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis‐base benzoic acid anions and alkali metal cations to simultaneously passivate the under‐coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials. Defect passivation and the suppression of halide ion migration are simultaneously achieved in mixed‐halide perovskite materials via the incorporation of bifunctional additives containing Lewis‐base group and alkali metal ions. Efficient sky‐blue perovskite light‐emitting diodes achieve an external quantum efficiency of 16.58%, which is further boosted to 28.82% by the optical outcoupling enhancement.
AbstractList Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed‐halide blue perovskite materials. Herein, efficient sky‐blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis‐base benzoic acid anions and alkali metal cations to simultaneously passivate the under‐coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials.
Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed‐halide blue perovskite materials. Herein, efficient sky‐blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis‐base benzoic acid anions and alkali metal cations to simultaneously passivate the under‐coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials. Defect passivation and the suppression of halide ion migration are simultaneously achieved in mixed‐halide perovskite materials via the incorporation of bifunctional additives containing Lewis‐base group and alkali metal ions. Efficient sky‐blue perovskite light‐emitting diodes achieve an external quantum efficiency of 16.58%, which is further boosted to 28.82% by the optical outcoupling enhancement.
Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed‐halide blue perovskite materials. Herein, efficient sky‐blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis‐base benzoic acid anions and alkali metal cations to simultaneously passivate the under‐coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials.
Author Shen, Yang
Ren, Hao
Xie, Feng‐Ming
Li, Yan‐Qing
Tang, Ying‐Yi
Cao, Long‐Xue
Zhou, Wei
Lu, Yu
Tang, Jian‐Xin
Zhang, Kai
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: Soochow University
– sequence: 2
  givenname: Yang
  surname: Shen
  fullname: Shen, Yang
  email: 20204014038@stu.suda.edu.cn
  organization: Soochow University
– sequence: 3
  givenname: Long‐Xue
  surname: Cao
  fullname: Cao, Long‐Xue
  organization: Soochow University
– sequence: 4
  givenname: Yu
  surname: Lu
  fullname: Lu, Yu
  organization: Soochow University
– sequence: 5
  givenname: Ying‐Yi
  surname: Tang
  fullname: Tang, Ying‐Yi
  organization: East China Normal University
– sequence: 6
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Macau University of Science and Technology
– sequence: 7
  givenname: Hao
  surname: Ren
  fullname: Ren, Hao
  organization: Soochow University
– sequence: 8
  givenname: Feng‐Ming
  surname: Xie
  fullname: Xie, Feng‐Ming
  organization: Soochow University
– sequence: 9
  givenname: Yan‐Qing
  surname: Li
  fullname: Li, Yan‐Qing
  email: yqli@phy.ecnu.edu.cn
  organization: East China Normal University
– sequence: 10
  givenname: Jian‐Xin
  orcidid: 0000-0002-6813-0448
  surname: Tang
  fullname: Tang, Jian‐Xin
  email: jxtang@suda.edu.cn
  organization: Macau University of Science and Technology
BookMark eNqFkMtKA0EQRRtR8Ll13eA6sR_zyjLRRIWIggruhp6e6qR0Mh27eyLZ-Ql-o1_ixEgEQdxUFVX3XKi7T7ZrWwMhx5x1OWPiVJVm1hVMSMYjEW-RPZ7wpCOZyLY3M3_cJfvePzHG01RGe8RfqxrnTaUC1hN6ZWvUdABTtUDr6CuGKR2gaWod0Naqov2yxIAL8NS096ExqBHqQO-elx9v74OqAXoLzi78MwagY5xMQ7sfzjB8-Z-jLcEfkh2jKg9H3_2APIyG92eXnfHNxdVZf9zRkqdxB3rA0sKAVlHKk0wZkKxXqCwuIFKgC66N4kqyIovbo2hLYYxOSqPiMhKylAfkZO07d_alAR_yJ9u49g2fi0yKJItiHreqaK3SznrvwOQag1r9G5zCKucsX8Wbr-LNN_G2WPcXNnc4U275N9BbA69YwfIfdd4_H13_sJ9E_JTA
CitedBy_id crossref_primary_10_1021_acsami_4c01824
crossref_primary_10_1021_acsami_4c01309
crossref_primary_10_1002_adfm_202401297
crossref_primary_10_1002_adma_202410255
crossref_primary_10_1021_acs_nanolett_4c00256
crossref_primary_10_1021_acsami_3c05253
crossref_primary_10_1002_adom_202302926
crossref_primary_10_1021_acsaelm_4c00294
crossref_primary_10_1002_inf2_12537
crossref_primary_10_1007_s11426_024_1986_6
crossref_primary_10_1021_acsenergylett_4c00109
crossref_primary_10_1016_j_cej_2024_152483
crossref_primary_10_1016_j_cej_2024_154188
crossref_primary_10_1002_adom_202303304
crossref_primary_10_1002_adom_202302972
crossref_primary_10_1021_acs_jpcc_4c03745
crossref_primary_10_1002_adom_202301164
crossref_primary_10_1021_acs_energyfuels_4c03168
crossref_primary_10_1021_acsmaterialslett_4c00912
crossref_primary_10_1088_2515_7647_ad46a6
crossref_primary_10_1364_AOP_531166
crossref_primary_10_1002_adma_202308487
crossref_primary_10_1002_smll_202501333
crossref_primary_10_1002_adom_202401955
crossref_primary_10_1007_s44275_024_00018_9
crossref_primary_10_1002_adma_202405630
crossref_primary_10_1002_adma_202414788
crossref_primary_10_1016_j_joule_2024_03_004
crossref_primary_10_1039_D3TC03830K
crossref_primary_10_1021_acs_jpclett_3c01028
crossref_primary_10_1063_5_0172757
crossref_primary_10_1021_acsmaterialslett_3c00557
crossref_primary_10_1021_acs_jpcc_3c05787
crossref_primary_10_1002_adom_202302836
crossref_primary_10_1002_adom_202301752
crossref_primary_10_1002_adfm_202310389
crossref_primary_10_1039_D3NR06547B
crossref_primary_10_1002_adfm_202307818
crossref_primary_10_1002_adfm_202310220
crossref_primary_10_1002_smll_202309309
crossref_primary_10_1002_adma_202402325
crossref_primary_10_1016_j_cej_2024_158817
crossref_primary_10_1002_adom_202401920
crossref_primary_10_1039_D4RA02652G
crossref_primary_10_1016_j_apmt_2024_102418
crossref_primary_10_1039_D4NR05355A
crossref_primary_10_1002_adma_202413669
crossref_primary_10_1002_adma_202415648
crossref_primary_10_1016_j_nanoen_2024_109263
crossref_primary_10_1016_j_cej_2024_149887
crossref_primary_10_1002_smtd_202300434
crossref_primary_10_1109_LED_2024_3368163
crossref_primary_10_1002_smll_202405933
crossref_primary_10_1016_j_matt_2023_11_022
crossref_primary_10_1021_acs_inorgchem_4c01671
crossref_primary_10_1021_acsanm_3c06224
crossref_primary_10_1002_adfm_202411671
crossref_primary_10_1002_adfm_202410143
crossref_primary_10_1021_acs_jpclett_5c00272
crossref_primary_10_1002_adpr_202400188
crossref_primary_10_1088_1361_6528_ada2f1
crossref_primary_10_3390_coatings14010083
crossref_primary_10_1002_adfm_202304577
crossref_primary_10_1021_acsami_4c13156
crossref_primary_10_1021_acsami_4c03752
crossref_primary_10_1002_smll_202308847
crossref_primary_10_34133_adi_0045
crossref_primary_10_1021_acsnano_4c08640
crossref_primary_10_1007_s12200_025_00152_8
crossref_primary_10_1021_acsami_3c19394
crossref_primary_10_1002_adfm_202401189
crossref_primary_10_1021_acs_chemmater_4c00571
crossref_primary_10_1021_acsnano_3c12433
crossref_primary_10_1039_D4TC01688B
crossref_primary_10_1021_acs_jpclett_4c02965
crossref_primary_10_1039_D4CS00077C
crossref_primary_10_1016_j_apcatb_2024_124937
crossref_primary_10_1126_sciadv_adn5683
crossref_primary_10_1038_s41467_024_55074_4
crossref_primary_10_1002_adom_202402996
crossref_primary_10_1002_lpor_202400231
crossref_primary_10_1039_D4TC03780D
crossref_primary_10_1002_adfm_202311133
crossref_primary_10_1021_acsphotonics_4c01767
Cites_doi 10.1126/science.aad1818
10.1038/s41377-022-01036-8
10.1039/C8NR09885A
10.1002/smtd.201700419
10.1002/adfm.202103870
10.1038/s41586-022-05486-3
10.1021/acsnano.6b02683
10.1038/s41467-019-09794-7
10.1002/adma.202207111
10.1002/lpor.202100023
10.1038/s41377-022-01027-9
10.1126/science.aau9101
10.1038/s41586-022-05304-w
10.1021/nl5048779
10.1038/s41566-018-0154-z
10.1039/C5TC01718A
10.1038/nnano.2014.149
10.1002/advs.202102213
10.1002/adma.201805244
10.1038/s41467-020-20582-6
10.1002/adma.201606859
10.1002/adma.201600669
10.1002/adma.202102246
10.1002/adfm.202000026
10.1038/s41467-020-17943-6
10.1038/nnano.2015.90
10.1002/adma.202005570
10.1002/adma.201801996
10.1126/science.aaa2725
10.1039/C9NR05217H
10.1002/adma.202103268
10.1126/science.aaa5760
10.1021/jacs.8b11035
10.1002/adma.202204460
10.1038/s41467-019-09011-5
10.1126/sciadv.abq2321
10.1038/s41566-018-0260-y
10.1021/acs.nanolett.5b02369
10.1002/adfm.202206574
10.1016/j.cej.2022.138021
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202301425
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202301425
ADFM202301425
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62075061; 62274117
– fundername: Jiangsu Provincial Department of Science and Technology
  funderid: BZ2022054
– fundername: Bureau of Science and Technology of Suzhou Municipality
  funderid: SYC2022144
– fundername: Science and Technology Innovation Plan Of Shanghai Science and Technology Commission
  funderid: 22520760600
– fundername: National Key R&D Program of China
  funderid: 2022YFE0108900
– fundername: Science and Technology Development Fund
  funderid: 0018/2022/A1
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3175-e9e07bfeca47168afe309ba85be4aecb1cfa1a30b858af258abffc6dfa5d423d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:24:04 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Tue Jul 01 00:30:41 EDT 2025
Wed Jan 22 16:19:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-e9e07bfeca47168afe309ba85be4aecb1cfa1a30b858af258abffc6dfa5d423d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6813-0448
PQID 2832684515
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2832684515
crossref_citationtrail_10_1002_adfm_202301425
crossref_primary_10_1002_adfm_202301425
wiley_primary_10_1002_adfm_202301425_ADFM202301425
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2015; 15
2022; 450
2023; 35
2018; 140
2015; 3
2015; 347
2019; 31
2019; 11
2019; 10
2019; 13
2015; 10
2016; 10
2017; 29
2020; 11
2022; 612
2022; 611
2015; 350
2020; 8
2021; 15
2021; 31
2018; 2
2021; 12
2021; 33
2020; 30
2022; 8
2022; 34
2018; 30
2022; 32
2022; 11
2014; 9
2018; 12
2016; 28
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Leung T. L. (e_1_2_8_20_1) 2020; 8
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 11
  start-page: 4165
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 760
  year: 2019
  publication-title: Science
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 355
  year: 2018
  publication-title: Nat. Photonics
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 6897
  year: 2016
  publication-title: ACS Nano
– volume: 10
  start-page: 391
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 331
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 12
  start-page: 681
  year: 2018
  publication-title: Nat. Photonics.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 3
  start-page: 8839
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 15
  start-page: 3692
  year: 2015
  publication-title: Nano Lett.
– volume: 11
  start-page: 340
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6804
  year: 2016
  publication-title: Adv. Mater.
– volume: 450
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 361
  year: 2021
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 2321
  year: 2022
  publication-title: Sci. Adv.
– volume: 10
  start-page: 1027
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2109
  year: 2019
  publication-title: Nanoscale
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1868
  year: 2019
  publication-title: Nat. Commun.
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 8
  year: 2020
  publication-title: Science
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 15
  start-page: 6095
  year: 2015
  publication-title: Nano Lett.
– volume: 611
  start-page: 688
  year: 2022
  publication-title: Nature
– volume: 612
  start-page: 679
  year: 2022
  publication-title: Nature
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_8_10_1
  doi: 10.1038/s41377-022-01036-8
– ident: e_1_2_8_21_1
  doi: 10.1039/C8NR09885A
– ident: e_1_2_8_22_1
  doi: 10.1002/smtd.201700419
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.202103870
– ident: e_1_2_8_14_1
  doi: 10.1038/s41586-022-05486-3
– ident: e_1_2_8_27_1
  doi: 10.1021/acsnano.6b02683
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-019-09794-7
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.202207111
– ident: e_1_2_8_41_1
  doi: 10.1002/lpor.202100023
– ident: e_1_2_8_9_1
  doi: 10.1038/s41377-022-01027-9
– ident: e_1_2_8_19_1
  doi: 10.1126/science.aau9101
– ident: e_1_2_8_7_1
  doi: 10.1038/s41586-022-05304-w
– ident: e_1_2_8_24_1
  doi: 10.1021/nl5048779
– ident: e_1_2_8_4_1
  doi: 10.1038/s41566-018-0154-z
– ident: e_1_2_8_25_1
  doi: 10.1039/C5TC01718A
– ident: e_1_2_8_1_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_8_40_1
  doi: 10.1002/advs.202102213
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201805244
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-020-20582-6
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201606859
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201600669
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.202102246
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.202000026
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-020-17943-6
– ident: e_1_2_8_36_1
  doi: 10.1038/nnano.2015.90
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202005570
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201801996
– ident: e_1_2_8_2_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_8_26_1
  doi: 10.1039/C9NR05217H
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202103268
– ident: e_1_2_8_35_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_8_28_1
  doi: 10.1021/jacs.8b11035
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202204460
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-019-09011-5
– ident: e_1_2_8_32_1
  doi: 10.1126/sciadv.abq2321
– ident: e_1_2_8_5_1
  doi: 10.1038/s41566-018-0260-y
– volume: 8
  year: 2020
  ident: e_1_2_8_20_1
  publication-title: Science
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.nanolett.5b02369
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202206574
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cej.2022.138021
SSID ssj0017734
Score 2.6530566
Snippet Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Additives
Benzoates
Benzoic acid
bifunctional additives
defect passivations
Ion migration
ion migrations
Light emitting diodes
Materials science
mixed‐halide perovskites
perovskite light‐emitting diodes
Perovskites
Quantum efficiency
Title Manipulating Ionic Behavior with Bifunctional Additives for Efficient Sky‐Blue Perovskite Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202301425
https://www.proquest.com/docview/2832684515
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6yPsgfBUzTZNpv0WG1LFSviA3oL-5SiptK0gp78Cf5Gf4k7u2laBRH0EvLYCcnuTuabyew3CO1TIoxRikIvEtQ6KEbnYsE9v0pkFBqPhFj64u4F7dzWznphb2YVv-OHKAJuoBn2ew0Kznh2NCUNZVLDSnICPgGBVeaQsAWo6KrgjwqiyP1WpgEkeAW9CWujT46-in-1SlOoOQtYrcVpLyM2eVaXaHJ_OB7xQ_H6jcbxPy-zgpZyOIobbv6sojmVrqHFGZLCdZR1Wdp3Vb7SO3wKVLo4Z1UcYgjj4uM-WEcXVMQNKW06UoYNHMYty1BhDBu-vn_5eHs_fhgrfKmGg-cMwsb4HGID5nzrsW8TsHGzP5Aq20C37dbNScfLSzV4AgCIp-rKj7hWghljR2OmVdWvcxaHXNWYEjwQmgWs6vM4NBeJ2XCtBZWahdIAOlndRKV0kKothJlfl3XKaKDjqEaNiBQ6VDHQ5uhQi6iMvMlQJSLnMYdyGg-JY2AmCXRmUnRmGR0U7Z8cg8ePLXcnI5_kmpwlUMqJxjUD-8qI2CH85S5Jo9nuFkfbfxHaQQuw77KCd1FpNByrPYN9RryC5hvN7vl1xc7zT1GH_-I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V9gA98I8aWugeQJzc2pt47Rw4pCRRQpMKQSvlZvYXRS0OipNW7YlH4FV4FR6BJ2Fn13ZbJISE1AMXS17vruzdnZ1vxrPfALxgVFqllMRBIpkzUKzMpVIEYZOqJLYWCXX0xeMDNjhqvZ3EkxX4Xp2F8fwQtcMNJcPt1yjg6JDevWQN5crgUXKKRgGt4ir39fmZtdqK18OuneKXlPZ7h28GQZlYIJCoLgPd1mEijJbcbs0s5UY3w7bgaSx0i2spIml4xJuhSGP7kNqLMEYyZXisLPxQTdvvLVjDNOJI1999XzNWRUnif2SzCEPKoknFExnS3evve10PXoLbqxDZ6bj-PfhRjY4PbTneWS7Ejrz4jTjyvxq--3C3RNyk40XkAazo_CGsX-FhfATFmOdTn8gs_0SGyBZMSuLIOUFPNdmbIgDwflPSUcpFXBXEIn7ScyQcVneTD8fnP79-2ztZavJOz2enBXrGyQjdH7a893nqYsxJdzpTungMRzfy1U9gNZ_legMID9uqzTiLTJq0mG2ipIl1isxAJjYyaUBQrY1MllTtmDHkJPMk0zTDycvqyWvAq7r-F09S8seaW9VSy8rNqsgwWxVLWxbZNoC6NfOXXrJOtz-u757-S6NtuD04HI-y0fBgfxPuYLkPgt6C1cV8qZ9ZqLcQz51wEfh408vxF9ywYaY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5RKlXlAPQHNRToHlr1ZLA39to-9BBwIlIIQm2RcnP3t4oAB8UJiJ76CDxKX6WvwJOwP7aBSlWlShx6seT17sremdn58ew3AG8J5lopxZEXc2IdFC1zCWee38YijrRHgi188eCA7B6FH4fRcA5-1mdhHD5EE3AzkmH3ayPgZ0Jt3YKGUqHMSXJsfAJcp1XuycsL7bSVH_qZpvA7jHvdLzu7XlVXwONGW3oylX7MlORU78wkoUq2_ZTRJGIypJKzgCsa0LbPkkg_xPrClOJEKBoJbX2Itp73ETwOiZ-aYhHZpwawKohj9x-bBCajLBjWMJE-3rr_vvfV4K1te9dCtiqutwS_6sVxmS3Hm7Mp2-Tff8ON_J9WbxkWK3sbdZyAPIM5WTyHhTsojC-gHNBi5MqYFd9Q32AFowo2coJMnBptj4z6d1FT1BHC5luVSNv7qGshOLTmRp-PL69_XG2fzCQ6lJPxeWni4mjfBD90e_d0ZDPMUTYaC1m-hKMH-eoVmC_GhXwFiPqpSAklgUrikOghgqtIJgYXSEWKxy3watbIeQXUbuqFnOQOYhrnhnh5Q7wWvG_6nzmIkj_2XKs5La-2qjI3tapIEmq7tgXYssxfZsk7WW_Q3K3-y6A38OQw6-X7_YO91_DUNLsM6DWYn05mcl3beVO2YUULwdeH5sYbT9RgVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+Ionic+Behavior+with+Bifunctional+Additives+for+Efficient+Sky%E2%80%90Blue+Perovskite+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Wei&rft.au=Shen%2C+Yang&rft.au=Cao%2C+Long%E2%80%90Xue&rft.au=Lu%2C+Yu&rft.date=2023-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=27&rft_id=info:doi/10.1002%2Fadfm.202301425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202301425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon