Surface Modification of V–VI Semiconductors Using Exchange Reactions within ALD Half‐Cycles
The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) se...
Saved in:
Published in | Advanced materials interfaces Vol. 5; no. 5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
09.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) setup. Specifically, both the utilized metal–organic precursors interact with chalcogenide surfaces but differ in their reaction behaviors. Indeed, exchanged Te diffuses into the selenium‐containing substrate, whereas Se only exchanges with the top surface of the substrate. Transmission electron micrsocopy (TEM) and energy‐dispersive X‐ray spectroscopy (EDX/EDXS) analysis of the topological insulating nanowires reveals the single precursor interactions, which support the QCM data analysis, and provides insight into the morphological and crystalline structures of the altered substrates.
Within an atomic layer deposition half‐cycle of single precursors, an exchange reaction on the interface between a V–VI semiconductor surface and the gaseous phase is described. The differences between tellurium‐ and selenium‐species are demonstrated and their interaction with the underlying substrate depicted. Cross sections of treated nanowires corroborate the findings and show the appearance of a diffusion gradient. |
---|---|
AbstractList | Abstract
The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt
3
)
2
and Se(SiEt
3
)
2
, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) setup. Specifically, both the utilized metal–organic precursors interact with chalcogenide surfaces but differ in their reaction behaviors. Indeed, exchanged Te diffuses into the selenium‐containing substrate, whereas Se only exchanges with the top surface of the substrate. Transmission electron micrsocopy (TEM) and energy‐dispersive X‐ray spectroscopy (EDX/EDXS) analysis of the topological insulating nanowires reveals the single precursor interactions, which support the QCM data analysis, and provides insight into the morphological and crystalline structures of the altered substrates. The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) setup. Specifically, both the utilized metal–organic precursors interact with chalcogenide surfaces but differ in their reaction behaviors. Indeed, exchanged Te diffuses into the selenium‐containing substrate, whereas Se only exchanges with the top surface of the substrate. Transmission electron micrsocopy (TEM) and energy‐dispersive X‐ray spectroscopy (EDX/EDXS) analysis of the topological insulating nanowires reveals the single precursor interactions, which support the QCM data analysis, and provides insight into the morphological and crystalline structures of the altered substrates. Within an atomic layer deposition half‐cycle of single precursors, an exchange reaction on the interface between a V–VI semiconductor surface and the gaseous phase is described. The differences between tellurium‐ and selenium‐species are demonstrated and their interaction with the underlying substrate depicted. Cross sections of treated nanowires corroborate the findings and show the appearance of a diffusion gradient. The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) setup. Specifically, both the utilized metal–organic precursors interact with chalcogenide surfaces but differ in their reaction behaviors. Indeed, exchanged Te diffuses into the selenium‐containing substrate, whereas Se only exchanges with the top surface of the substrate. Transmission electron micrsocopy (TEM) and energy‐dispersive X‐ray spectroscopy (EDX/EDXS) analysis of the topological insulating nanowires reveals the single precursor interactions, which support the QCM data analysis, and provides insight into the morphological and crystalline structures of the altered substrates. |
Author | Faust, René Wiegand, Christoph W. Zierold, Robert Pohl, Darius Rellinghaus, Bernd Nielsch, Kornelius Thomas, Andy |
Author_xml | – sequence: 1 givenname: Christoph W. orcidid: 0000-0001-5644-3415 surname: Wiegand fullname: Wiegand, Christoph W. email: c.wiegand@ifw-dresden.de organization: Institute for Metallic Materials – sequence: 2 givenname: Robert surname: Zierold fullname: Zierold, Robert organization: Universität Hamburg – sequence: 3 givenname: René surname: Faust fullname: Faust, René organization: Universität Hamburg – sequence: 4 givenname: Darius surname: Pohl fullname: Pohl, Darius organization: Institute for Metallic Materials – sequence: 5 givenname: Andy surname: Thomas fullname: Thomas, Andy organization: Institute for Metallic Materials – sequence: 6 givenname: Bernd surname: Rellinghaus fullname: Rellinghaus, Bernd organization: Institute for Metallic Materials – sequence: 7 givenname: Kornelius surname: Nielsch fullname: Nielsch, Kornelius email: k.nielsch@ifw-dresden.de organization: Technical University Dreden |
BookMark | eNqFkMFOAjEQhhuDiYhcPTfxDLbdXbt7JIBCAjER4drMdlsoWbbY7ga58QgmviFP4hKMevM0c_i-fzL_NWoUtlAI3VLSpYSwe8g2pssI5YTSKLpATUaThw4PItL4s1-htvdrQmqIURYHTSRmldMgFZ7azGgjoTS2wFbjxfHwuRjjmdoYaYuskqV1Hs-9KZZ4-C5XUCwVflEgT4LHO1OuTIF7kwEeQa6Ph4_-XubK36BLDblX7e_ZQvPH4Wt_1Jk8P437vUlHBpRHnSThEMegQQENAeKQShlAytKAhjHlNE0zroBTkoWJkpxk9asB5yqIQ5AJ10EL3Z1zt86-VcqXYm0rV9QnRY2yJOQx4zXVPVPSWe-d0mLrzAbcXlAiTj2KU4_ip8daSM7CzuRq_w8teoPp-Nf9AqOQees |
CitedBy_id | crossref_primary_10_1557_jmr_2020_40 crossref_primary_10_1021_acsnano_3c13152 |
Cites_doi | 10.1063/1.4757907 10.1021/nl903663a 10.1021/acs.jpcc.6b04398 10.1155/2015/125970 10.1103/PhysRevB.72.184101 10.1149/06606.0119ecst 10.1038/srep08470 10.1063/1.4883887 10.1021/acsnano.5b00896 10.1039/C4RA11068D 10.1021/acsami.6b11963 10.1016/j.electacta.2014.09.027 10.1039/C5SC00825E 10.1039/C5TA00111K 10.1088/0957-4484/27/37/375707 10.1063/1.4963282 10.1016/j.jmmm.2014.09.029 10.1088/1367-2630/17/12/123011 10.1088/0957-4484/27/27/275601 10.1021/cm902180d 10.1088/0268-1242/25/2/024005 10.1063/1.1940727 10.1116/1.4851716 10.1063/1.4896680 10.1088/0957-4484/27/28/285302 10.1021/ja8090388 10.1016/j.pmatsci.2010.02.001 10.1016/j.jallcom.2013.09.126 10.1038/ncomms8630 10.1088/1367-2630/15/11/113031 10.1088/0953-8984/28/39/395501 10.1038/srep01212 10.1063/1.4809826 10.1002/aenm.201500280 10.1021/ja01113a002 10.1103/RevModPhys.82.3045 10.1021/cr900056b 10.1039/C6TC01083K 10.1021/acscatal.5b01966 10.1039/jm9940401239 10.1021/cm301206e 10.3762/bjnano.3.97 10.1134/S1023193516090020 10.1103/PhysRevB.91.035313 10.1021/cm504558g 10.1063/1.1810193 10.1021/acs.chemmater.6b02638 10.1063/1.4829748 10.1063/1.3509415 10.1016/0022-0248(94)90019-1 10.1021/cm300570n 10.1038/ncomms12413 10.1038/nature08916 10.1021/cm0304546 10.1021/nl2001132 10.1038/srep23672 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.201701155 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_201701155 ADMI201701155 |
Genre | article |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJCF AFKRA ARAPS BENPR BFHJK BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KB. M7S PDBOC PTHSS 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3175-997a88afaea14aa841cc3ab2b3148171bbd7ea710d49ec70d201377e384ac97f3 |
ISSN | 2196-7350 |
IngestDate | Thu Oct 10 22:42:39 EDT 2024 Thu Sep 12 16:58:04 EDT 2024 Sat Aug 24 00:40:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3175-997a88afaea14aa841cc3ab2b3148171bbd7ea710d49ec70d201377e384ac97f3 |
ORCID | 0000-0001-5644-3415 |
PQID | 2012947827 |
PQPubID | 2034582 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2012947827 crossref_primary_10_1002_admi_201701155 wiley_primary_10_1002_admi_201701155_ADMI201701155 |
PublicationCentury | 2000 |
PublicationDate | March 9, 2018 |
PublicationDateYYYYMMDD | 2018-03-09 |
PublicationDate_xml | – month: 03 year: 2018 text: March 9, 2018 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 383 2010; 55 2010; 10 2010; 97 2013; 3 2010; 464 2011; 11 2015; 107 1953; 75 2010; 22 1994; 144 2013; 15 2014; 4 2010; 25 2010; 110 2013; 113 2015; 91 2013; 110 2005; 72 2012; 24 2015; 17 2015; 6 2015; 5 2015; 3 2013; 103 2016; 52 2013; 102 2009; 131 2015; 9 2016; 120 2010; 82 2016; 4 2014; 105 2016; 6 2004; 96 2016; 7 2012; 3 2015; 27 2011; 107 2004; 16 2015; 66 2015; 2015 2005; 97 2016; 28 2016; 27 2016; 8 2014; 104 1994; 4 2014; 585 2014; 32 2014; 146 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 Chen H. (e_1_2_7_37_1) 2011; 107 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Wei P. (e_1_2_7_16_1) 2013; 110 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Wang Z. (e_1_2_7_17_1) 2015; 107 |
References_xml | – volume: 110 start-page: 1 year: 2013 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 7630 year: 2015 publication-title: Nat. Commun. – volume: 120 start-page: 18039 year: 2016 publication-title: J. Phys. Chem. C – volume: 16 start-page: 639 year: 2004 publication-title: Chem. Mater. – volume: 11 start-page: 1646 year: 2011 publication-title: Nano Lett. – volume: 5 start-page: 7063 year: 2015 publication-title: ACS Catal. – volume: 97 year: 2005 publication-title: J. Appl. Phys. – volume: 15 start-page: 113031 year: 2013 publication-title: New J. Phys. – volume: 7 start-page: 12413 year: 2016 publication-title: Nat. Commun. – volume: 113 start-page: 021301 year: 2013 publication-title: J. Appl. Phys. – volume: 32 start-page: 10801 year: 2014 publication-title: J. Vac. Sci. Technol., A – volume: 107 start-page: 1 year: 2015 publication-title: Appl. Phys. Lett. – volume: 105 start-page: 123117 year: 2014 publication-title: Appl. Phys. Lett. – volume: 24 start-page: 1975 year: 2012 publication-title: Chem. Mater. – volume: 27 start-page: 285302 year: 2016 publication-title: Nanotechnology – volume: 22 start-page: 1386 year: 2010 publication-title: Chem. Mater. – volume: 66 start-page: 119 year: 2015 publication-title: ECS Trans. – volume: 104 start-page: 243115 year: 2014 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 329 year: 2010 publication-title: Nano Lett. – volume: 110 start-page: 111 year: 2010 publication-title: Chem. Rev. – volume: 146 start-page: 346 year: 2014 publication-title: Electrochim. Acta – volume: 585 start-page: 40 year: 2014 publication-title: J. Alloys Compd. – volume: 3 start-page: 1212 year: 2013 publication-title: Sci. Rep. – volume: 9 start-page: 4406 year: 2015 publication-title: ACS Nano – volume: 107 start-page: 27 year: 2011 publication-title: Phys. Rev. Lett. – volume: 96 start-page: 7686 year: 2004 publication-title: J. Appl. Phys. – volume: 383 start-page: 30 year: 2015 publication-title: J. Magn. Magn. Mater. – volume: 102 start-page: 100 year: 2013 publication-title: Appl. Phys. Lett. – volume: 82 start-page: 3045 year: 2010 publication-title: Rev. Mod. Phys. – volume: 464 start-page: 194 year: 2010 publication-title: Nature – volume: 120 start-page: 124311 year: 2016 publication-title: J. Appl. Phys. – volume: 6 start-page: 23672 year: 2016 publication-title: Sci. Rep. – volume: 27 start-page: 375707 year: 2016 publication-title: Nanotechnology – volume: 6 start-page: 5255 year: 2015 publication-title: Chem. Sci. – volume: 97 start-page: 183102 year: 2010 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 32616 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 72 start-page: 184101 year: 2005 publication-title: Phys. Rev. B – volume: 4 start-page: 1239 year: 1994 publication-title: J. Mater. Chem. – volume: 103 start-page: 193107 year: 2013 publication-title: Appl. Phys. Lett. – volume: 131 start-page: 3478 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1500280 year: 2015 publication-title: Adv. Energy Mater. – volume: 27 start-page: 1541 year: 2015 publication-title: Chem. Mater. – volume: 91 start-page: 35313 year: 2015 publication-title: Phys. Rev. B – volume: 17 start-page: 123011 year: 2015 publication-title: New J. Phys. – volume: 28 start-page: 6953 year: 2016 publication-title: Chem. Mater. – volume: 5 start-page: 8470 year: 2015 publication-title: Sci. Rep. – volume: 25 start-page: 24005 year: 2010 publication-title: Semicond. Sci. Technol. – volume: 2015 start-page: 13 year: 2015 publication-title: J. Nanomater. – volume: 27 start-page: 275601 year: 2016 publication-title: Nanotechnology – volume: 75 start-page: 4126 year: 1953 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 563 year: 2010 publication-title: Prog. Mater. Sci. – volume: 4 start-page: 57322 year: 2014 publication-title: RSC Adv. – volume: 28 start-page: 395501 year: 2016 publication-title: J. Phys.: Condens. Matter – volume: 4 start-page: 5648 year: 2016 publication-title: J. Mater. Chem. C – volume: 24 start-page: 2973 year: 2012 publication-title: Chem. Mater. – volume: 3 start-page: 860 year: 2012 publication-title: Beilstein J. Nanotechnol. – volume: 3 start-page: 5971 year: 2015 publication-title: J. Mater. Chem. A – volume: 52 start-page: 806 year: 2016 publication-title: Russ. J. Electrochem. – volume: 144 start-page: 116 year: 1994 publication-title: J. Cryst. Growth – ident: e_1_2_7_33_1 doi: 10.1063/1.4757907 – ident: e_1_2_7_23_1 doi: 10.1021/nl903663a – ident: e_1_2_7_42_1 doi: 10.1021/acs.jpcc.6b04398 – ident: e_1_2_7_25_1 doi: 10.1155/2015/125970 – ident: e_1_2_7_49_1 doi: 10.1103/PhysRevB.72.184101 – ident: e_1_2_7_58_1 doi: 10.1149/06606.0119ecst – ident: e_1_2_7_59_1 doi: 10.1038/srep08470 – ident: e_1_2_7_3_1 doi: 10.1063/1.4883887 – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.5b00896 – ident: e_1_2_7_39_1 doi: 10.1039/C4RA11068D – ident: e_1_2_7_54_1 doi: 10.1021/acsami.6b11963 – ident: e_1_2_7_40_1 doi: 10.1016/j.electacta.2014.09.027 – ident: e_1_2_7_48_1 doi: 10.1039/C5SC00825E – ident: e_1_2_7_55_1 doi: 10.1039/C5TA00111K – ident: e_1_2_7_31_1 doi: 10.1088/0957-4484/27/37/375707 – ident: e_1_2_7_52_1 doi: 10.1063/1.4963282 – ident: e_1_2_7_15_1 doi: 10.1016/j.jmmm.2014.09.029 – ident: e_1_2_7_11_1 doi: 10.1088/1367-2630/17/12/123011 – ident: e_1_2_7_20_1 doi: 10.1088/0957-4484/27/27/275601 – volume: 107 start-page: 1 year: 2015 ident: e_1_2_7_17_1 publication-title: Appl. Phys. Lett. contributor: fullname: Wang Z. – ident: e_1_2_7_36_1 doi: 10.1021/cm902180d – ident: e_1_2_7_22_1 doi: 10.1088/0268-1242/25/2/024005 – ident: e_1_2_7_50_1 doi: 10.1063/1.1940727 – ident: e_1_2_7_43_1 doi: 10.1116/1.4851716 – ident: e_1_2_7_7_1 doi: 10.1063/1.4896680 – ident: e_1_2_7_19_1 doi: 10.1088/0957-4484/27/28/285302 – volume: 110 start-page: 1 year: 2013 ident: e_1_2_7_16_1 publication-title: Phys. Rev. Lett. contributor: fullname: Wei P. – ident: e_1_2_7_35_1 doi: 10.1021/ja8090388 – ident: e_1_2_7_21_1 doi: 10.1016/j.pmatsci.2010.02.001 – ident: e_1_2_7_41_1 doi: 10.1016/j.jallcom.2013.09.126 – ident: e_1_2_7_13_1 doi: 10.1038/ncomms8630 – ident: e_1_2_7_9_1 doi: 10.1088/1367-2630/15/11/113031 – volume: 107 start-page: 27 year: 2011 ident: e_1_2_7_37_1 publication-title: Phys. Rev. Lett. contributor: fullname: Chen H. – ident: e_1_2_7_8_1 doi: 10.1088/0953-8984/28/39/395501 – ident: e_1_2_7_27_1 doi: 10.1038/srep01212 – ident: e_1_2_7_4_1 doi: 10.1063/1.4809826 – ident: e_1_2_7_24_1 doi: 10.1002/aenm.201500280 – ident: e_1_2_7_47_1 doi: 10.1021/ja01113a002 – ident: e_1_2_7_2_1 doi: 10.1103/RevModPhys.82.3045 – ident: e_1_2_7_34_1 doi: 10.1021/cr900056b – ident: e_1_2_7_14_1 doi: 10.1039/C6TC01083K – ident: e_1_2_7_38_1 doi: 10.1021/acscatal.5b01966 – ident: e_1_2_7_46_1 doi: 10.1039/jm9940401239 – ident: e_1_2_7_56_1 doi: 10.1021/cm301206e – ident: e_1_2_7_28_1 doi: 10.3762/bjnano.3.97 – ident: e_1_2_7_26_1 doi: 10.1134/S1023193516090020 – ident: e_1_2_7_10_1 doi: 10.1103/PhysRevB.91.035313 – ident: e_1_2_7_57_1 doi: 10.1021/cm504558g – ident: e_1_2_7_51_1 doi: 10.1063/1.1810193 – ident: e_1_2_7_53_1 doi: 10.1021/acs.chemmater.6b02638 – ident: e_1_2_7_5_1 doi: 10.1063/1.4829748 – ident: e_1_2_7_12_1 doi: 10.1063/1.3509415 – ident: e_1_2_7_45_1 doi: 10.1016/0022-0248(94)90019-1 – ident: e_1_2_7_30_1 doi: 10.1021/cm300570n – ident: e_1_2_7_18_1 doi: 10.1038/ncomms12413 – ident: e_1_2_7_1_1 doi: 10.1038/nature08916 – ident: e_1_2_7_44_1 doi: 10.1021/cm0304546 – ident: e_1_2_7_32_1 doi: 10.1021/nl2001132 – ident: e_1_2_7_29_1 doi: 10.1038/srep23672 |
SSID | ssj0001121283 |
Score | 2.1297202 |
Snippet | The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor... Abstract The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt 3 ) 2 and Se(SiEt 3 ) 2 , exposed to different V–VI... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | atomic layer deposition Atomic layer epitaxy Data analysis Energy transmission exchange reactions Exchanging II-VI semiconductors Nanowires Precursors quartz crystal microbalance Selenium Substrates Tellurium topological insulator |
Title | Surface Modification of V–VI Semiconductors Using Exchange Reactions within ALD Half‐Cycles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201701155 https://www.proquest.com/docview/2012947827 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKJiQuiJ-iMJAPSBymlCR26vhY7YfaiXFhzSYukePYUGlLUddKwGlHjkj8h_tL9mwnTjpVYnCJWldJXL8v731--fyM0NuYqSGENREkhOuA0lIGIpQkSNKQSGB0TA7NauTjj8PxlB6dJWe93q-Oamm1LAby58Z1Jf9jVWgDu5pVsv9gWX9RaIDPYF84goXheCcbf1ottLAPZmkUP579ZY2EgWQT8AYXYO3K1HU1G-s4jcDBd7fi14jopRPDmYysSX582N8di3PtVRB7P4xwrktiR41uANiu-5u26oTti6fopzP1pRZN-gIGu6cDn6iGcFxvWO3E3R5IphCRM3zl3uJ77z3_eu5k-IvZeroisuv3Qt56NfCQw4ARV212oDa01W456aAv2ejsXfFYUV7MjESPGXKbtGGteZV_K9p5DaKr1xzn5vzcn38PbcfgssBXbo-y6edpm6-LIMjbqq6-t00N0DB-v96JdY7TTly60x_LX04eoYf1xAOPHIoeo56qnqD7VgAsL5-ivMYS7mIJzzXOrq_-ZBO8jiJsUYQbFGGPIuxQhAFF2KDo-uq3w88zND08ONkbB_XmG4E0lDLgnIk0FVooEVEhUhpJSUQRFwQm0BGLiqJkSgA_LSlXkoVlbItXKpJSITnT5DnaquaVeoFwXCRUlhHVPNQ0SVLBJS9lyoH7agkxo4_eNcOVf3M1VvLN1umjnWY08_o5vDS_xpwC02V9FNsR_stV8tH-8cR_e3nnu79CD1pE76Ct5WKlXgMlXRZvarTcAJiCh-Q |
link.rule.ids | 315,783,787,27936,27937,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2CVggWxFMUCnhAYoqah13HY9WHWmg7AK0QS-Q4toQECWqpBFs_AYk_7JdgO33QCYkxjuLhxNf3-ObcE4Arn8qqTmvcIQFTDsaJcLgrAoeEbiA0o6OiarqRe_1qe4BvHslCTWh6YXJ_iGXBzUSG3a9NgJuCdGXlGsqT12ejzaKG1ZBNKBLzUa8Axdpw8DRYFVo8vTtbO04dnFWHBsRdmDe6fmV9kvXktGKcv3mrTTytPdidM0ZUy1_xPmzI9AC2rHJTjA8hup-MFBcS9bLEyH4s0ihTaDibfg876N6o37PU2LpmozGyEgHU_MgbftGdzBsbxsgUZJ9TVOs2UJu_qNn0q_5pFHNHMGg1H-ptZ_7XBEcYLuAwRnkYcsUl9zDnIfaECHjsx4E--XjUi-OESq6JRYKZFNRNfOs6KIMQc8GoCo6hkGapPAHkxwSLxMOKuQoTEnImWCJCpkmLEjrYS3C9gCt6y80xotwG2Y8MsNES2BKUF2hG8yAZm7s-w5qi0BL4FuE_ZolqjV5neXX6n4cuYbv90OtG3U7_9gx29LjtMHRZGQrvo4k81xTjPb6YL6IfG37Isg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA1aUdyIT6xWzUJwNXQmk2kmy9IHrbZF1JbiZsjkAQWdKX2A7voJgn_YLzHJ9OVKcDkzTBYnubknl3NPALhFRJZ0WmNO4FPlYCy4w1zuO0Ho-lwzOsJLphu53Sk1uvi-H_Q3uvgzf4hVwc1Eht2vTYAPhSquTUOZeB8YaRYxpCbYBjuaaiC9xnfKve5rd11n8fTmbN04dWyWHOIH7tK70UXF34P8zk1rwrlJW23eqR-CgwVhhOVsho_AlkyOwa4VbvLxCYiepyPFuITtVBjVjwUapgr25rPvXhM-G_F7mhhX13Q0hlYhAGsfWb8vfJJZX8MYmnrsIIHlVhU22Juaz74qn0Ywdwq69dpLpeEsLk1wuKECDqWEhSFTTDIPMxZij3OfxSj29cHHI14cCyKZ5hUCU8mJK5A1HZR-iBmnRPlnIJekiTwHEMUB5sLDiroKB0HIKKeCh1RzFsV1rOfB3RKuaJh5Y0SZCzKKDLDRCtg8KCzRjBYxMjZfEcWaoZA8QBbhP0aJytV2c_V08Z-fbsDeY7UetZqdh0uwr1_b_kKXFkBuMprKK00wJvH1Yg39AAcVx9s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modification+of+V%E2%80%93VI+Semiconductors+Using+Exchange+Reactions+within+ALD+Half%E2%80%90Cycles&rft.jtitle=Advanced+materials+interfaces&rft.au=Wiegand%2C+Christoph+W.&rft.au=Zierold%2C+Robert&rft.au=Faust%2C+Ren%C3%A9&rft.au=Pohl%2C+Darius&rft.date=2018-03-09&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Fadmi.201701155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_201701155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |