Surface Modification of V–VI Semiconductors Using Exchange Reactions within ALD Half‐Cycles

The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) se...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 5; no. 5
Main Authors Wiegand, Christoph W., Zierold, Robert, Faust, René, Pohl, Darius, Thomas, Andy, Rellinghaus, Bernd, Nielsch, Kornelius
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 09.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) setup. Specifically, both the utilized metal–organic precursors interact with chalcogenide surfaces but differ in their reaction behaviors. Indeed, exchanged Te diffuses into the selenium‐containing substrate, whereas Se only exchanges with the top surface of the substrate. Transmission electron micrsocopy (TEM) and energy‐dispersive X‐ray spectroscopy (EDX/EDXS) analysis of the topological insulating nanowires reveals the single precursor interactions, which support the QCM data analysis, and provides insight into the morphological and crystalline structures of the altered substrates. Within an atomic layer deposition half‐cycle of single precursors, an exchange reaction on the interface between a V–VI semiconductor surface and the gaseous phase is described. The differences between tellurium‐ and selenium‐species are demonstrated and their interaction with the underlying substrate depicted. Cross sections of treated nanowires corroborate the findings and show the appearance of a diffusion gradient.
AbstractList Abstract The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt 3 ) 2 and Se(SiEt 3 ) 2 , exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) setup. Specifically, both the utilized metal–organic precursors interact with chalcogenide surfaces but differ in their reaction behaviors. Indeed, exchanged Te diffuses into the selenium‐containing substrate, whereas Se only exchanges with the top surface of the substrate. Transmission electron micrsocopy (TEM) and energy‐dispersive X‐ray spectroscopy (EDX/EDXS) analysis of the topological insulating nanowires reveals the single precursor interactions, which support the QCM data analysis, and provides insight into the morphological and crystalline structures of the altered substrates.
The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) setup. Specifically, both the utilized metal–organic precursors interact with chalcogenide surfaces but differ in their reaction behaviors. Indeed, exchanged Te diffuses into the selenium‐containing substrate, whereas Se only exchanges with the top surface of the substrate. Transmission electron micrsocopy (TEM) and energy‐dispersive X‐ray spectroscopy (EDX/EDXS) analysis of the topological insulating nanowires reveals the single precursor interactions, which support the QCM data analysis, and provides insight into the morphological and crystalline structures of the altered substrates. Within an atomic layer deposition half‐cycle of single precursors, an exchange reaction on the interface between a V–VI semiconductor surface and the gaseous phase is described. The differences between tellurium‐ and selenium‐species are demonstrated and their interaction with the underlying substrate depicted. Cross sections of treated nanowires corroborate the findings and show the appearance of a diffusion gradient.
The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor surfaces are reported. The interactions of the precursors with the substrates are monitored in situ with a quartz crystal microbalance (QCM) setup. Specifically, both the utilized metal–organic precursors interact with chalcogenide surfaces but differ in their reaction behaviors. Indeed, exchanged Te diffuses into the selenium‐containing substrate, whereas Se only exchanges with the top surface of the substrate. Transmission electron micrsocopy (TEM) and energy‐dispersive X‐ray spectroscopy (EDX/EDXS) analysis of the topological insulating nanowires reveals the single precursor interactions, which support the QCM data analysis, and provides insight into the morphological and crystalline structures of the altered substrates.
Author Faust, René
Wiegand, Christoph W.
Zierold, Robert
Pohl, Darius
Rellinghaus, Bernd
Nielsch, Kornelius
Thomas, Andy
Author_xml – sequence: 1
  givenname: Christoph W.
  orcidid: 0000-0001-5644-3415
  surname: Wiegand
  fullname: Wiegand, Christoph W.
  email: c.wiegand@ifw-dresden.de
  organization: Institute for Metallic Materials
– sequence: 2
  givenname: Robert
  surname: Zierold
  fullname: Zierold, Robert
  organization: Universität Hamburg
– sequence: 3
  givenname: René
  surname: Faust
  fullname: Faust, René
  organization: Universität Hamburg
– sequence: 4
  givenname: Darius
  surname: Pohl
  fullname: Pohl, Darius
  organization: Institute for Metallic Materials
– sequence: 5
  givenname: Andy
  surname: Thomas
  fullname: Thomas, Andy
  organization: Institute for Metallic Materials
– sequence: 6
  givenname: Bernd
  surname: Rellinghaus
  fullname: Rellinghaus, Bernd
  organization: Institute for Metallic Materials
– sequence: 7
  givenname: Kornelius
  surname: Nielsch
  fullname: Nielsch, Kornelius
  email: k.nielsch@ifw-dresden.de
  organization: Technical University Dreden
BookMark eNqFkMFOAjEQhhuDiYhcPTfxDLbdXbt7JIBCAjER4drMdlsoWbbY7ga58QgmviFP4hKMevM0c_i-fzL_NWoUtlAI3VLSpYSwe8g2pssI5YTSKLpATUaThw4PItL4s1-htvdrQmqIURYHTSRmldMgFZ7azGgjoTS2wFbjxfHwuRjjmdoYaYuskqV1Hs-9KZZ4-C5XUCwVflEgT4LHO1OuTIF7kwEeQa6Ph4_-XubK36BLDblX7e_ZQvPH4Wt_1Jk8P437vUlHBpRHnSThEMegQQENAeKQShlAytKAhjHlNE0zroBTkoWJkpxk9asB5yqIQ5AJ10EL3Z1zt86-VcqXYm0rV9QnRY2yJOQx4zXVPVPSWe-d0mLrzAbcXlAiTj2KU4_ip8daSM7CzuRq_w8teoPp-Nf9AqOQees
CitedBy_id crossref_primary_10_1557_jmr_2020_40
crossref_primary_10_1021_acsnano_3c13152
Cites_doi 10.1063/1.4757907
10.1021/nl903663a
10.1021/acs.jpcc.6b04398
10.1155/2015/125970
10.1103/PhysRevB.72.184101
10.1149/06606.0119ecst
10.1038/srep08470
10.1063/1.4883887
10.1021/acsnano.5b00896
10.1039/C4RA11068D
10.1021/acsami.6b11963
10.1016/j.electacta.2014.09.027
10.1039/C5SC00825E
10.1039/C5TA00111K
10.1088/0957-4484/27/37/375707
10.1063/1.4963282
10.1016/j.jmmm.2014.09.029
10.1088/1367-2630/17/12/123011
10.1088/0957-4484/27/27/275601
10.1021/cm902180d
10.1088/0268-1242/25/2/024005
10.1063/1.1940727
10.1116/1.4851716
10.1063/1.4896680
10.1088/0957-4484/27/28/285302
10.1021/ja8090388
10.1016/j.pmatsci.2010.02.001
10.1016/j.jallcom.2013.09.126
10.1038/ncomms8630
10.1088/1367-2630/15/11/113031
10.1088/0953-8984/28/39/395501
10.1038/srep01212
10.1063/1.4809826
10.1002/aenm.201500280
10.1021/ja01113a002
10.1103/RevModPhys.82.3045
10.1021/cr900056b
10.1039/C6TC01083K
10.1021/acscatal.5b01966
10.1039/jm9940401239
10.1021/cm301206e
10.3762/bjnano.3.97
10.1134/S1023193516090020
10.1103/PhysRevB.91.035313
10.1021/cm504558g
10.1063/1.1810193
10.1021/acs.chemmater.6b02638
10.1063/1.4829748
10.1063/1.3509415
10.1016/0022-0248(94)90019-1
10.1021/cm300570n
10.1038/ncomms12413
10.1038/nature08916
10.1021/cm0304546
10.1021/nl2001132
10.1038/srep23672
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.201701155
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_201701155
ADMI201701155
Genre article
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJCF
AFKRA
ARAPS
BENPR
BFHJK
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3175-997a88afaea14aa841cc3ab2b3148171bbd7ea710d49ec70d201377e384ac97f3
ISSN 2196-7350
IngestDate Thu Oct 10 22:42:39 EDT 2024
Thu Sep 12 16:58:04 EDT 2024
Sat Aug 24 00:40:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-997a88afaea14aa841cc3ab2b3148171bbd7ea710d49ec70d201377e384ac97f3
ORCID 0000-0001-5644-3415
PQID 2012947827
PQPubID 2034582
PageCount 8
ParticipantIDs proquest_journals_2012947827
crossref_primary_10_1002_admi_201701155
wiley_primary_10_1002_admi_201701155_ADMI201701155
PublicationCentury 2000
PublicationDate March 9, 2018
PublicationDateYYYYMMDD 2018-03-09
PublicationDate_xml – month: 03
  year: 2018
  text: March 9, 2018
  day: 09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 383
2010; 55
2010; 10
2010; 97
2013; 3
2010; 464
2011; 11
2015; 107
1953; 75
2010; 22
1994; 144
2013; 15
2014; 4
2010; 25
2010; 110
2013; 113
2015; 91
2013; 110
2005; 72
2012; 24
2015; 17
2015; 6
2015; 5
2015; 3
2013; 103
2016; 52
2013; 102
2009; 131
2015; 9
2016; 120
2010; 82
2016; 4
2014; 105
2016; 6
2004; 96
2016; 7
2012; 3
2015; 27
2011; 107
2004; 16
2015; 66
2015; 2015
2005; 97
2016; 28
2016; 27
2016; 8
2014; 104
1994; 4
2014; 585
2014; 32
2014; 146
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
Chen H. (e_1_2_7_37_1) 2011; 107
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Wei P. (e_1_2_7_16_1) 2013; 110
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Wang Z. (e_1_2_7_17_1) 2015; 107
References_xml – volume: 110
  start-page: 1
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 7630
  year: 2015
  publication-title: Nat. Commun.
– volume: 120
  start-page: 18039
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 639
  year: 2004
  publication-title: Chem. Mater.
– volume: 11
  start-page: 1646
  year: 2011
  publication-title: Nano Lett.
– volume: 5
  start-page: 7063
  year: 2015
  publication-title: ACS Catal.
– volume: 97
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 113031
  year: 2013
  publication-title: New J. Phys.
– volume: 7
  start-page: 12413
  year: 2016
  publication-title: Nat. Commun.
– volume: 113
  start-page: 021301
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 32
  start-page: 10801
  year: 2014
  publication-title: J. Vac. Sci. Technol., A
– volume: 107
  start-page: 1
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 105
  start-page: 123117
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 1975
  year: 2012
  publication-title: Chem. Mater.
– volume: 27
  start-page: 285302
  year: 2016
  publication-title: Nanotechnology
– volume: 22
  start-page: 1386
  year: 2010
  publication-title: Chem. Mater.
– volume: 66
  start-page: 119
  year: 2015
  publication-title: ECS Trans.
– volume: 104
  start-page: 243115
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 329
  year: 2010
  publication-title: Nano Lett.
– volume: 110
  start-page: 111
  year: 2010
  publication-title: Chem. Rev.
– volume: 146
  start-page: 346
  year: 2014
  publication-title: Electrochim. Acta
– volume: 585
  start-page: 40
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 1212
  year: 2013
  publication-title: Sci. Rep.
– volume: 9
  start-page: 4406
  year: 2015
  publication-title: ACS Nano
– volume: 107
  start-page: 27
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 7686
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 383
  start-page: 30
  year: 2015
  publication-title: J. Magn. Magn. Mater.
– volume: 102
  start-page: 100
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 82
  start-page: 3045
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 464
  start-page: 194
  year: 2010
  publication-title: Nature
– volume: 120
  start-page: 124311
  year: 2016
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 23672
  year: 2016
  publication-title: Sci. Rep.
– volume: 27
  start-page: 375707
  year: 2016
  publication-title: Nanotechnology
– volume: 6
  start-page: 5255
  year: 2015
  publication-title: Chem. Sci.
– volume: 97
  start-page: 183102
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 32616
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 72
  start-page: 184101
  year: 2005
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 1239
  year: 1994
  publication-title: J. Mater. Chem.
– volume: 103
  start-page: 193107
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 131
  start-page: 3478
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1500280
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 1541
  year: 2015
  publication-title: Chem. Mater.
– volume: 91
  start-page: 35313
  year: 2015
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 123011
  year: 2015
  publication-title: New J. Phys.
– volume: 28
  start-page: 6953
  year: 2016
  publication-title: Chem. Mater.
– volume: 5
  start-page: 8470
  year: 2015
  publication-title: Sci. Rep.
– volume: 25
  start-page: 24005
  year: 2010
  publication-title: Semicond. Sci. Technol.
– volume: 2015
  start-page: 13
  year: 2015
  publication-title: J. Nanomater.
– volume: 27
  start-page: 275601
  year: 2016
  publication-title: Nanotechnology
– volume: 75
  start-page: 4126
  year: 1953
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 563
  year: 2010
  publication-title: Prog. Mater. Sci.
– volume: 4
  start-page: 57322
  year: 2014
  publication-title: RSC Adv.
– volume: 28
  start-page: 395501
  year: 2016
  publication-title: J. Phys.: Condens. Matter
– volume: 4
  start-page: 5648
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 24
  start-page: 2973
  year: 2012
  publication-title: Chem. Mater.
– volume: 3
  start-page: 860
  year: 2012
  publication-title: Beilstein J. Nanotechnol.
– volume: 3
  start-page: 5971
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 806
  year: 2016
  publication-title: Russ. J. Electrochem.
– volume: 144
  start-page: 116
  year: 1994
  publication-title: J. Cryst. Growth
– ident: e_1_2_7_33_1
  doi: 10.1063/1.4757907
– ident: e_1_2_7_23_1
  doi: 10.1021/nl903663a
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.jpcc.6b04398
– ident: e_1_2_7_25_1
  doi: 10.1155/2015/125970
– ident: e_1_2_7_49_1
  doi: 10.1103/PhysRevB.72.184101
– ident: e_1_2_7_58_1
  doi: 10.1149/06606.0119ecst
– ident: e_1_2_7_59_1
  doi: 10.1038/srep08470
– ident: e_1_2_7_3_1
  doi: 10.1063/1.4883887
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.5b00896
– ident: e_1_2_7_39_1
  doi: 10.1039/C4RA11068D
– ident: e_1_2_7_54_1
  doi: 10.1021/acsami.6b11963
– ident: e_1_2_7_40_1
  doi: 10.1016/j.electacta.2014.09.027
– ident: e_1_2_7_48_1
  doi: 10.1039/C5SC00825E
– ident: e_1_2_7_55_1
  doi: 10.1039/C5TA00111K
– ident: e_1_2_7_31_1
  doi: 10.1088/0957-4484/27/37/375707
– ident: e_1_2_7_52_1
  doi: 10.1063/1.4963282
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jmmm.2014.09.029
– ident: e_1_2_7_11_1
  doi: 10.1088/1367-2630/17/12/123011
– ident: e_1_2_7_20_1
  doi: 10.1088/0957-4484/27/27/275601
– volume: 107
  start-page: 1
  year: 2015
  ident: e_1_2_7_17_1
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Wang Z.
– ident: e_1_2_7_36_1
  doi: 10.1021/cm902180d
– ident: e_1_2_7_22_1
  doi: 10.1088/0268-1242/25/2/024005
– ident: e_1_2_7_50_1
  doi: 10.1063/1.1940727
– ident: e_1_2_7_43_1
  doi: 10.1116/1.4851716
– ident: e_1_2_7_7_1
  doi: 10.1063/1.4896680
– ident: e_1_2_7_19_1
  doi: 10.1088/0957-4484/27/28/285302
– volume: 110
  start-page: 1
  year: 2013
  ident: e_1_2_7_16_1
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Wei P.
– ident: e_1_2_7_35_1
  doi: 10.1021/ja8090388
– ident: e_1_2_7_21_1
  doi: 10.1016/j.pmatsci.2010.02.001
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jallcom.2013.09.126
– ident: e_1_2_7_13_1
  doi: 10.1038/ncomms8630
– ident: e_1_2_7_9_1
  doi: 10.1088/1367-2630/15/11/113031
– volume: 107
  start-page: 27
  year: 2011
  ident: e_1_2_7_37_1
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Chen H.
– ident: e_1_2_7_8_1
  doi: 10.1088/0953-8984/28/39/395501
– ident: e_1_2_7_27_1
  doi: 10.1038/srep01212
– ident: e_1_2_7_4_1
  doi: 10.1063/1.4809826
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.201500280
– ident: e_1_2_7_47_1
  doi: 10.1021/ja01113a002
– ident: e_1_2_7_2_1
  doi: 10.1103/RevModPhys.82.3045
– ident: e_1_2_7_34_1
  doi: 10.1021/cr900056b
– ident: e_1_2_7_14_1
  doi: 10.1039/C6TC01083K
– ident: e_1_2_7_38_1
  doi: 10.1021/acscatal.5b01966
– ident: e_1_2_7_46_1
  doi: 10.1039/jm9940401239
– ident: e_1_2_7_56_1
  doi: 10.1021/cm301206e
– ident: e_1_2_7_28_1
  doi: 10.3762/bjnano.3.97
– ident: e_1_2_7_26_1
  doi: 10.1134/S1023193516090020
– ident: e_1_2_7_10_1
  doi: 10.1103/PhysRevB.91.035313
– ident: e_1_2_7_57_1
  doi: 10.1021/cm504558g
– ident: e_1_2_7_51_1
  doi: 10.1063/1.1810193
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.chemmater.6b02638
– ident: e_1_2_7_5_1
  doi: 10.1063/1.4829748
– ident: e_1_2_7_12_1
  doi: 10.1063/1.3509415
– ident: e_1_2_7_45_1
  doi: 10.1016/0022-0248(94)90019-1
– ident: e_1_2_7_30_1
  doi: 10.1021/cm300570n
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms12413
– ident: e_1_2_7_1_1
  doi: 10.1038/nature08916
– ident: e_1_2_7_44_1
  doi: 10.1021/cm0304546
– ident: e_1_2_7_32_1
  doi: 10.1021/nl2001132
– ident: e_1_2_7_29_1
  doi: 10.1038/srep23672
SSID ssj0001121283
Score 2.1297202
Snippet The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt3)2 and Se(SiEt3)2, exposed to different V–VI semiconductor...
Abstract The behaviors of tellurium and selenium atomic layer deposition vapor precursors, namely, Te(SiEt 3 ) 2 and Se(SiEt 3 ) 2 , exposed to different V–VI...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms atomic layer deposition
Atomic layer epitaxy
Data analysis
Energy transmission
exchange reactions
Exchanging
II-VI semiconductors
Nanowires
Precursors
quartz crystal microbalance
Selenium
Substrates
Tellurium
topological insulator
Title Surface Modification of V–VI Semiconductors Using Exchange Reactions within ALD Half‐Cycles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201701155
https://www.proquest.com/docview/2012947827
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKJiQuiJ-iMJAPSBymlCR26vhY7YfaiXFhzSYukePYUGlLUddKwGlHjkj8h_tL9mwnTjpVYnCJWldJXL8v731--fyM0NuYqSGENREkhOuA0lIGIpQkSNKQSGB0TA7NauTjj8PxlB6dJWe93q-Oamm1LAby58Z1Jf9jVWgDu5pVsv9gWX9RaIDPYF84goXheCcbf1ottLAPZmkUP579ZY2EgWQT8AYXYO3K1HU1G-s4jcDBd7fi14jopRPDmYysSX582N8di3PtVRB7P4xwrktiR41uANiu-5u26oTti6fopzP1pRZN-gIGu6cDn6iGcFxvWO3E3R5IphCRM3zl3uJ77z3_eu5k-IvZeroisuv3Qt56NfCQw4ARV212oDa01W456aAv2ejsXfFYUV7MjESPGXKbtGGteZV_K9p5DaKr1xzn5vzcn38PbcfgssBXbo-y6edpm6-LIMjbqq6-t00N0DB-v96JdY7TTly60x_LX04eoYf1xAOPHIoeo56qnqD7VgAsL5-ivMYS7mIJzzXOrq_-ZBO8jiJsUYQbFGGPIuxQhAFF2KDo-uq3w88zND08ONkbB_XmG4E0lDLgnIk0FVooEVEhUhpJSUQRFwQm0BGLiqJkSgA_LSlXkoVlbItXKpJSITnT5DnaquaVeoFwXCRUlhHVPNQ0SVLBJS9lyoH7agkxo4_eNcOVf3M1VvLN1umjnWY08_o5vDS_xpwC02V9FNsR_stV8tH-8cR_e3nnu79CD1pE76Ct5WKlXgMlXRZvarTcAJiCh-Q
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2CVggWxFMUCnhAYoqah13HY9WHWmg7AK0QS-Q4toQECWqpBFs_AYk_7JdgO33QCYkxjuLhxNf3-ObcE4Arn8qqTmvcIQFTDsaJcLgrAoeEbiA0o6OiarqRe_1qe4BvHslCTWh6YXJ_iGXBzUSG3a9NgJuCdGXlGsqT12ejzaKG1ZBNKBLzUa8Axdpw8DRYFVo8vTtbO04dnFWHBsRdmDe6fmV9kvXktGKcv3mrTTytPdidM0ZUy1_xPmzI9AC2rHJTjA8hup-MFBcS9bLEyH4s0ihTaDibfg876N6o37PU2LpmozGyEgHU_MgbftGdzBsbxsgUZJ9TVOs2UJu_qNn0q_5pFHNHMGg1H-ptZ_7XBEcYLuAwRnkYcsUl9zDnIfaECHjsx4E--XjUi-OESq6JRYKZFNRNfOs6KIMQc8GoCo6hkGapPAHkxwSLxMOKuQoTEnImWCJCpkmLEjrYS3C9gCt6y80xotwG2Y8MsNES2BKUF2hG8yAZm7s-w5qi0BL4FuE_ZolqjV5neXX6n4cuYbv90OtG3U7_9gx29LjtMHRZGQrvo4k81xTjPb6YL6IfG37Isg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA1aUdyIT6xWzUJwNXQmk2kmy9IHrbZF1JbiZsjkAQWdKX2A7voJgn_YLzHJ9OVKcDkzTBYnubknl3NPALhFRJZ0WmNO4FPlYCy4w1zuO0Ho-lwzOsJLphu53Sk1uvi-H_Q3uvgzf4hVwc1Eht2vTYAPhSquTUOZeB8YaRYxpCbYBjuaaiC9xnfKve5rd11n8fTmbN04dWyWHOIH7tK70UXF34P8zk1rwrlJW23eqR-CgwVhhOVsho_AlkyOwa4VbvLxCYiepyPFuITtVBjVjwUapgr25rPvXhM-G_F7mhhX13Q0hlYhAGsfWb8vfJJZX8MYmnrsIIHlVhU22Juaz74qn0Ywdwq69dpLpeEsLk1wuKECDqWEhSFTTDIPMxZij3OfxSj29cHHI14cCyKZ5hUCU8mJK5A1HZR-iBmnRPlnIJekiTwHEMUB5sLDiroKB0HIKKeCh1RzFsV1rOfB3RKuaJh5Y0SZCzKKDLDRCtg8KCzRjBYxMjZfEcWaoZA8QBbhP0aJytV2c_V08Z-fbsDeY7UetZqdh0uwr1_b_kKXFkBuMprKK00wJvH1Yg39AAcVx9s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modification+of+V%E2%80%93VI+Semiconductors+Using+Exchange+Reactions+within+ALD+Half%E2%80%90Cycles&rft.jtitle=Advanced+materials+interfaces&rft.au=Wiegand%2C+Christoph+W.&rft.au=Zierold%2C+Robert&rft.au=Faust%2C+Ren%C3%A9&rft.au=Pohl%2C+Darius&rft.date=2018-03-09&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Fadmi.201701155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_201701155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon