A General Synthesis of Soft Magnetic 2:17‐Type Rare‐Earth Cobalt Nanoalloys Decorated with Graphite as High‐Frequency Electromagnetic Materials
A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE2Co17 phases are formed without the precipitation...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 27 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE2Co17 phases are formed without the precipitation of Co and the other RE‐Co phases through the accurately manipulated co‐reduction of the two ions, which avoids the disadvantages of the impurity or second phases for RE metal alloys. RE2Co17/graphite nanostructures constructed with flower‐like RE2Co17 nanoalloys superficially decorated with nanosized graphite are further fabricated by introducing graphene oxides into the co‐reduction process. Compared with traditional magnetic planar‐anisotropy RE2Co17 alloys, the preserved high saturation magnetization (51.2–102.9 A m2 kg−1) and unusually increased coercivity (152–310.5 Oe) are achieved in these graphite‐decorated RE2Co17 nanoalloys. Moreover, these RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. This work provides a facial way for the large‐scale production for varieties of single‐phase 2:17‐type RE‐Co nanoalloys and expands their application fields by constructing novel composite structures.
This work provides a universal approach to fabricating a series of soft magnetic 2:17‐type rare‐earth cobalt nanoalloys decorated with graphite (RE2Co17/graphite, RE = Y, Ce, Pr, Nd, and Gd). The well‐structured RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. |
---|---|
AbstractList | A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE2Co17 phases are formed without the precipitation of Co and the other RE‐Co phases through the accurately manipulated co‐reduction of the two ions, which avoids the disadvantages of the impurity or second phases for RE metal alloys. RE2Co17/graphite nanostructures constructed with flower‐like RE2Co17 nanoalloys superficially decorated with nanosized graphite are further fabricated by introducing graphene oxides into the co‐reduction process. Compared with traditional magnetic planar‐anisotropy RE2Co17 alloys, the preserved high saturation magnetization (51.2–102.9 A m2 kg−1) and unusually increased coercivity (152–310.5 Oe) are achieved in these graphite‐decorated RE2Co17 nanoalloys. Moreover, these RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. This work provides a facial way for the large‐scale production for varieties of single‐phase 2:17‐type RE‐Co nanoalloys and expands their application fields by constructing novel composite structures.
This work provides a universal approach to fabricating a series of soft magnetic 2:17‐type rare‐earth cobalt nanoalloys decorated with graphite (RE2Co17/graphite, RE = Y, Ce, Pr, Nd, and Gd). The well‐structured RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE 2 Co 17 , RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE 2 Co 17 phases are formed without the precipitation of Co and the other RE‐Co phases through the accurately manipulated co‐reduction of the two ions, which avoids the disadvantages of the impurity or second phases for RE metal alloys. RE 2 Co 17 /graphite nanostructures constructed with flower‐like RE 2 Co 17 nanoalloys superficially decorated with nanosized graphite are further fabricated by introducing graphene oxides into the co‐reduction process. Compared with traditional magnetic planar‐anisotropy RE 2 Co 17 alloys, the preserved high saturation magnetization (51.2–102.9 A m 2 kg −1 ) and unusually increased coercivity (152–310.5 Oe) are achieved in these graphite‐decorated RE 2 Co 17 nanoalloys. Moreover, these RE 2 Co 17 /graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. This work provides a facial way for the large‐scale production for varieties of single‐phase 2:17‐type RE‐Co nanoalloys and expands their application fields by constructing novel composite structures. A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE2Co17 phases are formed without the precipitation of Co and the other RE‐Co phases through the accurately manipulated co‐reduction of the two ions, which avoids the disadvantages of the impurity or second phases for RE metal alloys. RE2Co17/graphite nanostructures constructed with flower‐like RE2Co17 nanoalloys superficially decorated with nanosized graphite are further fabricated by introducing graphene oxides into the co‐reduction process. Compared with traditional magnetic planar‐anisotropy RE2Co17 alloys, the preserved high saturation magnetization (51.2–102.9 A m2 kg−1) and unusually increased coercivity (152–310.5 Oe) are achieved in these graphite‐decorated RE2Co17 nanoalloys. Moreover, these RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. This work provides a facial way for the large‐scale production for varieties of single‐phase 2:17‐type RE‐Co nanoalloys and expands their application fields by constructing novel composite structures. |
Author | Li, Zhenyang Yu, Ronghai Yuan, Yingbo Li, Ran Tian, Hao Yang, Bai Ma, Jie |
Author_xml | – sequence: 1 givenname: Jie surname: Ma fullname: Ma, Jie organization: Beihang University – sequence: 2 givenname: Zhenyang surname: Li fullname: Li, Zhenyang organization: Beihang University – sequence: 3 givenname: Hao surname: Tian fullname: Tian, Hao organization: Beihang University – sequence: 4 givenname: Bai orcidid: 0000-0003-1414-3777 surname: Yang fullname: Yang, Bai email: byang@buaa.edu.cn organization: Beihang University – sequence: 5 givenname: Yingbo surname: Yuan fullname: Yuan, Yingbo organization: Beihang University – sequence: 6 givenname: Ran surname: Li fullname: Li, Ran email: liran@buaa.edu.cn organization: Beihang University – sequence: 7 givenname: Ronghai surname: Yu fullname: Yu, Ronghai email: rhyu@buaa.edu.cn organization: Beihang University |
BookMark | eNqFkU9rGzEQxUVIofnTa8-Cnu1I2l0p25txbKcQJ9Ck0NsylkaxwlpyJYWwt36EXvoF-0mq4DSBQMnpzcD7zRt4h2TfB4-EfORszBkTJ2DsZiyYqLhUvNkjB1xyOaqYON1_nvn39-QwpTvGuFJVfUB-T-gCPUbo6fXg8xqTSzRYeh1spku49ZidpuIzV39-_roZtki_QsQyzyDmNZ2GFfSZXoIP0PdhSPQMdYiQ0dAHVwyLCNu1y0gh0XN3uy7kPOKPe_R6oLMedY5h8y9mWbjooE_H5J0tgh-e9Ih8m89upueji6vFl-nkYqQrrprRqTKibZjVUCnBWonMNsYgqhW21gDXZTGylaaxiHZltKxbgYLXTS15i6I6Ip92d7cxlJ9S7u7CffQlsquYalhV7sriqncuHUNKEW2nXYbsgs8RXN9x1j0W0D0W0D0XULDxK2wb3Qbi8H-g3QEPrsfhDXc3OZsvX9i_dFugPA |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_158306 crossref_primary_10_1007_s12598_024_03104_x crossref_primary_10_1016_j_mtcomm_2025_112007 |
Cites_doi | 10.1007/s12274-020-2761-5 10.1063/1.1674108 10.1016/S1002-0721(12)60030-1 10.1021/jacs.9b10813 10.1016/j.matchemphys.2019.122478 10.1016/j.apsusc.2013.03.012 10.1016/j.jallcom.2020.156393 10.1021/j150333a008 10.1007/s10948-015-2980-2 10.1039/c1cc13989d 10.1007/s12598-016-0778-4 10.1016/j.actamat.2021.116968 10.1016/j.jssc.2019.04.008 10.1016/j.intermet.2023.108174 10.1016/j.jmst.2019.04.041 10.1007/BF03027570 10.1002/admi.201601113 10.1002/sstr.202000010 10.1116/1.1763899 10.1143/JPSJ.37.1272 10.1016/S1359-0286(96)80082-9 10.1016/0956-7151(94)00289-T 10.1016/j.cej.2018.02.060 10.1186/s40580-020-00229-4 10.1007/s12598-019-01257-8 10.1088/1674-1056/aca7f1 10.1016/j.intermet.2018.05.005 10.1039/D0NR00490A 10.1016/j.ceramint.2016.12.059 10.1088/0268-1242/25/4/045023 10.1039/c3nr34134h 10.3390/ma15010201 10.1063/1.5055106 10.1063/1.4943378 10.1016/j.jmst.2021.01.083 10.1002/adma.200700891 10.1016/0965-9773(96)00010-4 10.1039/D2DT03137J 10.1016/j.jmmm.2019.165961 10.1039/C6RA10903A 10.1021/jp203147q 10.1016/j.eng.2018.11.034 10.1016/j.inoche.2019.107736 10.1016/j.surfcoat.2014.05.020 10.1016/j.jallcom.2022.168255 10.1002/smll.202107265 10.1016/j.matdes.2017.02.073 10.1016/0003-2670(59)80090-8 10.1016/j.jallcom.2019.151674 10.1002/adfm.202112294 10.1007/s00339-021-04606-6 10.1088/0022-3727/40/11/024 10.1080/1536383X.2020.1794851 10.1021/acsami.0c13151 10.1088/0953-8984/20/03/035216 10.1021/nl200311w 10.1039/D0QI00777C 10.1002/smll.202302465 10.1186/1556-276X-6-565 10.1021/acs.chemrev.1c00370 10.1007/s00339-023-06657-3 10.1021/jp070711k 10.1063/1.4918939 10.1007/s11664-017-5657-8 10.1016/j.cej.2014.11.138 10.1016/j.jmmm.2010.11.054 10.1063/1.3446868 10.1016/0304-8853(91)90811-N 10.1098/rsta.2004.1452 10.1016/j.cej.2022.140277 10.1002/adfm.202202675 10.1016/j.actamat.2017.12.042 10.1016/j.scriptamat.2019.11.003 10.1016/j.jmmm.2017.12.058 10.1016/j.carbon.2011.11.010 10.1016/j.carbon.2018.12.058 10.1007/s10854-021-07167-9 10.1016/j.jallcom.2023.170899 10.1038/s41598-020-73161-6 10.1016/j.jmmm.2019.166205 10.1002/adfm.202313544 10.1039/C8NR02893A 10.1038/s41467-022-29624-7 10.1021/jp2115143 10.1016/j.carbon.2020.05.015 10.1016/j.jssc.2016.03.001 10.1016/j.jpcs.2021.110438 10.1002/sia.955 10.1016/j.carbon.2019.10.030 10.1021/ar3002427 10.1002/adma.201806461 10.1039/B613962K 10.1002/adem.202000827 10.1063/1.1537700 10.1016/j.surfcoat.2005.02.023 10.1016/j.jallcom.2023.169107 10.1016/j.corsci.2021.109647 10.1021/ja01577a018 10.1016/S1006-706X(08)60174-0 10.1039/C6CE02165D 10.1021/jp0521149 10.1088/2053-1591/aae3c7 10.1021/acsanm.9b00809 10.1016/j.jmmm.2018.08.012 10.1002/adfm.202108194 10.1016/0022-5088(85)90168-7 10.1088/1674-1056/aca148 10.1016/j.jallcom.2021.158595 10.1002/chem.201705818 10.1016/j.jmmm.2023.170801 10.4236/graphene.2017.61001 10.1016/j.carbon.2017.08.070 10.1007/s11051-012-1129-5 10.1016/j.jallcom.2020.154179 10.1080/08827508.2022.2164576 10.1088/0256-307X/25/11/077 10.1002/adfm.202104426 10.1007/BF03353652 10.1039/C9TC06137A 10.1002/adfm.202302003 10.1063/1.328997 10.1021/jacs.0c02197 10.1142/S1793292018500595 10.1016/j.pmatsci.2022.100946 10.1016/j.jmmm.2016.12.006 10.1021/acsami.7b13538 10.1039/C8TC02048E 10.1557/PROC-349-31 10.1116/6.0000475 10.1088/0034-4885/40/10/002 10.1088/0957-4484/20/43/434007 10.1016/j.cej.2019.04.174 10.1016/j.molstruc.2020.128665 10.1002/adma.202005988 10.1002/adfm.202301350 10.1021/acsenergylett.1c00593 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202316715 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202316715 ADFM202316715 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51920105001; 51101007 – fundername: Beijing Natural Science Foundation funderid: 2132039 – fundername: National Key R&D Program of China funderid: 2021YFB3501304 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3175-87d2950fca372096e0f5ddee7be9fda1cdded696d5feefbdc6492e21454619e23 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 03:29:57 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Tue Jul 01 00:30:56 EDT 2025 Wed Jan 22 17:18:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-87d2950fca372096e0f5ddee7be9fda1cdded696d5feefbdc6492e21454619e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1414-3777 |
PQID | 3075033726 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3075033726 crossref_citationtrail_10_1002_adfm_202316715 crossref_primary_10_1002_adfm_202316715 wiley_primary_10_1002_adfm_202316715_ADFM202316715 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017 2020; 121 7 2017; 6 2003 2018 2023; 93 452 960 2013 2023 2011 2018; 46 52 115 13 2023 2020; 129 846 1970 2005 2020 2004; 53 200 1220 362 2020; 12 2020; 10 2024 2015 2020 2020; 264 812 499 2022 2007; 18 9 2011 2012 2019 2009 2021 2016; 3 50 276 20 127 6 2012; 14 2005 2012; 109 30 2020 2023; 497 32 2020 1991; 142 100 2021 2023 2017; 31 577 43 2011 2012 2017 2017; 47 116 19 428 2011 2019; 323 2 2021 2017; 23 9 1994 1995 2008; 349 43 20 2023 2021 2020 2024; 936 862 242 166 2010 2014 2007; 25 253 40 2022 2023 2022; 32 33 32 2008; 25 2013 2015 1985 2006 2018; 5 106 111 13 54 2013; 273 2021 2023 2018 2019 2020; 214 942 99 6 825 2022; 127 1959 1957; 20 79 2019 2023; 372 454 1974; 37 2022 2020 2021 2023 2020; 32 32 33 19 6 2007; 19 2021; 6 1996 2023; 1 33 2022 2011; 122 11 2018 2020; 468 112 2016 2022 2017; 238 161 46 2020; 142 2023, 2018 2007 2016; 2015 13 35 2018; 145 1931; 36 2020 2021; 37 88 2015; 28 2020 2011 2017 2019 2001; 28 6 4 144 31 1977 2022 2022; 40 15 13 2021 2020 2020 2021 2020 2020; 8 12 13 190 39 178 2004 2007; 22 111 1996 2010 2020 2020 2017; 7 96 1 166 124 2020; 27 2021 2016 2023; 32 108 32 2020; 157 2018 2018 2020 2018; 10 343 8 6 1981; 52 2018 2020; 24 23 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_9_2 Bugdayci M. (e_1_2_8_15_2) 2020; 23 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_41_3 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_38_3 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_38_5 e_1_2_8_19_2 e_1_2_8_38_4 e_1_2_8_11_3 e_1_2_8_34_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_19_3 e_1_2_8_30_3 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_30_4 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_29_3 e_1_2_8_44_4 e_1_2_8_25_1 e_1_2_8_44_3 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_48_1 e_1_2_8_29_4 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_3 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_40_4 e_1_2_8_21_1 e_1_2_8_40_3 e_1_2_8_44_2 e_1_2_8_40_5 e_1_2_8_44_1 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_14_4 e_1_2_8_18_1 Song W. (e_1_2_8_29_5) 2018; 54 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_14_3 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_52_2 e_1_2_8_10_3 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_28_4 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_24_3 e_1_2_8_24_4 e_1_2_8_28_5 e_1_2_8_28_6 e_1_2_8_3_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_20_2 e_1_2_8_17_1 e_1_2_8_36_4 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_36_3 e_1_2_8_36_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_32_2 e_1_2_8_51_1 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_23_3 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_4_3 e_1_2_8_4_6 e_1_2_8_8_2 e_1_2_8_4_5 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_39_1 e_1_2_8_16_4 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_35_1 e_1_2_8_12_4 e_1_2_8_12_5 e_1_2_8_16_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_50_2 e_1_2_8_50_3 e_1_2_8_50_1 |
References_xml | – volume: 20 79 start-page: 415 5404 year: 1959 1957 publication-title: Anal. Chim. Acta J. Am. Chem. Soc. – volume: 32 33 32 year: 2022 2023 2022 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Adv. Funct. Mater. – volume: 46 52 115 13 start-page: 1720 3085 year: 2013 2023 2011 2018 publication-title: Acc. Chem. Res. Dalton Trans. J. Phys. Chem. C Nano – volume: 8 12 13 190 39 178 start-page: 383 1141 421 34 year: 2021 2020 2020 2021 2020 2020 publication-title: Inorg. Chem. Front. ACS Appl. Mater. Interfaces Nano Res. Corros. Sci. Rare Met. Scr. Mater. – volume: 25 253 40 start-page: 96 3423 year: 2010 2014 2007 publication-title: Semicond. Sci. Technol. Surf. Coat. Technol. J. Phys. D: Appl. Phys. – volume: 264 812 499 start-page: 610 year: 2015 2020 2020 publication-title: Chem. Eng. J. J. Alloys Compd. J. Magn. Magn. Mater. – volume: 22 111 start-page: 1690 8006 year: 2004 2007 publication-title: J. Vac. Sci. Technol., A J. Phys. Chem. B – volume: 122 11 start-page: 5411 1747 year: 2022 2011 publication-title: Chem. Rev. Nano Lett. – volume: 7 96 1 166 124 start-page: 393 74 314 year: 1996 2010 2020 2020 2017 publication-title: Nanostruct. Mater. Appl. Phys. Lett. Small Struct. Carbon Carbon – volume: 52 start-page: 2549 year: 1981 publication-title: J. Appl. Phys. – volume: 28 6 4 144 31 start-page: 1048 565 831 185 year: 2020 2011 2017 2019 2001 publication-title: Fullerenes, Nanotubes Carbon Nanostruct. Nanoscale Res. Lett. Adv. Mater. Interfaces Carbon Surf. Interface Anal. – volume: 32 32 33 19 6 start-page: 119 year: 2022 2020 2021 2023 2020 publication-title: Adv. Funct. Mater. Adv. Mater. Adv. Mater. Small Engineering – volume: 40 15 13 start-page: 1179 201 2014 year: 1977 2022 2022 publication-title: Rep. Prog. Phys. Materials Nat. Commun. – volume: 349 43 20 start-page: 31 471 year: 1994 1995 2008 publication-title: MRS Online Proc. Libr Acta Metall. Mater. J. Phys.: Condens. Matter – volume: 238 161 46 start-page: 15 6333 year: 2016 2022 2017 publication-title: J. Solid State Chem. J. Phys. Chem. Solids J. Electron. Mater. – volume: 6 start-page: 1 year: 2017 publication-title: Graphene – volume: 157 start-page: 130 year: 2020 publication-title: Carbon – volume: 47 116 19 428 start-page: 684 6 year: 2011 2012 2017 2017 publication-title: Chem. Commun. J. Phys. Chem. C CrystEngComm J. Magn. Magn. Mater. – volume: 37 start-page: 1272 year: 1974 publication-title: J. Phys. Soc. Jpn. – volume: 24 23 start-page: 7913 1259 year: 2018 2020 publication-title: Chem. Eur. J. Int. J. Eng. Sci. – volume: 273 start-page: 816 year: 2013 publication-title: Appl. Surf. Sci. – volume: 14 start-page: 1129 year: 2012 publication-title: J. Nanopart. Res. – volume: 10 343 8 6 start-page: 1 2109 8522 year: 2018 2018 2020 2018 publication-title: Nanoscale Chem. Eng. J. J. Mater. Chem. C J. Mater. Chem. C – volume: 372 454 start-page: 390 year: 2019 2023 publication-title: Chem. Eng. J. Chem. Eng. J. – volume: 936 862 242 166 year: 2023 2021 2020 2024 publication-title: J. Alloys Compd. J. Alloys Compd. Mater. Chem. Phys. Intermetallics – volume: 37 88 start-page: 181 183 year: 2020 2021 publication-title: J. Mater. Sci. Technol. J. Mater. Sci. Technol. – volume: 142 start-page: 8440 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 31 577 43 start-page: 3893 year: 2021 2023 2017 publication-title: Adv. Funct. Mater. J. Magn. Magn. Mater. Ceram. Int. – volume: 53 200 1220 362 start-page: 1126 1117 2477 year: 1970 2005 2020 2004 publication-title: J. Chem. Phys. Surf. Coat. Technol. J. Mol. Struct. Phil. Trans. R. Soc. Lond. A – volume: 3 50 276 20 127 6 start-page: 51 3210 100 464 year: 2011 2012 2019 2009 2021 2016 publication-title: Nano‐Micro Lett. Carbon J. Solid State Chem. Nanotechnology Appl. Phys. A: Mater. Sci. Process. RSC Adv. – volume: 142 100 start-page: 953 38 year: 2020 1991 publication-title: J. Am. Chem. Soc. J. Magn. Magn. Mater. – volume: 19 start-page: 3349 year: 2007 publication-title: Adv. Mater. – volume: 214 942 99 6 825 start-page: 8 year: 2021 2023 2018 2019 2020 publication-title: Acta Mater. J. Alloys Compd. Intermetallics Mater. Res. Express J. Alloys Compd. – volume: 36 start-page: 860 year: 1931 publication-title: J. Phys. Chem. – volume: 5 106 111 13 54 start-page: 2279 49 154 year: 2013 2015 1985 2006 2018 publication-title: Nanoscale Appl. Phys. Lett. J. Less‐Common Met. J. Iron Steel Res. Int. IEEE Trans. Magn. – volume: 6 start-page: 1560 year: 2021 publication-title: ACS Energy Lett. – volume: 2015 13 35 start-page: 177 581 year: 2023, 2018 2007 2016 publication-title: Miner. Process. Extr. Metall. Rev. AIP Conf. Proc. Met. Mater. Int. Rare Met. – volume: 109 30 start-page: 236 year: 2005 2012 publication-title: J. Phys. Chem. B J. Rare Earths – volume: 497 32 year: 2020 2023 publication-title: J. Magn. Magn. Mater. Chin. Phys. B – volume: 28 start-page: 1863 year: 2015 publication-title: J. Supercond. Nov. Magn. – volume: 145 start-page: 331 year: 2018 publication-title: Acta Mater. – volume: 121 7 start-page: 272 20 year: 2017 2020 publication-title: Mater. Des. Nano Convergence – volume: 32 108 32 year: 2021 2016 2023 publication-title: J. Mater. Sci.: Mater. Electron. Appl. Phys. Lett. Chin. Phys. B – volume: 323 2 start-page: 1398 4367 year: 2011 2019 publication-title: J. Magn. Magn. Mater. ACS Appl. Nano Mater. – volume: 12 year: 2020 publication-title: Nanoscale – year: 2024 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 4120 year: 2008 publication-title: Chin. Phys. Lett. – volume: 93 452 960 start-page: 7975 272 year: 2003 2018 2023 publication-title: J. Appl. Phys. J. Magn. Magn. Mater. J. Alloys Compd. – volume: 18 9 start-page: 1276 year: 2022 2007 publication-title: Small Phys. Chem. Chem. Phys. – volume: 27 year: 2020 publication-title: Surf. Sci. Spectra – volume: 23 9 year: 2021 2017 publication-title: Adv. Eng. Mater. ACS Appl. Mater. Interfaces – volume: 127 year: 2022 publication-title: Prog. Mater. Sci. – volume: 468 112 start-page: 193 year: 2018 2020 publication-title: J. Magn. Magn. Mater. Inorg. Chem. Commun. – volume: 129 846 start-page: 379 year: 2023 2020 publication-title: Appl. Phys. J. Alloys Compd. – volume: 1 33 start-page: 183 year: 1996 2023 publication-title: Curr. Opin. Solid State Mater. Sci. Adv. Funct. Mater. – volume: 10 year: 2020 publication-title: Sci. Rep. – ident: e_1_2_8_4_3 doi: 10.1007/s12274-020-2761-5 – ident: e_1_2_8_24_1 doi: 10.1063/1.1674108 – ident: e_1_2_8_26_2 doi: 10.1016/S1002-0721(12)60030-1 – ident: e_1_2_8_32_1 doi: 10.1021/jacs.9b10813 – ident: e_1_2_8_44_3 doi: 10.1016/j.matchemphys.2019.122478 – ident: e_1_2_8_39_1 doi: 10.1016/j.apsusc.2013.03.012 – ident: e_1_2_8_48_2 doi: 10.1016/j.jallcom.2020.156393 – ident: e_1_2_8_21_1 doi: 10.1021/j150333a008 – ident: e_1_2_8_35_1 doi: 10.1007/s10948-015-2980-2 – ident: e_1_2_8_36_1 doi: 10.1039/c1cc13989d – ident: e_1_2_8_14_4 doi: 10.1007/s12598-016-0778-4 – ident: e_1_2_8_12_1 doi: 10.1016/j.actamat.2021.116968 – ident: e_1_2_8_28_3 doi: 10.1016/j.jssc.2019.04.008 – ident: e_1_2_8_44_4 doi: 10.1016/j.intermet.2023.108174 – ident: e_1_2_8_9_1 doi: 10.1016/j.jmst.2019.04.041 – ident: e_1_2_8_14_3 doi: 10.1007/BF03027570 – ident: e_1_2_8_38_3 doi: 10.1002/admi.201601113 – ident: e_1_2_8_40_3 doi: 10.1002/sstr.202000010 – ident: e_1_2_8_34_1 doi: 10.1116/1.1763899 – ident: e_1_2_8_56_1 doi: 10.1143/JPSJ.37.1272 – ident: e_1_2_8_3_1 doi: 10.1016/S1359-0286(96)80082-9 – ident: e_1_2_8_27_2 doi: 10.1016/0956-7151(94)00289-T – ident: e_1_2_8_16_2 doi: 10.1016/j.cej.2018.02.060 – ident: e_1_2_8_37_2 doi: 10.1186/s40580-020-00229-4 – ident: e_1_2_8_4_5 doi: 10.1007/s12598-019-01257-8 – ident: e_1_2_8_5_2 doi: 10.1088/1674-1056/aca7f1 – ident: e_1_2_8_12_3 doi: 10.1016/j.intermet.2018.05.005 – ident: e_1_2_8_7_1 doi: 10.1039/D0NR00490A – ident: e_1_2_8_10_3 doi: 10.1016/j.ceramint.2016.12.059 – ident: e_1_2_8_23_1 doi: 10.1088/0268-1242/25/4/045023 – ident: e_1_2_8_29_1 doi: 10.1039/c3nr34134h – ident: e_1_2_8_2_2 doi: 10.3390/ma15010201 – ident: e_1_2_8_14_2 doi: 10.1063/1.5055106 – ident: e_1_2_8_41_2 doi: 10.1063/1.4943378 – ident: e_1_2_8_9_2 doi: 10.1016/j.jmst.2021.01.083 – ident: e_1_2_8_17_1 doi: 10.1002/adma.200700891 – ident: e_1_2_8_40_1 doi: 10.1016/0965-9773(96)00010-4 – ident: e_1_2_8_30_2 doi: 10.1039/D2DT03137J – ident: e_1_2_8_5_1 doi: 10.1016/j.jmmm.2019.165961 – ident: e_1_2_8_28_6 doi: 10.1039/C6RA10903A – ident: e_1_2_8_30_3 doi: 10.1021/jp203147q – ident: e_1_2_8_1_5 doi: 10.1016/j.eng.2018.11.034 – ident: e_1_2_8_6_2 doi: 10.1016/j.inoche.2019.107736 – ident: e_1_2_8_23_2 doi: 10.1016/j.surfcoat.2014.05.020 – ident: e_1_2_8_44_1 doi: 10.1016/j.jallcom.2022.168255 – ident: e_1_2_8_25_1 doi: 10.1002/smll.202107265 – ident: e_1_2_8_37_1 doi: 10.1016/j.matdes.2017.02.073 – ident: e_1_2_8_20_1 doi: 10.1016/0003-2670(59)80090-8 – volume: 23 start-page: 1259 year: 2020 ident: e_1_2_8_15_2 publication-title: Int. J. Eng. Sci. – ident: e_1_2_8_19_2 doi: 10.1016/j.jallcom.2019.151674 – ident: e_1_2_8_50_1 doi: 10.1002/adfm.202112294 – ident: e_1_2_8_28_5 doi: 10.1007/s00339-021-04606-6 – ident: e_1_2_8_23_3 doi: 10.1088/0022-3727/40/11/024 – ident: e_1_2_8_38_1 doi: 10.1080/1536383X.2020.1794851 – ident: e_1_2_8_4_2 doi: 10.1021/acsami.0c13151 – ident: e_1_2_8_27_3 doi: 10.1088/0953-8984/20/03/035216 – ident: e_1_2_8_13_2 doi: 10.1021/nl200311w – ident: e_1_2_8_4_1 doi: 10.1039/D0QI00777C – ident: e_1_2_8_1_4 doi: 10.1002/smll.202302465 – ident: e_1_2_8_38_2 doi: 10.1186/1556-276X-6-565 – ident: e_1_2_8_13_1 doi: 10.1021/acs.chemrev.1c00370 – ident: e_1_2_8_48_1 doi: 10.1007/s00339-023-06657-3 – ident: e_1_2_8_34_2 doi: 10.1021/jp070711k – ident: e_1_2_8_29_2 doi: 10.1063/1.4918939 – ident: e_1_2_8_8_3 doi: 10.1007/s11664-017-5657-8 – ident: e_1_2_8_19_1 doi: 10.1016/j.cej.2014.11.138 – ident: e_1_2_8_45_1 doi: 10.1016/j.jmmm.2010.11.054 – ident: e_1_2_8_40_2 doi: 10.1063/1.3446868 – ident: e_1_2_8_32_2 doi: 10.1016/0304-8853(91)90811-N – ident: e_1_2_8_24_4 doi: 10.1098/rsta.2004.1452 – ident: e_1_2_8_46_2 doi: 10.1016/j.cej.2022.140277 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.202202675 – ident: e_1_2_8_55_1 doi: 10.1016/j.actamat.2017.12.042 – ident: e_1_2_8_4_6 doi: 10.1016/j.scriptamat.2019.11.003 – ident: e_1_2_8_11_2 doi: 10.1016/j.jmmm.2017.12.058 – ident: e_1_2_8_28_2 doi: 10.1016/j.carbon.2011.11.010 – ident: e_1_2_8_38_4 doi: 10.1016/j.carbon.2018.12.058 – ident: e_1_2_8_41_1 doi: 10.1007/s10854-021-07167-9 – ident: e_1_2_8_11_3 doi: 10.1016/j.jallcom.2023.170899 – ident: e_1_2_8_47_1 doi: 10.1038/s41598-020-73161-6 – ident: e_1_2_8_19_3 doi: 10.1016/j.jmmm.2019.166205 – ident: e_1_2_8_51_1 doi: 10.1002/adfm.202313544 – ident: e_1_2_8_16_1 doi: 10.1039/C8NR02893A – ident: e_1_2_8_2_3 doi: 10.1038/s41467-022-29624-7 – ident: e_1_2_8_36_2 doi: 10.1021/jp2115143 – ident: e_1_2_8_40_4 doi: 10.1016/j.carbon.2020.05.015 – ident: e_1_2_8_8_1 doi: 10.1016/j.jssc.2016.03.001 – ident: e_1_2_8_8_2 doi: 10.1016/j.jpcs.2021.110438 – ident: e_1_2_8_38_5 doi: 10.1002/sia.955 – ident: e_1_2_8_53_1 doi: 10.1016/j.carbon.2019.10.030 – ident: e_1_2_8_30_1 doi: 10.1021/ar3002427 – ident: e_1_2_8_1_2 doi: 10.1002/adma.201806461 – ident: e_1_2_8_25_2 doi: 10.1039/B613962K – ident: e_1_2_8_52_1 doi: 10.1002/adem.202000827 – ident: e_1_2_8_11_1 doi: 10.1063/1.1537700 – ident: e_1_2_8_24_2 doi: 10.1016/j.surfcoat.2005.02.023 – ident: e_1_2_8_12_2 doi: 10.1016/j.jallcom.2023.169107 – ident: e_1_2_8_4_4 doi: 10.1016/j.corsci.2021.109647 – ident: e_1_2_8_20_2 doi: 10.1021/ja01577a018 – ident: e_1_2_8_29_4 doi: 10.1016/S1006-706X(08)60174-0 – volume: 54 year: 2018 ident: e_1_2_8_29_5 publication-title: IEEE Trans. Magn. – ident: e_1_2_8_36_3 doi: 10.1039/C6CE02165D – ident: e_1_2_8_26_1 doi: 10.1021/jp0521149 – ident: e_1_2_8_12_4 doi: 10.1088/2053-1591/aae3c7 – ident: e_1_2_8_45_2 doi: 10.1021/acsanm.9b00809 – ident: e_1_2_8_6_1 doi: 10.1016/j.jmmm.2018.08.012 – ident: e_1_2_8_50_3 doi: 10.1002/adfm.202108194 – ident: e_1_2_8_29_3 doi: 10.1016/0022-5088(85)90168-7 – ident: e_1_2_8_41_3 doi: 10.1088/1674-1056/aca148 – ident: e_1_2_8_44_2 doi: 10.1016/j.jallcom.2021.158595 – ident: e_1_2_8_15_1 doi: 10.1002/chem.201705818 – ident: e_1_2_8_10_2 doi: 10.1016/j.jmmm.2023.170801 – ident: e_1_2_8_22_1 doi: 10.4236/graphene.2017.61001 – ident: e_1_2_8_40_5 doi: 10.1016/j.carbon.2017.08.070 – ident: e_1_2_8_43_1 doi: 10.1007/s11051-012-1129-5 – ident: e_1_2_8_12_5 doi: 10.1016/j.jallcom.2020.154179 – ident: e_1_2_8_14_1 doi: 10.1080/08827508.2022.2164576 – ident: e_1_2_8_54_1 doi: 10.1088/0256-307X/25/11/077 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.202104426 – ident: e_1_2_8_28_1 doi: 10.1007/BF03353652 – ident: e_1_2_8_16_3 doi: 10.1039/C9TC06137A – ident: e_1_2_8_50_2 doi: 10.1002/adfm.202302003 – ident: e_1_2_8_42_1 doi: 10.1063/1.328997 – ident: e_1_2_8_18_1 doi: 10.1021/jacs.0c02197 – ident: e_1_2_8_30_4 doi: 10.1142/S1793292018500595 – ident: e_1_2_8_49_1 doi: 10.1016/j.pmatsci.2022.100946 – ident: e_1_2_8_36_4 doi: 10.1016/j.jmmm.2016.12.006 – ident: e_1_2_8_52_2 doi: 10.1021/acsami.7b13538 – ident: e_1_2_8_16_4 doi: 10.1039/C8TC02048E – ident: e_1_2_8_27_1 doi: 10.1557/PROC-349-31 – ident: e_1_2_8_33_1 doi: 10.1116/6.0000475 – ident: e_1_2_8_2_1 doi: 10.1088/0034-4885/40/10/002 – ident: e_1_2_8_28_4 doi: 10.1088/0957-4484/20/43/434007 – ident: e_1_2_8_46_1 doi: 10.1016/j.cej.2019.04.174 – ident: e_1_2_8_24_3 doi: 10.1016/j.molstruc.2020.128665 – ident: e_1_2_8_1_3 doi: 10.1002/adma.202005988 – ident: e_1_2_8_3_2 doi: 10.1002/adfm.202301350 – ident: e_1_2_8_31_1 doi: 10.1021/acsenergylett.1c00593 |
SSID | ssj0017734 |
Score | 2.501465 |
Snippet | A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely... A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE 2 Co 17 , RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | amorphous complex precursors Anisotropy Coercivity Composite structures Decoration Frequency ranges Gadolinium Graphene Graphite high‐frequency electromagnetic properties Magnetic saturation Microwave absorption Nanoalloys Nanostructure Phases precisely controlled calcium thermic reduction RE2Co17/graphite nanoflowers |
Title | A General Synthesis of Soft Magnetic 2:17‐Type Rare‐Earth Cobalt Nanoalloys Decorated with Graphite as High‐Frequency Electromagnetic Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202316715 https://www.proquest.com/docview/3075033726 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvdADFGjF8tIckDgFNl4nTnpbsbsgRDiwRdpb5PgBVdss2oTDcuIn9NI_2F-CJ07CUqlCguRiS3Yetmf82Z75hpCDbi-LevbyJK2OGVnkRYoZj0sTSBlFSip0Tk4uw7Nrdj4JJgte_I4fot1wQ8mo9DUKuMiK42fSUKEMepJTdOWuvMzRYAtR0VXLH-Vz7o6VQx8NvPxJw9rYpccvq7-clZ6h5iJgrWac0RoRzbc6Q5MfR_dldiQf_qFxfM_PfCKrNRyFvhs_62RJ5xvk4wJJ4Sb504eamxrG89zixeJ7AVMDY6vAIRE3ObpBAv3q87-Pv3FZC1dipm16aEflLZwg4UgJVotP8Yx_XsAAV7wW4irATWA4RcpsC3xBFIBWJ7bmaOYMvOcwdFF6fjWvSUTpROYzuR4Nv52ceXUwB08iRLFaV9E46BopMC5OHOquCaxq1TzTsVHClzajwjhUgdHaZEqGLKYaedSZXeNp2vtClvNprrcIyCjURjON0RiYYX7GuTYxlXjziJkO8ZrOTGXNdI4BN36mjqOZptjcadvcHXLYlr9zHB__LbnbjI20lvUi7bmzYE7DDqFVJ7_ylLQ_GCVtbvstlXbIik0zZze8S5bL2b3es-iozPbJh_4guRjvV5LwBPf2DSE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5QAceKNuKTAHEKe0G68TJ0gcVt1dtrTpoQ9pbyHxAxA0izap0HLiJ3Dhh_BX-An8EjxxkrZICAmpB5JLHDkP2fO0Z74BeNIf5NHAHp5k9TYjj7xIceMJaQIpo0hJRcnJyX44PeavZsFsBb63uTAOH6JbcCPOqOU1MTgtSG-doYZmylAqOaNcbr-Nq9zVy0_Waytf7IzsFD9lbDI-2p56TWEBT5K6tBJAsTjoG5lRjZY41H0TWDbXItexUZkvbUOFcagCo7XJlQx5zDRhenPrb2jCOrBS_wqVESe4_tFBh1jlC-E2skOfQsr8WYsT2WdbF__3oh48M27Pm8i1jpvchB_t6LjQlvebp1W-KT__Bhz5Xw3fLbjRWNw4dCxyG1Z0cQeun8NhvAvfhtjAb-PhsrAmcfmuxLnBQ6ujMMneFJTpiey5L35--UqeOx5kC22vx5bx3uI2YapUaBXVnMIYliWOyKm3VrxCWufGl4QKbm17zEqkwBr75GThYtiXOHaFiE7azyRZ5aTCPTi-lHG5D6vFvNBrgDIKtdFcU8EJbrifC6FNzCSdIuKmB15LPalswNyppsiH1MFQs5SmN-2mtwfPuv4fHYzJH3tutMSYNuKsTAduu1uwsAespqq_vCUdjiZJ11r_l4cew9XpUbKX7u3s7z6Aa_Y-d2HSG7BaLU71Q2sMVvmjmv0QXl82wf4CuutseA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqIiE48I-6pYAPIE5pE69jJ5U4rJoNLWUr1FJpbyHxDyBottqkQtsTj8CF9-BVeAWehJk4SVskhITUA8kljpwf2fNrz3xDyBN_WERDODzFmm1GHnmR5taTyoZKRZFWGpOTJ3ti-5C_nIbTJfK9y4Vx-BD9ghtyRiOvkcGPtd04Aw3NtcVMcoap3EEXVrlrFp_Baaue7yQww08ZS8dvtra9tq6Ap1BbggDQLA59q3Is0RIL49sQuNzIwsRW54GChhax0KE1xhZaCR4zg5DeHNwNg1AHIPSvcOHHWCwi2e8BqwIp3T62CDCiLJh2MJE-27j4vxfV4Jlte95CblRcepP86AbHRbZ8XD-pi3V1-htu5P80erfIjdbepiPHILfJkinvkOvnUBjvkm8j2oJv04NFCQZx9aGiM0sPQEPRSf6uxDxPyjYD-fPLV_Tb6X4-N3A9BrZ7T7cQUaWmoKZmGMSwqGiCLj3Y8JriKjd9gZjgYNnTvKIYVgNPpnMXwb6gY1eG6Kj7zCSvnUy4Rw4vZVzuk-VyVpoVQlUkjDXcYLkJbnlQSGlszBSeMuJ2QLyOeDLVQrljRZFPmQOhZhlOb9ZP74A86_sfOxCTP_Zc62gxa4VZlQ3dZrdkYkBYQ1R_eUs2StJJ31r9l4cek6uvkzR7tbO3-4Bcg9vcxUivkeV6fmIegiVYF48a5qPk7WXT6y__z2sn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Synthesis+of+Soft+Magnetic+2%3A17%E2%80%90Type+Rare%E2%80%90Earth+Cobalt+Nanoalloys+Decorated+with+Graphite+as+High%E2%80%90Frequency+Electromagnetic+Materials&rft.jtitle=Advanced+functional+materials&rft.au=Ma%2C+Jie&rft.au=Li%2C+Zhenyang&rft.au=Tian%2C+Hao&rft.au=Bai%2C+Yang&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=27&rft_id=info:doi/10.1002%2Fadfm.202316715&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |