Mo‐/Co‐N‐C Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting

Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu sc...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 28
Main Authors Shi, Hang, Dai, Tian‐Yi, Wan, Wu‐Bin, Wen, Zi, Lang, Xing‐You, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo2N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen‐doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo‐/Co‐N‐C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self‐supported nanoporous Mo‐/Co‐N‐C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec−1. They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm−2. When coupled with their electro‐oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm−2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes. Heterogenous Mo2N/CoN nanosheets that are in situ engrafted with nitrogen‐doped carbon skin and vertically rooted on nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu) hold promise as robust and cost‐effective (pre‐)electrocatalytsts for hydrogen/oxygen evolution reactions. Associated with nanoporous architecture to facilitate electron transfer and offer abundant and sufficiently accessible active sites, nanoporous Mo‐/Co‐N‐C/Cu electrodes exhibit oustanding electrocatalytic performance for overall water splitting.
AbstractList Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo2N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen‐doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo‐/Co‐N‐C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self‐supported nanoporous Mo‐/Co‐N‐C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec−1. They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm−2. When coupled with their electro‐oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm−2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes.
Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo2N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo2N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen‐doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo‐/Co‐N‐C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self‐supported nanoporous Mo‐/Co‐N‐C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec−1. They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm−2. When coupled with their electro‐oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm−2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes. Heterogenous Mo2N/CoN nanosheets that are in situ engrafted with nitrogen‐doped carbon skin and vertically rooted on nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu) hold promise as robust and cost‐effective (pre‐)electrocatalytsts for hydrogen/oxygen evolution reactions. Associated with nanoporous architecture to facilitate electron transfer and offer abundant and sufficiently accessible active sites, nanoporous Mo‐/Co‐N‐C/Cu electrodes exhibit oustanding electrocatalytic performance for overall water splitting.
Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical water splitting. Here, nitrogen‐doped carbon engrafted Mo 2 N/CoN hybrid nanosheets that are seamlessly oriented on hierarchical nanoporous Cu scaffold (Mo‐/Co‐N‐C/Cu), as highly efficient electrocatalysts for alkaline hydrogen evolution reaction are reported. The constituent heterostructured Mo 2 N/CoN nanosheets work as bifunctional electroactive sites for both water dissociation and adsorption/desorption of hydrogen intermediates while the nitrogen‐doped carbon bridges electron transfers between electroactive sites and interconnective Cu current collectors by making use of Mo‐/Co‐N‐C bonds and intimate C/Cu contacts at interfaces. As a consequence of unique architecture having electroactive sites to be sufficiently accessible, self‐supported nanoporous Mo‐/Co‐N‐C/Cu hybrid electrodes exhibit outstanding electrocatalysis in 1 m KOH, with a negligible onset overpotential and a low Tafel slope of 47 mV dec −1 . They only take overpotential of as low as 230 mV to reach current density of 1000 mA cm −2 . When coupled with their electro‐oxidized derivatives that mediate efficiently the oxygen evolution reaction, the alkaline water electrolyzer can achieve ≈100 mA cm −2 at 1.622 V in 1 m KOH electrolyte, ≈0.343 V lower than the device constructed with commercially available Pt/C and Ir/C nanocatalysts immobilized on nanoporous Cu electrodes.
Author Shi, Hang
Wen, Zi
Jiang, Qing
Wan, Wu‐Bin
Lang, Xing‐You
Dai, Tian‐Yi
Author_xml – sequence: 1
  givenname: Hang
  surname: Shi
  fullname: Shi, Hang
  organization: Jilin University
– sequence: 2
  givenname: Tian‐Yi
  surname: Dai
  fullname: Dai, Tian‐Yi
  organization: Jilin University
– sequence: 3
  givenname: Wu‐Bin
  surname: Wan
  fullname: Wan, Wu‐Bin
  organization: Jilin University
– sequence: 4
  givenname: Zi
  surname: Wen
  fullname: Wen, Zi
  organization: Jilin University
– sequence: 5
  givenname: Xing‐You
  orcidid: 0000-0002-8227-9695
  surname: Lang
  fullname: Lang, Xing‐You
  email: xylang@jlu.edu.cn
  organization: Jilin University
– sequence: 6
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  email: jiangq@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkMtKAzEUhoMoeN26Drhum2SuWcpYreBl4XU3nMmcaGSc1CRFunPj3mf0SUytKAgi5Ar_9x_4Nslqb3skZJezIWdMjKDVj0PBBGdClNkK2eA5zwcJE-Xq95vfrpNN7x8Y40WRpBvk9dS-v7yNqsV5FndFJ_PGmZaeQW_9PWLw9NwZ7AO21PZ0YtCBU_dGQfeZmVpnZ55WMwqeXqPzEEyHdNyhCs4qCNDNfSzR1tGx1kYtuugNBHT0YtqZEEx_t03WNHQed77uLXJ1OL6sJoOT86Pjav9koBJeZIMyU0nb5DlmkiMwXZYJ6PgpSpWhgLhSXTY6bQS2JeQZk1mj8kSIXEqVN5Bskb1l79TZpxn6UD_YmevjyFpkqUxlImURU8NlSjnrvUNdT515BDevOasXquuF6vpbdQTSX4AyIXqwfXBgur8xucSeo7H5P0Pq_YPD0x_2A0MOmn0
CitedBy_id crossref_primary_10_3390_nano14030243
crossref_primary_10_1007_s12598_024_02912_5
crossref_primary_10_1016_j_ijhydene_2024_11_422
crossref_primary_10_1021_acsnano_1c03766
crossref_primary_10_1002_advs_202105313
crossref_primary_10_1016_j_ijhydene_2024_11_062
crossref_primary_10_1016_j_matchemphys_2022_126308
crossref_primary_10_1021_acsaem_3c00537
crossref_primary_10_1016_j_cej_2022_134898
crossref_primary_10_3390_molecules26216501
crossref_primary_10_1002_adfm_202418644
crossref_primary_10_1021_acssuschemeng_3c00020
crossref_primary_10_1002_smll_202304541
crossref_primary_10_1039_D1CC05430A
crossref_primary_10_1039_D3TA03918H
crossref_primary_10_1016_j_ijhydene_2024_05_108
crossref_primary_10_1016_j_jcis_2024_04_009
crossref_primary_10_1021_acs_inorgchem_2c04181
crossref_primary_10_1016_j_apsusc_2023_156989
crossref_primary_10_1016_j_scriptamat_2024_116344
crossref_primary_10_1002_ange_202308670
crossref_primary_10_1016_j_jcis_2022_01_132
crossref_primary_10_1002_advs_202201311
crossref_primary_10_1016_j_apsusc_2024_160621
crossref_primary_10_1016_j_apsusc_2024_161833
crossref_primary_10_1016_j_cej_2024_155069
crossref_primary_10_1016_j_jcis_2024_02_204
crossref_primary_10_1016_j_jcis_2024_01_098
crossref_primary_10_1002_adsu_202100436
crossref_primary_10_1016_j_ijhydene_2022_01_211
crossref_primary_10_1021_acsaem_2c02575
crossref_primary_10_1021_acsanm_4c00712
crossref_primary_10_1016_j_cej_2022_134669
crossref_primary_10_1016_j_ijhydene_2023_08_107
crossref_primary_10_1016_j_mtener_2021_100906
crossref_primary_10_1021_acs_inorgchem_2c03516
crossref_primary_10_1039_D2MH00075J
crossref_primary_10_1021_acsmaterialslett_4c00695
crossref_primary_10_1021_acsami_3c10075
crossref_primary_10_1039_D3QM00940H
crossref_primary_10_1039_D3CS00717K
crossref_primary_10_1002_sstr_202300042
crossref_primary_10_1016_j_cej_2022_134995
crossref_primary_10_1002_smll_202303113
crossref_primary_10_1039_D4QI01947D
crossref_primary_10_1007_s40843_022_2173_3
crossref_primary_10_1039_D4SE01652A
crossref_primary_10_1016_j_ijhydene_2024_02_032
crossref_primary_10_1007_s12274_022_4855_8
crossref_primary_10_1016_j_ijhydene_2024_02_310
crossref_primary_10_1039_D4TA08701A
crossref_primary_10_1016_j_jallcom_2024_175759
crossref_primary_10_1016_j_cej_2022_138206
crossref_primary_10_1016_j_ijhydene_2023_07_026
crossref_primary_10_1039_D4NJ01886A
crossref_primary_10_1016_j_nanoen_2022_106981
crossref_primary_10_1002_anie_202308670
crossref_primary_10_1021_acsami_2c07792
crossref_primary_10_1016_j_apcatb_2024_124014
Cites_doi 10.1038/ncomms8992
10.1126/science.1127180
10.1007/s11249-011-9774-x
10.1002/adfm.202009613
10.1002/adma.202002297
10.1038/s41929-018-0203-5
10.1002/aenm.202002214
10.1002/adma.201806682
10.1126/science.1103197
10.1146/annurev-matsci-070115-031739
10.1039/c3ee00045a
10.1002/adma.201901666
10.1002/anie.202007567
10.1002/adma.201904346
10.1038/s41467-019-13092-7
10.1038/s41467-019-12851-w
10.1038/ncomms3169
10.1002/aenm.201903120
10.1038/s41929-019-0279-6
10.1038/nmat3087
10.1021/acsenergylett.8b01840
10.1038/s41467-020-16769-6
10.1038/nchem.1634
10.1039/D0CS00575D
10.1038/nnano.2016.304
10.1002/adma.201605502
10.1038/s41467-020-14980-z
10.1038/s41467-018-03858-w
10.1021/acscatal.8b04566
10.1002/adma.201808167
10.1126/science.1211934
10.1002/aenm.201803312
10.1021/acs.accounts.7b00616
10.1039/D0EE01856B
10.1038/nmat4834
10.1002/adma.201907214
10.1002/aenm.202002176
10.1002/adma.201805541
10.1038/s41570-016-0003
10.1039/C4CS00470A
10.1021/acscatal.7b00120
10.1126/science.1137014
10.1002/adma.201505875
10.1126/sciadv.aav6009
10.1002/adma.201704156
10.1016/j.chempr.2017.04.016
10.1002/adfm.201805641
10.1002/aenm.201803918
10.1016/j.chempr.2018.02.023
10.1002/adma.202002435
10.1021/jacs.6b09351
10.1002/anie.201810175
10.1038/s41560-019-0407-1
10.1002/adma.201807134
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202102285
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202102285
ADFM202102285
Genre article
GrantInformation_xml – fundername: Program for Innovative Research Team
– fundername: National Natural Science Foundation of China
  funderid: 51871107; 51631004
– fundername: Program for JLU Science and Technology Innovative Research Team
  funderid: JLUSTIRT; 2017TD‐09
– fundername: Chang Jiang Scholar Program of China
  funderid: Q2016064
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Top‐notch Young Talent Program of China
  funderid: W02070051
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3175-85c3db66e591ea0f883afe5978c5e2ae2a4f8bf4b2ed8a65095bc6322699c6ba3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 05:10:02 EDT 2025
Tue Jul 01 04:12:30 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Wed Jan 22 16:28:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-85c3db66e591ea0f883afe5978c5e2ae2a4f8bf4b2ed8a65095bc6322699c6ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8227-9695
PQID 2549493997
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2549493997
crossref_primary_10_1002_adfm_202102285
crossref_citationtrail_10_1002_adfm_202102285
wiley_primary_10_1002_adfm_202102285_ADFM202102285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2017; 7
2019; 9
2018; 28
2019; 4
2017; 1
2015; 6
2017; 2
2013; 4
2019; 5
2019; 31
2019; 2
2019; 10
2019; 58
2020; 59
2011; 10
2020; 13
2017; 29
2020; 11
2020; 32
2020; 10
2013; 5
2004; 305
2013; 6
2006; 312
2018; 9
2021; 31
2020; 2020
2007; 315
2018; 4
2017; 16
2015; 44
2017; 12
2019; 28
2011; 42
2020; 49
2018; 30
2018; 51
2016; 138
2016; 46
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
Shi H. (e_1_2_8_21_1) 2020; 2020
e_1_2_8_50_1
References_xml – volume: 51
  start-page: 881
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 49
  start-page: 9154
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1425
  year: 2018
  publication-title: Nat. Commun.
– volume: 1
  start-page: 0003
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 5
  start-page: 362
  year: 2013
  publication-title: Nat. Chem.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 2020
  year: 2020
  publication-title: Research
– volume: 2
  start-page: 134
  year: 2019
  publication-title: Nat. Catal.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 430
  year: 2019
  publication-title: Nat. Energy
– volume: 12
  start-page: 441
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 46
  start-page: 263
  year: 2016
  publication-title: Annu. Rev. Mater. Res.
– volume: 42
  start-page: 301
  year: 2011
  publication-title: Tribol. Lett.
– volume: 312
  start-page: 1322
  year: 2006
  publication-title: Science
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 4
  start-page: 368
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 9
  start-page: 2018
  year: 2019
  publication-title: ACS Catal.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 495
  year: 2019
  publication-title: Nat. Catal.
– volume: 16
  start-page: 16
  year: 2017
  publication-title: Nat. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1509
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1139
  year: 2018
  publication-title: Chem
– volume: 10
  start-page: 4977
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  start-page: 3540
  year: 2017
  publication-title: ACS Catal.
– volume: 11
  start-page: 2940
  year: 2020
  publication-title: Nat. Commun.
– volume: 58
  start-page: 2622
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 7992
  year: 2015
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 315
  start-page: 798
  year: 2007
  publication-title: Science
– volume: 28
  start-page: 2951
  year: 2019
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2169
  year: 2013
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 791
  year: 2017
  publication-title: Chem
– volume: 13
  start-page: 3185
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 5106
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1116
  year: 2020
  publication-title: Nat. Commun.
– ident: e_1_2_8_46_1
  doi: 10.1038/ncomms8992
– ident: e_1_2_8_17_1
  doi: 10.1126/science.1127180
– ident: e_1_2_8_55_1
  doi: 10.1007/s11249-011-9774-x
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.202009613
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202002297
– ident: e_1_2_8_24_1
  doi: 10.1038/s41929-018-0203-5
– ident: e_1_2_8_25_1
  doi: 10.1002/aenm.202002214
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201806682
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1103197
– ident: e_1_2_8_36_1
  doi: 10.1146/annurev-matsci-070115-031739
– ident: e_1_2_8_50_1
  doi: 10.1039/c3ee00045a
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201901666
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.202007567
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201904346
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-019-13092-7
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-019-12851-w
– ident: e_1_2_8_54_1
  doi: 10.1038/ncomms3169
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.201903120
– ident: e_1_2_8_11_1
  doi: 10.1038/s41929-019-0279-6
– ident: e_1_2_8_49_1
  doi: 10.1038/nmat3087
– ident: e_1_2_8_14_1
  doi: 10.1021/acsenergylett.8b01840
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-020-16769-6
– ident: e_1_2_8_2_1
  doi: 10.1038/nchem.1634
– ident: e_1_2_8_6_1
  doi: 10.1039/D0CS00575D
– ident: e_1_2_8_12_1
  doi: 10.1038/nnano.2016.304
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.201605502
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-020-14980-z
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-018-03858-w
– ident: e_1_2_8_33_1
  doi: 10.1021/acscatal.8b04566
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201808167
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1211934
– ident: e_1_2_8_41_1
  doi: 10.1002/aenm.201803312
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.accounts.7b00616
– ident: e_1_2_8_7_1
  doi: 10.1039/D0EE01856B
– ident: e_1_2_8_5_1
  doi: 10.1038/nmat4834
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.201907214
– ident: e_1_2_8_45_1
  doi: 10.1002/aenm.202002176
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201805541
– ident: e_1_2_8_22_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_8_9_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_8_39_1
  doi: 10.1021/acscatal.7b00120
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1137014
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201505875
– ident: e_1_2_8_28_1
  doi: 10.1126/sciadv.aav6009
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.201704156
– ident: e_1_2_8_37_1
  doi: 10.1016/j.chempr.2017.04.016
– ident: e_1_2_8_42_1
  doi: 10.1002/adfm.201805641
– volume: 2020
  start-page: 2987234
  year: 2020
  ident: e_1_2_8_21_1
  publication-title: Research
– ident: e_1_2_8_38_1
  doi: 10.1002/aenm.201803918
– ident: e_1_2_8_53_1
  doi: 10.1016/j.chempr.2018.02.023
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.202002435
– ident: e_1_2_8_23_1
  doi: 10.1021/jacs.6b09351
– ident: e_1_2_8_48_1
  doi: 10.1002/anie.201810175
– ident: e_1_2_8_1_1
  doi: 10.1038/s41560-019-0407-1
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201807134
SSID ssj0017734
Score 2.5741332
Snippet Designing robust and cost‐effective electrocatalysts based on Earth‐abundant elements is crucial for large‐scale hydrogen production through electrochemical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bonding
Carbon
Copper
Electrocatalysts
hybrid electrodes
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen production
Iridium
Materials science
Molybdenum
nanoporous metals
Nanosheets
Nitrogen
oxygen evolution reaction
Oxygen evolution reactions
Water splitting
Title Mo‐/Co‐N‐C Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102285
https://www.proquest.com/docview/2549493997
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yL3rwW5zOkYPgqdvatWl7HPtgiFNwDncrSZqiOFpZt8M8efHu3-hf4nvp1m2CCAptaSANbfLy8nvpe79HyEUYWb4NOMOwXCYMm0nT8BVYKY4Ia8KEJT3U4WO9G9Yd2FdDZ7gSxZ_xQ-QbbjgztL7GCc5FWl2ShvIwwkhybbJ4GGWODluIiu5y_ijTdbPfysxEBy9zuGBtrFnV9cfXV6Ul1FwFrHrF6ewSvnjXzNHkuTKdiIp8_Ubj-J-P2SM7czhKG5n87JMNFR-Q7RWSwkPy3ks-3z6qTbzewNmk3RmGeVFQzEn6qNQkpbfIlgzYlSYx7T5hTLNOsTLSdQDhJ9OUNqeUpxT350AYRoq2swQ8ev9olkIjAJ9pWzNaQFv0AUDwmPYBI2vP7CMy6LTvm11jnrzBkAhJDM-R9VAwphzfVLwWeV6dR1BwPekoi8NhR56IbGGp0OPI4-cIyUC9MN-XTPD6MSnESaxOCEUrVgqw9EyO3JYOBy0LQMhUoK05c8MiMRaDF8g5szkm2BgFGSezFWD3Bnn3FsllXv8l4_T4sWZpIQvBfG6nAZrUtg_Azi0SSw_qL60EjVanl5dO__LQGdnC-8xPuEQKk_FUnQMamogy2Wy0etf9spb8L9LzBWs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9gA9QPmpulCoDyBO6W68iZMceqj2R-nPLhK0Ym_BdhyBWG1Qs6tqe-LSe1-lr8Ij9Ek642zSFgkhIfWAlERy5FiRPc58M5n5BuBtmvHIQ5zh8EAoxxPadSKDVoqv0pZyUaWnNn1sMBTxsbc_8kdLcFnlwpT8ELXDjXaG_V7TBieHdPOGNVSmGaWSW5slrOIqD8z8FK22Ymevi0v8jvN-76gTO4vCAo4mdemEvm6nSgjjR66RrSwM2zLDRhBq33CJh5eFKvMUN2koiWPOV1qg6Iso0kLJNo77AFaojDjR9Xc_1oxVbhCUP7KFSyFl7qjiiWzx5t33vasHb8DtbYhsdVz_CfyqZqcMbfm-PZuqbX32G3HkfzV9a_B4gbjZbrlFnsKSmTyD1Vs8jM_hfJBf_bxodug6xLPD4jllsjHUPXnx1ZhpwT4QITTCc5ZPWPyN0rZtFZmx7YNGTD4rWGfGZMHIBYnyPjasV9YYsi6yeYGDoIXAepa0A8dinxHnn7BPaAbY4PMXcHwv87AOy5N8YjaAkaGuFRqzriT6Tl-iIkGs5xpUSFIEaQOcSloSvSBvpxoi46SkneYJLWdSL2cD3tf9f5S0JX_suVkJX7L4fBUJeQ28CLFr0ABupegvoyS73f6gbr38l4e24GF8NDhMDveGB6_gEd0vw6I3YXl6MjOvEfxN1Ru73Rh8uW8BvQa2OmMJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5RKlXl0Jb-iJSf7oGqJ5N4Y6_tAweUH4VC0qotam5md71WEVGMcCIUTly491F4FV6hT9KZdWygUlWpEgck29Ja65G1O-v5Zj3zDcBmkvLIQ5zh8EAoxxPadSKDXoqvkoZy0aQnNn2sPxC9A-_j0B8uwFWZC1PwQ1QbbrQy7PeaFvhJktZvSENlklImuXVZwjKscs_MztBpy7d32zjD7znvdr61es68roCjyVo6oa-biRLC-JFrZCMNw6ZMsRGE2jdc4uGloUo9xU0SSqKY85UWqPkiirRQsolyH8FjTzQiKhbR_lIRVrlBUPzHFi5FlLnDkiaywet33_euGbzBtrcRsjVx3edwXQ5OEdlyvDWdqC19_gdv5EMavRfwbI632U6xQJZhwYxfwtItFsZXcNnPfl38rLfoOsCzxXozymNjaHmy_Icxk5x9IjpoBOcsG7PeESVt2xoyI9sHXZhsmrPWlMmc0QYkavvIsE5RYchukM1yFIL-AetYyg6Uxb4jyj9lX9EJsKHnr-HgXsbhDSyOs7FZAUZuulboyrqSyDt9iWYEkZ5r0BxJESQ1cEplifWcup0qiIzignSaxzSdcTWdNfhQ9T8pSEv-2nOt1L14_vHKY9oz8CJErkENuFWif0iJd9rdftV6-z8PvYMnn9vdeH93sLcKT-l2ERO9BouT06lZR-Q3URt2sTE4vG_9_A0VL2G4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mo%E2%80%90%2FCo%E2%80%90N%E2%80%90C+Hybrid+Nanosheets+Oriented+on+Hierarchical+Nanoporous+Cu+as+Versatile+Electrocatalysts+for+Efficient+Water+Splitting&rft.jtitle=Advanced+functional+materials&rft.au=Shi%2C+Hang&rft.au=Dai%2C+Tian%E2%80%90Yi&rft.au=Wan%2C+Wu%E2%80%90Bin&rft.au=Wen%2C+Zi&rft.date=2021-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=28&rft_id=info:doi/10.1002%2Fadfm.202102285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202102285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon