Perspectives of High‐Performance Li–S Battery Electrolytes

Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li+ transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 4
Main Authors Liu, Jing, Zhou, Yuhao, Yan, Tianying, Gao, Xue‐Ping
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li+ transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion of lithium polysulfides in Li–S batteries. The working mechanism of Li–S batteries in different electrolytes is classified into “solid‐liquid‐solid” and “solid‐solid” conversions. Under the “solid‐liquid‐solid” conversion, Li–S batteries would inevitably face the challenges such as “shuttle effect” that lead to poor cycle performance, and under the “solid‐solid” conversion, they would face interface mismatch that limits the utilization of sulfur with low energy density, while both conversion mechanisms cause uncontrollable Li dendrites on anode. According to the conversion mechanism, electrolytes can be divided into ether‐based, ionic liquid‐based, gel polymer electrolytes, and polymer‐based solid‐state electrolytes with “solid‐liquid‐solid” conversion, as well as carbonate‐based electrolytes and oxide/sulfide‐based solid‐state electrolytes with “solid‐solid” conversion. Based on the conversion mechanism of active materials in different electrolytes, the current status on the strategies from multiple perspectives are summarized to improve the electrochemical performance, with the hope to provide a comprehensive guideline toward the development of suitable electrolytes for Li–S batteries. Lithium‐sulfur (Li−S) batteries are one of the most promising candidates for next‐generation energy storage devices. The electrolyte affects the redox mechanism of Li−S batteries, which needs to be focused. In this review, the electrolytes are reviewed according to the “solid‐liquid‐solid” and “solid‐solid” conversion of the active material sulfur. The direction of the development of Li−S battery is prospected.
AbstractList Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li + transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion of lithium polysulfides in Li–S batteries. The working mechanism of Li–S batteries in different electrolytes is classified into “solid‐liquid‐solid” and “solid‐solid” conversions. Under the “solid‐liquid‐solid” conversion, Li–S batteries would inevitably face the challenges such as “shuttle effect” that lead to poor cycle performance, and under the “solid‐solid” conversion, they would face interface mismatch that limits the utilization of sulfur with low energy density, while both conversion mechanisms cause uncontrollable Li dendrites on anode. According to the conversion mechanism, electrolytes can be divided into ether‐based, ionic liquid‐based, gel polymer electrolytes, and polymer‐based solid‐state electrolytes with “solid‐liquid‐solid” conversion, as well as carbonate‐based electrolytes and oxide/sulfide‐based solid‐state electrolytes with “solid‐solid” conversion. Based on the conversion mechanism of active materials in different electrolytes, the current status on the strategies from multiple perspectives are summarized to improve the electrochemical performance, with the hope to provide a comprehensive guideline toward the development of suitable electrolytes for Li–S batteries.
Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li+ transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion of lithium polysulfides in Li–S batteries. The working mechanism of Li–S batteries in different electrolytes is classified into “solid‐liquid‐solid” and “solid‐solid” conversions. Under the “solid‐liquid‐solid” conversion, Li–S batteries would inevitably face the challenges such as “shuttle effect” that lead to poor cycle performance, and under the “solid‐solid” conversion, they would face interface mismatch that limits the utilization of sulfur with low energy density, while both conversion mechanisms cause uncontrollable Li dendrites on anode. According to the conversion mechanism, electrolytes can be divided into ether‐based, ionic liquid‐based, gel polymer electrolytes, and polymer‐based solid‐state electrolytes with “solid‐liquid‐solid” conversion, as well as carbonate‐based electrolytes and oxide/sulfide‐based solid‐state electrolytes with “solid‐solid” conversion. Based on the conversion mechanism of active materials in different electrolytes, the current status on the strategies from multiple perspectives are summarized to improve the electrochemical performance, with the hope to provide a comprehensive guideline toward the development of suitable electrolytes for Li–S batteries. Lithium‐sulfur (Li−S) batteries are one of the most promising candidates for next‐generation energy storage devices. The electrolyte affects the redox mechanism of Li−S batteries, which needs to be focused. In this review, the electrolytes are reviewed according to the “solid‐liquid‐solid” and “solid‐solid” conversion of the active material sulfur. The direction of the development of Li−S battery is prospected.
Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li+ transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion of lithium polysulfides in Li–S batteries. The working mechanism of Li–S batteries in different electrolytes is classified into “solid‐liquid‐solid” and “solid‐solid” conversions. Under the “solid‐liquid‐solid” conversion, Li–S batteries would inevitably face the challenges such as “shuttle effect” that lead to poor cycle performance, and under the “solid‐solid” conversion, they would face interface mismatch that limits the utilization of sulfur with low energy density, while both conversion mechanisms cause uncontrollable Li dendrites on anode. According to the conversion mechanism, electrolytes can be divided into ether‐based, ionic liquid‐based, gel polymer electrolytes, and polymer‐based solid‐state electrolytes with “solid‐liquid‐solid” conversion, as well as carbonate‐based electrolytes and oxide/sulfide‐based solid‐state electrolytes with “solid‐solid” conversion. Based on the conversion mechanism of active materials in different electrolytes, the current status on the strategies from multiple perspectives are summarized to improve the electrochemical performance, with the hope to provide a comprehensive guideline toward the development of suitable electrolytes for Li–S batteries.
Author Yan, Tianying
Liu, Jing
Gao, Xue‐Ping
Zhou, Yuhao
Author_xml – sequence: 1
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: Nankai University
– sequence: 2
  givenname: Yuhao
  surname: Zhou
  fullname: Zhou, Yuhao
  organization: Nankai University
– sequence: 3
  givenname: Tianying
  surname: Yan
  fullname: Yan, Tianying
  email: tyan@nankai.edu.cn
  organization: Nankai University
– sequence: 4
  givenname: Xue‐Ping
  orcidid: 0000-0001-7305-7567
  surname: Gao
  fullname: Gao, Xue‐Ping
  email: xpgao@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkMFKAzEQhoNUsK1ePS943prspllzEWptrVBRUMFbyGYnmrLd1CRV9tZHEHzDPolbKhUE8TTD8H3zw99BrcpWgNAxwT2CcXIqCz3vJThJMWdJfw-1CSMsTnFy1trt5OkAdbyfYUyyLKVtdH4Hzi9ABfMGPrI6mpjnl_Xqozlr6-ayUhBNzXr1eR9dyBDA1dGobHBnyzqAP0T7WpYejr5nFz2ORw_DSTy9vboeDqaxSknWjzMNmCuSaEYISKKKIieKcSAF1VQqqRVVoIs8B9LwOO8DL5hkOdcUFxzjtItOtn8Xzr4uwQcxs0tXNZEi4SSjGaM0a6jellLOeu9Ai4Uzc-lqQbDYdCQ2HYldR41AfwnKBBmMrYKTpvxb41vt3ZRQ_xMiBpfjmx_3C1pXgLE
CitedBy_id crossref_primary_10_1007_s40242_024_4179_1
crossref_primary_10_1002_adma_202411525
crossref_primary_10_1002_ange_202416176
crossref_primary_10_1021_acs_iecr_4c01878
crossref_primary_10_1002_batt_202400284
crossref_primary_10_1002_batt_202400484
crossref_primary_10_1021_cbe_4c00040
crossref_primary_10_1515_revce_2023_0059
crossref_primary_10_1002_cctc_202400754
crossref_primary_10_1039_D4CP03352C
crossref_primary_10_1002_adfm_202412070
crossref_primary_10_1007_s40843_024_3259_x
crossref_primary_10_1021_acsami_4c18988
crossref_primary_10_1039_D4EE06096B
crossref_primary_10_1016_j_est_2025_115511
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1002_adma_202311687
crossref_primary_10_1016_j_est_2024_113186
crossref_primary_10_1002_cssc_202402006
crossref_primary_10_1007_s12274_024_6682_6
crossref_primary_10_1002_ece2_74
crossref_primary_10_1007_s11581_024_05986_4
crossref_primary_10_1016_j_jpowsour_2024_235907
crossref_primary_10_1002_anie_202416176
crossref_primary_10_1021_acssuschemeng_4c02451
crossref_primary_10_1039_D4NR00571F
crossref_primary_10_26599_NRE_2024_9120138
crossref_primary_10_1063_5_0251325
crossref_primary_10_1021_acs_jpcc_4c08230
crossref_primary_10_1016_j_mseb_2024_117773
crossref_primary_10_1021_acsanm_4c06446
crossref_primary_10_1016_j_jallcom_2024_177093
crossref_primary_10_3390_en17215258
crossref_primary_10_1021_acs_jpclett_4c01595
crossref_primary_10_1016_j_cej_2024_157343
crossref_primary_10_1039_D5CC00331H
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1016_j_est_2024_113631
crossref_primary_10_1016_j_apsusc_2024_160031
crossref_primary_10_1016_j_cej_2024_154997
crossref_primary_10_1016_j_cej_2024_157724
crossref_primary_10_1021_acsaem_4c01480
crossref_primary_10_1016_j_cej_2024_153648
crossref_primary_10_1039_D4CS00584H
Cites_doi 10.1002/adfm.201707570
10.1002/cnma.201500055
10.1002/adma.202005988
10.1038/s41467-023-36075-1
10.1038/nmat2448
10.1016/j.ensm.2016.01.008
10.1021/acsenergylett.0c02461
10.1038/ncomms5759
10.1039/C5TA04613K
10.1002/adma.202007298
10.1002/eem2.12358
10.1016/j.joule.2017.11.009
10.1038/s41467-018-07975-4
10.1038/ncomms2513
10.1038/nenergy.2016.30
10.1016/j.ensm.2019.11.008
10.1016/j.ensm.2018.05.018
10.1016/j.electacta.2014.11.083
10.1002/adma.201606823
10.1007/s10800-009-9978-z
10.1002/adfm.201808756
10.1002/adma.201700449
10.1002/adfm.202200893
10.1016/j.electacta.2006.08.016
10.1002/advs.201700503
10.1007/s40843-022-2182-0
10.1002/aenm.202001456
10.1016/S0013-4686(97)10011-1
10.1002/adma.201706102
10.1002/anie.200701144
10.1149/1.3148721
10.1007/s12613-022-2451-2
10.1016/j.jpowsour.2018.08.097
10.1149/2.0841506jes
10.1021/acs.jpclett.6b00228
10.1016/j.jpowsour.2013.05.039
10.1016/j.jpowsour.2022.232211
10.1021/acs.chemmater.7b03654
10.1021/acs.nanolett.5b04189
10.1038/s41560-018-0214-0
10.1002/eem2.12021
10.1002/anie.201712702
10.1016/j.nanoen.2017.05.041
10.1007/s11426-014-5154-3
10.1039/D1EE02433G
10.1002/aenm.201602543
10.1016/j.cej.2019.03.145
10.1002/adma.202005022
10.1002/celc.201800643
10.1016/j.jpowsour.2022.232299
10.1002/chem.201703464
10.1039/C5TA03195H
10.1002/aenm.201900763
10.1016/j.ensm.2019.07.035
10.1002/adfm.201505074
10.1039/C7EE01004D
10.1016/S0378-7753(97)02771-7
10.1021/am504345s
10.1016/S1388-2481(02)00333-8
10.1016/j.trechm.2019.06.007
10.1039/C4EE02192D
10.1016/j.joule.2018.08.010
10.1021/jacs.9b11056
10.1021/acsami.1c09492
10.1038/ncomms2327
10.1016/j.ssi.2013.10.012
10.1039/D2CC00769J
10.1002/anie.202219318
10.1038/srep04842
10.1021/acsnano.3c05016
10.1016/j.electacta.2018.06.093
10.1002/adfm.200304284
10.1016/j.ensm.2019.07.015
10.1016/j.electacta.2012.11.001
10.1002/adma.202003666
10.1016/j.cej.2019.122714
10.1021/acsnano.2c04402
10.1016/j.jallcom.2018.06.235
10.1002/adma.201705951
10.1016/j.electacta.2017.09.156
10.1039/C2CC36986A
10.1021/acs.jpclett.7b00593
10.1007/s12274-022-4584-z
10.1021/acsaem.1c00091
10.1016/j.apsusc.2022.152806
10.1016/j.elecom.2009.05.040
10.1021/jacs.7b06364
10.1038/natrevmats.2015.5
10.1038/nmat2460
10.1016/j.ensm.2019.06.021
10.1021/jp061516t
10.1039/C9TA03123E
10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
10.1039/D2EE01442D
10.1039/C4CP04895D
10.1002/adma.201501559
10.1002/advs.201500213
10.1016/j.jpowsour.2009.07.046
10.1002/cssc.201700977
10.1039/C5EE02837J
10.1016/j.nanoen.2018.05.065
10.1016/j.jpowsour.2013.02.018
10.1126/sciadv.1601659
10.1016/j.joule.2019.05.003
10.1002/batt.202100132
10.1016/j.ensm.2020.09.009
10.1016/j.ensm.2022.03.015
10.1016/j.chempr.2018.05.002
10.1016/j.nanoen.2017.05.020
10.1149/2.058309jes
10.1002/anie.201909339
10.1135/cccc20021141
10.1016/j.electacta.2017.01.098
10.1002/aenm.201500285
10.1039/C8EE01621F
10.1007/s12274-017-1929-0
10.3389/fenrg.2019.00112
10.1021/acsami.6b03897
10.1021/acsami.5b12231
10.1016/j.memsci.2020.117827
10.1002/adma.202203699
10.1016/j.jechem.2019.05.010
10.1016/j.joule.2022.12.009
10.1021/acsenergylett.2c029031336
10.1002/aenm.201401801
10.1002/adma.201901125
10.1016/j.ensm.2017.09.001
10.1016/j.joule.2018.09.024
10.1021/ar300179v
10.1016/j.renene.2021.10.067
10.1039/C8CC02552E
10.31635/ccschem.020.202000341
10.1016/j.electacta.2017.01.177
10.1016/j.electacta.2013.06.039
10.1021/acsenergylett.0c02527
10.1038/s41467-017-00974-x
10.1016/j.electacta.2018.09.169
10.1039/C7TA01481C
10.1021/acsami.1c11904
10.1002/adma.201700542
10.1016/j.jcis.2019.09.116
10.1021/acs.energyfuels.1c00990
10.1016/j.jpowsour.2013.12.031
10.1016/j.ssi.2012.03.012
10.1002/adma.201405115
10.1002/ente.202201110
10.1021/jp408037e
10.1007/s10853-021-05832-2
10.1038/451652a
10.3724/SP.J.1077.2013.13387
10.1016/j.ssi.2017.08.018
10.1039/C6CP04775K
10.1039/C7TA00196G
10.1039/C9CS00635D
10.1002/aenm.202101004
10.1021/acs.nanolett.0c00693
10.1021/acsaem.2c01185
10.1021/jp804814e
10.1021/acs.chemmater.8b03889
10.1007/s40843-022-2252-1
10.1021/jp407158y
10.1038/nenergy.2017.35
10.1002/adma.201504526
10.1016/j.electacta.2017.01.155
10.1016/j.ensm.2019.08.019
10.1016/j.jpowsour.2016.05.009
10.1002/aenm.201500113
10.1016/j.jpowsour.2014.02.075
10.1021/acsnano.5b02166
10.1021/acsami.8b15121
10.1021/jp400153m
10.1016/j.electacta.2006.08.028
10.1038/s41467-018-06877-9
10.1002/ange.202114671
10.1016/j.ssi.2013.04.024
10.1039/C8TA07685E
10.1002/aenm.202201585
10.1002/adma.201808100
10.1007/s00289-017-1993-3
10.1016/j.coco.2020.04.015
10.1016/j.electacta.2012.12.077
10.1016/0013-4686(76)85034-7
10.1002/chem.201203935
10.1039/C8TA02751J
10.1016/j.jechem.2021.12.020
10.1016/j.jpowsour.2022.231792
10.1016/j.electacta.2022.141539
10.1038/ng0103-18
10.1016/j.ssi.2013.01.002
10.1007/s12598-022-02009-x
10.1021/acsami.5b02160
10.1038/s42004-022-00626-2
10.1021/acsami.1c07883
10.1039/C8CS00826D
10.1038/s41467-022-32031-7
10.1002/adma.202002435
10.1016/j.jechem.2020.01.016
10.1002/anie.201706979
10.1002/adma.202008654
10.1002/adma.202003955
10.1007/s11581-018-2689-x
10.1021/acs.energyfuels.0c02647
10.1016/j.electacta.2011.04.084
10.1038/ncomms6193
10.1021/acsami.0c12702
10.1039/c2cs35256g
10.1016/j.jpowsour.2017.07.047
10.1016/j.jpowsour.2022.231482
10.1039/C8EE00364E
10.1021/acsami.9b16786
10.1038/s41467-022-29199-3
10.1016/j.cej.2020.127427
10.1002/aenm.202003690
10.1021/acsami.1c21573
10.1002/aenm.201702348
10.1039/C6TA00402D
10.1002/adfm.201704865
10.1016/j.cej.2019.123904
10.1039/D3SC01052J
10.1002/aenm.201500117
10.1016/j.jpowsour.2009.06.089
10.1016/j.cej.2019.03.245
10.1016/S0378-7753(96)02417-2
10.1021/acs.jpcc.8b10175
10.1016/j.electacta.2006.03.016
10.1016/j.joule.2018.12.018
10.1039/C4EE00372A
10.1021/acsami.7b07057
10.1016/j.cej.2023.141556
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202309625
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202309625
ADFM202309625
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22273040; 21935006
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3175-7fe09c12f611ea1cddb1c69e1d4f4acafc4cefdbbe13170b5e9d6a6b9f40d9003
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 02:25:14 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Tue Jul 01 00:30:50 EDT 2025
Wed Jan 22 16:16:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-7fe09c12f611ea1cddb1c69e1d4f4acafc4cefdbbe13170b5e9d6a6b9f40d9003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7305-7567
PQID 2917476447
PQPubID 2045204
PageCount 28
ParticipantIDs proquest_journals_2917476447
crossref_primary_10_1002_adfm_202309625
crossref_citationtrail_10_1002_adfm_202309625
wiley_primary_10_1002_adfm_202309625_ADFM202309625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 259
2013; 4
2021 2020 2018 2022 2017 2021; 33 10 8 34 29 14
2018; 282
2020; 20
2019; 10
2013; 244
2013 2022; 4 29
2013; 240
2018 2018; 30 4
2014 2013; 262 117
2019 2019; 21 22
2014; 253
2020; 19
2018; 6
2023; 62
2018; 9
2017; 74
2018; 3
2018; 2
2023; 66
2018; 5
1976 2017 2013 2007 2015 2015 2017; 21 29 89 52 4 162 7
2022 2018; 32 57
2013; 117
2014 2019 2019; 7 2 7
2013; 234
1996; 62
2008; 112
2017 2016 2015; 8 28 9
2014 2013 2015; 5 46 27
2019; 7
2017 2017; 230 5
2018; 28
2019; 9
2017 2018 2021; 139 5 56
2019; 3
2016 2022; 1 542
2019; 31
2020 2016 2022 2021; 32 132 12 33
2020; 41
2020; 382
2020; 142
2019; 1
1998 1998 2022 2021; 10 72 586 33
2015 2002 2015 2015 2021; 5 4 17 5 6
2013; 107
2013 2021; 4 33
2016; 322
2009 2017 2010 2018 2023; 8 7 3 30 14
2017 2020; 38 387
2006; 110
2002; 4
2020; 34
2012; 225
2016; 16
2018; 25
2016; 4
2016; 7
2016; 1
2022; 183
2021; 55
2016; 3
2022; 5
2023; 553
2021; 413
2017; 56
2022; 13
2020; 26
2022; 15
2020; 24
2023; 439
2018; 11
2016; 26
2016; 8
2022; 16
2016; 9
2018; 15
2022; 18
2017; 5
2017; 8
2017 2013 2018 2022; 29 42 1 50
2009; 40
2017; 2
2017; 3
2019 2016; 29 8
2022; 71
2015 2021; 5 35
2023 2023; 14
2023; 7
2018 2015 2017; 11 3 1
2018 2020; 765 24
2020 2018 2017; 558 11 23
2003; 13
2019; 369
2009; 156
2017; 230
1998; 43
2013; 160
2017; 9
2019; 123
2013; 19
2013 2020 2022 2023; 28 24 536 11
2020; 6
2014; 4
2021; 34
2021; 33
2020; 49
2020; 48
2014; 57
2017; 362
2023 2020 2021; 12 4
2017 2019; 38 48
2014; 7
2022; 551
2020 2020 2002 2023; 32 2 67 17
2015; 1
2023 2022 2023 2022 2019; 459 5 6 134 3
2017 2018 2011 2018; 258 10 56 11
2021; 4
2015; 5
2019 2020; 31 59
2013; 49
2023; 16
2021 2023 2018; 14 66 292
2022; 41
2017; 29
2007; 52
2010 2022; 58
2015; 7
2015; 151
2017; 229
2021; 13
2015; 27
2010 2009 2009 2006 2009 2020 2013; 195 8 11 51 194 12 91
2016 2014; 3 6
2021; 11
2022
2017; 10
2020; 599
2014 2013; 5 244
2016
2018; 318
2018; 50
2018; 54
2016 2018; 18 401
2008; 451
2019; 370
2007; 46
2018 2015; 1 3
e_1_2_9_79_1
e_1_2_9_10_2
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_45_2
e_1_2_9_6_3
e_1_2_9_6_2
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
Yang X. (e_1_2_9_121_1) 2018; 1
e_1_2_9_111_4
e_1_2_9_157_4
e_1_2_9_111_3
e_1_2_9_157_3
e_1_2_9_111_2
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_2
e_1_2_9_6_4
e_1_2_9_111_5
e_1_2_9_157_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_11_2
e_1_2_9_129_1
e_1_2_9_106_2
e_1_2_9_121_2
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_57_2
e_1_2_9_19_2
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_2
e_1_2_9_23_1
e_1_2_9_5_4
e_1_2_9_5_3
e_1_2_9_5_2
e_1_2_9_5_1
Dilimon V. S. (e_1_2_9_38_7) 2017; 7
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_23_4
e_1_2_9_23_3
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_31_4
e_1_2_9_31_2
e_1_2_9_77_1
e_1_2_9_31_3
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_136_3
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_28_3
e_1_2_9_28_2
e_1_2_9_55_3
e_1_2_9_93_2
e_1_2_9_55_2
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_32_2
e_1_2_9_93_1
e_1_2_9_108_1
Zhang B. (e_1_2_9_7_3) 2010; 3
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_123_2
e_1_2_9_146_1
e_1_2_9_55_7
e_1_2_9_55_6
e_1_2_9_17_1
e_1_2_9_55_5
e_1_2_9_55_4
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_2
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_158_2
e_1_2_9_112_1
e_1_2_9_7_5
e_1_2_9_7_4
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_29_2
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_29_3
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
Wu X. J. (e_1_2_9_22_1) 2022; 18
e_1_2_9_75_3
e_1_2_9_75_2
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_126_2
e_1_2_9_14_2
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_2_6
e_1_2_9_2_5
e_1_2_9_2_4
e_1_2_9_2_3
e_1_2_9_2_2
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_138_2
e_1_2_9_138_3
e_1_2_9_153_4
e_1_2_9_153_3
e_1_2_9_115_1
e_1_2_9_153_5
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_2
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_30_2
e_1_2_9_99_1
e_1_2_9_53_2
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_38_2
e_1_2_9_38_6
e_1_2_9_38_3
e_1_2_9_38_4
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_137_2
e_1_2_9_137_3
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_2
e_1_2_9_27_1
Schomburg D. (e_1_2_9_154_1) 2010
Umeshbabu E. (e_1_2_9_136_2) 2019; 2
e_1_2_9_96_3
Cuisinier M. (e_1_2_9_19_1) 2013; 4
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_12_2
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_96_2
Cataldo F. (e_1_2_9_38_5) 2015; 4
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_12_3
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
Kong L. Y. (e_1_2_9_51_1) 2021; 55
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_24_2
e_1_2_9_47_1
e_1_2_9_47_2
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_13_1
e_1_2_9_97_1
Wang J. L. (e_1_2_9_127_1) 2002; 4
e_1_2_9_104_1
e_1_2_9_13_3
e_1_2_9_13_2
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_13_4
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_139_2
e_1_2_9_154_2
e_1_2_9_116_1
e_1_2_9_25_2
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
References_xml – volume: 33 10 8 34 29 14
  start-page: 5911
  year: 2021 2020 2018 2022 2017 2021
  publication-title: Adv. Mater. Adv. Energy Mater. Adv. Energy Mater. Adv. Mater. Adv. Mater. Energy Environ. Sci.
– volume: 142
  start-page: 7393
  year: 2020
  publication-title: J. Am. Chem. Soc.
– start-page: 2022
  year: 2022
– volume: 8 28 9
  start-page: 850 1853 5884
  year: 2017 2016 2015
  publication-title: Nat. Commun. Adv. Mater. ACS Nano
– volume: 3 6
  year: 2016 2014
  publication-title: Adv. Sci. ACS Appl. Mater. Interfaces
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 558 11 23
  start-page: 145 3340
  year: 2020 2018 2017
  publication-title: J. Colloid Interface Sci. Nano Res. Chemistry
– volume: 244
  start-page: 48
  year: 2013
  publication-title: Solid State Ionics
– volume: 55
  start-page: 89
  year: 2021
  publication-title: J Energy Chem
– volume: 7
  start-page: 1
  year: 2023
  publication-title: Joule
– volume: 160
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 362
  start-page: 243
  year: 2017
  publication-title: J. Power Sources
– volume: 27
  start-page: 5203
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4509
  year: 2018
  publication-title: Nat. Commun.
– volume: 4 29
  start-page: 3227 990
  year: 2013 2022
  publication-title: Adv. Energy Mater. Int. J. Miner., Metall. Mater.
– volume: 322
  start-page: 99
  year: 2016
  publication-title: J. Power Sources
– volume: 38 387
  start-page: 12
  year: 2017 2020
  publication-title: Nano Energy Chem. Eng. J.
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 499
  year: 2002
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1568
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 373
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 31
  start-page: 808
  year: 2019
  publication-title: Chem. Mater.
– volume: 71
  start-page: 29
  year: 2022
  publication-title: J Energy Chem
– volume: 3
  start-page: 1689
  year: 2019
  publication-title: Joule
– volume: 58
  start-page: 4747
  year: 2010 2022
  publication-title: Chem. Commun.
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. B
– volume: 230
  start-page: 123
  year: 2017
  publication-title: Electrochim. Acta
– volume: 41
  start-page: 2834
  year: 2022
  publication-title: Rare Met.
– volume: 25
  start-page: 17
  year: 2018
  publication-title: Ionics
– volume: 29 42 1 50
  start-page: 3018 196 197
  year: 2017 2013 2018 2022
  publication-title: Adv. Mater. Chem. Soc. Rev. Energy Environ. Mater. Energy Storage Mater.
– volume: 10 72 586 33
  start-page: 725 203
  year: 1998 1998 2022 2021
  publication-title: Adv. Mater. J. Power Sources Appl. Surf. Sci. Adv. Mater.
– volume: 5 46 27
  start-page: 4759 1125 1980
  year: 2014 2013 2015
  publication-title: Nat. Commun. Acc. Chem. Res. Adv. Mater.
– volume: 20
  start-page: 2871
  year: 2020
  publication-title: Nano Lett.
– volume: 4
  start-page: 4459
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 38 48
  start-page: 82 3279
  year: 2017 2019
  publication-title: Nano Energy Chem. Soc. Rev.
– volume: 29 8
  start-page: 7783
  year: 2019 2016
  publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces
– volume: 1 542
  year: 2016 2022
  publication-title: Nat. Rev. Mater. J. Power Sources
– volume: 19
  start-page: 239
  year: 2020
  publication-title: Compos. Commun.
– volume: 765 24
  start-page: 544 198
  year: 2018 2020
  publication-title: J. Alloy.Compd. Energy Storage Mater.
– volume: 52
  start-page: 2116
  year: 2007
  publication-title: Electrochim. Acta
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 225
  start-page: 604
  year: 2012
  publication-title: Solid State Ionics
– volume: 43
  start-page: 1137
  year: 1998
  publication-title: Electrochim. Acta
– volume: 12 4
  start-page: 1708
  year: 2023 2020 2021
  publication-title: ACS Energy Lett. ACS Appl. Mater. Interfaces Batteries Supercaps
– volume: 16
  start-page: 549
  year: 2016
  publication-title: Nano Lett.
– volume: 26
  start-page: 3059
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  start-page: 2697
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 2681
  year: 2018
  publication-title: Joule
– volume: 50
  start-page: 431
  year: 2018
  publication-title: Nano Energy
– volume: 5
  start-page: 6257
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4 33
  start-page: 1331
  year: 2013 2021
  publication-title: Nat. Commun. Adv. Mater.
– volume: 48
  start-page: 267
  year: 2020
  publication-title: J Energy Chem
– year: 2016
– volume: 234
  start-page: 40
  year: 2013
  publication-title: Solid State Ionics
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 13
  start-page: 2575
  year: 2022
  publication-title: Nat. Commun.
– volume: 262 117
  start-page: 174 4431
  year: 2014 2013
  publication-title: Solid State Ionics J. Phys. Chem. C
– volume: 110
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 318
  start-page: 82
  year: 2018
  publication-title: Solid State Ionics
– volume: 370
  start-page: 1068
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 5 244
  start-page: 5193 183
  year: 2014 2013
  publication-title: Nat. Commun. J. Power Sources
– volume: 54
  start-page: 5478
  year: 2018
  publication-title: Chem. Commun.
– volume: 34
  year: 2020
  publication-title: Energy Fuels
– volume: 74
  start-page: 4887
  year: 2017
  publication-title: Polym. Bull.
– volume: 16
  start-page: 8253
  year: 2023
  publication-title: Nano Res.
– volume: 18 401
  start-page: 271
  year: 2016 2018
  publication-title: Phys. Chem. Chem. Phys. J. Power Sources
– volume: 240
  start-page: 636
  year: 2013
  publication-title: J. Power Sources
– volume: 599
  year: 2020
  publication-title: J. Membrane Sci.
– volume: 259
  start-page: 289
  year: 2014
  publication-title: J. Power Sources
– volume: 15
  start-page: 3842
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 693
  year: 2019
  publication-title: Trends. Chem.
– volume: 10
  start-page: 188
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3490
  year: 2017
  publication-title: ChemSusChem
– volume: 32 57
  year: 2022 2018
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 459 5 6 134 3
  start-page: 7719 136
  year: 2023 2022 2023 2022 2019
  publication-title: Chem. Eng. J. ACS Appl. Energy Mater. Energy Environ. Mater. Angew. Chem., Int. Ed. Joule
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 156
  start-page: A694
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 21 29 89 52 4 162 7
  start-page: 661 737 2075 6
  year: 1976 2017 2013 2007 2015 2015 2017
  publication-title: Electrochim. Acta Adv. Mater. Electrochim. Acta Electrochim. Acta Chem. J. Electrochem. Soc. Stem Cells Int
– volume: 107
  start-page: 454
  year: 2013
  publication-title: Electrochim. Acta
– volume: 62
  start-page: 219
  year: 1996
  publication-title: J. Power Sources
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 369
  start-page: 874
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 1564
  year: 2014
  publication-title: Sci China Chem
– volume: 13
  start-page: 487
  year: 2003
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 321
  year: 2009
  publication-title: J. Appl. Electrochem.
– volume: 151
  start-page: 289
  year: 2015
  publication-title: Electrochim. Acta
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 553
  year: 2023
  publication-title: J. Power Sources
– volume: 5 4 17 5 6
  start-page: 406 2127 537
  year: 2015 2002 2015 2015 2021
  publication-title: Adv. Energy Mater. Electrochem. Commun. Phys. Chem. Chem. Phys. Adv. Energy Mater. ACS Energy Lett.
– volume: 413
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 1481
  year: 2013
  publication-title: Nat. Commun.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 4
  start-page: 7718
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1518
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 32 2 67 17
  start-page: 1245 1141
  year: 2020 2020 2002 2023
  publication-title: Adv. Mater. Collect. Czech. Chem. Commun. ACS Nano
– volume: 49
  start-page: 2140
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 253
  start-page: 263
  year: 2014
  publication-title: J. Power Sources
– volume: 3
  start-page: 872
  year: 2019
  publication-title: Joule
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 183
  start-page: 90
  year: 2022
  publication-title: Renew. Energ.
– volume: 29
  year: 2017
  publication-title: Chem. Mater.
– volume: 34
  start-page: 128
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 195 8 11 51 194 12 91
  start-page: 574 621 1500 5567 601 591 58
  year: 2010 2009 2009 2006 2009 2020 2013
  publication-title: J. Power Sources Nat. Mater. Electrochem. Commun. Electrochim. Acta J. Power Sources ACS Appl. Mater. Interfaces Electrochim. Acta
– volume: 258 10 56 11
  start-page: 110 6055 2828
  year: 2017 2018 2011 2018
  publication-title: Electrochim. Acta ACS Appl. Mater. Interfaces Electrochim. Acta Energy Environ. Sci.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 1 3
  start-page: 239
  year: 2018 2015
  publication-title: Electrochem. Eng. Energy, [Proc. Eur. Symp. Electr. Eng.], 3rd J. Mater. Chem. A
– volume: 66
  start-page: 913
  year: 2023
  publication-title: Sci. China Mater.
– volume: 21 22
  start-page: 308 194
  year: 2019 2019
  publication-title: Energy Storage Mater. Energy Storage Mater.
– volume: 18
  start-page: 2106
  year: 2022
  publication-title: Small
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 224
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 14 66 292
  start-page: 1212 513 331
  year: 2021 2023 2018
  publication-title: ACS Appl. Mater. Interfaces Sci. China Mater. Electrochim. Acta
– volume: 19
  start-page: 1568
  year: 2013
  publication-title: Chemistry
– volume: 49
  start-page: 2004
  year: 2013
  publication-title: Chem. Commun.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 439
  year: 2023
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 4842
  year: 2014
  publication-title: Sci. Rep.
– volume: 230 5
  start-page: 279
  year: 2017 2017
  publication-title: Electrochim. Acta J. Mater. Chem. A
– volume: 41
  start-page: 149
  year: 2020
  publication-title: J Energy Chem
– volume: 11
  start-page: 24
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 26
  start-page: 378
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 229
  start-page: 22
  year: 2017
  publication-title: Electrochim. Acta
– volume: 11 3 1
  start-page: 2600 871
  year: 2018 2015 2017
  publication-title: Energy Environ. Sci. J. Mater. Chem. A Joule
– volume: 551
  year: 2022
  publication-title: J. Power Sources
– volume: 30 4
  start-page: 1877
  year: 2018 2018
  publication-title: Adv. Mater. Chem.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7 2 7
  start-page: 3902 199 112
  year: 2014 2019 2019
  publication-title: Energy Environ. Sci. Electrochem. Eng. Energy, [Proc. Eur. Symp. Electr. Eng.], 3rd Front. Energy Res.
– volume: 139 5 56
  start-page: 2873 8358
  year: 2017 2018 2021
  publication-title: J. Am. Chem. Soc. ChemElectroChem J. Mater. Sci.
– volume: 282
  start-page: 555
  year: 2018
  publication-title: Electrochim. Acta
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5 35
  year: 2015 2021
  publication-title: Adv. Energy Mater. Energy Fuels
– volume: 8 7 3 30 14
  start-page: 500 1531 5887
  year: 2009 2017 2010 2018 2023
  publication-title: Nat. Mater. Adv. Energy Mater. Environ Sci Adv. Mater. Chem. Sci.
– volume: 5
  start-page: 1
  year: 2022
  publication-title: Commun Chem
– volume: 3
  start-page: 783
  year: 2018
  publication-title: Nat. Energy
– volume: 31 59
  year: 2019 2020
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 282
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 28 24 536 11
  start-page: 1181 373
  year: 2013 2020 2022 2023
  publication-title: J. Inorg. Mater. Energy Storage Mater. J. Power Sources Energy Technol.
– volume: 3
  start-page: 69
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 1956
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 32 132 12 33
  issue: 1
  year: 2020 2016 2022 2021
  publication-title: Adv. Mater. Nat. Energy Adv. Energy Mater. Adv. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 7778
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 440
  year: 2023 2023
– volume: 13
  start-page: 4415
  year: 2022
  publication-title: Nat. Commun.
– volume: 1
  start-page: 240
  year: 2015
  publication-title: ChemNanoMat
– volume: 6
  start-page: 224
  year: 2020
  publication-title: ACS Energy Lett.
– ident: e_1_2_9_87_1
  doi: 10.1002/adfm.201707570
– ident: e_1_2_9_108_1
  doi: 10.1002/cnma.201500055
– ident: e_1_2_9_5_4
  doi: 10.1002/adma.202005988
– ident: e_1_2_9_158_2
  doi: 10.1038/s41467-023-36075-1
– ident: e_1_2_9_55_2
  doi: 10.1038/nmat2448
– ident: e_1_2_9_85_1
  doi: 10.1016/j.ensm.2016.01.008
– ident: e_1_2_9_15_1
  doi: 10.1021/acsenergylett.0c02461
– ident: e_1_2_9_12_1
  doi: 10.1038/ncomms5759
– ident: e_1_2_9_121_2
  doi: 10.1039/C5TA04613K
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.202007298
– ident: e_1_2_9_111_3
  doi: 10.1002/eem2.12358
– ident: e_1_2_9_29_3
  doi: 10.1016/j.joule.2017.11.009
– ident: e_1_2_9_155_1
  doi: 10.1038/s41467-018-07975-4
– ident: e_1_2_9_102_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_9_150_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_9_61_1
  doi: 10.1016/j.ensm.2019.11.008
– ident: e_1_2_9_146_1
  doi: 10.1016/j.ensm.2018.05.018
– ident: e_1_2_9_72_1
  doi: 10.1016/j.electacta.2014.11.083
– ident: e_1_2_9_2_5
  doi: 10.1002/adma.201606823
– ident: e_1_2_9_41_1
  doi: 10.1007/s10800-009-9978-z
– ident: e_1_2_9_11_1
  doi: 10.1002/adfm.201808756
– ident: e_1_2_9_38_2
  doi: 10.1002/adma.201700449
– ident: e_1_2_9_106_1
  doi: 10.1002/adfm.202200893
– ident: e_1_2_9_38_4
  doi: 10.1016/j.electacta.2006.08.016
– ident: e_1_2_9_83_1
  doi: 10.1002/advs.201700503
– ident: e_1_2_9_138_2
  doi: 10.1007/s40843-022-2182-0
– ident: e_1_2_9_2_2
  doi: 10.1002/aenm.202001456
– ident: e_1_2_9_88_1
  doi: 10.1016/S0013-4686(97)10011-1
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_9_144_1
  doi: 10.1002/anie.200701144
– ident: e_1_2_9_109_1
  doi: 10.1149/1.3148721
– ident: e_1_2_9_19_2
  doi: 10.1007/s12613-022-2451-2
– ident: e_1_2_9_47_2
  doi: 10.1016/j.jpowsour.2018.08.097
– ident: e_1_2_9_38_6
  doi: 10.1149/2.0841506jes
– ident: e_1_2_9_156_1
  doi: 10.1021/acs.jpclett.6b00228
– ident: e_1_2_9_122_1
– ident: e_1_2_9_141_1
  doi: 10.1016/j.jpowsour.2013.05.039
– volume: 55
  start-page: 89
  year: 2021
  ident: e_1_2_9_51_1
  publication-title: J Energy Chem
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jpowsour.2022.232211
– volume: 4
  start-page: 499
  year: 2002
  ident: e_1_2_9_127_1
  publication-title: Adv. Mater.
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.chemmater.7b03654
– ident: e_1_2_9_114_1
  doi: 10.1021/acs.nanolett.5b04189
– ident: e_1_2_9_159_1
  doi: 10.1038/s41560-018-0214-0
– ident: e_1_2_9_6_3
  doi: 10.1002/eem2.12021
– ident: e_1_2_9_106_2
  doi: 10.1002/anie.201712702
– volume-title: CRC Handbook of Chemistry and Physics 90th
  year: 2010
  ident: e_1_2_9_154_1
– ident: e_1_2_9_10_1
  doi: 10.1016/j.nanoen.2017.05.041
– ident: e_1_2_9_60_1
  doi: 10.1007/s11426-014-5154-3
– ident: e_1_2_9_2_6
  doi: 10.1039/D1EE02433G
– ident: e_1_2_9_7_2
  doi: 10.1002/aenm.201602543
– volume: 18
  start-page: 2106
  year: 2022
  ident: e_1_2_9_22_1
  publication-title: Small
– ident: e_1_2_9_58_1
  doi: 10.1016/j.cej.2019.03.145
– ident: e_1_2_9_157_1
  doi: 10.1002/adma.202005022
– ident: e_1_2_9_137_2
  doi: 10.1002/celc.201800643
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jpowsour.2022.232299
– volume: 4
  start-page: 6
  year: 2015
  ident: e_1_2_9_38_5
  publication-title: Chem.
– ident: e_1_2_9_75_3
  doi: 10.1002/chem.201703464
– ident: e_1_2_9_29_2
  doi: 10.1039/C5TA03195H
– ident: e_1_2_9_4_1
– ident: e_1_2_9_92_1
  doi: 10.1002/aenm.201900763
– ident: e_1_2_9_23_2
  doi: 10.1016/j.ensm.2019.07.035
– ident: e_1_2_9_100_1
  doi: 10.1002/adfm.201505074
– ident: e_1_2_9_149_1
  doi: 10.1039/C7EE01004D
– ident: e_1_2_9_5_2
  doi: 10.1016/S0378-7753(97)02771-7
– ident: e_1_2_9_14_2
  doi: 10.1021/am504345s
– ident: e_1_2_9_153_2
  doi: 10.1016/S1388-2481(02)00333-8
– ident: e_1_2_9_8_1
  doi: 10.1016/j.trechm.2019.06.007
– ident: e_1_2_9_136_1
  doi: 10.1039/C4EE02192D
– ident: e_1_2_9_17_1
  doi: 10.1016/j.joule.2018.08.010
– ident: e_1_2_9_26_1
  doi: 10.1021/jacs.9b11056
– ident: e_1_2_9_50_1
  doi: 10.1021/acsami.1c09492
– ident: e_1_2_9_24_1
  doi: 10.1038/ncomms2327
– ident: e_1_2_9_57_1
  doi: 10.1016/j.ssi.2013.10.012
– ident: e_1_2_9_154_2
  doi: 10.1039/D2CC00769J
– ident: e_1_2_9_54_1
  doi: 10.1002/anie.202219318
– ident: e_1_2_9_129_1
  doi: 10.1038/srep04842
– ident: e_1_2_9_157_4
  doi: 10.1021/acsnano.3c05016
– ident: e_1_2_9_134_1
  doi: 10.1016/j.electacta.2018.06.093
– ident: e_1_2_9_128_1
  doi: 10.1002/adfm.200304284
– ident: e_1_2_9_30_2
  doi: 10.1016/j.ensm.2019.07.015
– ident: e_1_2_9_38_3
  doi: 10.1016/j.electacta.2012.11.001
– ident: e_1_2_9_2_1
  doi: 10.1002/adma.202003666
– ident: e_1_2_9_79_1
  doi: 10.1016/j.cej.2019.122714
– ident: e_1_2_9_116_1
  doi: 10.1021/acsnano.2c04402
– ident: e_1_2_9_93_1
  doi: 10.1016/j.jallcom.2018.06.235
– ident: e_1_2_9_7_4
  doi: 10.1002/adma.201705951
– ident: e_1_2_9_31_1
  doi: 10.1016/j.electacta.2017.09.156
– ident: e_1_2_9_126_2
– ident: e_1_2_9_42_1
  doi: 10.1039/C2CC36986A
– ident: e_1_2_9_89_1
  doi: 10.1021/acs.jpclett.7b00593
– ident: e_1_2_9_113_1
  doi: 10.1007/s12274-022-4584-z
– ident: e_1_2_9_91_1
  doi: 10.1021/acsaem.1c00091
– ident: e_1_2_9_5_3
  doi: 10.1016/j.apsusc.2022.152806
– ident: e_1_2_9_55_3
  doi: 10.1016/j.elecom.2009.05.040
– ident: e_1_2_9_137_1
  doi: 10.1021/jacs.7b06364
– ident: e_1_2_9_53_1
  doi: 10.1038/natrevmats.2015.5
– ident: e_1_2_9_7_1
  doi: 10.1038/nmat2460
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ensm.2019.06.021
– ident: e_1_2_9_70_1
  doi: 10.1021/jp061516t
– ident: e_1_2_9_80_1
  doi: 10.1039/C9TA03123E
– ident: e_1_2_9_5_1
  doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
– ident: e_1_2_9_37_1
  doi: 10.1039/D2EE01442D
– ident: e_1_2_9_153_3
  doi: 10.1039/C4CP04895D
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.201501559
– volume: 7
  year: 2017
  ident: e_1_2_9_38_7
  publication-title: Stem Cells Int
– ident: e_1_2_9_14_1
  doi: 10.1002/advs.201500213
– ident: e_1_2_9_55_1
  doi: 10.1016/j.jpowsour.2009.07.046
– ident: e_1_2_9_71_1
  doi: 10.1002/cssc.201700977
– ident: e_1_2_9_63_1
  doi: 10.1039/C5EE02837J
– ident: e_1_2_9_103_1
  doi: 10.1016/j.nanoen.2018.05.065
– ident: e_1_2_9_27_2
  doi: 10.1016/j.jpowsour.2013.02.018
– ident: e_1_2_9_145_1
  doi: 10.1126/sciadv.1601659
– ident: e_1_2_9_90_1
  doi: 10.1016/j.joule.2019.05.003
– ident: e_1_2_9_96_3
  doi: 10.1002/batt.202100132
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ensm.2020.09.009
– ident: e_1_2_9_6_4
  doi: 10.1016/j.ensm.2022.03.015
– ident: e_1_2_9_25_2
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_9_123_1
  doi: 10.1016/j.nanoen.2017.05.020
– ident: e_1_2_9_66_1
  doi: 10.1149/2.058309jes
– ident: e_1_2_9_32_2
  doi: 10.1002/anie.201909339
– ident: e_1_2_9_157_3
  doi: 10.1135/cccc20021141
– volume: 3
  start-page: 1531
  year: 2010
  ident: e_1_2_9_7_3
  publication-title: Environ Sci
– ident: e_1_2_9_94_1
  doi: 10.1016/j.electacta.2017.01.098
– ident: e_1_2_9_98_1
  doi: 10.1002/aenm.201500285
– ident: e_1_2_9_31_4
  doi: 10.1039/C8EE01621F
– ident: e_1_2_9_75_2
  doi: 10.1007/s12274-017-1929-0
– ident: e_1_2_9_136_3
  doi: 10.3389/fenrg.2019.00112
– ident: e_1_2_9_107_1
  doi: 10.1021/acsami.6b03897
– ident: e_1_2_9_11_2
  doi: 10.1021/acsami.5b12231
– ident: e_1_2_9_64_1
  doi: 10.1016/j.memsci.2020.117827
– ident: e_1_2_9_2_4
  doi: 10.1002/adma.202203699
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jechem.2019.05.010
– ident: e_1_2_9_160_1
  doi: 10.1016/j.joule.2022.12.009
– ident: e_1_2_9_96_1
  doi: 10.1021/acsenergylett.2c029031336
– ident: e_1_2_9_153_4
  doi: 10.1002/aenm.201401801
– ident: e_1_2_9_32_1
  doi: 10.1002/adma.201901125
– ident: e_1_2_9_105_1
  doi: 10.1016/j.ensm.2017.09.001
– ident: e_1_2_9_111_5
  doi: 10.1016/j.joule.2018.09.024
– ident: e_1_2_9_12_2
  doi: 10.1021/ar300179v
– ident: e_1_2_9_1_1
  doi: 10.1016/j.renene.2021.10.067
– ident: e_1_2_9_43_1
  doi: 10.1039/C8CC02552E
– ident: e_1_2_9_157_2
  doi: 10.31635/ccschem.020.202000341
– ident: e_1_2_9_68_1
  doi: 10.1016/j.electacta.2017.01.177
– ident: e_1_2_9_125_1
  doi: 10.1016/j.electacta.2013.06.039
– ident: e_1_2_9_153_5
  doi: 10.1021/acsenergylett.0c02527
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-017-00974-x
– ident: e_1_2_9_138_3
  doi: 10.1016/j.electacta.2018.09.169
– ident: e_1_2_9_139_2
  doi: 10.1039/C7TA01481C
– ident: e_1_2_9_119_1
  doi: 10.1021/acsami.1c11904
– ident: e_1_2_9_6_1
  doi: 10.1002/adma.201700542
– ident: e_1_2_9_75_1
  doi: 10.1016/j.jcis.2019.09.116
– ident: e_1_2_9_45_2
  doi: 10.1021/acs.energyfuels.1c00990
– ident: e_1_2_9_101_1
  doi: 10.1016/j.jpowsour.2013.12.031
– ident: e_1_2_9_76_1
  doi: 10.1016/j.ssi.2012.03.012
– ident: e_1_2_9_12_3
  doi: 10.1002/adma.201405115
– ident: e_1_2_9_23_4
  doi: 10.1002/ente.202201110
– ident: e_1_2_9_56_1
  doi: 10.1021/jp408037e
– ident: e_1_2_9_137_3
  doi: 10.1007/s10853-021-05832-2
– ident: e_1_2_9_135_1
  doi: 10.1038/451652a
– ident: e_1_2_9_23_1
  doi: 10.3724/SP.J.1077.2013.13387
– ident: e_1_2_9_69_1
  doi: 10.1016/j.ssi.2017.08.018
– volume: 4
  start-page: 3227
  year: 2013
  ident: e_1_2_9_19_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_9_47_1
  doi: 10.1039/C6CP04775K
– ident: e_1_2_9_140_1
  doi: 10.1039/C7TA00196G
– ident: e_1_2_9_20_1
  doi: 10.1039/C9CS00635D
– ident: e_1_2_9_133_1
  doi: 10.1002/aenm.202101004
– ident: e_1_2_9_147_1
  doi: 10.1021/acs.nanolett.0c00693
– ident: e_1_2_9_111_2
  doi: 10.1021/acsaem.2c01185
– ident: e_1_2_9_124_1
  doi: 10.1021/jp804814e
– ident: e_1_2_9_16_1
  doi: 10.1021/acs.chemmater.8b03889
– ident: e_1_2_9_77_1
  doi: 10.1007/s40843-022-2252-1
– ident: e_1_2_9_59_1
  doi: 10.1021/jp407158y
– volume: 1
  start-page: 239
  year: 2018
  ident: e_1_2_9_121_1
  publication-title: Electrochem. Eng. Energy, [Proc. Eur. Symp. Electr. Eng.], 3rd
– ident: e_1_2_9_95_1
  doi: 10.1038/nenergy.2017.35
– ident: e_1_2_9_28_2
  doi: 10.1002/adma.201504526
– ident: e_1_2_9_139_1
  doi: 10.1016/j.electacta.2017.01.155
– ident: e_1_2_9_93_2
  doi: 10.1016/j.ensm.2019.08.019
– ident: e_1_2_9_110_1
  doi: 10.1016/j.jpowsour.2016.05.009
– ident: e_1_2_9_153_1
  doi: 10.1002/aenm.201500113
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jpowsour.2014.02.075
– ident: e_1_2_9_28_3
  doi: 10.1021/acsnano.5b02166
– ident: e_1_2_9_31_2
  doi: 10.1021/acsami.8b15121
– ident: e_1_2_9_57_2
  doi: 10.1021/jp400153m
– ident: e_1_2_9_97_1
  doi: 10.1016/j.electacta.2006.08.028
– ident: e_1_2_9_120_1
  doi: 10.1038/s41467-018-06877-9
– ident: e_1_2_9_111_4
  doi: 10.1002/ange.202114671
– ident: e_1_2_9_151_1
  doi: 10.1016/j.ssi.2013.04.024
– ident: e_1_2_9_73_1
  doi: 10.1039/C8TA07685E
– ident: e_1_2_9_13_3
  doi: 10.1002/aenm.202201585
– ident: e_1_2_9_152_1
  doi: 10.1002/adma.201808100
– ident: e_1_2_9_67_1
  doi: 10.1007/s00289-017-1993-3
– ident: e_1_2_9_78_1
  doi: 10.1016/j.coco.2020.04.015
– ident: e_1_2_9_55_7
  doi: 10.1016/j.electacta.2012.12.077
– ident: e_1_2_9_38_1
  doi: 10.1016/0013-4686(76)85034-7
– ident: e_1_2_9_62_1
  doi: 10.1002/chem.201203935
– ident: e_1_2_9_132_1
  doi: 10.1039/C8TA02751J
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jechem.2021.12.020
– ident: e_1_2_9_53_2
  doi: 10.1016/j.jpowsour.2022.231792
– ident: e_1_2_9_118_1
  doi: 10.1016/j.electacta.2022.141539
– ident: e_1_2_9_13_2
  doi: 10.1038/ng0103-18
– ident: e_1_2_9_81_1
  doi: 10.1016/j.ssi.2013.01.002
– ident: e_1_2_9_34_1
  doi: 10.1007/s12598-022-02009-x
– ident: e_1_2_9_39_1
  doi: 10.1021/acsami.5b02160
– ident: e_1_2_9_130_1
  doi: 10.1038/s42004-022-00626-2
– ident: e_1_2_9_104_1
  doi: 10.1021/acsami.1c07883
– ident: e_1_2_9_123_2
  doi: 10.1039/C8CS00826D
– ident: e_1_2_9_33_1
  doi: 10.1038/s41467-022-32031-7
– ident: e_1_2_9_13_1
  doi: 10.1002/adma.202002435
– ident: e_1_2_9_74_1
  doi: 10.1016/j.jechem.2020.01.016
– ident: e_1_2_9_99_1
  doi: 10.1002/anie.201706979
– ident: e_1_2_9_13_4
  doi: 10.1002/adma.202008654
– ident: e_1_2_9_24_2
  doi: 10.1002/adma.202003955
– ident: e_1_2_9_86_1
  doi: 10.1007/s11581-018-2689-x
– ident: e_1_2_9_143_1
  doi: 10.1021/acs.energyfuels.0c02647
– ident: e_1_2_9_31_3
  doi: 10.1016/j.electacta.2011.04.084
– ident: e_1_2_9_27_1
  doi: 10.1038/ncomms6193
– ident: e_1_2_9_96_2
  doi: 10.1021/acsami.0c12702
– ident: e_1_2_9_6_2
  doi: 10.1039/c2cs35256g
– ident: e_1_2_9_82_1
  doi: 10.1016/j.jpowsour.2017.07.047
– ident: e_1_2_9_23_3
  doi: 10.1016/j.jpowsour.2022.231482
– ident: e_1_2_9_29_1
  doi: 10.1039/C8EE00364E
– ident: e_1_2_9_55_6
  doi: 10.1021/acsami.9b16786
– ident: e_1_2_9_52_1
  doi: 10.1038/s41467-022-29199-3
– volume: 2
  start-page: 199
  year: 2019
  ident: e_1_2_9_136_2
  publication-title: Electrochem. Eng. Energy, [Proc. Eur. Symp. Electr. Eng.], 3rd
– ident: e_1_2_9_117_1
  doi: 10.1016/j.ensm.2019.07.035
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cej.2020.127427
– ident: e_1_2_9_131_1
  doi: 10.1002/aenm.202003690
– ident: e_1_2_9_158_1
– ident: e_1_2_9_138_1
  doi: 10.1021/acsami.1c21573
– ident: e_1_2_9_2_3
  doi: 10.1002/aenm.201702348
– ident: e_1_2_9_142_1
  doi: 10.1039/C6TA00402D
– ident: e_1_2_9_18_1
  doi: 10.1002/adfm.201704865
– ident: e_1_2_9_10_2
  doi: 10.1016/j.cej.2019.123904
– ident: e_1_2_9_7_5
  doi: 10.1039/D3SC01052J
– ident: e_1_2_9_45_1
  doi: 10.1002/aenm.201500117
– ident: e_1_2_9_55_5
  doi: 10.1016/j.jpowsour.2009.06.089
– ident: e_1_2_9_84_1
  doi: 10.1016/j.cej.2019.03.245
– ident: e_1_2_9_126_1
  doi: 10.1016/S0378-7753(96)02417-2
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.jpcc.8b10175
– ident: e_1_2_9_55_4
  doi: 10.1016/j.electacta.2006.03.016
– ident: e_1_2_9_112_1
  doi: 10.1016/j.joule.2018.12.018
– ident: e_1_2_9_21_1
  doi: 10.1039/C4EE00372A
– ident: e_1_2_9_148_1
  doi: 10.1021/acsami.7b07057
– ident: e_1_2_9_111_1
  doi: 10.1016/j.cej.2023.141556
SSID ssj0017734
Score 2.6148448
SecondaryResourceType review_article
Snippet Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Conversion
Electrochemical analysis
Electrolytes
Energy storage
Ionic liquids
Lithium sulfur batteries
Molten salt electrolytes
Polymers
Solid electrolytes
“solid‐liquid‐solid” conversion
“solid‐solid” conversion
Title Perspectives of High‐Performance Li–S Battery Electrolytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202309625
https://www.proquest.com/docview/2917476447
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SL3rwLVZr2YPgadvNmk2ai1BsS5FWirXQ27J5gVhase2hnvoTBP9hf4nJZh-tIILedmGy7E4yyTezM98AcMU8jgnVTg6RBLmIeMplgeKuCHxeY7WAopjEtfuA2wN0PwyGa1X8lh8iC7gZy4j3a2PgEZtWc9LQSChTSa4hNNUYXm_CJmHLoKLHjD8KEmJ_K2NoErzgMGVt9Pzq5vDNUymHmuuANT5xWvsgSt_VJpq8VOYzVuHv32gc__MxB2AvgaNO3a6fQ7Alx0dgd42k8Bjc9vJ6zKkzUY5JDVktP3p5yYHTeV4tP_uOJetcOE3bW2e00Dj2BAxazae7tpt0XXC5wRIuUdKjHPoKQygjyIVgkGMqoUAKRTxSHHGpBGMSanmPBZIKHGFGFfKEiYuegsJ4MpZnwNHe1A1SVGIpGaJCGzunQcSpBl0CqpooAjfVesgTSnLTGWMUWjJlPzR6CTO9FMF1Jv9qyTh-lCylkxgmRjkNfe2aIqIBICkCP56NX54S1hutbnZ3_pdBF2BHXyMbtCmBwuxtLi81jJmxMtiuN7qdfjlesl9gk-0Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NSsNAEB78OagH_8Vq1RwUT9Fs3GS7BwWxlqqtiD_QW8z-gViq2IrUk48g-CS-io_QJ3E3m6QqiCB48JiwWZKdndlvJjPfAKwyj4eEaieHSIJdTDzlskBxVwQ-L7FSQHFC4lo_DqsX-LARNAbgNauFsfwQecDNaEZir42Cm4D0Zp81NBbKlJJrDE01iE_zKo9k90F7be3tg7IW8ZrvV_bP96pu2ljA5ea4dImSHuXIVyFCMkZcCIZ4SCUSWOGYx4pjLpVgTCI93mOBpCKMQ0YV9oQJ_el5B2HYtBE3dP3l05yxChFif2SHyKSUoUbGE-n5m5_f9_M52Ae3HyFycsZVJuAtWx2b2nK9cd9hG_zxC3Hkv1q-SRhPEbeza1VkCgZkaxrGPvAwzsDOSb_ktO3cKMdkv_Senk_6VRVO7ar39HLmWD7SrrNv2wc1uxqqz8LFn3zAHAy1blpyHhztMG5hRWUoJcNUaHvGaRBzqnGlQKokCuBmYo54yrpumn80I8sX7UdGDlEuhwKs5-NvLd_ItyOL2a6JUrvTjnztfWOiMS4pgJ-I_4dZot1ypZ5fLfzmoRUYqZ7Xa1Ht4PhoEUb1fWxjVEUY6tzdyyWN2jpsOdETBy7_eme9A43BTZY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gOjBt7g-e1A8VZuaJpuDgrguvll8wN5q8wJxWcVdkfXkTxD8I_4V_4K_xKRpuyqIIHjw2JKGNpOZfDOd-QZgiQeCUGacHKoo9jENtM8jLXwZhaLMyxHDKYnr0THZPcf79ajeAy95LYzjhygCblYzUnttFfxG6rUuaWgita0kNxCaGQyfpVUeqM69cdpaG3sVI-HlMKzunG3v-llfAV_Y09KnWgVMoFAThFSChJQcCcIUkljjRCRaYKG05FwhMz7gkWKSJIQzjQNpI39m3l7oxyRgtllE5aQgrEKUuv_YBNmMMlTPaSKDcO3z-34-BrvY9iNCTo-46gi85ovjMluuVu_afFU8fOGN_E-rNwrDGd72tpyCjEGPao7D0AcWxgnYrHULTlvetfZs7svb41OtW1PhHV6-PT6feo6NtOPtuOZBjY4B6pNw_icfMAV9zeummgbPuIvrWDNFlOKYSWPNBIsSwQyqlEiXZQn8XMqxyDjXbeuPRuzYosPYyiEu5FCClWL8jWMb-XbkXL5p4szqtOLQ-N6YGoRLSxCm0v9hlnirUj0qrmZ-89AiDNQq1fhw7_hgFgbNbewCVHPQ1769U_MGsrX5QqolHlz89cZ6B0WBTEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perspectives+of+High%E2%80%90Performance+Li%E2%80%93S+Battery+Electrolytes&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Jing&rft.au=Zhou%2C+Yuhao&rft.au=Yan%2C+Tianying&rft.au=Xue%E2%80%90Ping+Gao&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=4&rft_id=info:doi/10.1002%2Fadfm.202309625&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon