Mo‐/Co‐N‐C Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting
Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu sc...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 28 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo2N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen‐doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo‐/Co‐N‐C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self‐supported nanoporous Mo‐/Co‐N‐C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec−1. They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm−2. When coupled with their electro‐oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm−2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes.
Heterogenous Mo2N/CoN nanosheets that are in situ engrafted with nitrogen‐doped carbon skin and vertically rooted on nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu) hold promise as robust and cost‐effective (pre‐)electrocatalytsts for hydrogen/oxygen evolution reactions. Associated with nanoporous architecture to facilitate electron transfer and offer abundant and sufficiently accessible active sites, nanoporous Mo‐/Co‐N‐C/Cu electrodes exhibit oustanding electrocatalytic performance for overall water splitting. |
---|---|
AbstractList | Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo2N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen‐doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo‐/Co‐N‐C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self‐supported nanoporous Mo‐/Co‐N‐C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec−1. They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm−2. When coupled with their electro‐oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm−2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes. Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo2N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen‐doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo‐/Co‐N‐C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self‐supported nanoporous Mo‐/Co‐N‐C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec−1. They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm−2. When coupled with their electro‐oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm−2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes. Heterogenous Mo2N/CoN nanosheets that are in situ engrafted with nitrogen‐doped carbon skin and vertically rooted on nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu) hold promise as robust and cost‐effective (pre‐)electrocatalytsts for hydrogen/oxygen evolution reactions. Associated with nanoporous architecture to facilitate electron transfer and offer abundant and sufficiently accessible active sites, nanoporous Mo‐/Co‐N‐C/Cu electrodes exhibit oustanding electrocatalytic performance for overall water splitting. Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo 2 N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo 2 N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen‐doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo‐/Co‐N‐C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self‐supported nanoporous Mo‐/Co‐N‐C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec −1 . They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm −2 . When coupled with their electro‐oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm −2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes. |
Author | Shi, Hang Wen, Zi Jiang, Qing Wan, Wu‐Bin Lang, Xing‐You Dai, Tian‐Yi |
Author_xml | – sequence: 1 givenname: Hang surname: Shi fullname: Shi, Hang organization: Jilin University – sequence: 2 givenname: Tian‐Yi surname: Dai fullname: Dai, Tian‐Yi organization: Jilin University – sequence: 3 givenname: Wu‐Bin surname: Wan fullname: Wan, Wu‐Bin organization: Jilin University – sequence: 4 givenname: Zi surname: Wen fullname: Wen, Zi organization: Jilin University – sequence: 5 givenname: Xing‐You orcidid: 0000-0002-8227-9695 surname: Lang fullname: Lang, Xing‐You email: xylang@jlu.edu.cn organization: Jilin University – sequence: 6 givenname: Qing surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkMtKAzEUhoMoeN26Drhum2SuWcpYreBl4XU3nMmcaGSc1CRFunPj3mf0SUytKAgi5Ar_9x_4Nslqb3skZJezIWdMjKDVj0PBBGdClNkK2eA5zwcJE-Xq95vfrpNN7x8Y40WRpBvk9dS-v7yNqsV5FndFJ_PGmZaeQW_9PWLw9NwZ7AO21PZ0YtCBU_dGQfeZmVpnZ55WMwqeXqPzEEyHdNyhCs4qCNDNfSzR1tGx1kYtuugNBHT0YtqZEEx_t03WNHQed77uLXJ1OL6sJoOT86Pjav9koBJeZIMyU0nb5DlmkiMwXZYJ6PgpSpWhgLhSXTY6bQS2JeQZk1mj8kSIXEqVN5Bskb1l79TZpxn6UD_YmevjyFpkqUxlImURU8NlSjnrvUNdT515BDevOasXquuF6vpbdQTSX4AyIXqwfXBgur8xucSeo7H5P0Pq_YPD0x_2A0MOmn0 |
CitedBy_id | crossref_primary_10_3390_nano14030243 crossref_primary_10_1007_s12598_024_02912_5 crossref_primary_10_1016_j_ijhydene_2024_11_422 crossref_primary_10_1021_acsnano_1c03766 crossref_primary_10_1002_advs_202105313 crossref_primary_10_1016_j_ijhydene_2024_11_062 crossref_primary_10_1016_j_matchemphys_2022_126308 crossref_primary_10_1021_acsaem_3c00537 crossref_primary_10_1016_j_cej_2022_134898 crossref_primary_10_3390_molecules26216501 crossref_primary_10_1002_adfm_202418644 crossref_primary_10_1021_acssuschemeng_3c00020 crossref_primary_10_1002_smll_202304541 crossref_primary_10_1039_D1CC05430A crossref_primary_10_1039_D3TA03918H crossref_primary_10_1016_j_ijhydene_2024_05_108 crossref_primary_10_1016_j_jcis_2024_04_009 crossref_primary_10_1021_acs_inorgchem_2c04181 crossref_primary_10_1016_j_apsusc_2023_156989 crossref_primary_10_1016_j_scriptamat_2024_116344 crossref_primary_10_1002_ange_202308670 crossref_primary_10_1016_j_jcis_2022_01_132 crossref_primary_10_1002_advs_202201311 crossref_primary_10_1016_j_apsusc_2024_160621 crossref_primary_10_1016_j_apsusc_2024_161833 crossref_primary_10_1016_j_cej_2024_155069 crossref_primary_10_1016_j_jcis_2024_02_204 crossref_primary_10_1016_j_jcis_2024_01_098 crossref_primary_10_1002_adsu_202100436 crossref_primary_10_1016_j_ijhydene_2022_01_211 crossref_primary_10_1021_acsaem_2c02575 crossref_primary_10_1021_acsanm_4c00712 crossref_primary_10_1016_j_cej_2022_134669 crossref_primary_10_1016_j_ijhydene_2023_08_107 crossref_primary_10_1016_j_mtener_2021_100906 crossref_primary_10_1021_acs_inorgchem_2c03516 crossref_primary_10_1039_D2MH00075J crossref_primary_10_1021_acsmaterialslett_4c00695 crossref_primary_10_1021_acsami_3c10075 crossref_primary_10_1039_D3QM00940H crossref_primary_10_1039_D3CS00717K crossref_primary_10_1002_sstr_202300042 crossref_primary_10_1016_j_cej_2022_134995 crossref_primary_10_1002_smll_202303113 crossref_primary_10_1039_D4QI01947D crossref_primary_10_1007_s40843_022_2173_3 crossref_primary_10_1039_D4SE01652A crossref_primary_10_1016_j_ijhydene_2024_02_032 crossref_primary_10_1007_s12274_022_4855_8 crossref_primary_10_1016_j_ijhydene_2024_02_310 crossref_primary_10_1039_D4TA08701A crossref_primary_10_1016_j_jallcom_2024_175759 crossref_primary_10_1016_j_cej_2022_138206 crossref_primary_10_1016_j_ijhydene_2023_07_026 crossref_primary_10_1039_D4NJ01886A crossref_primary_10_1016_j_nanoen_2022_106981 crossref_primary_10_1002_anie_202308670 crossref_primary_10_1021_acsami_2c07792 crossref_primary_10_1016_j_apcatb_2024_124014 |
Cites_doi | 10.1038/ncomms8992 10.1126/science.1127180 10.1007/s11249-011-9774-x 10.1002/adfm.202009613 10.1002/adma.202002297 10.1038/s41929-018-0203-5 10.1002/aenm.202002214 10.1002/adma.201806682 10.1126/science.1103197 10.1146/annurev-matsci-070115-031739 10.1039/c3ee00045a 10.1002/adma.201901666 10.1002/anie.202007567 10.1002/adma.201904346 10.1038/s41467-019-13092-7 10.1038/s41467-019-12851-w 10.1038/ncomms3169 10.1002/aenm.201903120 10.1038/s41929-019-0279-6 10.1038/nmat3087 10.1021/acsenergylett.8b01840 10.1038/s41467-020-16769-6 10.1038/nchem.1634 10.1039/D0CS00575D 10.1038/nnano.2016.304 10.1002/adma.201605502 10.1038/s41467-020-14980-z 10.1038/s41467-018-03858-w 10.1021/acscatal.8b04566 10.1002/adma.201808167 10.1126/science.1211934 10.1002/aenm.201803312 10.1021/acs.accounts.7b00616 10.1039/D0EE01856B 10.1038/nmat4834 10.1002/adma.201907214 10.1002/aenm.202002176 10.1002/adma.201805541 10.1038/s41570-016-0003 10.1039/C4CS00470A 10.1021/acscatal.7b00120 10.1126/science.1137014 10.1002/adma.201505875 10.1126/sciadv.aav6009 10.1002/adma.201704156 10.1016/j.chempr.2017.04.016 10.1002/adfm.201805641 10.1002/aenm.201803918 10.1016/j.chempr.2018.02.023 10.1002/adma.202002435 10.1021/jacs.6b09351 10.1002/anie.201810175 10.1038/s41560-019-0407-1 10.1002/adma.201807134 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202102285 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202102285 ADFM202102285 |
Genre | article |
GrantInformation_xml | – fundername: Program for Innovative Research Team – fundername: National Natural Science Foundation of China funderid: 51871107; 51631004 – fundername: Program for JLU Science and Technology Innovative Research Team funderid: JLUSTIRT; 2017TD‐09 – fundername: Chang Jiang Scholar Program of China funderid: Q2016064 – fundername: Fundamental Research Funds for the Central Universities – fundername: Top‐notch Young Talent Program of China funderid: W02070051 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3175-85c3db66e591ea0f883afe5978c5e2ae2a4f8bf4b2ed8a65095bc6322699c6ba3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 05:10:02 EDT 2025 Tue Jul 01 04:12:30 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Wed Jan 22 16:28:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-85c3db66e591ea0f883afe5978c5e2ae2a4f8bf4b2ed8a65095bc6322699c6ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8227-9695 |
PQID | 2549493997 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2549493997 crossref_primary_10_1002_adfm_202102285 crossref_citationtrail_10_1002_adfm_202102285 wiley_primary_10_1002_adfm_202102285_ADFM202102285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2017; 7 2019; 9 2018; 28 2019; 4 2017; 1 2015; 6 2017; 2 2013; 4 2019; 5 2019; 31 2019; 2 2019; 10 2019; 58 2020; 59 2011; 10 2020; 13 2017; 29 2020; 11 2020; 32 2020; 10 2013; 5 2004; 305 2013; 6 2006; 312 2018; 9 2021; 31 2020; 2020 2007; 315 2018; 4 2017; 16 2015; 44 2017; 12 2019; 28 2011; 42 2020; 49 2018; 30 2018; 51 2016; 138 2016; 46 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 Shi H. (e_1_2_8_21_1) 2020; 2020 e_1_2_8_50_1 |
References_xml | – volume: 51 start-page: 881 year: 2018 publication-title: Acc. Chem. Res. – volume: 49 start-page: 9154 year: 2020 publication-title: Chem. Soc. Rev. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1425 year: 2018 publication-title: Nat. Commun. – volume: 1 start-page: 0003 year: 2017 publication-title: Nat. Rev. Chem. – volume: 5 start-page: 362 year: 2013 publication-title: Nat. Chem. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 2020 year: 2020 publication-title: Research – volume: 2 start-page: 134 year: 2019 publication-title: Nat. Catal. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 430 year: 2019 publication-title: Nat. Energy – volume: 12 start-page: 441 year: 2017 publication-title: Nat. Nanotechnol. – volume: 46 start-page: 263 year: 2016 publication-title: Annu. Rev. Mater. Res. – volume: 42 start-page: 301 year: 2011 publication-title: Tribol. Lett. – volume: 312 start-page: 1322 year: 2006 publication-title: Science – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 4 start-page: 368 year: 2019 publication-title: ACS Energy Lett. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 9 start-page: 2018 year: 2019 publication-title: ACS Catal. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 495 year: 2019 publication-title: Nat. Catal. – volume: 16 start-page: 16 year: 2017 publication-title: Nat. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1509 year: 2013 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1139 year: 2018 publication-title: Chem – volume: 10 start-page: 4977 year: 2019 publication-title: Nat. Commun. – volume: 7 start-page: 3540 year: 2017 publication-title: ACS Catal. – volume: 11 start-page: 2940 year: 2020 publication-title: Nat. Commun. – volume: 58 start-page: 2622 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 7992 year: 2015 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 315 start-page: 798 year: 2007 publication-title: Science – volume: 28 start-page: 2951 year: 2019 publication-title: Adv. Mater. – volume: 4 start-page: 2169 year: 2013 publication-title: Nat. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 791 year: 2017 publication-title: Chem – volume: 13 start-page: 3185 year: 2020 publication-title: Energy Environ. Sci. – volume: 10 start-page: 5106 year: 2019 publication-title: Nat. Commun. – volume: 11 start-page: 1116 year: 2020 publication-title: Nat. Commun. – ident: e_1_2_8_46_1 doi: 10.1038/ncomms8992 – ident: e_1_2_8_17_1 doi: 10.1126/science.1127180 – ident: e_1_2_8_55_1 doi: 10.1007/s11249-011-9774-x – ident: e_1_2_8_35_1 doi: 10.1002/adfm.202009613 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202002297 – ident: e_1_2_8_24_1 doi: 10.1038/s41929-018-0203-5 – ident: e_1_2_8_25_1 doi: 10.1002/aenm.202002214 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201806682 – ident: e_1_2_8_4_1 doi: 10.1126/science.1103197 – ident: e_1_2_8_36_1 doi: 10.1146/annurev-matsci-070115-031739 – ident: e_1_2_8_50_1 doi: 10.1039/c3ee00045a – ident: e_1_2_8_47_1 doi: 10.1002/adma.201901666 – ident: e_1_2_8_19_1 doi: 10.1002/anie.202007567 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201904346 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-019-13092-7 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-019-12851-w – ident: e_1_2_8_54_1 doi: 10.1038/ncomms3169 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.201903120 – ident: e_1_2_8_11_1 doi: 10.1038/s41929-019-0279-6 – ident: e_1_2_8_49_1 doi: 10.1038/nmat3087 – ident: e_1_2_8_14_1 doi: 10.1021/acsenergylett.8b01840 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-020-16769-6 – ident: e_1_2_8_2_1 doi: 10.1038/nchem.1634 – ident: e_1_2_8_6_1 doi: 10.1039/D0CS00575D – ident: e_1_2_8_12_1 doi: 10.1038/nnano.2016.304 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201605502 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-020-14980-z – ident: e_1_2_8_52_1 doi: 10.1038/s41467-018-03858-w – ident: e_1_2_8_33_1 doi: 10.1021/acscatal.8b04566 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201808167 – ident: e_1_2_8_18_1 doi: 10.1126/science.1211934 – ident: e_1_2_8_41_1 doi: 10.1002/aenm.201803312 – ident: e_1_2_8_20_1 doi: 10.1021/acs.accounts.7b00616 – ident: e_1_2_8_7_1 doi: 10.1039/D0EE01856B – ident: e_1_2_8_5_1 doi: 10.1038/nmat4834 – ident: e_1_2_8_44_1 doi: 10.1002/adma.201907214 – ident: e_1_2_8_45_1 doi: 10.1002/aenm.202002176 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201805541 – ident: e_1_2_8_22_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_8_9_1 doi: 10.1039/C4CS00470A – ident: e_1_2_8_39_1 doi: 10.1021/acscatal.7b00120 – ident: e_1_2_8_3_1 doi: 10.1126/science.1137014 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201505875 – ident: e_1_2_8_28_1 doi: 10.1126/sciadv.aav6009 – ident: e_1_2_8_43_1 doi: 10.1002/adma.201704156 – ident: e_1_2_8_37_1 doi: 10.1016/j.chempr.2017.04.016 – ident: e_1_2_8_42_1 doi: 10.1002/adfm.201805641 – volume: 2020 start-page: 2987234 year: 2020 ident: e_1_2_8_21_1 publication-title: Research – ident: e_1_2_8_38_1 doi: 10.1002/aenm.201803918 – ident: e_1_2_8_53_1 doi: 10.1016/j.chempr.2018.02.023 – ident: e_1_2_8_15_1 doi: 10.1002/adma.202002435 – ident: e_1_2_8_23_1 doi: 10.1021/jacs.6b09351 – ident: e_1_2_8_48_1 doi: 10.1002/anie.201810175 – ident: e_1_2_8_1_1 doi: 10.1038/s41560-019-0407-1 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201807134 |
SSID | ssj0017734 |
Score | 2.5741332 |
Snippet | Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bonding Carbon Copper Electrocatalysts hybrid electrodes hydrogen evolution reaction Hydrogen evolution reactions Hydrogen production Iridium Materials science Molybdenum nanoporous metals Nanosheets Nitrogen oxygen evolution reaction Oxygen evolution reactions Water splitting |
Title | Mo‐/Co‐N‐C Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102285 https://www.proquest.com/docview/2549493997 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yL3rwW5zOkYPgqdvatWl7HPtgiFNwDncrSZqiOFpZt8M8efHu3-hf4nvp1m2CCAptaSANbfLy8nvpe79HyEUYWb4NOMOwXCYMm0nT8BVYKY4Ia8KEJT3U4WO9G9Yd2FdDZ7gSxZ_xQ-QbbjgztL7GCc5FWl2ShvIwwkhybbJ4GGWODluIiu5y_ijTdbPfysxEBy9zuGBtrFnV9cfXV6Ul1FwFrHrF6ewSvnjXzNHkuTKdiIp8_Ubj-J-P2SM7czhKG5n87JMNFR-Q7RWSwkPy3ks-3z6qTbzewNmk3RmGeVFQzEn6qNQkpbfIlgzYlSYx7T5hTLNOsTLSdQDhJ9OUNqeUpxT350AYRoq2swQ8ev9olkIjAJ9pWzNaQFv0AUDwmPYBI2vP7CMy6LTvm11jnrzBkAhJDM-R9VAwphzfVLwWeV6dR1BwPekoi8NhR56IbGGp0OPI4-cIyUC9MN-XTPD6MSnESaxOCEUrVgqw9EyO3JYOBy0LQMhUoK05c8MiMRaDF8g5szkm2BgFGSezFWD3Bnn3FsllXv8l4_T4sWZpIQvBfG6nAZrUtg_Azi0SSw_qL60EjVanl5dO__LQGdnC-8xPuEQKk_FUnQMamogy2Wy0etf9spb8L9LzBWs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9gA9QPmpulCoDyBO6W68iZMceqj2R-nPLhK0Ym_BdhyBWG1Qs6tqe-LSe1-lr8Ij9Ek642zSFgkhIfWAlERy5FiRPc58M5n5BuBtmvHIQ5zh8EAoxxPadSKDVoqv0pZyUaWnNn1sMBTxsbc_8kdLcFnlwpT8ELXDjXaG_V7TBieHdPOGNVSmGaWSW5slrOIqD8z8FK22Ymevi0v8jvN-76gTO4vCAo4mdemEvm6nSgjjR66RrSwM2zLDRhBq33CJh5eFKvMUN2koiWPOV1qg6Iso0kLJNo77AFaojDjR9Xc_1oxVbhCUP7KFSyFl7qjiiWzx5t33vasHb8DtbYhsdVz_CfyqZqcMbfm-PZuqbX32G3HkfzV9a_B4gbjZbrlFnsKSmTyD1Vs8jM_hfJBf_bxodug6xLPD4jllsjHUPXnx1ZhpwT4QITTCc5ZPWPyN0rZtFZmx7YNGTD4rWGfGZMHIBYnyPjasV9YYsi6yeYGDoIXAepa0A8dinxHnn7BPaAbY4PMXcHwv87AOy5N8YjaAkaGuFRqzriT6Tl-iIkGs5xpUSFIEaQOcSloSvSBvpxoi46SkneYJLWdSL2cD3tf9f5S0JX_suVkJX7L4fBUJeQ28CLFr0ABupegvoyS73f6gbr38l4e24GF8NDhMDveGB6_gEd0vw6I3YXl6MjOvEfxN1Ru73Rh8uW8BvQa2OmMJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5RKlXl0Jb-iJSf7oGqJ5N4Y6_tAweUH4VC0qotam5md71WEVGMcCIUTly491F4FV6hT9KZdWygUlWpEgck29Ja65G1O-v5Zj3zDcBmkvLIQ5zh8EAoxxPadSKDXoqvkoZy0aQnNn2sPxC9A-_j0B8uwFWZC1PwQ1QbbrQy7PeaFvhJktZvSENlklImuXVZwjKscs_MztBpy7d32zjD7znvdr61es68roCjyVo6oa-biRLC-JFrZCMNw6ZMsRGE2jdc4uGloUo9xU0SSqKY85UWqPkiirRQsolyH8FjTzQiKhbR_lIRVrlBUPzHFi5FlLnDkiaywet33_euGbzBtrcRsjVx3edwXQ5OEdlyvDWdqC19_gdv5EMavRfwbI632U6xQJZhwYxfwtItFsZXcNnPfl38rLfoOsCzxXozymNjaHmy_Icxk5x9IjpoBOcsG7PeESVt2xoyI9sHXZhsmrPWlMmc0QYkavvIsE5RYchukM1yFIL-AetYyg6Uxb4jyj9lX9EJsKHnr-HgXsbhDSyOs7FZAUZuulboyrqSyDt9iWYEkZ5r0BxJESQ1cEplifWcup0qiIzignSaxzSdcTWdNfhQ9T8pSEv-2nOt1L14_vHKY9oz8CJErkENuFWif0iJd9rdftV6-z8PvYMnn9vdeH93sLcKT-l2ERO9BouT06lZR-Q3URt2sTE4vG_9_A0VL2G4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mo%E2%80%90%2FCo%E2%80%90N%E2%80%90C+Hybrid+Nanosheets+Oriented+on+Hierarchical+Nanoporous+Cu+as+Versatile+Electrocatalysts+for+Efficient+Water+Splitting&rft.jtitle=Advanced+functional+materials&rft.au=Shi%2C+Hang&rft.au=Dai%2C+Tian%E2%80%90Yi&rft.au=Wan%2C+Wu%E2%80%90Bin&rft.au=Wen%2C+Zi&rft.date=2021-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=28&rft_id=info:doi/10.1002%2Fadfm.202102285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202102285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |