Perspectives of High‐Performance Li–S Battery Electrolytes
Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li+ transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion o...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li+ transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion of lithium polysulfides in Li–S batteries. The working mechanism of Li–S batteries in different electrolytes is classified into “solid‐liquid‐solid” and “solid‐solid” conversions. Under the “solid‐liquid‐solid” conversion, Li–S batteries would inevitably face the challenges such as “shuttle effect” that lead to poor cycle performance, and under the “solid‐solid” conversion, they would face interface mismatch that limits the utilization of sulfur with low energy density, while both conversion mechanisms cause uncontrollable Li dendrites on anode. According to the conversion mechanism, electrolytes can be divided into ether‐based, ionic liquid‐based, gel polymer electrolytes, and polymer‐based solid‐state electrolytes with “solid‐liquid‐solid” conversion, as well as carbonate‐based electrolytes and oxide/sulfide‐based solid‐state electrolytes with “solid‐solid” conversion. Based on the conversion mechanism of active materials in different electrolytes, the current status on the strategies from multiple perspectives are summarized to improve the electrochemical performance, with the hope to provide a comprehensive guideline toward the development of suitable electrolytes for Li–S batteries.
Lithium‐sulfur (Li−S) batteries are one of the most promising candidates for next‐generation energy storage devices. The electrolyte affects the redox mechanism of Li−S batteries, which needs to be focused. In this review, the electrolytes are reviewed according to the “solid‐liquid‐solid” and “solid‐solid” conversion of the active material sulfur. The direction of the development of Li−S battery is prospected. |
---|---|
AbstractList | Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li
+
transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion of lithium polysulfides in Li–S batteries. The working mechanism of Li–S batteries in different electrolytes is classified into “solid‐liquid‐solid” and “solid‐solid” conversions. Under the “solid‐liquid‐solid” conversion, Li–S batteries would inevitably face the challenges such as “shuttle effect” that lead to poor cycle performance, and under the “solid‐solid” conversion, they would face interface mismatch that limits the utilization of sulfur with low energy density, while both conversion mechanisms cause uncontrollable Li dendrites on anode. According to the conversion mechanism, electrolytes can be divided into ether‐based, ionic liquid‐based, gel polymer electrolytes, and polymer‐based solid‐state electrolytes with “solid‐liquid‐solid” conversion, as well as carbonate‐based electrolytes and oxide/sulfide‐based solid‐state electrolytes with “solid‐solid” conversion. Based on the conversion mechanism of active materials in different electrolytes, the current status on the strategies from multiple perspectives are summarized to improve the electrochemical performance, with the hope to provide a comprehensive guideline toward the development of suitable electrolytes for Li–S batteries. Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li+ transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion of lithium polysulfides in Li–S batteries. The working mechanism of Li–S batteries in different electrolytes is classified into “solid‐liquid‐solid” and “solid‐solid” conversions. Under the “solid‐liquid‐solid” conversion, Li–S batteries would inevitably face the challenges such as “shuttle effect” that lead to poor cycle performance, and under the “solid‐solid” conversion, they would face interface mismatch that limits the utilization of sulfur with low energy density, while both conversion mechanisms cause uncontrollable Li dendrites on anode. According to the conversion mechanism, electrolytes can be divided into ether‐based, ionic liquid‐based, gel polymer electrolytes, and polymer‐based solid‐state electrolytes with “solid‐liquid‐solid” conversion, as well as carbonate‐based electrolytes and oxide/sulfide‐based solid‐state electrolytes with “solid‐solid” conversion. Based on the conversion mechanism of active materials in different electrolytes, the current status on the strategies from multiple perspectives are summarized to improve the electrochemical performance, with the hope to provide a comprehensive guideline toward the development of suitable electrolytes for Li–S batteries. Lithium‐sulfur (Li−S) batteries are one of the most promising candidates for next‐generation energy storage devices. The electrolyte affects the redox mechanism of Li−S batteries, which needs to be focused. In this review, the electrolytes are reviewed according to the “solid‐liquid‐solid” and “solid‐solid” conversion of the active material sulfur. The direction of the development of Li−S battery is prospected. Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices. Electrolyte as the medium for Li+ transportation between the electrodes, also plays a crucial role in inhibiting the dissolution and diffusion of lithium polysulfides in Li–S batteries. The working mechanism of Li–S batteries in different electrolytes is classified into “solid‐liquid‐solid” and “solid‐solid” conversions. Under the “solid‐liquid‐solid” conversion, Li–S batteries would inevitably face the challenges such as “shuttle effect” that lead to poor cycle performance, and under the “solid‐solid” conversion, they would face interface mismatch that limits the utilization of sulfur with low energy density, while both conversion mechanisms cause uncontrollable Li dendrites on anode. According to the conversion mechanism, electrolytes can be divided into ether‐based, ionic liquid‐based, gel polymer electrolytes, and polymer‐based solid‐state electrolytes with “solid‐liquid‐solid” conversion, as well as carbonate‐based electrolytes and oxide/sulfide‐based solid‐state electrolytes with “solid‐solid” conversion. Based on the conversion mechanism of active materials in different electrolytes, the current status on the strategies from multiple perspectives are summarized to improve the electrochemical performance, with the hope to provide a comprehensive guideline toward the development of suitable electrolytes for Li–S batteries. |
Author | Yan, Tianying Liu, Jing Gao, Xue‐Ping Zhou, Yuhao |
Author_xml | – sequence: 1 givenname: Jing surname: Liu fullname: Liu, Jing organization: Nankai University – sequence: 2 givenname: Yuhao surname: Zhou fullname: Zhou, Yuhao organization: Nankai University – sequence: 3 givenname: Tianying surname: Yan fullname: Yan, Tianying email: tyan@nankai.edu.cn organization: Nankai University – sequence: 4 givenname: Xue‐Ping orcidid: 0000-0001-7305-7567 surname: Gao fullname: Gao, Xue‐Ping email: xpgao@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkMFKAzEQhoNUsK1ePS943prspllzEWptrVBRUMFbyGYnmrLd1CRV9tZHEHzDPolbKhUE8TTD8H3zw99BrcpWgNAxwT2CcXIqCz3vJThJMWdJfw-1CSMsTnFy1trt5OkAdbyfYUyyLKVtdH4Hzi9ABfMGPrI6mpjnl_Xqozlr6-ayUhBNzXr1eR9dyBDA1dGobHBnyzqAP0T7WpYejr5nFz2ORw_DSTy9vboeDqaxSknWjzMNmCuSaEYISKKKIieKcSAF1VQqqRVVoIs8B9LwOO8DL5hkOdcUFxzjtItOtn8Xzr4uwQcxs0tXNZEi4SSjGaM0a6jellLOeu9Ai4Uzc-lqQbDYdCQ2HYldR41AfwnKBBmMrYKTpvxb41vt3ZRQ_xMiBpfjmx_3C1pXgLE |
CitedBy_id | crossref_primary_10_1007_s40242_024_4179_1 crossref_primary_10_1002_adma_202411525 crossref_primary_10_1002_ange_202416176 crossref_primary_10_1021_acs_iecr_4c01878 crossref_primary_10_1002_batt_202400284 crossref_primary_10_1002_batt_202400484 crossref_primary_10_1021_cbe_4c00040 crossref_primary_10_1515_revce_2023_0059 crossref_primary_10_1002_cctc_202400754 crossref_primary_10_1039_D4CP03352C crossref_primary_10_1002_adfm_202412070 crossref_primary_10_1007_s40843_024_3259_x crossref_primary_10_1021_acsami_4c18988 crossref_primary_10_1039_D4EE06096B crossref_primary_10_1016_j_est_2025_115511 crossref_primary_10_1002_batt_202400544 crossref_primary_10_1002_adma_202311687 crossref_primary_10_1016_j_est_2024_113186 crossref_primary_10_1002_cssc_202402006 crossref_primary_10_1007_s12274_024_6682_6 crossref_primary_10_1002_ece2_74 crossref_primary_10_1007_s11581_024_05986_4 crossref_primary_10_1016_j_jpowsour_2024_235907 crossref_primary_10_1002_anie_202416176 crossref_primary_10_1021_acssuschemeng_4c02451 crossref_primary_10_1039_D4NR00571F crossref_primary_10_26599_NRE_2024_9120138 crossref_primary_10_1063_5_0251325 crossref_primary_10_1021_acs_jpcc_4c08230 crossref_primary_10_1016_j_mseb_2024_117773 crossref_primary_10_1021_acsanm_4c06446 crossref_primary_10_1016_j_jallcom_2024_177093 crossref_primary_10_3390_en17215258 crossref_primary_10_1021_acs_jpclett_4c01595 crossref_primary_10_1016_j_cej_2024_157343 crossref_primary_10_1039_D5CC00331H crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1016_j_est_2024_113631 crossref_primary_10_1016_j_apsusc_2024_160031 crossref_primary_10_1016_j_cej_2024_154997 crossref_primary_10_1016_j_cej_2024_157724 crossref_primary_10_1021_acsaem_4c01480 crossref_primary_10_1016_j_cej_2024_153648 crossref_primary_10_1039_D4CS00584H |
Cites_doi | 10.1002/adfm.201707570 10.1002/cnma.201500055 10.1002/adma.202005988 10.1038/s41467-023-36075-1 10.1038/nmat2448 10.1016/j.ensm.2016.01.008 10.1021/acsenergylett.0c02461 10.1038/ncomms5759 10.1039/C5TA04613K 10.1002/adma.202007298 10.1002/eem2.12358 10.1016/j.joule.2017.11.009 10.1038/s41467-018-07975-4 10.1038/ncomms2513 10.1038/nenergy.2016.30 10.1016/j.ensm.2019.11.008 10.1016/j.ensm.2018.05.018 10.1016/j.electacta.2014.11.083 10.1002/adma.201606823 10.1007/s10800-009-9978-z 10.1002/adfm.201808756 10.1002/adma.201700449 10.1002/adfm.202200893 10.1016/j.electacta.2006.08.016 10.1002/advs.201700503 10.1007/s40843-022-2182-0 10.1002/aenm.202001456 10.1016/S0013-4686(97)10011-1 10.1002/adma.201706102 10.1002/anie.200701144 10.1149/1.3148721 10.1007/s12613-022-2451-2 10.1016/j.jpowsour.2018.08.097 10.1149/2.0841506jes 10.1021/acs.jpclett.6b00228 10.1016/j.jpowsour.2013.05.039 10.1016/j.jpowsour.2022.232211 10.1021/acs.chemmater.7b03654 10.1021/acs.nanolett.5b04189 10.1038/s41560-018-0214-0 10.1002/eem2.12021 10.1002/anie.201712702 10.1016/j.nanoen.2017.05.041 10.1007/s11426-014-5154-3 10.1039/D1EE02433G 10.1002/aenm.201602543 10.1016/j.cej.2019.03.145 10.1002/adma.202005022 10.1002/celc.201800643 10.1016/j.jpowsour.2022.232299 10.1002/chem.201703464 10.1039/C5TA03195H 10.1002/aenm.201900763 10.1016/j.ensm.2019.07.035 10.1002/adfm.201505074 10.1039/C7EE01004D 10.1016/S0378-7753(97)02771-7 10.1021/am504345s 10.1016/S1388-2481(02)00333-8 10.1016/j.trechm.2019.06.007 10.1039/C4EE02192D 10.1016/j.joule.2018.08.010 10.1021/jacs.9b11056 10.1021/acsami.1c09492 10.1038/ncomms2327 10.1016/j.ssi.2013.10.012 10.1039/D2CC00769J 10.1002/anie.202219318 10.1038/srep04842 10.1021/acsnano.3c05016 10.1016/j.electacta.2018.06.093 10.1002/adfm.200304284 10.1016/j.ensm.2019.07.015 10.1016/j.electacta.2012.11.001 10.1002/adma.202003666 10.1016/j.cej.2019.122714 10.1021/acsnano.2c04402 10.1016/j.jallcom.2018.06.235 10.1002/adma.201705951 10.1016/j.electacta.2017.09.156 10.1039/C2CC36986A 10.1021/acs.jpclett.7b00593 10.1007/s12274-022-4584-z 10.1021/acsaem.1c00091 10.1016/j.apsusc.2022.152806 10.1016/j.elecom.2009.05.040 10.1021/jacs.7b06364 10.1038/natrevmats.2015.5 10.1038/nmat2460 10.1016/j.ensm.2019.06.021 10.1021/jp061516t 10.1039/C9TA03123E 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z 10.1039/D2EE01442D 10.1039/C4CP04895D 10.1002/adma.201501559 10.1002/advs.201500213 10.1016/j.jpowsour.2009.07.046 10.1002/cssc.201700977 10.1039/C5EE02837J 10.1016/j.nanoen.2018.05.065 10.1016/j.jpowsour.2013.02.018 10.1126/sciadv.1601659 10.1016/j.joule.2019.05.003 10.1002/batt.202100132 10.1016/j.ensm.2020.09.009 10.1016/j.ensm.2022.03.015 10.1016/j.chempr.2018.05.002 10.1016/j.nanoen.2017.05.020 10.1149/2.058309jes 10.1002/anie.201909339 10.1135/cccc20021141 10.1016/j.electacta.2017.01.098 10.1002/aenm.201500285 10.1039/C8EE01621F 10.1007/s12274-017-1929-0 10.3389/fenrg.2019.00112 10.1021/acsami.6b03897 10.1021/acsami.5b12231 10.1016/j.memsci.2020.117827 10.1002/adma.202203699 10.1016/j.jechem.2019.05.010 10.1016/j.joule.2022.12.009 10.1021/acsenergylett.2c029031336 10.1002/aenm.201401801 10.1002/adma.201901125 10.1016/j.ensm.2017.09.001 10.1016/j.joule.2018.09.024 10.1021/ar300179v 10.1016/j.renene.2021.10.067 10.1039/C8CC02552E 10.31635/ccschem.020.202000341 10.1016/j.electacta.2017.01.177 10.1016/j.electacta.2013.06.039 10.1021/acsenergylett.0c02527 10.1038/s41467-017-00974-x 10.1016/j.electacta.2018.09.169 10.1039/C7TA01481C 10.1021/acsami.1c11904 10.1002/adma.201700542 10.1016/j.jcis.2019.09.116 10.1021/acs.energyfuels.1c00990 10.1016/j.jpowsour.2013.12.031 10.1016/j.ssi.2012.03.012 10.1002/adma.201405115 10.1002/ente.202201110 10.1021/jp408037e 10.1007/s10853-021-05832-2 10.1038/451652a 10.3724/SP.J.1077.2013.13387 10.1016/j.ssi.2017.08.018 10.1039/C6CP04775K 10.1039/C7TA00196G 10.1039/C9CS00635D 10.1002/aenm.202101004 10.1021/acs.nanolett.0c00693 10.1021/acsaem.2c01185 10.1021/jp804814e 10.1021/acs.chemmater.8b03889 10.1007/s40843-022-2252-1 10.1021/jp407158y 10.1038/nenergy.2017.35 10.1002/adma.201504526 10.1016/j.electacta.2017.01.155 10.1016/j.ensm.2019.08.019 10.1016/j.jpowsour.2016.05.009 10.1002/aenm.201500113 10.1016/j.jpowsour.2014.02.075 10.1021/acsnano.5b02166 10.1021/acsami.8b15121 10.1021/jp400153m 10.1016/j.electacta.2006.08.028 10.1038/s41467-018-06877-9 10.1002/ange.202114671 10.1016/j.ssi.2013.04.024 10.1039/C8TA07685E 10.1002/aenm.202201585 10.1002/adma.201808100 10.1007/s00289-017-1993-3 10.1016/j.coco.2020.04.015 10.1016/j.electacta.2012.12.077 10.1016/0013-4686(76)85034-7 10.1002/chem.201203935 10.1039/C8TA02751J 10.1016/j.jechem.2021.12.020 10.1016/j.jpowsour.2022.231792 10.1016/j.electacta.2022.141539 10.1038/ng0103-18 10.1016/j.ssi.2013.01.002 10.1007/s12598-022-02009-x 10.1021/acsami.5b02160 10.1038/s42004-022-00626-2 10.1021/acsami.1c07883 10.1039/C8CS00826D 10.1038/s41467-022-32031-7 10.1002/adma.202002435 10.1016/j.jechem.2020.01.016 10.1002/anie.201706979 10.1002/adma.202008654 10.1002/adma.202003955 10.1007/s11581-018-2689-x 10.1021/acs.energyfuels.0c02647 10.1016/j.electacta.2011.04.084 10.1038/ncomms6193 10.1021/acsami.0c12702 10.1039/c2cs35256g 10.1016/j.jpowsour.2017.07.047 10.1016/j.jpowsour.2022.231482 10.1039/C8EE00364E 10.1021/acsami.9b16786 10.1038/s41467-022-29199-3 10.1016/j.cej.2020.127427 10.1002/aenm.202003690 10.1021/acsami.1c21573 10.1002/aenm.201702348 10.1039/C6TA00402D 10.1002/adfm.201704865 10.1016/j.cej.2019.123904 10.1039/D3SC01052J 10.1002/aenm.201500117 10.1016/j.jpowsour.2009.06.089 10.1016/j.cej.2019.03.245 10.1016/S0378-7753(96)02417-2 10.1021/acs.jpcc.8b10175 10.1016/j.electacta.2006.03.016 10.1016/j.joule.2018.12.018 10.1039/C4EE00372A 10.1021/acsami.7b07057 10.1016/j.cej.2023.141556 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202309625 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202309625 ADFM202309625 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22273040; 21935006 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3175-7fe09c12f611ea1cddb1c69e1d4f4acafc4cefdbbe13170b5e9d6a6b9f40d9003 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:25:14 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Tue Jul 01 00:30:50 EDT 2025 Wed Jan 22 16:16:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-7fe09c12f611ea1cddb1c69e1d4f4acafc4cefdbbe13170b5e9d6a6b9f40d9003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7305-7567 |
PQID | 2917476447 |
PQPubID | 2045204 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2917476447 crossref_primary_10_1002_adfm_202309625 crossref_citationtrail_10_1002_adfm_202309625 wiley_primary_10_1002_adfm_202309625_ADFM202309625 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 259 2013; 4 2021 2020 2018 2022 2017 2021; 33 10 8 34 29 14 2018; 282 2020; 20 2019; 10 2013; 244 2013 2022; 4 29 2013; 240 2018 2018; 30 4 2014 2013; 262 117 2019 2019; 21 22 2014; 253 2020; 19 2018; 6 2023; 62 2018; 9 2017; 74 2018; 3 2018; 2 2023; 66 2018; 5 1976 2017 2013 2007 2015 2015 2017; 21 29 89 52 4 162 7 2022 2018; 32 57 2013; 117 2014 2019 2019; 7 2 7 2013; 234 1996; 62 2008; 112 2017 2016 2015; 8 28 9 2014 2013 2015; 5 46 27 2019; 7 2017 2017; 230 5 2018; 28 2019; 9 2017 2018 2021; 139 5 56 2019; 3 2016 2022; 1 542 2019; 31 2020 2016 2022 2021; 32 132 12 33 2020; 41 2020; 382 2020; 142 2019; 1 1998 1998 2022 2021; 10 72 586 33 2015 2002 2015 2015 2021; 5 4 17 5 6 2013; 107 2013 2021; 4 33 2016; 322 2009 2017 2010 2018 2023; 8 7 3 30 14 2017 2020; 38 387 2006; 110 2002; 4 2020; 34 2012; 225 2016; 16 2018; 25 2016; 4 2016; 7 2016; 1 2022; 183 2021; 55 2016; 3 2022; 5 2023; 553 2021; 413 2017; 56 2022; 13 2020; 26 2022; 15 2020; 24 2023; 439 2018; 11 2016; 26 2016; 8 2022; 16 2016; 9 2018; 15 2022; 18 2017; 5 2017; 8 2017 2013 2018 2022; 29 42 1 50 2009; 40 2017; 2 2017; 3 2019 2016; 29 8 2022; 71 2015 2021; 5 35 2023 2023; 14 2023; 7 2018 2015 2017; 11 3 1 2018 2020; 765 24 2020 2018 2017; 558 11 23 2003; 13 2019; 369 2009; 156 2017; 230 1998; 43 2013; 160 2017; 9 2019; 123 2013; 19 2013 2020 2022 2023; 28 24 536 11 2020; 6 2014; 4 2021; 34 2021; 33 2020; 49 2020; 48 2014; 57 2017; 362 2023 2020 2021; 12 4 2017 2019; 38 48 2014; 7 2022; 551 2020 2020 2002 2023; 32 2 67 17 2015; 1 2023 2022 2023 2022 2019; 459 5 6 134 3 2017 2018 2011 2018; 258 10 56 11 2021; 4 2015; 5 2019 2020; 31 59 2013; 49 2023; 16 2021 2023 2018; 14 66 292 2022; 41 2017; 29 2007; 52 2010 2022; 58 2015; 7 2015; 151 2017; 229 2021; 13 2015; 27 2010 2009 2009 2006 2009 2020 2013; 195 8 11 51 194 12 91 2016 2014; 3 6 2021; 11 2022 2017; 10 2020; 599 2014 2013; 5 244 2016 2018; 318 2018; 50 2018; 54 2016 2018; 18 401 2008; 451 2019; 370 2007; 46 2018 2015; 1 3 e_1_2_9_79_1 e_1_2_9_10_2 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_45_2 e_1_2_9_6_3 e_1_2_9_6_2 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 Yang X. (e_1_2_9_121_1) 2018; 1 e_1_2_9_111_4 e_1_2_9_157_4 e_1_2_9_111_3 e_1_2_9_157_3 e_1_2_9_111_2 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_2 e_1_2_9_6_4 e_1_2_9_111_5 e_1_2_9_157_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_11_2 e_1_2_9_129_1 e_1_2_9_106_2 e_1_2_9_121_2 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_57_2 e_1_2_9_19_2 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_2 e_1_2_9_23_1 e_1_2_9_5_4 e_1_2_9_5_3 e_1_2_9_5_2 e_1_2_9_5_1 Dilimon V. S. (e_1_2_9_38_7) 2017; 7 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_23_4 e_1_2_9_23_3 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_31_4 e_1_2_9_31_2 e_1_2_9_77_1 e_1_2_9_31_3 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_136_3 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_28_3 e_1_2_9_28_2 e_1_2_9_55_3 e_1_2_9_93_2 e_1_2_9_55_2 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_32_2 e_1_2_9_93_1 e_1_2_9_108_1 Zhang B. (e_1_2_9_7_3) 2010; 3 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_123_2 e_1_2_9_146_1 e_1_2_9_55_7 e_1_2_9_55_6 e_1_2_9_17_1 e_1_2_9_55_5 e_1_2_9_55_4 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_2 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_158_2 e_1_2_9_112_1 e_1_2_9_7_5 e_1_2_9_7_4 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_29_2 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_29_3 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 Wu X. J. (e_1_2_9_22_1) 2022; 18 e_1_2_9_75_3 e_1_2_9_75_2 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_126_2 e_1_2_9_14_2 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_2_6 e_1_2_9_2_5 e_1_2_9_2_4 e_1_2_9_2_3 e_1_2_9_2_2 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_138_2 e_1_2_9_138_3 e_1_2_9_153_4 e_1_2_9_153_3 e_1_2_9_115_1 e_1_2_9_153_5 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_2 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_30_2 e_1_2_9_99_1 e_1_2_9_53_2 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_38_2 e_1_2_9_38_6 e_1_2_9_38_3 e_1_2_9_38_4 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_137_2 e_1_2_9_137_3 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_2 e_1_2_9_27_1 Schomburg D. (e_1_2_9_154_1) 2010 Umeshbabu E. (e_1_2_9_136_2) 2019; 2 e_1_2_9_96_3 Cuisinier M. (e_1_2_9_19_1) 2013; 4 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_12_2 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_96_2 Cataldo F. (e_1_2_9_38_5) 2015; 4 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_12_3 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 Kong L. Y. (e_1_2_9_51_1) 2021; 55 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_24_2 e_1_2_9_47_1 e_1_2_9_47_2 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_13_1 e_1_2_9_97_1 Wang J. L. (e_1_2_9_127_1) 2002; 4 e_1_2_9_104_1 e_1_2_9_13_3 e_1_2_9_13_2 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_13_4 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_139_2 e_1_2_9_154_2 e_1_2_9_116_1 e_1_2_9_25_2 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 |
References_xml | – volume: 33 10 8 34 29 14 start-page: 5911 year: 2021 2020 2018 2022 2017 2021 publication-title: Adv. Mater. Adv. Energy Mater. Adv. Energy Mater. Adv. Mater. Adv. Mater. Energy Environ. Sci. – volume: 142 start-page: 7393 year: 2020 publication-title: J. Am. Chem. Soc. – start-page: 2022 year: 2022 – volume: 8 28 9 start-page: 850 1853 5884 year: 2017 2016 2015 publication-title: Nat. Commun. Adv. Mater. ACS Nano – volume: 3 6 year: 2016 2014 publication-title: Adv. Sci. ACS Appl. Mater. Interfaces – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 558 11 23 start-page: 145 3340 year: 2020 2018 2017 publication-title: J. Colloid Interface Sci. Nano Res. Chemistry – volume: 244 start-page: 48 year: 2013 publication-title: Solid State Ionics – volume: 55 start-page: 89 year: 2021 publication-title: J Energy Chem – volume: 7 start-page: 1 year: 2023 publication-title: Joule – volume: 160 year: 2013 publication-title: J. Electrochem. Soc. – volume: 362 start-page: 243 year: 2017 publication-title: J. Power Sources – volume: 27 start-page: 5203 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 4509 year: 2018 publication-title: Nat. Commun. – volume: 4 29 start-page: 3227 990 year: 2013 2022 publication-title: Adv. Energy Mater. Int. J. Miner., Metall. Mater. – volume: 322 start-page: 99 year: 2016 publication-title: J. Power Sources – volume: 38 387 start-page: 12 year: 2017 2020 publication-title: Nano Energy Chem. Eng. J. – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 4 start-page: 499 year: 2002 publication-title: Adv. Mater. – volume: 10 start-page: 1568 year: 2017 publication-title: Energy Environ. Sci. – volume: 24 start-page: 373 year: 2020 publication-title: Energy Storage Mater. – volume: 31 start-page: 808 year: 2019 publication-title: Chem. Mater. – volume: 71 start-page: 29 year: 2022 publication-title: J Energy Chem – volume: 3 start-page: 1689 year: 2019 publication-title: Joule – volume: 58 start-page: 4747 year: 2010 2022 publication-title: Chem. Commun. – volume: 112 year: 2008 publication-title: J. Phys. Chem. B – volume: 230 start-page: 123 year: 2017 publication-title: Electrochim. Acta – volume: 41 start-page: 2834 year: 2022 publication-title: Rare Met. – volume: 25 start-page: 17 year: 2018 publication-title: Ionics – volume: 29 42 1 50 start-page: 3018 196 197 year: 2017 2013 2018 2022 publication-title: Adv. Mater. Chem. Soc. Rev. Energy Environ. Mater. Energy Storage Mater. – volume: 10 72 586 33 start-page: 725 203 year: 1998 1998 2022 2021 publication-title: Adv. Mater. J. Power Sources Appl. Surf. Sci. Adv. Mater. – volume: 5 46 27 start-page: 4759 1125 1980 year: 2014 2013 2015 publication-title: Nat. Commun. Acc. Chem. Res. Adv. Mater. – volume: 20 start-page: 2871 year: 2020 publication-title: Nano Lett. – volume: 4 start-page: 4459 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 38 48 start-page: 82 3279 year: 2017 2019 publication-title: Nano Energy Chem. Soc. Rev. – volume: 29 8 start-page: 7783 year: 2019 2016 publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces – volume: 1 542 year: 2016 2022 publication-title: Nat. Rev. Mater. J. Power Sources – volume: 19 start-page: 239 year: 2020 publication-title: Compos. Commun. – volume: 765 24 start-page: 544 198 year: 2018 2020 publication-title: J. Alloy.Compd. Energy Storage Mater. – volume: 52 start-page: 2116 year: 2007 publication-title: Electrochim. Acta – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 225 start-page: 604 year: 2012 publication-title: Solid State Ionics – volume: 43 start-page: 1137 year: 1998 publication-title: Electrochim. Acta – volume: 12 4 start-page: 1708 year: 2023 2020 2021 publication-title: ACS Energy Lett. ACS Appl. Mater. Interfaces Batteries Supercaps – volume: 16 start-page: 549 year: 2016 publication-title: Nano Lett. – volume: 26 start-page: 3059 year: 2016 publication-title: Adv. Funct. Mater. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 start-page: 2697 year: 2014 publication-title: Energy Environ. Sci. – volume: 2 start-page: 2681 year: 2018 publication-title: Joule – volume: 50 start-page: 431 year: 2018 publication-title: Nano Energy – volume: 5 start-page: 6257 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 33 start-page: 1331 year: 2013 2021 publication-title: Nat. Commun. Adv. Mater. – volume: 48 start-page: 267 year: 2020 publication-title: J Energy Chem – year: 2016 – volume: 234 start-page: 40 year: 2013 publication-title: Solid State Ionics – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 13 start-page: 2575 year: 2022 publication-title: Nat. Commun. – volume: 262 117 start-page: 174 4431 year: 2014 2013 publication-title: Solid State Ionics J. Phys. Chem. C – volume: 110 year: 2006 publication-title: J. Phys. Chem. B – volume: 318 start-page: 82 year: 2018 publication-title: Solid State Ionics – volume: 370 start-page: 1068 year: 2019 publication-title: Chem. Eng. J. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 5 244 start-page: 5193 183 year: 2014 2013 publication-title: Nat. Commun. J. Power Sources – volume: 54 start-page: 5478 year: 2018 publication-title: Chem. Commun. – volume: 34 year: 2020 publication-title: Energy Fuels – volume: 74 start-page: 4887 year: 2017 publication-title: Polym. Bull. – volume: 16 start-page: 8253 year: 2023 publication-title: Nano Res. – volume: 18 401 start-page: 271 year: 2016 2018 publication-title: Phys. Chem. Chem. Phys. J. Power Sources – volume: 240 start-page: 636 year: 2013 publication-title: J. Power Sources – volume: 599 year: 2020 publication-title: J. Membrane Sci. – volume: 259 start-page: 289 year: 2014 publication-title: J. Power Sources – volume: 15 start-page: 3842 year: 2022 publication-title: Energy Environ. Sci. – volume: 1 start-page: 693 year: 2019 publication-title: Trends. Chem. – volume: 10 start-page: 188 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 3490 year: 2017 publication-title: ChemSusChem – volume: 32 57 year: 2022 2018 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 459 5 6 134 3 start-page: 7719 136 year: 2023 2022 2023 2022 2019 publication-title: Chem. Eng. J. ACS Appl. Energy Mater. Energy Environ. Mater. Angew. Chem., Int. Ed. Joule – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 156 start-page: A694 year: 2009 publication-title: J. Electrochem. Soc. – volume: 21 29 89 52 4 162 7 start-page: 661 737 2075 6 year: 1976 2017 2013 2007 2015 2015 2017 publication-title: Electrochim. Acta Adv. Mater. Electrochim. Acta Electrochim. Acta Chem. J. Electrochem. Soc. Stem Cells Int – volume: 107 start-page: 454 year: 2013 publication-title: Electrochim. Acta – volume: 62 start-page: 219 year: 1996 publication-title: J. Power Sources – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 369 start-page: 874 year: 2019 publication-title: Chem. Eng. J. – volume: 57 start-page: 1564 year: 2014 publication-title: Sci China Chem – volume: 13 start-page: 487 year: 2003 publication-title: Adv. Funct. Mater. – volume: 40 start-page: 321 year: 2009 publication-title: J. Appl. Electrochem. – volume: 151 start-page: 289 year: 2015 publication-title: Electrochim. Acta – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 553 year: 2023 publication-title: J. Power Sources – volume: 5 4 17 5 6 start-page: 406 2127 537 year: 2015 2002 2015 2015 2021 publication-title: Adv. Energy Mater. Electrochem. Commun. Phys. Chem. Chem. Phys. Adv. Energy Mater. ACS Energy Lett. – volume: 413 year: 2021 publication-title: Chem. Eng. J. – volume: 4 start-page: 1481 year: 2013 publication-title: Nat. Commun. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 4 start-page: 7718 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1518 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 32 2 67 17 start-page: 1245 1141 year: 2020 2020 2002 2023 publication-title: Adv. Mater. Collect. Czech. Chem. Commun. ACS Nano – volume: 49 start-page: 2140 year: 2020 publication-title: Chem. Soc. Rev. – volume: 253 start-page: 263 year: 2014 publication-title: J. Power Sources – volume: 3 start-page: 872 year: 2019 publication-title: Joule – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 183 start-page: 90 year: 2022 publication-title: Renew. Energ. – volume: 29 year: 2017 publication-title: Chem. Mater. – volume: 34 start-page: 128 year: 2021 publication-title: Energy Storage Mater. – volume: 195 8 11 51 194 12 91 start-page: 574 621 1500 5567 601 591 58 year: 2010 2009 2009 2006 2009 2020 2013 publication-title: J. Power Sources Nat. Mater. Electrochem. Commun. Electrochim. Acta J. Power Sources ACS Appl. Mater. Interfaces Electrochim. Acta – volume: 258 10 56 11 start-page: 110 6055 2828 year: 2017 2018 2011 2018 publication-title: Electrochim. Acta ACS Appl. Mater. Interfaces Electrochim. Acta Energy Environ. Sci. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 1 3 start-page: 239 year: 2018 2015 publication-title: Electrochem. Eng. Energy, [Proc. Eur. Symp. Electr. Eng.], 3rd J. Mater. Chem. A – volume: 66 start-page: 913 year: 2023 publication-title: Sci. China Mater. – volume: 21 22 start-page: 308 194 year: 2019 2019 publication-title: Energy Storage Mater. Energy Storage Mater. – volume: 18 start-page: 2106 year: 2022 publication-title: Small – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 9 start-page: 224 year: 2016 publication-title: Energy Environ. Sci. – volume: 14 66 292 start-page: 1212 513 331 year: 2021 2023 2018 publication-title: ACS Appl. Mater. Interfaces Sci. China Mater. Electrochim. Acta – volume: 19 start-page: 1568 year: 2013 publication-title: Chemistry – volume: 49 start-page: 2004 year: 2013 publication-title: Chem. Commun. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 439 year: 2023 publication-title: Electrochim. Acta – volume: 4 start-page: 4842 year: 2014 publication-title: Sci. Rep. – volume: 230 5 start-page: 279 year: 2017 2017 publication-title: Electrochim. Acta J. Mater. Chem. A – volume: 41 start-page: 149 year: 2020 publication-title: J Energy Chem – volume: 11 start-page: 24 year: 2018 publication-title: Energy Storage Mater. – volume: 26 start-page: 378 year: 2020 publication-title: Energy Storage Mater. – volume: 229 start-page: 22 year: 2017 publication-title: Electrochim. Acta – volume: 11 3 1 start-page: 2600 871 year: 2018 2015 2017 publication-title: Energy Environ. Sci. J. Mater. Chem. A Joule – volume: 551 year: 2022 publication-title: J. Power Sources – volume: 30 4 start-page: 1877 year: 2018 2018 publication-title: Adv. Mater. Chem. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 2 7 start-page: 3902 199 112 year: 2014 2019 2019 publication-title: Energy Environ. Sci. Electrochem. Eng. Energy, [Proc. Eur. Symp. Electr. Eng.], 3rd Front. Energy Res. – volume: 139 5 56 start-page: 2873 8358 year: 2017 2018 2021 publication-title: J. Am. Chem. Soc. ChemElectroChem J. Mater. Sci. – volume: 282 start-page: 555 year: 2018 publication-title: Electrochim. Acta – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 5 35 year: 2015 2021 publication-title: Adv. Energy Mater. Energy Fuels – volume: 8 7 3 30 14 start-page: 500 1531 5887 year: 2009 2017 2010 2018 2023 publication-title: Nat. Mater. Adv. Energy Mater. Environ Sci Adv. Mater. Chem. Sci. – volume: 5 start-page: 1 year: 2022 publication-title: Commun Chem – volume: 3 start-page: 783 year: 2018 publication-title: Nat. Energy – volume: 31 59 year: 2019 2020 publication-title: Adv. Mater. Angew. Chem., Int. Ed. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 282 year: 2018 publication-title: Energy Storage Mater. – volume: 28 24 536 11 start-page: 1181 373 year: 2013 2020 2022 2023 publication-title: J. Inorg. Mater. Energy Storage Mater. J. Power Sources Energy Technol. – volume: 3 start-page: 69 year: 2016 publication-title: Energy Storage Mater. – volume: 8 start-page: 1956 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 32 132 12 33 issue: 1 year: 2020 2016 2022 2021 publication-title: Adv. Mater. Nat. Energy Adv. Energy Mater. Adv. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 7778 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 14 start-page: 440 year: 2023 2023 – volume: 13 start-page: 4415 year: 2022 publication-title: Nat. Commun. – volume: 1 start-page: 240 year: 2015 publication-title: ChemNanoMat – volume: 6 start-page: 224 year: 2020 publication-title: ACS Energy Lett. – ident: e_1_2_9_87_1 doi: 10.1002/adfm.201707570 – ident: e_1_2_9_108_1 doi: 10.1002/cnma.201500055 – ident: e_1_2_9_5_4 doi: 10.1002/adma.202005988 – ident: e_1_2_9_158_2 doi: 10.1038/s41467-023-36075-1 – ident: e_1_2_9_55_2 doi: 10.1038/nmat2448 – ident: e_1_2_9_85_1 doi: 10.1016/j.ensm.2016.01.008 – ident: e_1_2_9_15_1 doi: 10.1021/acsenergylett.0c02461 – ident: e_1_2_9_12_1 doi: 10.1038/ncomms5759 – ident: e_1_2_9_121_2 doi: 10.1039/C5TA04613K – ident: e_1_2_9_115_1 doi: 10.1002/adma.202007298 – ident: e_1_2_9_111_3 doi: 10.1002/eem2.12358 – ident: e_1_2_9_29_3 doi: 10.1016/j.joule.2017.11.009 – ident: e_1_2_9_155_1 doi: 10.1038/s41467-018-07975-4 – ident: e_1_2_9_102_1 doi: 10.1038/ncomms2513 – ident: e_1_2_9_150_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_9_61_1 doi: 10.1016/j.ensm.2019.11.008 – ident: e_1_2_9_146_1 doi: 10.1016/j.ensm.2018.05.018 – ident: e_1_2_9_72_1 doi: 10.1016/j.electacta.2014.11.083 – ident: e_1_2_9_2_5 doi: 10.1002/adma.201606823 – ident: e_1_2_9_41_1 doi: 10.1007/s10800-009-9978-z – ident: e_1_2_9_11_1 doi: 10.1002/adfm.201808756 – ident: e_1_2_9_38_2 doi: 10.1002/adma.201700449 – ident: e_1_2_9_106_1 doi: 10.1002/adfm.202200893 – ident: e_1_2_9_38_4 doi: 10.1016/j.electacta.2006.08.016 – ident: e_1_2_9_83_1 doi: 10.1002/advs.201700503 – ident: e_1_2_9_138_2 doi: 10.1007/s40843-022-2182-0 – ident: e_1_2_9_2_2 doi: 10.1002/aenm.202001456 – ident: e_1_2_9_88_1 doi: 10.1016/S0013-4686(97)10011-1 – ident: e_1_2_9_25_1 doi: 10.1002/adma.201706102 – ident: e_1_2_9_144_1 doi: 10.1002/anie.200701144 – ident: e_1_2_9_109_1 doi: 10.1149/1.3148721 – ident: e_1_2_9_19_2 doi: 10.1007/s12613-022-2451-2 – ident: e_1_2_9_47_2 doi: 10.1016/j.jpowsour.2018.08.097 – ident: e_1_2_9_38_6 doi: 10.1149/2.0841506jes – ident: e_1_2_9_156_1 doi: 10.1021/acs.jpclett.6b00228 – ident: e_1_2_9_122_1 – ident: e_1_2_9_141_1 doi: 10.1016/j.jpowsour.2013.05.039 – volume: 55 start-page: 89 year: 2021 ident: e_1_2_9_51_1 publication-title: J Energy Chem – ident: e_1_2_9_44_1 doi: 10.1016/j.jpowsour.2022.232211 – volume: 4 start-page: 499 year: 2002 ident: e_1_2_9_127_1 publication-title: Adv. Mater. – ident: e_1_2_9_49_1 doi: 10.1021/acs.chemmater.7b03654 – ident: e_1_2_9_114_1 doi: 10.1021/acs.nanolett.5b04189 – ident: e_1_2_9_159_1 doi: 10.1038/s41560-018-0214-0 – ident: e_1_2_9_6_3 doi: 10.1002/eem2.12021 – ident: e_1_2_9_106_2 doi: 10.1002/anie.201712702 – volume-title: CRC Handbook of Chemistry and Physics 90th year: 2010 ident: e_1_2_9_154_1 – ident: e_1_2_9_10_1 doi: 10.1016/j.nanoen.2017.05.041 – ident: e_1_2_9_60_1 doi: 10.1007/s11426-014-5154-3 – ident: e_1_2_9_2_6 doi: 10.1039/D1EE02433G – ident: e_1_2_9_7_2 doi: 10.1002/aenm.201602543 – volume: 18 start-page: 2106 year: 2022 ident: e_1_2_9_22_1 publication-title: Small – ident: e_1_2_9_58_1 doi: 10.1016/j.cej.2019.03.145 – ident: e_1_2_9_157_1 doi: 10.1002/adma.202005022 – ident: e_1_2_9_137_2 doi: 10.1002/celc.201800643 – ident: e_1_2_9_48_1 doi: 10.1016/j.jpowsour.2022.232299 – volume: 4 start-page: 6 year: 2015 ident: e_1_2_9_38_5 publication-title: Chem. – ident: e_1_2_9_75_3 doi: 10.1002/chem.201703464 – ident: e_1_2_9_29_2 doi: 10.1039/C5TA03195H – ident: e_1_2_9_4_1 – ident: e_1_2_9_92_1 doi: 10.1002/aenm.201900763 – ident: e_1_2_9_23_2 doi: 10.1016/j.ensm.2019.07.035 – ident: e_1_2_9_100_1 doi: 10.1002/adfm.201505074 – ident: e_1_2_9_149_1 doi: 10.1039/C7EE01004D – ident: e_1_2_9_5_2 doi: 10.1016/S0378-7753(97)02771-7 – ident: e_1_2_9_14_2 doi: 10.1021/am504345s – ident: e_1_2_9_153_2 doi: 10.1016/S1388-2481(02)00333-8 – ident: e_1_2_9_8_1 doi: 10.1016/j.trechm.2019.06.007 – ident: e_1_2_9_136_1 doi: 10.1039/C4EE02192D – ident: e_1_2_9_17_1 doi: 10.1016/j.joule.2018.08.010 – ident: e_1_2_9_26_1 doi: 10.1021/jacs.9b11056 – ident: e_1_2_9_50_1 doi: 10.1021/acsami.1c09492 – ident: e_1_2_9_24_1 doi: 10.1038/ncomms2327 – ident: e_1_2_9_57_1 doi: 10.1016/j.ssi.2013.10.012 – ident: e_1_2_9_154_2 doi: 10.1039/D2CC00769J – ident: e_1_2_9_54_1 doi: 10.1002/anie.202219318 – ident: e_1_2_9_129_1 doi: 10.1038/srep04842 – ident: e_1_2_9_157_4 doi: 10.1021/acsnano.3c05016 – ident: e_1_2_9_134_1 doi: 10.1016/j.electacta.2018.06.093 – ident: e_1_2_9_128_1 doi: 10.1002/adfm.200304284 – ident: e_1_2_9_30_2 doi: 10.1016/j.ensm.2019.07.015 – ident: e_1_2_9_38_3 doi: 10.1016/j.electacta.2012.11.001 – ident: e_1_2_9_2_1 doi: 10.1002/adma.202003666 – ident: e_1_2_9_79_1 doi: 10.1016/j.cej.2019.122714 – ident: e_1_2_9_116_1 doi: 10.1021/acsnano.2c04402 – ident: e_1_2_9_93_1 doi: 10.1016/j.jallcom.2018.06.235 – ident: e_1_2_9_7_4 doi: 10.1002/adma.201705951 – ident: e_1_2_9_31_1 doi: 10.1016/j.electacta.2017.09.156 – ident: e_1_2_9_126_2 – ident: e_1_2_9_42_1 doi: 10.1039/C2CC36986A – ident: e_1_2_9_89_1 doi: 10.1021/acs.jpclett.7b00593 – ident: e_1_2_9_113_1 doi: 10.1007/s12274-022-4584-z – ident: e_1_2_9_91_1 doi: 10.1021/acsaem.1c00091 – ident: e_1_2_9_5_3 doi: 10.1016/j.apsusc.2022.152806 – ident: e_1_2_9_55_3 doi: 10.1016/j.elecom.2009.05.040 – ident: e_1_2_9_137_1 doi: 10.1021/jacs.7b06364 – ident: e_1_2_9_53_1 doi: 10.1038/natrevmats.2015.5 – ident: e_1_2_9_7_1 doi: 10.1038/nmat2460 – ident: e_1_2_9_30_1 doi: 10.1016/j.ensm.2019.06.021 – ident: e_1_2_9_70_1 doi: 10.1021/jp061516t – ident: e_1_2_9_80_1 doi: 10.1039/C9TA03123E – ident: e_1_2_9_5_1 doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z – ident: e_1_2_9_37_1 doi: 10.1039/D2EE01442D – ident: e_1_2_9_153_3 doi: 10.1039/C4CP04895D – ident: e_1_2_9_9_1 doi: 10.1002/adma.201501559 – volume: 7 year: 2017 ident: e_1_2_9_38_7 publication-title: Stem Cells Int – ident: e_1_2_9_14_1 doi: 10.1002/advs.201500213 – ident: e_1_2_9_55_1 doi: 10.1016/j.jpowsour.2009.07.046 – ident: e_1_2_9_71_1 doi: 10.1002/cssc.201700977 – ident: e_1_2_9_63_1 doi: 10.1039/C5EE02837J – ident: e_1_2_9_103_1 doi: 10.1016/j.nanoen.2018.05.065 – ident: e_1_2_9_27_2 doi: 10.1016/j.jpowsour.2013.02.018 – ident: e_1_2_9_145_1 doi: 10.1126/sciadv.1601659 – ident: e_1_2_9_90_1 doi: 10.1016/j.joule.2019.05.003 – ident: e_1_2_9_96_3 doi: 10.1002/batt.202100132 – ident: e_1_2_9_3_1 doi: 10.1016/j.ensm.2020.09.009 – ident: e_1_2_9_6_4 doi: 10.1016/j.ensm.2022.03.015 – ident: e_1_2_9_25_2 doi: 10.1016/j.chempr.2018.05.002 – ident: e_1_2_9_123_1 doi: 10.1016/j.nanoen.2017.05.020 – ident: e_1_2_9_66_1 doi: 10.1149/2.058309jes – ident: e_1_2_9_32_2 doi: 10.1002/anie.201909339 – ident: e_1_2_9_157_3 doi: 10.1135/cccc20021141 – volume: 3 start-page: 1531 year: 2010 ident: e_1_2_9_7_3 publication-title: Environ Sci – ident: e_1_2_9_94_1 doi: 10.1016/j.electacta.2017.01.098 – ident: e_1_2_9_98_1 doi: 10.1002/aenm.201500285 – ident: e_1_2_9_31_4 doi: 10.1039/C8EE01621F – ident: e_1_2_9_75_2 doi: 10.1007/s12274-017-1929-0 – ident: e_1_2_9_136_3 doi: 10.3389/fenrg.2019.00112 – ident: e_1_2_9_107_1 doi: 10.1021/acsami.6b03897 – ident: e_1_2_9_11_2 doi: 10.1021/acsami.5b12231 – ident: e_1_2_9_64_1 doi: 10.1016/j.memsci.2020.117827 – ident: e_1_2_9_2_4 doi: 10.1002/adma.202203699 – ident: e_1_2_9_46_1 doi: 10.1016/j.jechem.2019.05.010 – ident: e_1_2_9_160_1 doi: 10.1016/j.joule.2022.12.009 – ident: e_1_2_9_96_1 doi: 10.1021/acsenergylett.2c029031336 – ident: e_1_2_9_153_4 doi: 10.1002/aenm.201401801 – ident: e_1_2_9_32_1 doi: 10.1002/adma.201901125 – ident: e_1_2_9_105_1 doi: 10.1016/j.ensm.2017.09.001 – ident: e_1_2_9_111_5 doi: 10.1016/j.joule.2018.09.024 – ident: e_1_2_9_12_2 doi: 10.1021/ar300179v – ident: e_1_2_9_1_1 doi: 10.1016/j.renene.2021.10.067 – ident: e_1_2_9_43_1 doi: 10.1039/C8CC02552E – ident: e_1_2_9_157_2 doi: 10.31635/ccschem.020.202000341 – ident: e_1_2_9_68_1 doi: 10.1016/j.electacta.2017.01.177 – ident: e_1_2_9_125_1 doi: 10.1016/j.electacta.2013.06.039 – ident: e_1_2_9_153_5 doi: 10.1021/acsenergylett.0c02527 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-017-00974-x – ident: e_1_2_9_138_3 doi: 10.1016/j.electacta.2018.09.169 – ident: e_1_2_9_139_2 doi: 10.1039/C7TA01481C – ident: e_1_2_9_119_1 doi: 10.1021/acsami.1c11904 – ident: e_1_2_9_6_1 doi: 10.1002/adma.201700542 – ident: e_1_2_9_75_1 doi: 10.1016/j.jcis.2019.09.116 – ident: e_1_2_9_45_2 doi: 10.1021/acs.energyfuels.1c00990 – ident: e_1_2_9_101_1 doi: 10.1016/j.jpowsour.2013.12.031 – ident: e_1_2_9_76_1 doi: 10.1016/j.ssi.2012.03.012 – ident: e_1_2_9_12_3 doi: 10.1002/adma.201405115 – ident: e_1_2_9_23_4 doi: 10.1002/ente.202201110 – ident: e_1_2_9_56_1 doi: 10.1021/jp408037e – ident: e_1_2_9_137_3 doi: 10.1007/s10853-021-05832-2 – ident: e_1_2_9_135_1 doi: 10.1038/451652a – ident: e_1_2_9_23_1 doi: 10.3724/SP.J.1077.2013.13387 – ident: e_1_2_9_69_1 doi: 10.1016/j.ssi.2017.08.018 – volume: 4 start-page: 3227 year: 2013 ident: e_1_2_9_19_1 publication-title: Adv. Energy Mater. – ident: e_1_2_9_47_1 doi: 10.1039/C6CP04775K – ident: e_1_2_9_140_1 doi: 10.1039/C7TA00196G – ident: e_1_2_9_20_1 doi: 10.1039/C9CS00635D – ident: e_1_2_9_133_1 doi: 10.1002/aenm.202101004 – ident: e_1_2_9_147_1 doi: 10.1021/acs.nanolett.0c00693 – ident: e_1_2_9_111_2 doi: 10.1021/acsaem.2c01185 – ident: e_1_2_9_124_1 doi: 10.1021/jp804814e – ident: e_1_2_9_16_1 doi: 10.1021/acs.chemmater.8b03889 – ident: e_1_2_9_77_1 doi: 10.1007/s40843-022-2252-1 – ident: e_1_2_9_59_1 doi: 10.1021/jp407158y – volume: 1 start-page: 239 year: 2018 ident: e_1_2_9_121_1 publication-title: Electrochem. Eng. Energy, [Proc. Eur. Symp. Electr. Eng.], 3rd – ident: e_1_2_9_95_1 doi: 10.1038/nenergy.2017.35 – ident: e_1_2_9_28_2 doi: 10.1002/adma.201504526 – ident: e_1_2_9_139_1 doi: 10.1016/j.electacta.2017.01.155 – ident: e_1_2_9_93_2 doi: 10.1016/j.ensm.2019.08.019 – ident: e_1_2_9_110_1 doi: 10.1016/j.jpowsour.2016.05.009 – ident: e_1_2_9_153_1 doi: 10.1002/aenm.201500113 – ident: e_1_2_9_35_1 doi: 10.1016/j.jpowsour.2014.02.075 – ident: e_1_2_9_28_3 doi: 10.1021/acsnano.5b02166 – ident: e_1_2_9_31_2 doi: 10.1021/acsami.8b15121 – ident: e_1_2_9_57_2 doi: 10.1021/jp400153m – ident: e_1_2_9_97_1 doi: 10.1016/j.electacta.2006.08.028 – ident: e_1_2_9_120_1 doi: 10.1038/s41467-018-06877-9 – ident: e_1_2_9_111_4 doi: 10.1002/ange.202114671 – ident: e_1_2_9_151_1 doi: 10.1016/j.ssi.2013.04.024 – ident: e_1_2_9_73_1 doi: 10.1039/C8TA07685E – ident: e_1_2_9_13_3 doi: 10.1002/aenm.202201585 – ident: e_1_2_9_152_1 doi: 10.1002/adma.201808100 – ident: e_1_2_9_67_1 doi: 10.1007/s00289-017-1993-3 – ident: e_1_2_9_78_1 doi: 10.1016/j.coco.2020.04.015 – ident: e_1_2_9_55_7 doi: 10.1016/j.electacta.2012.12.077 – ident: e_1_2_9_38_1 doi: 10.1016/0013-4686(76)85034-7 – ident: e_1_2_9_62_1 doi: 10.1002/chem.201203935 – ident: e_1_2_9_132_1 doi: 10.1039/C8TA02751J – ident: e_1_2_9_36_1 doi: 10.1016/j.jechem.2021.12.020 – ident: e_1_2_9_53_2 doi: 10.1016/j.jpowsour.2022.231792 – ident: e_1_2_9_118_1 doi: 10.1016/j.electacta.2022.141539 – ident: e_1_2_9_13_2 doi: 10.1038/ng0103-18 – ident: e_1_2_9_81_1 doi: 10.1016/j.ssi.2013.01.002 – ident: e_1_2_9_34_1 doi: 10.1007/s12598-022-02009-x – ident: e_1_2_9_39_1 doi: 10.1021/acsami.5b02160 – ident: e_1_2_9_130_1 doi: 10.1038/s42004-022-00626-2 – ident: e_1_2_9_104_1 doi: 10.1021/acsami.1c07883 – ident: e_1_2_9_123_2 doi: 10.1039/C8CS00826D – ident: e_1_2_9_33_1 doi: 10.1038/s41467-022-32031-7 – ident: e_1_2_9_13_1 doi: 10.1002/adma.202002435 – ident: e_1_2_9_74_1 doi: 10.1016/j.jechem.2020.01.016 – ident: e_1_2_9_99_1 doi: 10.1002/anie.201706979 – ident: e_1_2_9_13_4 doi: 10.1002/adma.202008654 – ident: e_1_2_9_24_2 doi: 10.1002/adma.202003955 – ident: e_1_2_9_86_1 doi: 10.1007/s11581-018-2689-x – ident: e_1_2_9_143_1 doi: 10.1021/acs.energyfuels.0c02647 – ident: e_1_2_9_31_3 doi: 10.1016/j.electacta.2011.04.084 – ident: e_1_2_9_27_1 doi: 10.1038/ncomms6193 – ident: e_1_2_9_96_2 doi: 10.1021/acsami.0c12702 – ident: e_1_2_9_6_2 doi: 10.1039/c2cs35256g – ident: e_1_2_9_82_1 doi: 10.1016/j.jpowsour.2017.07.047 – ident: e_1_2_9_23_3 doi: 10.1016/j.jpowsour.2022.231482 – ident: e_1_2_9_29_1 doi: 10.1039/C8EE00364E – ident: e_1_2_9_55_6 doi: 10.1021/acsami.9b16786 – ident: e_1_2_9_52_1 doi: 10.1038/s41467-022-29199-3 – volume: 2 start-page: 199 year: 2019 ident: e_1_2_9_136_2 publication-title: Electrochem. Eng. Energy, [Proc. Eur. Symp. Electr. Eng.], 3rd – ident: e_1_2_9_117_1 doi: 10.1016/j.ensm.2019.07.035 – ident: e_1_2_9_65_1 doi: 10.1016/j.cej.2020.127427 – ident: e_1_2_9_131_1 doi: 10.1002/aenm.202003690 – ident: e_1_2_9_158_1 – ident: e_1_2_9_138_1 doi: 10.1021/acsami.1c21573 – ident: e_1_2_9_2_3 doi: 10.1002/aenm.201702348 – ident: e_1_2_9_142_1 doi: 10.1039/C6TA00402D – ident: e_1_2_9_18_1 doi: 10.1002/adfm.201704865 – ident: e_1_2_9_10_2 doi: 10.1016/j.cej.2019.123904 – ident: e_1_2_9_7_5 doi: 10.1039/D3SC01052J – ident: e_1_2_9_45_1 doi: 10.1002/aenm.201500117 – ident: e_1_2_9_55_5 doi: 10.1016/j.jpowsour.2009.06.089 – ident: e_1_2_9_84_1 doi: 10.1016/j.cej.2019.03.245 – ident: e_1_2_9_126_1 doi: 10.1016/S0378-7753(96)02417-2 – ident: e_1_2_9_40_1 doi: 10.1021/acs.jpcc.8b10175 – ident: e_1_2_9_55_4 doi: 10.1016/j.electacta.2006.03.016 – ident: e_1_2_9_112_1 doi: 10.1016/j.joule.2018.12.018 – ident: e_1_2_9_21_1 doi: 10.1039/C4EE00372A – ident: e_1_2_9_148_1 doi: 10.1021/acsami.7b07057 – ident: e_1_2_9_111_1 doi: 10.1016/j.cej.2023.141556 |
SSID | ssj0017734 |
Score | 2.6148448 |
SecondaryResourceType | review_article |
Snippet | Lithium–sulfur batteries with high energy density are considered to be one of the most promising candidates for the next‐generation energy storage devices.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Conversion Electrochemical analysis Electrolytes Energy storage Ionic liquids Lithium sulfur batteries Molten salt electrolytes Polymers Solid electrolytes “solid‐liquid‐solid” conversion “solid‐solid” conversion |
Title | Perspectives of High‐Performance Li–S Battery Electrolytes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202309625 https://www.proquest.com/docview/2917476447 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SL3rwLVZr2YPgadvNmk2ai1BsS5FWirXQ27J5gVhase2hnvoTBP9hf4nJZh-tIILedmGy7E4yyTezM98AcMU8jgnVTg6RBLmIeMplgeKuCHxeY7WAopjEtfuA2wN0PwyGa1X8lh8iC7gZy4j3a2PgEZtWc9LQSChTSa4hNNUYXm_CJmHLoKLHjD8KEmJ_K2NoErzgMGVt9Pzq5vDNUymHmuuANT5xWvsgSt_VJpq8VOYzVuHv32gc__MxB2AvgaNO3a6fQ7Alx0dgd42k8Bjc9vJ6zKkzUY5JDVktP3p5yYHTeV4tP_uOJetcOE3bW2e00Dj2BAxazae7tpt0XXC5wRIuUdKjHPoKQygjyIVgkGMqoUAKRTxSHHGpBGMSanmPBZIKHGFGFfKEiYuegsJ4MpZnwNHe1A1SVGIpGaJCGzunQcSpBl0CqpooAjfVesgTSnLTGWMUWjJlPzR6CTO9FMF1Jv9qyTh-lCylkxgmRjkNfe2aIqIBICkCP56NX54S1hutbnZ3_pdBF2BHXyMbtCmBwuxtLi81jJmxMtiuN7qdfjlesl9gk-0Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NSsNAEB78OagH_8Vq1RwUT9Fs3GS7BwWxlqqtiD_QW8z-gViq2IrUk48g-CS-io_QJ3E3m6QqiCB48JiwWZKdndlvJjPfAKwyj4eEaieHSIJdTDzlskBxVwQ-L7FSQHFC4lo_DqsX-LARNAbgNauFsfwQecDNaEZir42Cm4D0Zp81NBbKlJJrDE01iE_zKo9k90F7be3tg7IW8ZrvV_bP96pu2ljA5ea4dImSHuXIVyFCMkZcCIZ4SCUSWOGYx4pjLpVgTCI93mOBpCKMQ0YV9oQJ_el5B2HYtBE3dP3l05yxChFif2SHyKSUoUbGE-n5m5_f9_M52Ae3HyFycsZVJuAtWx2b2nK9cd9hG_zxC3Hkv1q-SRhPEbeza1VkCgZkaxrGPvAwzsDOSb_ktO3cKMdkv_Senk_6VRVO7ar39HLmWD7SrrNv2wc1uxqqz8LFn3zAHAy1blpyHhztMG5hRWUoJcNUaHvGaRBzqnGlQKokCuBmYo54yrpumn80I8sX7UdGDlEuhwKs5-NvLd_ItyOL2a6JUrvTjnztfWOiMS4pgJ-I_4dZot1ypZ5fLfzmoRUYqZ7Xa1Ht4PhoEUb1fWxjVEUY6tzdyyWN2jpsOdETBy7_eme9A43BTZY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gOjBt7g-e1A8VZuaJpuDgrguvll8wN5q8wJxWcVdkfXkTxD8I_4V_4K_xKRpuyqIIHjw2JKGNpOZfDOd-QZgiQeCUGacHKoo9jENtM8jLXwZhaLMyxHDKYnr0THZPcf79ajeAy95LYzjhygCblYzUnttFfxG6rUuaWgita0kNxCaGQyfpVUeqM69cdpaG3sVI-HlMKzunG3v-llfAV_Y09KnWgVMoFAThFSChJQcCcIUkljjRCRaYKG05FwhMz7gkWKSJIQzjQNpI39m3l7oxyRgtllE5aQgrEKUuv_YBNmMMlTPaSKDcO3z-34-BrvY9iNCTo-46gi85ovjMluuVu_afFU8fOGN_E-rNwrDGd72tpyCjEGPao7D0AcWxgnYrHULTlvetfZs7svb41OtW1PhHV6-PT6feo6NtOPtuOZBjY4B6pNw_icfMAV9zeummgbPuIvrWDNFlOKYSWPNBIsSwQyqlEiXZQn8XMqxyDjXbeuPRuzYosPYyiEu5FCClWL8jWMb-XbkXL5p4szqtOLQ-N6YGoRLSxCm0v9hlnirUj0qrmZ-89AiDNQq1fhw7_hgFgbNbewCVHPQ1769U_MGsrX5QqolHlz89cZ6B0WBTEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perspectives+of+High%E2%80%90Performance+Li%E2%80%93S+Battery+Electrolytes&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Jing&rft.au=Zhou%2C+Yuhao&rft.au=Yan%2C+Tianying&rft.au=Xue%E2%80%90Ping+Gao&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=4&rft_id=info:doi/10.1002%2Fadfm.202309625&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |