Metal‐Organic Frameworks‐Derived Nickel–Iron Oxyhydroxide with Highly Active Edge Sites for Electrochemical Oxygen Evolution
Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency catalysts. Herein, the α phase nickel–iron oxyhydroxide (α‐NiFeOxHy) rich of nickel active edge sites is electrochemically in situ generated from...
Saved in:
Published in | Small structures Vol. 3; no. 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency catalysts. Herein, the α phase nickel–iron oxyhydroxide (α‐NiFeOxHy) rich of nickel active edge sites is electrochemically in situ generated from Fe‐square acid metal–organic framework precursor deposited on nickel‐containing electrode matrixes, which revealed superior oxygen evolution reaction performance signified by an overpotential of 167 mV to achieve a current density of 10 mA cm−2 in alkaline electrolytes. Notably, the as‐prepared metal oxyhydroxide exhibits long‐term electrochemical durability in 10 mA cm−2 for over 1080 h. By integrating the electrochemical evidence, Mössbauer spectroscopy, X‐Ray photoelectron spectroscopy, and density functional theory calculations, the nickel species enriched on the exposed edge facet of the as‐synthesized α‐NiFeOxHy are proposed to be the highly catalytic active site. This study provides an expedient and energy‐efficient approach to in situ electrochemical fabrication of high‐performance NiFeOxHy oxygen evolution reaction catalysts from metal‐organic frameworks.
The ultra‐microporous Fe‐based metal‐organic frameworks are in situ electrochemically transformed into α‐NiFeOxHy from the surface to the interior, and the ultra‐high active edge‐site nickel originating from the dissolution and release of the nickel substrate during the oxygen evolution reaction test. |
---|---|
AbstractList | Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency catalysts. Herein, the α phase nickel–iron oxyhydroxide (α‐NiFeOxHy) rich of nickel active edge sites is electrochemically in situ generated from Fe‐square acid metal–organic framework precursor deposited on nickel‐containing electrode matrixes, which revealed superior oxygen evolution reaction performance signified by an overpotential of 167 mV to achieve a current density of 10 mA cm−2 in alkaline electrolytes. Notably, the as‐prepared metal oxyhydroxide exhibits long‐term electrochemical durability in 10 mA cm−2 for over 1080 h. By integrating the electrochemical evidence, Mössbauer spectroscopy, X‐Ray photoelectron spectroscopy, and density functional theory calculations, the nickel species enriched on the exposed edge facet of the as‐synthesized α‐NiFeOxHy are proposed to be the highly catalytic active site. This study provides an expedient and energy‐efficient approach to in situ electrochemical fabrication of high‐performance NiFeOxHy oxygen evolution reaction catalysts from metal‐organic frameworks.
The ultra‐microporous Fe‐based metal‐organic frameworks are in situ electrochemically transformed into α‐NiFeOxHy from the surface to the interior, and the ultra‐high active edge‐site nickel originating from the dissolution and release of the nickel substrate during the oxygen evolution reaction test. Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency catalysts. Herein, the α phase nickel–iron oxyhydroxide (α‐NiFeOxHy) rich of nickel active edge sites is electrochemically in situ generated from Fe‐square acid metal–organic framework precursor deposited on nickel‐containing electrode matrixes, which revealed superior oxygen evolution reaction performance signified by an overpotential of 167 mV to achieve a current density of 10 mA cm−2 in alkaline electrolytes. Notably, the as‐prepared metal oxyhydroxide exhibits long‐term electrochemical durability in 10 mA cm−2 for over 1080 h. By integrating the electrochemical evidence, Mössbauer spectroscopy, X‐Ray photoelectron spectroscopy, and density functional theory calculations, the nickel species enriched on the exposed edge facet of the as‐synthesized α‐NiFeOxHy are proposed to be the highly catalytic active site. This study provides an expedient and energy‐efficient approach to in situ electrochemical fabrication of high‐performance NiFeOxHy oxygen evolution reaction catalysts from metal‐organic frameworks. |
Author | Huang, Jin Lan, Bi-Liu Zhang, Zhong Meng, Ting Yang, Fu-Jie Pang, Wei Shao, Bing Guo, Zeping |
Author_xml | – sequence: 1 givenname: Bi-Liu surname: Lan fullname: Lan, Bi-Liu organization: Guangxi Normal University – sequence: 2 givenname: Bing surname: Shao fullname: Shao, Bing organization: Guangxi Normal University – sequence: 3 givenname: Fu-Jie surname: Yang fullname: Yang, Fu-Jie organization: Zhongkai University of Agriculture and Engineering – sequence: 4 givenname: Wei surname: Pang fullname: Pang, Wei organization: Guangxi Normal University – sequence: 5 givenname: Zeping surname: Guo fullname: Guo, Zeping organization: Guangxi Normal University – sequence: 6 givenname: Ting surname: Meng fullname: Meng, Ting organization: Guangxi Medical University – sequence: 7 givenname: Zhong surname: Zhang fullname: Zhang, Zhong email: zhangzhong@mailbox.gxnu.edu.cn organization: Guangxi Normal University – sequence: 8 givenname: Jin orcidid: 0000-0001-5654-2464 surname: Huang fullname: Huang, Jin email: huangjin@mailbox.gxnu.edu.cn organization: Guangxi Medical University |
BookMark | eNqFkM9KAzEQh4NUsNZePQc8b02y2X_Hoq0KasHqeYnJbBvdbjRJW_cmPoHgG_ok7lJREcTTDMP3zQy_XdSpTAUI7VMyoISwQ-e8HTDCGCEkjbZQl8VpGnASs86Pfgf1nbtrEBZRmmRJF71cgBfl-_PrxM5EpSUeW7GAtbH3rhkeg9UrUPhSy3toqLczayo8earntbLmSSvAa-3n-FTP5mWNh9I3OB6pGeCp9uBwYSwelSC9NXIOCy1F2eozqPBoZcql16baQ9uFKB30P2sP3YxH10enwfnk5OxoeB7IkCZREBecq4xJEIIQRW8JF0xGGeEyUolSiSi4pLEkWZpyEmaSpyAYAC14zMNE8rCHDjZ7H6x5XILz-Z1Z2qo5mbOEhXHIspQ1FN9Q0hrnLBS51F60f3ordJlTkreB523g-VfgjTb4pT1YvRC2_lvINsJal1D_Q-fT6fXVt_sBu0ybIw |
CitedBy_id | crossref_primary_10_1002_cplu_202300739 crossref_primary_10_1002_smll_202406075 crossref_primary_10_1016_j_jcis_2024_04_084 crossref_primary_10_3390_bios13020284 crossref_primary_10_1021_acsami_3c01929 |
Cites_doi | 10.1021/jacs.6b03125 10.1021/cr200434v 10.1039/C3CS60374A 10.1126/science.1254227 10.1038/s41560-019-0355-9 10.1002/anie.201801029 10.1016/j.apcatb.2020.118988 10.1002/anie.200300610 10.1016/j.jechem.2020.09.014 10.1021/jacs.0c10285 10.1016/j.apcatb.2020.119740 10.1002/adma.201604103 10.1002/anie.201809689 10.1002/anie.201806432 10.1016/j.ccr.2017.09.001 10.1002/adma.201901139 10.1016/j.nanoen.2021.106030 10.1021/ja502379c 10.1002/anie.202009700 10.1002/sia.2758 10.1021/acsnano.0c08913 10.1126/science.aad8892 10.1016/j.chempr.2017.05.014 10.1002/adma.201701820 10.1016/j.nanoen.2021.105830 10.1021/acs.chemrev.9b00223 10.1002/anie.201906449 10.1039/C3CS60215J 10.1038/s41467-020-15200-4 10.1021/acs.chemrev.9b00246 10.1021/jacs.9b02417 10.1007/s40820-020-00528-9 10.1002/anie.201804881 10.1021/jacs.5b10977 10.1038/ncomms7616 10.1021/cr9003924 10.1016/j.apcatb.2021.120580 10.1016/j.apmate.2021.10.003 10.1016/j.cej.2021.132733 10.1016/j.jechem.2021.06.037 10.1126/science.aaf5050 10.1093/nsr/nww062 10.1002/smtd.201600030 10.1002/anie.202004846 10.1021/jacs.6b12353 10.1021/acsenergylett.8b01774 10.1021/jacs.5b10699 10.1039/C6CS00343E 10.1021/ja500432h 10.1126/science.aad4998 10.1002/adma.201604607 10.1002/anie.201809144 10.1038/nenergy.2016.184 10.1073/pnas.1702081114 10.1351/pac198254112201 10.1021/acscatal.0c02944 10.1038/ncomms5477 10.1038/s41560-020-00709-1 10.1021/acs.chemrev.6b00346 10.1039/C9CS00334G 10.1126/science.1141483 10.1021/acsenergylett.9b02625 10.1002/anie.202103824 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/sstr.202200085 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2688-4062 |
EndPage | n/a |
ExternalDocumentID | 10_1002_sstr_202200085 SSTR202200085 |
Genre | article |
GrantInformation_xml | – fundername: Guangxi Scientific and Technological Innovation Base and Personnel Project of China funderid: GUIKE2018AD19297 – fundername: Guangxi Natural Science Foundation of China funderid: 2017GXNSFAA198125 – fundername: National Natural Science Foundation of China funderid: 21901051; 21861003 |
GroupedDBID | 0R~ 1OC 24P 33P 34L AAHHS ABCUV ABDBF ACCFJ ACCMX ACCZN ACPOU ACXQS ADKYN ADZMN AEEZP AEQDE AFWVQ AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU DCZOG EBS GROUPED_DOAJ LATKE LEEKS OK1 SUPJJ AAFWJ AAYXX ABJNI AFPKN CITATION M~E 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3175-6f44d92ceaa00d1b04a2c5904c5d7dd7af4c16c09884039c48ea2ee1f46437c43 |
ISSN | 2688-4062 |
IngestDate | Fri Jul 25 08:31:47 EDT 2025 Tue Jul 01 01:54:50 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Wed Jan 22 16:24:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3175-6f44d92ceaa00d1b04a2c5904c5d7dd7af4c16c09884039c48ea2ee1f46437c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5654-2464 |
PQID | 2723632982 |
PQPubID | 5014762 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2723632982 crossref_citationtrail_10_1002_sstr_202200085 crossref_primary_10_1002_sstr_202200085 wiley_primary_10_1002_sstr_202200085_SSTR202200085 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small structures |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 1 2017; 2 2020; 120 1982; 54 2019; 58 1975; 12 2020; 59 2021; 284 2020; 11 2022; 65 2020; 10 2017; 355 2017; 114 2014; 136 2018; 373 2020; 5 2018; 3 2014; 5 2015; 137 2010; 110 2020; 49 2016; 353 2016; 352 2016; 116 2021; 83 2021; 85 2016; 45 2004; 43 2022; 430 2019; 4 2015; 6 2021; 4 2019; 31 2017; 29 2021; 143 2019; 141 2014; 43 2017; 139 2021; 57 2002; E58 2021; 13 2021; 15 2007; 317 2016; 1 2012; 112 2016; 3 2020; 272 2022; 61 2016; 138 2022; 1 2021; 298 2008; 40 2014; 346 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 NaÈther C. (e_1_2_8_49_1) 2002; 58 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_41_1 e_1_2_8_17_1 Li J. (e_1_2_8_60_1) 2021; 4 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Gupta R. P. (e_1_2_8_62_1) 1975; 12 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 43 start-page: 7624 year: 2014 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 1107 year: 2014 publication-title: Chem. Soc. Rev. – volume: 352 start-page: 73 year: 2016 publication-title: Science – volume: 57 start-page: 11544 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: E58 start-page: m507 year: 2002 publication-title: ActaCryst. – volume: 57 start-page: 212 year: 2021 publication-title: J. Energy Chem. – volume: 45 start-page: 4873 year: 2016 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 20465 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 10 year: 2021 publication-title: Nat. Energy – volume: 49 start-page: 301 year: 2020 publication-title: Chem. Soc. Rev. – volume: 120 start-page: 814 year: 2020 publication-title: Chem. Rev. – volume: 136 start-page: 6744 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 329 year: 2019 publication-title: Nat. Energy – volume: 139 start-page: 1778 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 881 year: 2020 publication-title: Nat. Energy – volume: 430, start-page: 132733 year: 2022 publication-title: Chem. Eng. J. – volume: 40 start-page: 323 year: 2008 publication-title: Surf. Interface Anal. – volume: 83 start-page: 105830 year: 2021 publication-title: Nano Energy – volume: 57 start-page: 9392 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 1604607 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 520 year: 2016 publication-title: Natl. Sci. Rev. – volume: 57 start-page: 4632 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 136 start-page: 4394 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1604103 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 120 start-page: 1438 year: 2020 publication-title: Chem. Rev. – volume: 6 start-page: 6616 year: 2015 publication-title: Nat. Commun. – volume: 346 start-page: 1356 year: 2014 publication-title: Science – volume: 138 start-page: 8336 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 5 year: 1975 publication-title: Phys. Rev. B. – volume: 43 start-page: 2334 year: 2004 publication-title: Angew. Chem. Int. Ed. – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 353 start-page: 1011 year: 2016 publication-title: Science – volume: 141 start-page: 7906 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 272 start-page: 118988 year: 2020 publication-title: Appl. Catal. B-Environ. – volume: 15, start-page: 7 year: 2021 publication-title: ACS Nano – volume: 58 start-page: 736 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 298 start-page: 120580 year: 2021 publication-title: App. Catal. B – volume: 13 start-page: 17 year: 2021 publication-title: Nano-Micro Lett. – volume: 61 start-page: e202103824 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 1701820 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 751 year: 2017 publication-title: Chem. – volume: 5 start-page: 520 year: 2020 publication-title: ACS Energy Lett. – volume: 284 start-page: 119740 year: 2021 publication-title: Appl. Catal. B-Environ. – volume: 10 start-page: 12127 year: 2020 publication-title: ACS Catal. – volume: 54 start-page: 2201 year: 1982 publication-title: Pure Appl. Chem. – volume: 1 start-page: 1600030 year: 2017 publication-title: Small Methods – volume: 110 start-page: 4606 year: 2010 publication-title: Chem. Rev. – volume: 58 start-page: 139 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 13768 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 355 start-page: eaad4998 year: 2017 publication-title: Science – volume: 138 start-page: 313 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 373, start-page: 22 year: 2018 publication-title: Coord. Chem. Rev. – volume: 3 start-page: 2956 year: 2018 publication-title: ACS Energy Lett. – volume: 59 start-page: 19649 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 112 start-page: 4124 year: 2012 publication-title: Chem. Rev. – volume: 114 start-page: 3050 year: 2017 publication-title: PNAS – volume: 65 start-page: 574 year: 2022 publication-title: J. Energy Chem. – volume: 1 start-page: 100012 year: 2022 publication-title: Adv. Powder Mater. – volume: 137 start-page: 15090 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1431 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 16184 year: 2016 publication-title: Nat. Energy – volume: 143 start-page: 1854 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1901139 year: 2019 publication-title: Adv. Mater. – volume: 116 start-page: 12466 year: 2016 publication-title: Chem. Rev. – volume: 85 start-page: 106030 year: 2021 publication-title: Nano Energy – ident: e_1_2_8_26_1 doi: 10.1021/jacs.6b03125 – ident: e_1_2_8_36_1 doi: 10.1021/cr200434v – ident: e_1_2_8_15_1 doi: 10.1039/C3CS60374A – ident: e_1_2_8_54_1 doi: 10.1126/science.1254227 – ident: e_1_2_8_63_1 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_8_13_1 doi: 10.1002/anie.201801029 – ident: e_1_2_8_43_1 doi: 10.1016/j.apcatb.2020.118988 – ident: e_1_2_8_23_1 doi: 10.1002/anie.200300610 – ident: e_1_2_8_59_1 doi: 10.1016/j.jechem.2020.09.014 – ident: e_1_2_8_34_1 doi: 10.1021/jacs.0c10285 – ident: e_1_2_8_42_1 doi: 10.1016/j.apcatb.2020.119740 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201604103 – ident: e_1_2_8_7_1 doi: 10.1002/anie.201809689 – ident: e_1_2_8_10_1 doi: 10.1002/anie.201806432 – ident: e_1_2_8_29_1 doi: 10.1016/j.ccr.2017.09.001 – ident: e_1_2_8_50_1 doi: 10.1002/adma.201901139 – ident: e_1_2_8_37_1 doi: 10.1016/j.nanoen.2021.106030 – ident: e_1_2_8_69_1 doi: 10.1002/anie.201801029 – ident: e_1_2_8_38_1 doi: 10.1021/ja502379c – ident: e_1_2_8_46_1 doi: 10.1002/anie.202009700 – ident: e_1_2_8_61_1 doi: 10.1002/sia.2758 – ident: e_1_2_8_20_1 doi: 10.1021/acsnano.0c08913 – ident: e_1_2_8_11_1 doi: 10.1126/science.aad8892 – ident: e_1_2_8_51_1 doi: 10.1016/j.chempr.2017.05.014 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201701820 – ident: e_1_2_8_18_1 doi: 10.1016/j.nanoen.2021.105830 – ident: e_1_2_8_32_1 doi: 10.1021/acs.chemrev.9b00223 – ident: e_1_2_8_21_1 doi: 10.1002/anie.201906449 – ident: e_1_2_8_22_1 doi: 10.1039/C3CS60215J – ident: e_1_2_8_57_1 doi: 10.1038/s41467-020-15200-4 – ident: e_1_2_8_3_1 doi: 10.1021/acs.chemrev.9b00246 – ident: e_1_2_8_44_1 doi: 10.1021/jacs.9b02417 – ident: e_1_2_8_52_1 doi: 10.1007/s40820-020-00528-9 – ident: e_1_2_8_39_1 doi: 10.1002/anie.201804881 – ident: e_1_2_8_40_1 doi: 10.1021/jacs.5b10977 – ident: e_1_2_8_68_1 doi: 10.1038/ncomms7616 – ident: e_1_2_8_25_1 doi: 10.1021/cr9003924 – ident: e_1_2_8_66_1 doi: 10.1016/j.apcatb.2021.120580 – ident: e_1_2_8_19_1 doi: 10.1016/j.apmate.2021.10.003 – ident: e_1_2_8_28_1 doi: 10.1016/j.cej.2021.132733 – ident: e_1_2_8_65_1 doi: 10.1016/j.jechem.2021.06.037 – ident: e_1_2_8_12_1 doi: 10.1126/science.aaf5050 – ident: e_1_2_8_5_1 doi: 10.1093/nsr/nww062 – ident: e_1_2_8_58_1 doi: 10.1002/smtd.201600030 – ident: e_1_2_8_17_1 doi: 10.1002/anie.202004846 – ident: e_1_2_8_31_1 doi: 10.1021/jacs.6b12353 – ident: e_1_2_8_8_1 doi: 10.1021/acsenergylett.8b01774 – ident: e_1_2_8_16_1 doi: 10.1021/jacs.5b10699 – ident: e_1_2_8_35_1 doi: 10.1039/C6CS00343E – ident: e_1_2_8_48_1 doi: 10.1021/ja500432h – ident: e_1_2_8_2_1 doi: 10.1126/science.aad4998 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201604607 – ident: e_1_2_8_30_1 doi: 10.1002/anie.201809144 – ident: e_1_2_8_45_1 doi: 10.1016/j.jechem.2020.09.014 – ident: e_1_2_8_56_1 doi: 10.1038/nenergy.2016.184 – volume: 12 start-page: 5 year: 1975 ident: e_1_2_8_62_1 publication-title: Phys. Rev. B. – ident: e_1_2_8_41_1 doi: 10.1073/pnas.1702081114 – volume: 58 start-page: m507 year: 2002 ident: e_1_2_8_49_1 publication-title: ActaCryst. – ident: e_1_2_8_53_1 doi: 10.1351/pac198254112201 – ident: e_1_2_8_64_1 doi: 10.1021/acscatal.0c02944 – ident: e_1_2_8_55_1 doi: 10.1038/ncomms5477 – volume: 4 start-page: 10 year: 2021 ident: e_1_2_8_60_1 publication-title: Nat. Energy – ident: e_1_2_8_14_1 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_8_24_1 doi: 10.1021/acs.chemrev.6b00346 – ident: e_1_2_8_27_1 doi: 10.1039/C9CS00334G – ident: e_1_2_8_6_1 doi: 10.1126/science.1141483 – ident: e_1_2_8_33_1 doi: 10.1021/acsenergylett.9b02625 – ident: e_1_2_8_67_1 doi: 10.1002/anie.202103824 |
SSID | ssj0002511797 |
Score | 2.280366 |
Snippet | Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Catalysts Chemical synthesis Density functional theory Electrochemical fabrication Electrolytes Iron Metal-organic frameworks metal–organic frameworks (MOFs) Mossbauer spectroscopy Nickel nickel–iron oxyhydroxides Oxygen evolution reactions Photoelectrons structure–property relationships |
Title | Metal‐Organic Frameworks‐Derived Nickel–Iron Oxyhydroxide with Highly Active Edge Sites for Electrochemical Oxygen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsstr.202200085 https://www.proquest.com/docview/2723632982 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZCOcAFlT9RWpAPSBwiF8fr_TuWkqpUDSCSit5WXturrloSlDRVwwFVvABIvGGfhPHa691WQRQuq8Sx1958345nxuMxQi9ikHAhZZJwkYKBErGcCCESIlRYhJJqranZjTx4F-0e8L3D8LDT-dGKWpqf5pvy69J9Jf-DKpQBrmaX7D8g628KBfAZ8IUrIAzXG2E80KA6-3AFu61SGl3UxlvN_E9vYDRnoFoC7sfatwjeTgH79-eLo4WaTs5Lpa1b1sR-nCy6W5Uo7PbNhq5hafyzJiSxb8_NkXWiAWgO4-v2z9yTtrXd4Wez8G1T1M6nTbTivvW6vi7Jfjn3Pp4jMbGlbjI1ssh5s3fmZK_0FPzgSj_psu20AHu3Dn9zso1FACXoElYQ6yVlTjgHbQ7SpTLf5pCdwcNsmq4qLbKZ3eoV_WuTng9FtGmbWWbaZ779LXSbgd1hBOfgW-O0M_ZYXB3Y4wdbJwKl7NXVIVxVdBrrpW0DVUrMaBXdc9YH3rJUuo86evwA3dmuD_17iL5XlLq8-OnIhBsyQaGjEbY0urz4ZQiE2wTChkDYEghbAmFDIFwRCAOB8DUCYUsg7An0CB3s9Efbu8Qd00GkUT5JVHCuUia1EJSqXk65YDJMKZehipWKRcFlL5I0TRJOg1TyRAumda_gZtFY8uAxWhlPxvoJwkLniWQ0FpLlPFZ5kkYCahdUcCWjkK0hUv-nmXQ57M1RKifZchjX0Etf_4vN3vLHmhs1RJl7w2cZAwZEAUsT6JhVsP3lLtlwOProvz29ce_r6G7zlmygFXgv9TNQdk_z5xUBfwOA1qrY |
linkProvider | ISSN International Centre |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6V9lAuiPIjWkrxAcRpVWfi_TtwiNpECW2KRBJUcVm89mxBrRKUDaW5IZ4AiSfpK_VJGO9f6QEhIfW4lu1deWY8n2fH3wC8CHmH8yUaT-mYDygBpp7WOvK09TPfSCKS7jby8CjoT9SbY_94BS7ruzAlP0QTcHOWUezXzsBdQHr3mjU0zxeO0BOxwA1VXuUBLb_xqS1_PdhnEb9E7HXHe32vKizgGecuvSBTysZoSGspbSuVSqPxY6mMb0NrQ50p0wqMjCM-_rRjoyLSSNTKlPvNZVSb570Daw5KsSGtdd5PPkyawI7D7GFR1AUD1kJ2mFiTRUrcvfnRN53hNcL9EycXjq53H-5VCFV0SpXagBWaPoD1vbow3EP4MSRG7Ffff5b3OI3o1QleOTfus0qfkxWsYqfEvX4N5rOpeHux_LS089nFZ0vCxX6FSzA5W4pOsd-Krj0hMWL4mwtG0aJbFucxFZuBG86KLrrnlaE8gsmtrPhjWJ3OpvQEhKY0MihDbTBVoU2jONDcO5NaWRP4uAlevaaJqXjOXbmNs6RkaMbEySBpZLAJr5r-X0qGj7_23K5FlFSWnicYYjtoYxzxi7EQ2z9mSUaj8bvmaet_Bj2H9f54eJgcDo4OnsJd117mF27D6mL-lZ4xTlqkO5VmCvh428bwG2MvJKM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuFU9RKMUHEKdVnYn3deghahI1lBZEGlRxWbz2LCCqpMqmj9wQv6BS_wi_iV_S8b5KDwgJqce1xt6VZ8bz2Tv-BuBlyCucL9F4Sse8QQkw9bTWkaetn_lGEpF0t5F394LtsXpz4B8swa_6LkzJD9EcuDnPKNZr5-BHNtu4Ig3N87nj80QsYEOVVrlDi1PetOWbwx5r-BXioL-_te1VdQU846KlF2RK2RgNaS2lbadSaTR-LJXxbWhtqDNl2oGRccS7n05sVEQaidqZcn-5jOrwuLdg2edQKFuw3P04_jRuznUcZA-Lmi4YsBFyvMSaK1LixvWPvh4LrwDunzC5iHODe7BSAVTRLS3qPizR5AHc2arrwj2En7vEgP33j_PyGqcRgzq_K-fGHlv0CVnBFvadWOpiOJtOxLuzxdeFnU3PvlkS7uhXuPySw4XoFsut6NsvJEaMfnPBIFr0y9o8piIzcN3ZzkX_pPKTRzC-kRl_DK3JdEJPQGhKI4My1AZTFdo0igPN0pnUyprAx1Xw6jlNTEVz7qptHCYlQTMmTgdJo4NVeN3IH5UEH3-VXKtVlFSOnicYYifoYBzxi7FQ2z9GSUaj_Q_N09P_6fQCbr_vDZK3w72dZ3DXNZfZhWvQms-O6TmjpHm6XhmmgM837QuXPtkjww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%90Organic+Frameworks%E2%80%90Derived+Nickel%E2%80%93Iron+Oxyhydroxide+with+Highly+Active+Edge+Sites+for+Electrochemical+Oxygen+Evolution&rft.jtitle=Small+structures&rft.au=Lan%2C+Bi-Liu&rft.au=Shao%2C+Bing&rft.au=Yang%2C+Fu-Jie&rft.au=Pang%2C+Wei&rft.date=2022-10-01&rft.issn=2688-4062&rft.eissn=2688-4062&rft.volume=3&rft.issue=10&rft_id=info:doi/10.1002%2Fsstr.202200085&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sstr_202200085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4062&client=summon |