Manipulating Ionic Behavior with Bifunctional Additives for Efficient Sky‐Blue Perovskite Light‐Emitting Diodes
Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 27 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed‐halide blue perovskite materials. Herein, efficient sky‐blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis‐base benzoic acid anions and alkali metal cations to simultaneously passivate the under‐coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials.
Defect passivation and the suppression of halide ion migration are simultaneously achieved in mixed‐halide perovskite materials via the incorporation of bifunctional additives containing Lewis‐base group and alkali metal ions. Efficient sky‐blue perovskite light‐emitting diodes achieve an external quantum efficiency of 16.58%, which is further boosted to 28.82% by the optical outcoupling enhancement. |
---|---|
AbstractList | Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed‐halide blue perovskite materials. Herein, efficient sky‐blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis‐base benzoic acid anions and alkali metal cations to simultaneously passivate the under‐coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials. Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed‐halide blue perovskite materials. Herein, efficient sky‐blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis‐base benzoic acid anions and alkali metal cations to simultaneously passivate the under‐coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials. Defect passivation and the suppression of halide ion migration are simultaneously achieved in mixed‐halide perovskite materials via the incorporation of bifunctional additives containing Lewis‐base group and alkali metal ions. Efficient sky‐blue perovskite light‐emitting diodes achieve an external quantum efficiency of 16.58%, which is further boosted to 28.82% by the optical outcoupling enhancement. Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed‐halide blue perovskite materials. Herein, efficient sky‐blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis‐base benzoic acid anions and alkali metal cations to simultaneously passivate the under‐coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials. |
Author | Shen, Yang Ren, Hao Xie, Feng‐Ming Li, Yan‐Qing Tang, Ying‐Yi Cao, Long‐Xue Zhou, Wei Lu, Yu Tang, Jian‐Xin Zhang, Kai |
Author_xml | – sequence: 1 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: Soochow University – sequence: 2 givenname: Yang surname: Shen fullname: Shen, Yang email: 20204014038@stu.suda.edu.cn organization: Soochow University – sequence: 3 givenname: Long‐Xue surname: Cao fullname: Cao, Long‐Xue organization: Soochow University – sequence: 4 givenname: Yu surname: Lu fullname: Lu, Yu organization: Soochow University – sequence: 5 givenname: Ying‐Yi surname: Tang fullname: Tang, Ying‐Yi organization: East China Normal University – sequence: 6 givenname: Kai surname: Zhang fullname: Zhang, Kai organization: Macau University of Science and Technology – sequence: 7 givenname: Hao surname: Ren fullname: Ren, Hao organization: Soochow University – sequence: 8 givenname: Feng‐Ming surname: Xie fullname: Xie, Feng‐Ming organization: Soochow University – sequence: 9 givenname: Yan‐Qing surname: Li fullname: Li, Yan‐Qing email: yqli@phy.ecnu.edu.cn organization: East China Normal University – sequence: 10 givenname: Jian‐Xin orcidid: 0000-0002-6813-0448 surname: Tang fullname: Tang, Jian‐Xin email: jxtang@suda.edu.cn organization: Macau University of Science and Technology |
BookMark | eNqFkMtKA0EQRRtR8Ll13eA6sR_zyjLRRIWIggruhp6e6qR0Mh27eyLZ-Ql-o1_ixEgEQdxUFVX3XKi7T7ZrWwMhx5x1OWPiVJVm1hVMSMYjEW-RPZ7wpCOZyLY3M3_cJfvePzHG01RGe8RfqxrnTaUC1hN6ZWvUdABTtUDr6CuGKR2gaWod0Naqov2yxIAL8NS096ExqBHqQO-elx9v74OqAXoLzi78MwagY5xMQ7sfzjB8-Z-jLcEfkh2jKg9H3_2APIyG92eXnfHNxdVZf9zRkqdxB3rA0sKAVlHKk0wZkKxXqCwuIFKgC66N4kqyIovbo2hLYYxOSqPiMhKylAfkZO07d_alAR_yJ9u49g2fi0yKJItiHreqaK3SznrvwOQag1r9G5zCKucsX8Wbr-LNN_G2WPcXNnc4U275N9BbA69YwfIfdd4_H13_sJ9E_JTA |
CitedBy_id | crossref_primary_10_1021_acsami_4c01824 crossref_primary_10_1021_acsami_4c01309 crossref_primary_10_1002_adfm_202401297 crossref_primary_10_1002_adma_202410255 crossref_primary_10_1021_acs_nanolett_4c00256 crossref_primary_10_1021_acsami_3c05253 crossref_primary_10_1002_adom_202302926 crossref_primary_10_1021_acsaelm_4c00294 crossref_primary_10_1002_inf2_12537 crossref_primary_10_1007_s11426_024_1986_6 crossref_primary_10_1021_acsenergylett_4c00109 crossref_primary_10_1016_j_cej_2024_152483 crossref_primary_10_1016_j_cej_2024_154188 crossref_primary_10_1002_adom_202303304 crossref_primary_10_1002_adom_202302972 crossref_primary_10_1021_acs_jpcc_4c03745 crossref_primary_10_1002_adom_202301164 crossref_primary_10_1021_acs_energyfuels_4c03168 crossref_primary_10_1021_acsmaterialslett_4c00912 crossref_primary_10_1088_2515_7647_ad46a6 crossref_primary_10_1364_AOP_531166 crossref_primary_10_1002_adma_202308487 crossref_primary_10_1002_smll_202501333 crossref_primary_10_1002_adom_202401955 crossref_primary_10_1007_s44275_024_00018_9 crossref_primary_10_1002_adma_202405630 crossref_primary_10_1002_adma_202414788 crossref_primary_10_1016_j_joule_2024_03_004 crossref_primary_10_1039_D3TC03830K crossref_primary_10_1021_acs_jpclett_3c01028 crossref_primary_10_1063_5_0172757 crossref_primary_10_1021_acsmaterialslett_3c00557 crossref_primary_10_1021_acs_jpcc_3c05787 crossref_primary_10_1002_adom_202302836 crossref_primary_10_1002_adom_202301752 crossref_primary_10_1002_adfm_202310389 crossref_primary_10_1039_D3NR06547B crossref_primary_10_1002_adfm_202307818 crossref_primary_10_1002_adfm_202310220 crossref_primary_10_1002_smll_202309309 crossref_primary_10_1002_adma_202402325 crossref_primary_10_1016_j_cej_2024_158817 crossref_primary_10_1002_adom_202401920 crossref_primary_10_1039_D4RA02652G crossref_primary_10_1016_j_apmt_2024_102418 crossref_primary_10_1039_D4NR05355A crossref_primary_10_1002_adma_202413669 crossref_primary_10_1002_adma_202415648 crossref_primary_10_1016_j_nanoen_2024_109263 crossref_primary_10_1016_j_cej_2024_149887 crossref_primary_10_1002_smtd_202300434 crossref_primary_10_1109_LED_2024_3368163 crossref_primary_10_1002_smll_202405933 crossref_primary_10_1016_j_matt_2023_11_022 crossref_primary_10_1021_acs_inorgchem_4c01671 crossref_primary_10_1021_acsanm_3c06224 crossref_primary_10_1002_adfm_202411671 crossref_primary_10_1002_adfm_202410143 crossref_primary_10_1021_acs_jpclett_5c00272 crossref_primary_10_1002_adpr_202400188 crossref_primary_10_1088_1361_6528_ada2f1 crossref_primary_10_3390_coatings14010083 crossref_primary_10_1002_adfm_202304577 crossref_primary_10_1021_acsami_4c13156 crossref_primary_10_1021_acsami_4c03752 crossref_primary_10_1002_smll_202308847 crossref_primary_10_34133_adi_0045 crossref_primary_10_1021_acsnano_4c08640 crossref_primary_10_1007_s12200_025_00152_8 crossref_primary_10_1021_acsami_3c19394 crossref_primary_10_1002_adfm_202401189 crossref_primary_10_1021_acs_chemmater_4c00571 crossref_primary_10_1021_acsnano_3c12433 crossref_primary_10_1039_D4TC01688B crossref_primary_10_1021_acs_jpclett_4c02965 crossref_primary_10_1039_D4CS00077C crossref_primary_10_1016_j_apcatb_2024_124937 crossref_primary_10_1126_sciadv_adn5683 crossref_primary_10_1038_s41467_024_55074_4 crossref_primary_10_1002_adom_202402996 crossref_primary_10_1002_lpor_202400231 crossref_primary_10_1039_D4TC03780D crossref_primary_10_1002_adfm_202311133 crossref_primary_10_1021_acsphotonics_4c01767 |
Cites_doi | 10.1126/science.aad1818 10.1038/s41377-022-01036-8 10.1039/C8NR09885A 10.1002/smtd.201700419 10.1002/adfm.202103870 10.1038/s41586-022-05486-3 10.1021/acsnano.6b02683 10.1038/s41467-019-09794-7 10.1002/adma.202207111 10.1002/lpor.202100023 10.1038/s41377-022-01027-9 10.1126/science.aau9101 10.1038/s41586-022-05304-w 10.1021/nl5048779 10.1038/s41566-018-0154-z 10.1039/C5TC01718A 10.1038/nnano.2014.149 10.1002/advs.202102213 10.1002/adma.201805244 10.1038/s41467-020-20582-6 10.1002/adma.201606859 10.1002/adma.201600669 10.1002/adma.202102246 10.1002/adfm.202000026 10.1038/s41467-020-17943-6 10.1038/nnano.2015.90 10.1002/adma.202005570 10.1002/adma.201801996 10.1126/science.aaa2725 10.1039/C9NR05217H 10.1002/adma.202103268 10.1126/science.aaa5760 10.1021/jacs.8b11035 10.1002/adma.202204460 10.1038/s41467-019-09011-5 10.1126/sciadv.abq2321 10.1038/s41566-018-0260-y 10.1021/acs.nanolett.5b02369 10.1002/adfm.202206574 10.1016/j.cej.2022.138021 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202301425 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202301425 ADFM202301425 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62075061; 62274117 – fundername: Jiangsu Provincial Department of Science and Technology funderid: BZ2022054 – fundername: Bureau of Science and Technology of Suzhou Municipality funderid: SYC2022144 – fundername: Science and Technology Innovation Plan Of Shanghai Science and Technology Commission funderid: 22520760600 – fundername: National Key R&D Program of China funderid: 2022YFE0108900 – fundername: Science and Technology Development Fund funderid: 0018/2022/A1 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3175-e9e07bfeca47168afe309ba85be4aecb1cfa1a30b858af258abffc6dfa5d423d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:24:04 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Tue Jul 01 00:30:41 EDT 2025 Wed Jan 22 16:19:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-e9e07bfeca47168afe309ba85be4aecb1cfa1a30b858af258abffc6dfa5d423d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6813-0448 |
PQID | 2832684515 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2832684515 crossref_citationtrail_10_1002_adfm_202301425 crossref_primary_10_1002_adfm_202301425 wiley_primary_10_1002_adfm_202301425_ADFM202301425 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2015; 15 2022; 450 2023; 35 2018; 140 2015; 3 2015; 347 2019; 31 2019; 11 2019; 10 2019; 13 2015; 10 2016; 10 2017; 29 2020; 11 2022; 612 2022; 611 2015; 350 2020; 8 2021; 15 2021; 31 2018; 2 2021; 12 2021; 33 2020; 30 2022; 8 2022; 34 2018; 30 2022; 32 2022; 11 2014; 9 2018; 12 2016; 28 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Leung T. L. (e_1_2_8_20_1) 2020; 8 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 11 start-page: 4165 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 760 year: 2019 publication-title: Science – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 355 year: 2018 publication-title: Nat. Photonics – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 10 start-page: 6897 year: 2016 publication-title: ACS Nano – volume: 10 start-page: 391 year: 2015 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 331 year: 2022 publication-title: Light Sci. Appl. – volume: 12 start-page: 681 year: 2018 publication-title: Nat. Photonics. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 3 start-page: 8839 year: 2015 publication-title: J. Mater. Chem. C – volume: 15 start-page: 3692 year: 2015 publication-title: Nano Lett. – volume: 11 start-page: 340 year: 2022 publication-title: Light Sci. Appl. – volume: 2 year: 2018 publication-title: Small Methods – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 28 start-page: 6804 year: 2016 publication-title: Adv. Mater. – volume: 450 year: 2022 publication-title: Chem. Eng. J. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 361 year: 2021 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 2321 year: 2022 publication-title: Sci. Adv. – volume: 10 start-page: 1027 year: 2019 publication-title: Nat. Commun. – volume: 11 start-page: 2109 year: 2019 publication-title: Nanoscale – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1868 year: 2019 publication-title: Nat. Commun. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 8 year: 2020 publication-title: Science – volume: 11 year: 2019 publication-title: Nanoscale – volume: 15 start-page: 6095 year: 2015 publication-title: Nano Lett. – volume: 611 start-page: 688 year: 2022 publication-title: Nature – volume: 612 start-page: 679 year: 2022 publication-title: Nature – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_3_1 doi: 10.1126/science.aad1818 – ident: e_1_2_8_10_1 doi: 10.1038/s41377-022-01036-8 – ident: e_1_2_8_21_1 doi: 10.1039/C8NR09885A – ident: e_1_2_8_22_1 doi: 10.1002/smtd.201700419 – ident: e_1_2_8_15_1 doi: 10.1002/adfm.202103870 – ident: e_1_2_8_14_1 doi: 10.1038/s41586-022-05486-3 – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.6b02683 – ident: e_1_2_8_38_1 doi: 10.1038/s41467-019-09794-7 – ident: e_1_2_8_17_1 doi: 10.1002/adma.202207111 – ident: e_1_2_8_41_1 doi: 10.1002/lpor.202100023 – ident: e_1_2_8_9_1 doi: 10.1038/s41377-022-01027-9 – ident: e_1_2_8_19_1 doi: 10.1126/science.aau9101 – ident: e_1_2_8_7_1 doi: 10.1038/s41586-022-05304-w – ident: e_1_2_8_24_1 doi: 10.1021/nl5048779 – ident: e_1_2_8_4_1 doi: 10.1038/s41566-018-0154-z – ident: e_1_2_8_25_1 doi: 10.1039/C5TC01718A – ident: e_1_2_8_1_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_8_40_1 doi: 10.1002/advs.202102213 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201805244 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-020-20582-6 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201606859 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201600669 – ident: e_1_2_8_39_1 doi: 10.1002/adma.202102246 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.202000026 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-020-17943-6 – ident: e_1_2_8_36_1 doi: 10.1038/nnano.2015.90 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202005570 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201801996 – ident: e_1_2_8_2_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_8_26_1 doi: 10.1039/C9NR05217H – ident: e_1_2_8_8_1 doi: 10.1002/adma.202103268 – ident: e_1_2_8_35_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_8_28_1 doi: 10.1021/jacs.8b11035 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202204460 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-019-09011-5 – ident: e_1_2_8_32_1 doi: 10.1126/sciadv.abq2321 – ident: e_1_2_8_5_1 doi: 10.1038/s41566-018-0260-y – volume: 8 year: 2020 ident: e_1_2_8_20_1 publication-title: Science – ident: e_1_2_8_31_1 doi: 10.1021/acs.nanolett.5b02369 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.202206574 – ident: e_1_2_8_33_1 doi: 10.1016/j.cej.2022.138021 |
SSID | ssj0017734 |
Score | 2.6530566 |
Snippet | Perovskite Light‐emitting diodes (PeLEDs) have emerged as a promising technique for future high‐definition displays due to their outstanding electroluminescent... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Additives Benzoates Benzoic acid bifunctional additives defect passivations Ion migration ion migrations Light emitting diodes Materials science mixed‐halide perovskites perovskite light‐emitting diodes Perovskites Quantum efficiency |
Title | Manipulating Ionic Behavior with Bifunctional Additives for Efficient Sky‐Blue Perovskite Light‐Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202301425 https://www.proquest.com/docview/2832684515 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6yPsgfBUzTZNpv0WG1LFSviA3oL-5SiptK0gp78Cf5Gf4k7u2laBRH0EvLYCcnuTuabyew3CO1TIoxRikIvEtQ6KEbnYsE9v0pkFBqPhFj64u4F7dzWznphb2YVv-OHKAJuoBn2ew0Kznh2NCUNZVLDSnICPgGBVeaQsAWo6KrgjwqiyP1WpgEkeAW9CWujT46-in-1SlOoOQtYrcVpLyM2eVaXaHJ_OB7xQ_H6jcbxPy-zgpZyOIobbv6sojmVrqHFGZLCdZR1Wdp3Vb7SO3wKVLo4Z1UcYgjj4uM-WEcXVMQNKW06UoYNHMYty1BhDBu-vn_5eHs_fhgrfKmGg-cMwsb4HGID5nzrsW8TsHGzP5Aq20C37dbNScfLSzV4AgCIp-rKj7hWghljR2OmVdWvcxaHXNWYEjwQmgWs6vM4NBeJ2XCtBZWahdIAOlndRKV0kKothJlfl3XKaKDjqEaNiBQ6VDHQ5uhQi6iMvMlQJSLnMYdyGg-JY2AmCXRmUnRmGR0U7Z8cg8ePLXcnI5_kmpwlUMqJxjUD-8qI2CH85S5Jo9nuFkfbfxHaQQuw77KCd1FpNByrPYN9RryC5hvN7vl1xc7zT1GH_-I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V9gA98I8aWugeQJzc2pt47Rw4pCRRQpMKQSvlZvYXRS0OipNW7YlH4FV4FR6BJ2Fn13ZbJISE1AMXS17vruzdnZ1vxrPfALxgVFqllMRBIpkzUKzMpVIEYZOqJLYWCXX0xeMDNjhqvZ3EkxX4Xp2F8fwQtcMNJcPt1yjg6JDevWQN5crgUXKKRgGt4ir39fmZtdqK18OuneKXlPZ7h28GQZlYIJCoLgPd1mEijJbcbs0s5UY3w7bgaSx0i2spIml4xJuhSGP7kNqLMEYyZXisLPxQTdvvLVjDNOJI1999XzNWRUnif2SzCEPKoknFExnS3evve10PXoLbqxDZ6bj-PfhRjY4PbTneWS7Ejrz4jTjyvxq--3C3RNyk40XkAazo_CGsX-FhfATFmOdTn8gs_0SGyBZMSuLIOUFPNdmbIgDwflPSUcpFXBXEIn7ScyQcVneTD8fnP79-2ztZavJOz2enBXrGyQjdH7a893nqYsxJdzpTungMRzfy1U9gNZ_legMID9uqzTiLTJq0mG2ipIl1isxAJjYyaUBQrY1MllTtmDHkJPMk0zTDycvqyWvAq7r-F09S8seaW9VSy8rNqsgwWxVLWxbZNoC6NfOXXrJOtz-u757-S6NtuD04HI-y0fBgfxPuYLkPgt6C1cV8qZ9ZqLcQz51wEfh408vxF9ywYaY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5RKlXlAPQHNRToHlr1ZLA39to-9BBwIlIIQm2RcnP3t4oAB8UJiJ76CDxKX6WvwJOwP7aBSlWlShx6seT17sremdn58ew3AG8J5lopxZEXc2IdFC1zCWee38YijrRHgi188eCA7B6FH4fRcA5-1mdhHD5EE3AzkmH3ayPgZ0Jt3YKGUqHMSXJsfAJcp1XuycsL7bSVH_qZpvA7jHvdLzu7XlVXwONGW3oylX7MlORU78wkoUq2_ZTRJGIypJKzgCsa0LbPkkg_xPrClOJEKBoJbX2Itp73ETwOiZ-aYhHZpwawKohj9x-bBCajLBjWMJE-3rr_vvfV4K1te9dCtiqutwS_6sVxmS3Hm7Mp2-Tff8ON_J9WbxkWK3sbdZyAPIM5WTyHhTsojC-gHNBi5MqYFd9Q32AFowo2coJMnBptj4z6d1FT1BHC5luVSNv7qGshOLTmRp-PL69_XG2fzCQ6lJPxeWni4mjfBD90e_d0ZDPMUTYaC1m-hKMH-eoVmC_GhXwFiPqpSAklgUrikOghgqtIJgYXSEWKxy3watbIeQXUbuqFnOQOYhrnhnh5Q7wWvG_6nzmIkj_2XKs5La-2qjI3tapIEmq7tgXYssxfZsk7WW_Q3K3-y6A38OQw6-X7_YO91_DUNLsM6DWYn05mcl3beVO2YUULwdeH5sYbT9RgVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+Ionic+Behavior+with+Bifunctional+Additives+for+Efficient+Sky%E2%80%90Blue+Perovskite+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Wei&rft.au=Shen%2C+Yang&rft.au=Cao%2C+Long%E2%80%90Xue&rft.au=Lu%2C+Yu&rft.date=2023-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=27&rft_id=info:doi/10.1002%2Fadfm.202301425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202301425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |