A General Synthesis of Soft Magnetic 2:17‐Type Rare‐Earth Cobalt Nanoalloys Decorated with Graphite as High‐Frequency Electromagnetic Materials

A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE2Co17 phases are formed without the precipitation...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 27
Main Authors Ma, Jie, Li, Zhenyang, Tian, Hao, Yang, Bai, Yuan, Yingbo, Li, Ran, Yu, Ronghai
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE2Co17 phases are formed without the precipitation of Co and the other RE‐Co phases through the accurately manipulated co‐reduction of the two ions, which avoids the disadvantages of the impurity or second phases for RE metal alloys. RE2Co17/graphite nanostructures constructed with flower‐like RE2Co17 nanoalloys superficially decorated with nanosized graphite are further fabricated by introducing graphene oxides into the co‐reduction process. Compared with traditional magnetic planar‐anisotropy RE2Co17 alloys, the preserved high saturation magnetization (51.2–102.9 A m2 kg−1) and unusually increased coercivity (152–310.5 Oe) are achieved in these graphite‐decorated RE2Co17 nanoalloys. Moreover, these RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. This work provides a facial way for the large‐scale production for varieties of single‐phase 2:17‐type RE‐Co nanoalloys and expands their application fields by constructing novel composite structures. This work provides a universal approach to fabricating a series of soft magnetic 2:17‐type rare‐earth cobalt nanoalloys decorated with graphite (RE2Co17/graphite, RE = Y, Ce, Pr, Nd, and Gd). The well‐structured RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials.
AbstractList A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE2Co17 phases are formed without the precipitation of Co and the other RE‐Co phases through the accurately manipulated co‐reduction of the two ions, which avoids the disadvantages of the impurity or second phases for RE metal alloys. RE2Co17/graphite nanostructures constructed with flower‐like RE2Co17 nanoalloys superficially decorated with nanosized graphite are further fabricated by introducing graphene oxides into the co‐reduction process. Compared with traditional magnetic planar‐anisotropy RE2Co17 alloys, the preserved high saturation magnetization (51.2–102.9 A m2 kg−1) and unusually increased coercivity (152–310.5 Oe) are achieved in these graphite‐decorated RE2Co17 nanoalloys. Moreover, these RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. This work provides a facial way for the large‐scale production for varieties of single‐phase 2:17‐type RE‐Co nanoalloys and expands their application fields by constructing novel composite structures. This work provides a universal approach to fabricating a series of soft magnetic 2:17‐type rare‐earth cobalt nanoalloys decorated with graphite (RE2Co17/graphite, RE = Y, Ce, Pr, Nd, and Gd). The well‐structured RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials.
A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE 2 Co 17 , RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE 2 Co 17 phases are formed without the precipitation of Co and the other RE‐Co phases through the accurately manipulated co‐reduction of the two ions, which avoids the disadvantages of the impurity or second phases for RE metal alloys. RE 2 Co 17 /graphite nanostructures constructed with flower‐like RE 2 Co 17 nanoalloys superficially decorated with nanosized graphite are further fabricated by introducing graphene oxides into the co‐reduction process. Compared with traditional magnetic planar‐anisotropy RE 2 Co 17 alloys, the preserved high saturation magnetization (51.2–102.9 A m 2 kg −1 ) and unusually increased coercivity (152–310.5 Oe) are achieved in these graphite‐decorated RE 2 Co 17 nanoalloys. Moreover, these RE 2 Co 17 /graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. This work provides a facial way for the large‐scale production for varieties of single‐phase 2:17‐type RE‐Co nanoalloys and expands their application fields by constructing novel composite structures.
A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely controlled calcium thermic reduction of amorphous RE‐Co precursors. High‐purity hexagonal RE2Co17 phases are formed without the precipitation of Co and the other RE‐Co phases through the accurately manipulated co‐reduction of the two ions, which avoids the disadvantages of the impurity or second phases for RE metal alloys. RE2Co17/graphite nanostructures constructed with flower‐like RE2Co17 nanoalloys superficially decorated with nanosized graphite are further fabricated by introducing graphene oxides into the co‐reduction process. Compared with traditional magnetic planar‐anisotropy RE2Co17 alloys, the preserved high saturation magnetization (51.2–102.9 A m2 kg−1) and unusually increased coercivity (152–310.5 Oe) are achieved in these graphite‐decorated RE2Co17 nanoalloys. Moreover, these RE2Co17/graphite nanostructures exhibit good microwave absorption with an applied frequency range of 11.76–18 GHz, which shows their potential applications as new‐type Ku‐band electromagnetic materials. This work provides a facial way for the large‐scale production for varieties of single‐phase 2:17‐type RE‐Co nanoalloys and expands their application fields by constructing novel composite structures.
Author Li, Zhenyang
Yu, Ronghai
Yuan, Yingbo
Li, Ran
Tian, Hao
Yang, Bai
Ma, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Ma
  fullname: Ma, Jie
  organization: Beihang University
– sequence: 2
  givenname: Zhenyang
  surname: Li
  fullname: Li, Zhenyang
  organization: Beihang University
– sequence: 3
  givenname: Hao
  surname: Tian
  fullname: Tian, Hao
  organization: Beihang University
– sequence: 4
  givenname: Bai
  orcidid: 0000-0003-1414-3777
  surname: Yang
  fullname: Yang, Bai
  email: byang@buaa.edu.cn
  organization: Beihang University
– sequence: 5
  givenname: Yingbo
  surname: Yuan
  fullname: Yuan, Yingbo
  organization: Beihang University
– sequence: 6
  givenname: Ran
  surname: Li
  fullname: Li, Ran
  email: liran@buaa.edu.cn
  organization: Beihang University
– sequence: 7
  givenname: Ronghai
  surname: Yu
  fullname: Yu, Ronghai
  email: rhyu@buaa.edu.cn
  organization: Beihang University
BookMark eNqFkU9rGzEQxUVIofnTa8-Cnu1I2l0p25txbKcQJ9Ck0NsylkaxwlpyJYWwt36EXvoF-0mq4DSBQMnpzcD7zRt4h2TfB4-EfORszBkTJ2DsZiyYqLhUvNkjB1xyOaqYON1_nvn39-QwpTvGuFJVfUB-T-gCPUbo6fXg8xqTSzRYeh1spku49ZidpuIzV39-_roZtki_QsQyzyDmNZ2GFfSZXoIP0PdhSPQMdYiQ0dAHVwyLCNu1y0gh0XN3uy7kPOKPe_R6oLMedY5h8y9mWbjooE_H5J0tgh-e9Ih8m89upueji6vFl-nkYqQrrprRqTKibZjVUCnBWonMNsYgqhW21gDXZTGylaaxiHZltKxbgYLXTS15i6I6Ip92d7cxlJ9S7u7CffQlsquYalhV7sriqncuHUNKEW2nXYbsgs8RXN9x1j0W0D0W0D0XULDxK2wb3Qbi8H-g3QEPrsfhDXc3OZsvX9i_dFugPA
CitedBy_id crossref_primary_10_1016_j_cej_2024_158306
crossref_primary_10_1007_s12598_024_03104_x
crossref_primary_10_1016_j_mtcomm_2025_112007
Cites_doi 10.1007/s12274-020-2761-5
10.1063/1.1674108
10.1016/S1002-0721(12)60030-1
10.1021/jacs.9b10813
10.1016/j.matchemphys.2019.122478
10.1016/j.apsusc.2013.03.012
10.1016/j.jallcom.2020.156393
10.1021/j150333a008
10.1007/s10948-015-2980-2
10.1039/c1cc13989d
10.1007/s12598-016-0778-4
10.1016/j.actamat.2021.116968
10.1016/j.jssc.2019.04.008
10.1016/j.intermet.2023.108174
10.1016/j.jmst.2019.04.041
10.1007/BF03027570
10.1002/admi.201601113
10.1002/sstr.202000010
10.1116/1.1763899
10.1143/JPSJ.37.1272
10.1016/S1359-0286(96)80082-9
10.1016/0956-7151(94)00289-T
10.1016/j.cej.2018.02.060
10.1186/s40580-020-00229-4
10.1007/s12598-019-01257-8
10.1088/1674-1056/aca7f1
10.1016/j.intermet.2018.05.005
10.1039/D0NR00490A
10.1016/j.ceramint.2016.12.059
10.1088/0268-1242/25/4/045023
10.1039/c3nr34134h
10.3390/ma15010201
10.1063/1.5055106
10.1063/1.4943378
10.1016/j.jmst.2021.01.083
10.1002/adma.200700891
10.1016/0965-9773(96)00010-4
10.1039/D2DT03137J
10.1016/j.jmmm.2019.165961
10.1039/C6RA10903A
10.1021/jp203147q
10.1016/j.eng.2018.11.034
10.1016/j.inoche.2019.107736
10.1016/j.surfcoat.2014.05.020
10.1016/j.jallcom.2022.168255
10.1002/smll.202107265
10.1016/j.matdes.2017.02.073
10.1016/0003-2670(59)80090-8
10.1016/j.jallcom.2019.151674
10.1002/adfm.202112294
10.1007/s00339-021-04606-6
10.1088/0022-3727/40/11/024
10.1080/1536383X.2020.1794851
10.1021/acsami.0c13151
10.1088/0953-8984/20/03/035216
10.1021/nl200311w
10.1039/D0QI00777C
10.1002/smll.202302465
10.1186/1556-276X-6-565
10.1021/acs.chemrev.1c00370
10.1007/s00339-023-06657-3
10.1021/jp070711k
10.1063/1.4918939
10.1007/s11664-017-5657-8
10.1016/j.cej.2014.11.138
10.1016/j.jmmm.2010.11.054
10.1063/1.3446868
10.1016/0304-8853(91)90811-N
10.1098/rsta.2004.1452
10.1016/j.cej.2022.140277
10.1002/adfm.202202675
10.1016/j.actamat.2017.12.042
10.1016/j.scriptamat.2019.11.003
10.1016/j.jmmm.2017.12.058
10.1016/j.carbon.2011.11.010
10.1016/j.carbon.2018.12.058
10.1007/s10854-021-07167-9
10.1016/j.jallcom.2023.170899
10.1038/s41598-020-73161-6
10.1016/j.jmmm.2019.166205
10.1002/adfm.202313544
10.1039/C8NR02893A
10.1038/s41467-022-29624-7
10.1021/jp2115143
10.1016/j.carbon.2020.05.015
10.1016/j.jssc.2016.03.001
10.1016/j.jpcs.2021.110438
10.1002/sia.955
10.1016/j.carbon.2019.10.030
10.1021/ar3002427
10.1002/adma.201806461
10.1039/B613962K
10.1002/adem.202000827
10.1063/1.1537700
10.1016/j.surfcoat.2005.02.023
10.1016/j.jallcom.2023.169107
10.1016/j.corsci.2021.109647
10.1021/ja01577a018
10.1016/S1006-706X(08)60174-0
10.1039/C6CE02165D
10.1021/jp0521149
10.1088/2053-1591/aae3c7
10.1021/acsanm.9b00809
10.1016/j.jmmm.2018.08.012
10.1002/adfm.202108194
10.1016/0022-5088(85)90168-7
10.1088/1674-1056/aca148
10.1016/j.jallcom.2021.158595
10.1002/chem.201705818
10.1016/j.jmmm.2023.170801
10.4236/graphene.2017.61001
10.1016/j.carbon.2017.08.070
10.1007/s11051-012-1129-5
10.1016/j.jallcom.2020.154179
10.1080/08827508.2022.2164576
10.1088/0256-307X/25/11/077
10.1002/adfm.202104426
10.1007/BF03353652
10.1039/C9TC06137A
10.1002/adfm.202302003
10.1063/1.328997
10.1021/jacs.0c02197
10.1142/S1793292018500595
10.1016/j.pmatsci.2022.100946
10.1016/j.jmmm.2016.12.006
10.1021/acsami.7b13538
10.1039/C8TC02048E
10.1557/PROC-349-31
10.1116/6.0000475
10.1088/0034-4885/40/10/002
10.1088/0957-4484/20/43/434007
10.1016/j.cej.2019.04.174
10.1016/j.molstruc.2020.128665
10.1002/adma.202005988
10.1002/adfm.202301350
10.1021/acsenergylett.1c00593
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202316715
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202316715
ADFM202316715
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51920105001; 51101007
– fundername: Beijing Natural Science Foundation
  funderid: 2132039
– fundername: National Key R&D Program of China
  funderid: 2021YFB3501304
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3175-87d2950fca372096e0f5ddee7be9fda1cdded696d5feefbdc6492e21454619e23
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 03:29:57 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Tue Jul 01 00:30:56 EDT 2025
Wed Jan 22 17:18:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-87d2950fca372096e0f5ddee7be9fda1cdded696d5feefbdc6492e21454619e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1414-3777
PQID 3075033726
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_journals_3075033726
crossref_citationtrail_10_1002_adfm_202316715
crossref_primary_10_1002_adfm_202316715
wiley_primary_10_1002_adfm_202316715_ADFM202316715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017 2020; 121 7
2017; 6
2003 2018 2023; 93 452 960
2013 2023 2011 2018; 46 52 115 13
2023 2020; 129 846
1970 2005 2020 2004; 53 200 1220 362
2020; 12
2020; 10
2024
2015 2020 2020; 264 812 499
2022 2007; 18 9
2011 2012 2019 2009 2021 2016; 3 50 276 20 127 6
2012; 14
2005 2012; 109 30
2020 2023; 497 32
2020 1991; 142 100
2021 2023 2017; 31 577 43
2011 2012 2017 2017; 47 116 19 428
2011 2019; 323 2
2021 2017; 23 9
1994 1995 2008; 349 43 20
2023 2021 2020 2024; 936 862 242 166
2010 2014 2007; 25 253 40
2022 2023 2022; 32 33 32
2008; 25
2013 2015 1985 2006 2018; 5 106 111 13 54
2013; 273
2021 2023 2018 2019 2020; 214 942 99 6 825
2022; 127
1959 1957; 20 79
2019 2023; 372 454
1974; 37
2022 2020 2021 2023 2020; 32 32 33 19 6
2007; 19
2021; 6
1996 2023; 1 33
2022 2011; 122 11
2018 2020; 468 112
2016 2022 2017; 238 161 46
2020; 142
2023, 2018 2007 2016; 2015 13 35
2018; 145
1931; 36
2020 2021; 37 88
2015; 28
2020 2011 2017 2019 2001; 28 6 4 144 31
1977 2022 2022; 40 15 13
2021 2020 2020 2021 2020 2020; 8 12 13 190 39 178
2004 2007; 22 111
1996 2010 2020 2020 2017; 7 96 1 166 124
2020; 27
2021 2016 2023; 32 108 32
2020; 157
2018 2018 2020 2018; 10 343 8 6
1981; 52
2018 2020; 24 23
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_9_2
Bugdayci M. (e_1_2_8_15_2) 2020; 23
e_1_2_8_1_3
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_41_3
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_38_3
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_38_5
e_1_2_8_19_2
e_1_2_8_38_4
e_1_2_8_11_3
e_1_2_8_34_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_19_3
e_1_2_8_30_3
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_30_4
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_29_3
e_1_2_8_44_4
e_1_2_8_25_1
e_1_2_8_44_3
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_48_1
e_1_2_8_29_4
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_3
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_40_4
e_1_2_8_21_1
e_1_2_8_40_3
e_1_2_8_44_2
e_1_2_8_40_5
e_1_2_8_44_1
e_1_2_8_40_2
e_1_2_8_40_1
e_1_2_8_14_4
e_1_2_8_18_1
Song W. (e_1_2_8_29_5) 2018; 54
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_14_3
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_52_2
e_1_2_8_10_3
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_28_4
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_24_3
e_1_2_8_24_4
e_1_2_8_28_5
e_1_2_8_28_6
e_1_2_8_3_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_20_2
e_1_2_8_17_1
e_1_2_8_36_4
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_36_3
e_1_2_8_36_2
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_32_2
e_1_2_8_51_1
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_23_3
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_8_3
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_4_3
e_1_2_8_4_6
e_1_2_8_8_2
e_1_2_8_4_5
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_39_1
e_1_2_8_16_4
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_35_1
e_1_2_8_12_4
e_1_2_8_12_5
e_1_2_8_16_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_50_2
e_1_2_8_50_3
e_1_2_8_50_1
References_xml – volume: 20 79
  start-page: 415 5404
  year: 1959 1957
  publication-title: Anal. Chim. Acta J. Am. Chem. Soc.
– volume: 32 33 32
  year: 2022 2023 2022
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 46 52 115 13
  start-page: 1720 3085
  year: 2013 2023 2011 2018
  publication-title: Acc. Chem. Res. Dalton Trans. J. Phys. Chem. C Nano
– volume: 8 12 13 190 39 178
  start-page: 383 1141 421 34
  year: 2021 2020 2020 2021 2020 2020
  publication-title: Inorg. Chem. Front. ACS Appl. Mater. Interfaces Nano Res. Corros. Sci. Rare Met. Scr. Mater.
– volume: 25 253 40
  start-page: 96 3423
  year: 2010 2014 2007
  publication-title: Semicond. Sci. Technol. Surf. Coat. Technol. J. Phys. D: Appl. Phys.
– volume: 264 812 499
  start-page: 610
  year: 2015 2020 2020
  publication-title: Chem. Eng. J. J. Alloys Compd. J. Magn. Magn. Mater.
– volume: 22 111
  start-page: 1690 8006
  year: 2004 2007
  publication-title: J. Vac. Sci. Technol., A J. Phys. Chem. B
– volume: 122 11
  start-page: 5411 1747
  year: 2022 2011
  publication-title: Chem. Rev. Nano Lett.
– volume: 7 96 1 166 124
  start-page: 393 74 314
  year: 1996 2010 2020 2020 2017
  publication-title: Nanostruct. Mater. Appl. Phys. Lett. Small Struct. Carbon Carbon
– volume: 52
  start-page: 2549
  year: 1981
  publication-title: J. Appl. Phys.
– volume: 28 6 4 144 31
  start-page: 1048 565 831 185
  year: 2020 2011 2017 2019 2001
  publication-title: Fullerenes, Nanotubes Carbon Nanostruct. Nanoscale Res. Lett. Adv. Mater. Interfaces Carbon Surf. Interface Anal.
– volume: 32 32 33 19 6
  start-page: 119
  year: 2022 2020 2021 2023 2020
  publication-title: Adv. Funct. Mater. Adv. Mater. Adv. Mater. Small Engineering
– volume: 40 15 13
  start-page: 1179 201 2014
  year: 1977 2022 2022
  publication-title: Rep. Prog. Phys. Materials Nat. Commun.
– volume: 349 43 20
  start-page: 31 471
  year: 1994 1995 2008
  publication-title: MRS Online Proc. Libr Acta Metall. Mater. J. Phys.: Condens. Matter
– volume: 238 161 46
  start-page: 15 6333
  year: 2016 2022 2017
  publication-title: J. Solid State Chem. J. Phys. Chem. Solids J. Electron. Mater.
– volume: 6
  start-page: 1
  year: 2017
  publication-title: Graphene
– volume: 157
  start-page: 130
  year: 2020
  publication-title: Carbon
– volume: 47 116 19 428
  start-page: 684 6
  year: 2011 2012 2017 2017
  publication-title: Chem. Commun. J. Phys. Chem. C CrystEngComm J. Magn. Magn. Mater.
– volume: 37
  start-page: 1272
  year: 1974
  publication-title: J. Phys. Soc. Jpn.
– volume: 24 23
  start-page: 7913 1259
  year: 2018 2020
  publication-title: Chem. Eur. J. Int. J. Eng. Sci.
– volume: 273
  start-page: 816
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 14
  start-page: 1129
  year: 2012
  publication-title: J. Nanopart. Res.
– volume: 10 343 8 6
  start-page: 1 2109 8522
  year: 2018 2018 2020 2018
  publication-title: Nanoscale Chem. Eng. J. J. Mater. Chem. C J. Mater. Chem. C
– volume: 372 454
  start-page: 390
  year: 2019 2023
  publication-title: Chem. Eng. J. Chem. Eng. J.
– volume: 936 862 242 166
  year: 2023 2021 2020 2024
  publication-title: J. Alloys Compd. J. Alloys Compd. Mater. Chem. Phys. Intermetallics
– volume: 37 88
  start-page: 181 183
  year: 2020 2021
  publication-title: J. Mater. Sci. Technol. J. Mater. Sci. Technol.
– volume: 142
  start-page: 8440
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 31 577 43
  start-page: 3893
  year: 2021 2023 2017
  publication-title: Adv. Funct. Mater. J. Magn. Magn. Mater. Ceram. Int.
– volume: 53 200 1220 362
  start-page: 1126 1117 2477
  year: 1970 2005 2020 2004
  publication-title: J. Chem. Phys. Surf. Coat. Technol. J. Mol. Struct. Phil. Trans. R. Soc. Lond. A
– volume: 3 50 276 20 127 6
  start-page: 51 3210 100 464
  year: 2011 2012 2019 2009 2021 2016
  publication-title: Nano‐Micro Lett. Carbon J. Solid State Chem. Nanotechnology Appl. Phys. A: Mater. Sci. Process. RSC Adv.
– volume: 142 100
  start-page: 953 38
  year: 2020 1991
  publication-title: J. Am. Chem. Soc. J. Magn. Magn. Mater.
– volume: 19
  start-page: 3349
  year: 2007
  publication-title: Adv. Mater.
– volume: 214 942 99 6 825
  start-page: 8
  year: 2021 2023 2018 2019 2020
  publication-title: Acta Mater. J. Alloys Compd. Intermetallics Mater. Res. Express J. Alloys Compd.
– volume: 36
  start-page: 860
  year: 1931
  publication-title: J. Phys. Chem.
– volume: 5 106 111 13 54
  start-page: 2279 49 154
  year: 2013 2015 1985 2006 2018
  publication-title: Nanoscale Appl. Phys. Lett. J. Less‐Common Met. J. Iron Steel Res. Int. IEEE Trans. Magn.
– volume: 6
  start-page: 1560
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 2015 13 35
  start-page: 177 581
  year: 2023, 2018 2007 2016
  publication-title: Miner. Process. Extr. Metall. Rev. AIP Conf. Proc. Met. Mater. Int. Rare Met.
– volume: 109 30
  start-page: 236
  year: 2005 2012
  publication-title: J. Phys. Chem. B J. Rare Earths
– volume: 497 32
  year: 2020 2023
  publication-title: J. Magn. Magn. Mater. Chin. Phys. B
– volume: 28
  start-page: 1863
  year: 2015
  publication-title: J. Supercond. Nov. Magn.
– volume: 145
  start-page: 331
  year: 2018
  publication-title: Acta Mater.
– volume: 121 7
  start-page: 272 20
  year: 2017 2020
  publication-title: Mater. Des. Nano Convergence
– volume: 32 108 32
  year: 2021 2016 2023
  publication-title: J. Mater. Sci.: Mater. Electron. Appl. Phys. Lett. Chin. Phys. B
– volume: 323 2
  start-page: 1398 4367
  year: 2011 2019
  publication-title: J. Magn. Magn. Mater. ACS Appl. Nano Mater.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 4120
  year: 2008
  publication-title: Chin. Phys. Lett.
– volume: 93 452 960
  start-page: 7975 272
  year: 2003 2018 2023
  publication-title: J. Appl. Phys. J. Magn. Magn. Mater. J. Alloys Compd.
– volume: 18 9
  start-page: 1276
  year: 2022 2007
  publication-title: Small Phys. Chem. Chem. Phys.
– volume: 27
  year: 2020
  publication-title: Surf. Sci. Spectra
– volume: 23 9
  year: 2021 2017
  publication-title: Adv. Eng. Mater. ACS Appl. Mater. Interfaces
– volume: 127
  year: 2022
  publication-title: Prog. Mater. Sci.
– volume: 468 112
  start-page: 193
  year: 2018 2020
  publication-title: J. Magn. Magn. Mater. Inorg. Chem. Commun.
– volume: 129 846
  start-page: 379
  year: 2023 2020
  publication-title: Appl. Phys. J. Alloys Compd.
– volume: 1 33
  start-page: 183
  year: 1996 2023
  publication-title: Curr. Opin. Solid State Mater. Sci. Adv. Funct. Mater.
– volume: 10
  year: 2020
  publication-title: Sci. Rep.
– ident: e_1_2_8_4_3
  doi: 10.1007/s12274-020-2761-5
– ident: e_1_2_8_24_1
  doi: 10.1063/1.1674108
– ident: e_1_2_8_26_2
  doi: 10.1016/S1002-0721(12)60030-1
– ident: e_1_2_8_32_1
  doi: 10.1021/jacs.9b10813
– ident: e_1_2_8_44_3
  doi: 10.1016/j.matchemphys.2019.122478
– ident: e_1_2_8_39_1
  doi: 10.1016/j.apsusc.2013.03.012
– ident: e_1_2_8_48_2
  doi: 10.1016/j.jallcom.2020.156393
– ident: e_1_2_8_21_1
  doi: 10.1021/j150333a008
– ident: e_1_2_8_35_1
  doi: 10.1007/s10948-015-2980-2
– ident: e_1_2_8_36_1
  doi: 10.1039/c1cc13989d
– ident: e_1_2_8_14_4
  doi: 10.1007/s12598-016-0778-4
– ident: e_1_2_8_12_1
  doi: 10.1016/j.actamat.2021.116968
– ident: e_1_2_8_28_3
  doi: 10.1016/j.jssc.2019.04.008
– ident: e_1_2_8_44_4
  doi: 10.1016/j.intermet.2023.108174
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jmst.2019.04.041
– ident: e_1_2_8_14_3
  doi: 10.1007/BF03027570
– ident: e_1_2_8_38_3
  doi: 10.1002/admi.201601113
– ident: e_1_2_8_40_3
  doi: 10.1002/sstr.202000010
– ident: e_1_2_8_34_1
  doi: 10.1116/1.1763899
– ident: e_1_2_8_56_1
  doi: 10.1143/JPSJ.37.1272
– ident: e_1_2_8_3_1
  doi: 10.1016/S1359-0286(96)80082-9
– ident: e_1_2_8_27_2
  doi: 10.1016/0956-7151(94)00289-T
– ident: e_1_2_8_16_2
  doi: 10.1016/j.cej.2018.02.060
– ident: e_1_2_8_37_2
  doi: 10.1186/s40580-020-00229-4
– ident: e_1_2_8_4_5
  doi: 10.1007/s12598-019-01257-8
– ident: e_1_2_8_5_2
  doi: 10.1088/1674-1056/aca7f1
– ident: e_1_2_8_12_3
  doi: 10.1016/j.intermet.2018.05.005
– ident: e_1_2_8_7_1
  doi: 10.1039/D0NR00490A
– ident: e_1_2_8_10_3
  doi: 10.1016/j.ceramint.2016.12.059
– ident: e_1_2_8_23_1
  doi: 10.1088/0268-1242/25/4/045023
– ident: e_1_2_8_29_1
  doi: 10.1039/c3nr34134h
– ident: e_1_2_8_2_2
  doi: 10.3390/ma15010201
– ident: e_1_2_8_14_2
  doi: 10.1063/1.5055106
– ident: e_1_2_8_41_2
  doi: 10.1063/1.4943378
– ident: e_1_2_8_9_2
  doi: 10.1016/j.jmst.2021.01.083
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.200700891
– ident: e_1_2_8_40_1
  doi: 10.1016/0965-9773(96)00010-4
– ident: e_1_2_8_30_2
  doi: 10.1039/D2DT03137J
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jmmm.2019.165961
– ident: e_1_2_8_28_6
  doi: 10.1039/C6RA10903A
– ident: e_1_2_8_30_3
  doi: 10.1021/jp203147q
– ident: e_1_2_8_1_5
  doi: 10.1016/j.eng.2018.11.034
– ident: e_1_2_8_6_2
  doi: 10.1016/j.inoche.2019.107736
– ident: e_1_2_8_23_2
  doi: 10.1016/j.surfcoat.2014.05.020
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jallcom.2022.168255
– ident: e_1_2_8_25_1
  doi: 10.1002/smll.202107265
– ident: e_1_2_8_37_1
  doi: 10.1016/j.matdes.2017.02.073
– ident: e_1_2_8_20_1
  doi: 10.1016/0003-2670(59)80090-8
– volume: 23
  start-page: 1259
  year: 2020
  ident: e_1_2_8_15_2
  publication-title: Int. J. Eng. Sci.
– ident: e_1_2_8_19_2
  doi: 10.1016/j.jallcom.2019.151674
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.202112294
– ident: e_1_2_8_28_5
  doi: 10.1007/s00339-021-04606-6
– ident: e_1_2_8_23_3
  doi: 10.1088/0022-3727/40/11/024
– ident: e_1_2_8_38_1
  doi: 10.1080/1536383X.2020.1794851
– ident: e_1_2_8_4_2
  doi: 10.1021/acsami.0c13151
– ident: e_1_2_8_27_3
  doi: 10.1088/0953-8984/20/03/035216
– ident: e_1_2_8_13_2
  doi: 10.1021/nl200311w
– ident: e_1_2_8_4_1
  doi: 10.1039/D0QI00777C
– ident: e_1_2_8_1_4
  doi: 10.1002/smll.202302465
– ident: e_1_2_8_38_2
  doi: 10.1186/1556-276X-6-565
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.chemrev.1c00370
– ident: e_1_2_8_48_1
  doi: 10.1007/s00339-023-06657-3
– ident: e_1_2_8_34_2
  doi: 10.1021/jp070711k
– ident: e_1_2_8_29_2
  doi: 10.1063/1.4918939
– ident: e_1_2_8_8_3
  doi: 10.1007/s11664-017-5657-8
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cej.2014.11.138
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jmmm.2010.11.054
– ident: e_1_2_8_40_2
  doi: 10.1063/1.3446868
– ident: e_1_2_8_32_2
  doi: 10.1016/0304-8853(91)90811-N
– ident: e_1_2_8_24_4
  doi: 10.1098/rsta.2004.1452
– ident: e_1_2_8_46_2
  doi: 10.1016/j.cej.2022.140277
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.202202675
– ident: e_1_2_8_55_1
  doi: 10.1016/j.actamat.2017.12.042
– ident: e_1_2_8_4_6
  doi: 10.1016/j.scriptamat.2019.11.003
– ident: e_1_2_8_11_2
  doi: 10.1016/j.jmmm.2017.12.058
– ident: e_1_2_8_28_2
  doi: 10.1016/j.carbon.2011.11.010
– ident: e_1_2_8_38_4
  doi: 10.1016/j.carbon.2018.12.058
– ident: e_1_2_8_41_1
  doi: 10.1007/s10854-021-07167-9
– ident: e_1_2_8_11_3
  doi: 10.1016/j.jallcom.2023.170899
– ident: e_1_2_8_47_1
  doi: 10.1038/s41598-020-73161-6
– ident: e_1_2_8_19_3
  doi: 10.1016/j.jmmm.2019.166205
– ident: e_1_2_8_51_1
  doi: 10.1002/adfm.202313544
– ident: e_1_2_8_16_1
  doi: 10.1039/C8NR02893A
– ident: e_1_2_8_2_3
  doi: 10.1038/s41467-022-29624-7
– ident: e_1_2_8_36_2
  doi: 10.1021/jp2115143
– ident: e_1_2_8_40_4
  doi: 10.1016/j.carbon.2020.05.015
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jssc.2016.03.001
– ident: e_1_2_8_8_2
  doi: 10.1016/j.jpcs.2021.110438
– ident: e_1_2_8_38_5
  doi: 10.1002/sia.955
– ident: e_1_2_8_53_1
  doi: 10.1016/j.carbon.2019.10.030
– ident: e_1_2_8_30_1
  doi: 10.1021/ar3002427
– ident: e_1_2_8_1_2
  doi: 10.1002/adma.201806461
– ident: e_1_2_8_25_2
  doi: 10.1039/B613962K
– ident: e_1_2_8_52_1
  doi: 10.1002/adem.202000827
– ident: e_1_2_8_11_1
  doi: 10.1063/1.1537700
– ident: e_1_2_8_24_2
  doi: 10.1016/j.surfcoat.2005.02.023
– ident: e_1_2_8_12_2
  doi: 10.1016/j.jallcom.2023.169107
– ident: e_1_2_8_4_4
  doi: 10.1016/j.corsci.2021.109647
– ident: e_1_2_8_20_2
  doi: 10.1021/ja01577a018
– ident: e_1_2_8_29_4
  doi: 10.1016/S1006-706X(08)60174-0
– volume: 54
  year: 2018
  ident: e_1_2_8_29_5
  publication-title: IEEE Trans. Magn.
– ident: e_1_2_8_36_3
  doi: 10.1039/C6CE02165D
– ident: e_1_2_8_26_1
  doi: 10.1021/jp0521149
– ident: e_1_2_8_12_4
  doi: 10.1088/2053-1591/aae3c7
– ident: e_1_2_8_45_2
  doi: 10.1021/acsanm.9b00809
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jmmm.2018.08.012
– ident: e_1_2_8_50_3
  doi: 10.1002/adfm.202108194
– ident: e_1_2_8_29_3
  doi: 10.1016/0022-5088(85)90168-7
– ident: e_1_2_8_41_3
  doi: 10.1088/1674-1056/aca148
– ident: e_1_2_8_44_2
  doi: 10.1016/j.jallcom.2021.158595
– ident: e_1_2_8_15_1
  doi: 10.1002/chem.201705818
– ident: e_1_2_8_10_2
  doi: 10.1016/j.jmmm.2023.170801
– ident: e_1_2_8_22_1
  doi: 10.4236/graphene.2017.61001
– ident: e_1_2_8_40_5
  doi: 10.1016/j.carbon.2017.08.070
– ident: e_1_2_8_43_1
  doi: 10.1007/s11051-012-1129-5
– ident: e_1_2_8_12_5
  doi: 10.1016/j.jallcom.2020.154179
– ident: e_1_2_8_14_1
  doi: 10.1080/08827508.2022.2164576
– ident: e_1_2_8_54_1
  doi: 10.1088/0256-307X/25/11/077
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.202104426
– ident: e_1_2_8_28_1
  doi: 10.1007/BF03353652
– ident: e_1_2_8_16_3
  doi: 10.1039/C9TC06137A
– ident: e_1_2_8_50_2
  doi: 10.1002/adfm.202302003
– ident: e_1_2_8_42_1
  doi: 10.1063/1.328997
– ident: e_1_2_8_18_1
  doi: 10.1021/jacs.0c02197
– ident: e_1_2_8_30_4
  doi: 10.1142/S1793292018500595
– ident: e_1_2_8_49_1
  doi: 10.1016/j.pmatsci.2022.100946
– ident: e_1_2_8_36_4
  doi: 10.1016/j.jmmm.2016.12.006
– ident: e_1_2_8_52_2
  doi: 10.1021/acsami.7b13538
– ident: e_1_2_8_16_4
  doi: 10.1039/C8TC02048E
– ident: e_1_2_8_27_1
  doi: 10.1557/PROC-349-31
– ident: e_1_2_8_33_1
  doi: 10.1116/6.0000475
– ident: e_1_2_8_2_1
  doi: 10.1088/0034-4885/40/10/002
– ident: e_1_2_8_28_4
  doi: 10.1088/0957-4484/20/43/434007
– ident: e_1_2_8_46_1
  doi: 10.1016/j.cej.2019.04.174
– ident: e_1_2_8_24_3
  doi: 10.1016/j.molstruc.2020.128665
– ident: e_1_2_8_1_3
  doi: 10.1002/adma.202005988
– ident: e_1_2_8_3_2
  doi: 10.1002/adfm.202301350
– ident: e_1_2_8_31_1
  doi: 10.1021/acsenergylett.1c00593
SSID ssj0017734
Score 2.501465
Snippet A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE2Co17, RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by precisely...
A general approach is reported to fabricate a series of single‐phase 2:17‐type rare‐earth cobalt (RE 2 Co 17 , RE = Y, Ce, Pr, Nd, and Gd) nanoalloys by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms amorphous complex precursors
Anisotropy
Coercivity
Composite structures
Decoration
Frequency ranges
Gadolinium
Graphene
Graphite
high‐frequency electromagnetic properties
Magnetic saturation
Microwave absorption
Nanoalloys
Nanostructure
Phases
precisely controlled calcium thermic reduction
RE2Co17/graphite nanoflowers
Title A General Synthesis of Soft Magnetic 2:17‐Type Rare‐Earth Cobalt Nanoalloys Decorated with Graphite as High‐Frequency Electromagnetic Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202316715
https://www.proquest.com/docview/3075033726
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvdADFGjF8tIckDgFNl4nTnpbsbsgRDiwRdpb5PgBVdss2oTDcuIn9NI_2F-CJ07CUqlCguRiS3Yetmf82Z75hpCDbi-LevbyJK2OGVnkRYoZj0sTSBlFSip0Tk4uw7Nrdj4JJgte_I4fot1wQ8mo9DUKuMiK42fSUKEMepJTdOWuvMzRYAtR0VXLH-Vz7o6VQx8NvPxJw9rYpccvq7-clZ6h5iJgrWac0RoRzbc6Q5MfR_dldiQf_qFxfM_PfCKrNRyFvhs_62RJ5xvk4wJJ4Sb504eamxrG89zixeJ7AVMDY6vAIRE3ObpBAv3q87-Pv3FZC1dipm16aEflLZwg4UgJVotP8Yx_XsAAV7wW4irATWA4RcpsC3xBFIBWJ7bmaOYMvOcwdFF6fjWvSUTpROYzuR4Nv52ceXUwB08iRLFaV9E46BopMC5OHOquCaxq1TzTsVHClzajwjhUgdHaZEqGLKYaedSZXeNp2vtClvNprrcIyCjURjON0RiYYX7GuTYxlXjziJkO8ZrOTGXNdI4BN36mjqOZptjcadvcHXLYlr9zHB__LbnbjI20lvUi7bmzYE7DDqFVJ7_ylLQ_GCVtbvstlXbIik0zZze8S5bL2b3es-iozPbJh_4guRjvV5LwBPf2DSE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5QAceKNuKTAHEKe0G68TJ0gcVt1dtrTpoQ9pbyHxAxA0izap0HLiJ3Dhh_BX-An8EjxxkrZICAmpB5JLHDkP2fO0Z74BeNIf5NHAHp5k9TYjj7xIceMJaQIpo0hJRcnJyX44PeavZsFsBb63uTAOH6JbcCPOqOU1MTgtSG-doYZmylAqOaNcbr-Nq9zVy0_Waytf7IzsFD9lbDI-2p56TWEBT5K6tBJAsTjoG5lRjZY41H0TWDbXItexUZkvbUOFcagCo7XJlQx5zDRhenPrb2jCOrBS_wqVESe4_tFBh1jlC-E2skOfQsr8WYsT2WdbF__3oh48M27Pm8i1jpvchB_t6LjQlvebp1W-KT__Bhz5Xw3fLbjRWNw4dCxyG1Z0cQeun8NhvAvfhtjAb-PhsrAmcfmuxLnBQ6ujMMneFJTpiey5L35--UqeOx5kC22vx5bx3uI2YapUaBXVnMIYliWOyKm3VrxCWufGl4QKbm17zEqkwBr75GThYtiXOHaFiE7azyRZ5aTCPTi-lHG5D6vFvNBrgDIKtdFcU8EJbrifC6FNzCSdIuKmB15LPalswNyppsiH1MFQs5SmN-2mtwfPuv4fHYzJH3tutMSYNuKsTAduu1uwsAespqq_vCUdjiZJ11r_l4cew9XpUbKX7u3s7z6Aa_Y-d2HSG7BaLU71Q2sMVvmjmv0QXl82wf4CuutseA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqIiE48I-6pYAPIE5pE69jJ5U4rJoNLWUr1FJpbyHxDyBottqkQtsTj8CF9-BVeAWehJk4SVskhITUA8kljpwf2fNrz3xDyBN_WERDODzFmm1GHnmR5taTyoZKRZFWGpOTJ3ti-5C_nIbTJfK9y4Vx-BD9ghtyRiOvkcGPtd04Aw3NtcVMcoap3EEXVrlrFp_Baaue7yQww08ZS8dvtra9tq6Ap1BbggDQLA59q3Is0RIL49sQuNzIwsRW54GChhax0KE1xhZaCR4zg5DeHNwNg1AHIPSvcOHHWCwi2e8BqwIp3T62CDCiLJh2MJE-27j4vxfV4Jlte95CblRcepP86AbHRbZ8XD-pi3V1-htu5P80erfIjdbepiPHILfJkinvkOvnUBjvkm8j2oJv04NFCQZx9aGiM0sPQEPRSf6uxDxPyjYD-fPLV_Tb6X4-N3A9BrZ7T7cQUaWmoKZmGMSwqGiCLj3Y8JriKjd9gZjgYNnTvKIYVgNPpnMXwb6gY1eG6Kj7zCSvnUy4Rw4vZVzuk-VyVpoVQlUkjDXcYLkJbnlQSGlszBSeMuJ2QLyOeDLVQrljRZFPmQOhZhlOb9ZP74A86_sfOxCTP_Zc62gxa4VZlQ3dZrdkYkBYQ1R_eUs2StJJ31r9l4cek6uvkzR7tbO3-4Bcg9vcxUivkeV6fmIegiVYF48a5qPk7WXT6y__z2sn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Synthesis+of+Soft+Magnetic+2%3A17%E2%80%90Type+Rare%E2%80%90Earth+Cobalt+Nanoalloys+Decorated+with+Graphite+as+High%E2%80%90Frequency+Electromagnetic+Materials&rft.jtitle=Advanced+functional+materials&rft.au=Ma%2C+Jie&rft.au=Li%2C+Zhenyang&rft.au=Tian%2C+Hao&rft.au=Bai%2C+Yang&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=27&rft_id=info:doi/10.1002%2Fadfm.202316715&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon