Metal‐Organic Frameworks‐Derived Nickel–Iron Oxyhydroxide with Highly Active Edge Sites for Electrochemical Oxygen Evolution

Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency catalysts. Herein, the α phase nickel–iron oxyhydroxide (α‐NiFeOxHy) rich of nickel active edge sites is electrochemically in situ generated from...

Full description

Saved in:
Bibliographic Details
Published inSmall structures Vol. 3; no. 10
Main Authors Lan, Bi-Liu, Shao, Bing, Yang, Fu-Jie, Pang, Wei, Guo, Zeping, Meng, Ting, Zhang, Zhong, Huang, Jin
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency catalysts. Herein, the α phase nickel–iron oxyhydroxide (α‐NiFeOxHy) rich of nickel active edge sites is electrochemically in situ generated from Fe‐square acid metal–organic framework precursor deposited on nickel‐containing electrode matrixes, which revealed superior oxygen evolution reaction performance signified by an overpotential of 167 mV to achieve a current density of 10 mA cm−2 in alkaline electrolytes. Notably, the as‐prepared metal oxyhydroxide exhibits long‐term electrochemical durability in 10 mA cm−2 for over 1080 h. By integrating the electrochemical evidence, Mössbauer spectroscopy, X‐Ray photoelectron spectroscopy, and density functional theory calculations, the nickel species enriched on the exposed edge facet of the as‐synthesized α‐NiFeOxHy are proposed to be the highly catalytic active site. This study provides an expedient and energy‐efficient approach to in situ electrochemical fabrication of high‐performance NiFeOxHy oxygen evolution reaction catalysts from metal‐organic frameworks. The ultra‐microporous Fe‐based metal‐organic frameworks are in situ electrochemically transformed into α‐NiFeOxHy from the surface to the interior, and the ultra‐high active edge‐site nickel originating from the dissolution and release of the nickel substrate during the oxygen evolution reaction test.
AbstractList Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency catalysts. Herein, the α phase nickel–iron oxyhydroxide (α‐NiFeOxHy) rich of nickel active edge sites is electrochemically in situ generated from Fe‐square acid metal–organic framework precursor deposited on nickel‐containing electrode matrixes, which revealed superior oxygen evolution reaction performance signified by an overpotential of 167 mV to achieve a current density of 10 mA cm−2 in alkaline electrolytes. Notably, the as‐prepared metal oxyhydroxide exhibits long‐term electrochemical durability in 10 mA cm−2 for over 1080 h. By integrating the electrochemical evidence, Mössbauer spectroscopy, X‐Ray photoelectron spectroscopy, and density functional theory calculations, the nickel species enriched on the exposed edge facet of the as‐synthesized α‐NiFeOxHy are proposed to be the highly catalytic active site. This study provides an expedient and energy‐efficient approach to in situ electrochemical fabrication of high‐performance NiFeOxHy oxygen evolution reaction catalysts from metal‐organic frameworks. The ultra‐microporous Fe‐based metal‐organic frameworks are in situ electrochemically transformed into α‐NiFeOxHy from the surface to the interior, and the ultra‐high active edge‐site nickel originating from the dissolution and release of the nickel substrate during the oxygen evolution reaction test.
Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency catalysts. Herein, the α phase nickel–iron oxyhydroxide (α‐NiFeOxHy) rich of nickel active edge sites is electrochemically in situ generated from Fe‐square acid metal–organic framework precursor deposited on nickel‐containing electrode matrixes, which revealed superior oxygen evolution reaction performance signified by an overpotential of 167 mV to achieve a current density of 10 mA cm−2 in alkaline electrolytes. Notably, the as‐prepared metal oxyhydroxide exhibits long‐term electrochemical durability in 10 mA cm−2 for over 1080 h. By integrating the electrochemical evidence, Mössbauer spectroscopy, X‐Ray photoelectron spectroscopy, and density functional theory calculations, the nickel species enriched on the exposed edge facet of the as‐synthesized α‐NiFeOxHy are proposed to be the highly catalytic active site. This study provides an expedient and energy‐efficient approach to in situ electrochemical fabrication of high‐performance NiFeOxHy oxygen evolution reaction catalysts from metal‐organic frameworks.
Author Huang, Jin
Lan, Bi-Liu
Zhang, Zhong
Meng, Ting
Yang, Fu-Jie
Pang, Wei
Shao, Bing
Guo, Zeping
Author_xml – sequence: 1
  givenname: Bi-Liu
  surname: Lan
  fullname: Lan, Bi-Liu
  organization: Guangxi Normal University
– sequence: 2
  givenname: Bing
  surname: Shao
  fullname: Shao, Bing
  organization: Guangxi Normal University
– sequence: 3
  givenname: Fu-Jie
  surname: Yang
  fullname: Yang, Fu-Jie
  organization: Zhongkai University of Agriculture and Engineering
– sequence: 4
  givenname: Wei
  surname: Pang
  fullname: Pang, Wei
  organization: Guangxi Normal University
– sequence: 5
  givenname: Zeping
  surname: Guo
  fullname: Guo, Zeping
  organization: Guangxi Normal University
– sequence: 6
  givenname: Ting
  surname: Meng
  fullname: Meng, Ting
  organization: Guangxi Medical University
– sequence: 7
  givenname: Zhong
  surname: Zhang
  fullname: Zhang, Zhong
  email: zhangzhong@mailbox.gxnu.edu.cn
  organization: Guangxi Normal University
– sequence: 8
  givenname: Jin
  orcidid: 0000-0001-5654-2464
  surname: Huang
  fullname: Huang, Jin
  email: huangjin@mailbox.gxnu.edu.cn
  organization: Guangxi Medical University
BookMark eNqFkM9KAzEQh4NUsNZePQc8b02y2X_Hoq0KasHqeYnJbBvdbjRJW_cmPoHgG_ok7lJREcTTDMP3zQy_XdSpTAUI7VMyoISwQ-e8HTDCGCEkjbZQl8VpGnASs86Pfgf1nbtrEBZRmmRJF71cgBfl-_PrxM5EpSUeW7GAtbH3rhkeg9UrUPhSy3toqLczayo8earntbLmSSvAa-3n-FTP5mWNh9I3OB6pGeCp9uBwYSwelSC9NXIOCy1F2eozqPBoZcql16baQ9uFKB30P2sP3YxH10enwfnk5OxoeB7IkCZREBecq4xJEIIQRW8JF0xGGeEyUolSiSi4pLEkWZpyEmaSpyAYAC14zMNE8rCHDjZ7H6x5XILz-Z1Z2qo5mbOEhXHIspQ1FN9Q0hrnLBS51F60f3ordJlTkreB523g-VfgjTb4pT1YvRC2_lvINsJal1D_Q-fT6fXVt_sBu0ybIw
CitedBy_id crossref_primary_10_1002_cplu_202300739
crossref_primary_10_1002_smll_202406075
crossref_primary_10_1016_j_jcis_2024_04_084
crossref_primary_10_3390_bios13020284
crossref_primary_10_1021_acsami_3c01929
Cites_doi 10.1021/jacs.6b03125
10.1021/cr200434v
10.1039/C3CS60374A
10.1126/science.1254227
10.1038/s41560-019-0355-9
10.1002/anie.201801029
10.1016/j.apcatb.2020.118988
10.1002/anie.200300610
10.1016/j.jechem.2020.09.014
10.1021/jacs.0c10285
10.1016/j.apcatb.2020.119740
10.1002/adma.201604103
10.1002/anie.201809689
10.1002/anie.201806432
10.1016/j.ccr.2017.09.001
10.1002/adma.201901139
10.1016/j.nanoen.2021.106030
10.1021/ja502379c
10.1002/anie.202009700
10.1002/sia.2758
10.1021/acsnano.0c08913
10.1126/science.aad8892
10.1016/j.chempr.2017.05.014
10.1002/adma.201701820
10.1016/j.nanoen.2021.105830
10.1021/acs.chemrev.9b00223
10.1002/anie.201906449
10.1039/C3CS60215J
10.1038/s41467-020-15200-4
10.1021/acs.chemrev.9b00246
10.1021/jacs.9b02417
10.1007/s40820-020-00528-9
10.1002/anie.201804881
10.1021/jacs.5b10977
10.1038/ncomms7616
10.1021/cr9003924
10.1016/j.apcatb.2021.120580
10.1016/j.apmate.2021.10.003
10.1016/j.cej.2021.132733
10.1016/j.jechem.2021.06.037
10.1126/science.aaf5050
10.1093/nsr/nww062
10.1002/smtd.201600030
10.1002/anie.202004846
10.1021/jacs.6b12353
10.1021/acsenergylett.8b01774
10.1021/jacs.5b10699
10.1039/C6CS00343E
10.1021/ja500432h
10.1126/science.aad4998
10.1002/adma.201604607
10.1002/anie.201809144
10.1038/nenergy.2016.184
10.1073/pnas.1702081114
10.1351/pac198254112201
10.1021/acscatal.0c02944
10.1038/ncomms5477
10.1038/s41560-020-00709-1
10.1021/acs.chemrev.6b00346
10.1039/C9CS00334G
10.1126/science.1141483
10.1021/acsenergylett.9b02625
10.1002/anie.202103824
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/sstr.202200085
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2688-4062
EndPage n/a
ExternalDocumentID 10_1002_sstr_202200085
SSTR202200085
Genre article
GrantInformation_xml – fundername: Guangxi Scientific and Technological Innovation Base and Personnel Project of China
  funderid: GUIKE2018AD19297
– fundername: Guangxi Natural Science Foundation of China
  funderid: 2017GXNSFAA198125
– fundername: National Natural Science Foundation of China
  funderid: 21901051; 21861003
GroupedDBID 0R~
1OC
24P
33P
34L
AAHHS
ABCUV
ABDBF
ACCFJ
ACCMX
ACCZN
ACPOU
ACXQS
ADKYN
ADZMN
AEEZP
AEQDE
AFWVQ
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
DCZOG
EBS
GROUPED_DOAJ
LATKE
LEEKS
OK1
SUPJJ
AAFWJ
AAYXX
ABJNI
AFPKN
CITATION
M~E
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3175-6f44d92ceaa00d1b04a2c5904c5d7dd7af4c16c09884039c48ea2ee1f46437c43
ISSN 2688-4062
IngestDate Fri Jul 25 08:31:47 EDT 2025
Tue Jul 01 01:54:50 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Wed Jan 22 16:24:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-6f44d92ceaa00d1b04a2c5904c5d7dd7af4c16c09884039c48ea2ee1f46437c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5654-2464
PQID 2723632982
PQPubID 5014762
PageCount 12
ParticipantIDs proquest_journals_2723632982
crossref_citationtrail_10_1002_sstr_202200085
crossref_primary_10_1002_sstr_202200085
wiley_primary_10_1002_sstr_202200085_SSTR202200085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small structures
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 1
2017; 2
2020; 120
1982; 54
2019; 58
1975; 12
2020; 59
2021; 284
2020; 11
2022; 65
2020; 10
2017; 355
2017; 114
2014; 136
2018; 373
2020; 5
2018; 3
2014; 5
2015; 137
2010; 110
2020; 49
2016; 353
2016; 352
2016; 116
2021; 83
2021; 85
2016; 45
2004; 43
2022; 430
2019; 4
2015; 6
2021; 4
2019; 31
2017; 29
2021; 143
2019; 141
2014; 43
2017; 139
2021; 57
2002; E58
2021; 13
2021; 15
2007; 317
2016; 1
2012; 112
2016; 3
2020; 272
2022; 61
2016; 138
2022; 1
2021; 298
2008; 40
2014; 346
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
NaÈther C. (e_1_2_8_49_1) 2002; 58
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_41_1
e_1_2_8_17_1
Li J. (e_1_2_8_60_1) 2021; 4
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Gupta R. P. (e_1_2_8_62_1) 1975; 12
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 43
  start-page: 7624
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 1107
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 352
  start-page: 73
  year: 2016
  publication-title: Science
– volume: 57
  start-page: 11544
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: E58
  start-page: m507
  year: 2002
  publication-title: ActaCryst.
– volume: 57
  start-page: 212
  year: 2021
  publication-title: J. Energy Chem.
– volume: 45
  start-page: 4873
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 20465
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 10
  year: 2021
  publication-title: Nat. Energy
– volume: 49
  start-page: 301
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 814
  year: 2020
  publication-title: Chem. Rev.
– volume: 136
  start-page: 6744
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 329
  year: 2019
  publication-title: Nat. Energy
– volume: 139
  start-page: 1778
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 881
  year: 2020
  publication-title: Nat. Energy
– volume: 430,
  start-page: 132733
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 40
  start-page: 323
  year: 2008
  publication-title: Surf. Interface Anal.
– volume: 83
  start-page: 105830
  year: 2021
  publication-title: Nano Energy
– volume: 57
  start-page: 9392
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 1604607
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 520
  year: 2016
  publication-title: Natl. Sci. Rev.
– volume: 57
  start-page: 4632
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 136
  start-page: 4394
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1604103
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 120
  start-page: 1438
  year: 2020
  publication-title: Chem. Rev.
– volume: 6
  start-page: 6616
  year: 2015
  publication-title: Nat. Commun.
– volume: 346
  start-page: 1356
  year: 2014
  publication-title: Science
– volume: 138
  start-page: 8336
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 5
  year: 1975
  publication-title: Phys. Rev. B.
– volume: 43
  start-page: 2334
  year: 2004
  publication-title: Angew. Chem. Int. Ed.
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 353
  start-page: 1011
  year: 2016
  publication-title: Science
– volume: 141
  start-page: 7906
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 272
  start-page: 118988
  year: 2020
  publication-title: Appl. Catal. B-Environ.
– volume: 15,
  start-page: 7
  year: 2021
  publication-title: ACS Nano
– volume: 58
  start-page: 736
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 298
  start-page: 120580
  year: 2021
  publication-title: App. Catal. B
– volume: 13
  start-page: 17
  year: 2021
  publication-title: Nano-Micro Lett.
– volume: 61
  start-page: e202103824
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 1701820
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 751
  year: 2017
  publication-title: Chem.
– volume: 5
  start-page: 520
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 284
  start-page: 119740
  year: 2021
  publication-title: Appl. Catal. B-Environ.
– volume: 10
  start-page: 12127
  year: 2020
  publication-title: ACS Catal.
– volume: 54
  start-page: 2201
  year: 1982
  publication-title: Pure Appl. Chem.
– volume: 1
  start-page: 1600030
  year: 2017
  publication-title: Small Methods
– volume: 110
  start-page: 4606
  year: 2010
  publication-title: Chem. Rev.
– volume: 58
  start-page: 139
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 13768
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 355
  start-page: eaad4998
  year: 2017
  publication-title: Science
– volume: 138
  start-page: 313
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 373,
  start-page: 22
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 3
  start-page: 2956
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 19649
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 112
  start-page: 4124
  year: 2012
  publication-title: Chem. Rev.
– volume: 114
  start-page: 3050
  year: 2017
  publication-title: PNAS
– volume: 65
  start-page: 574
  year: 2022
  publication-title: J. Energy Chem.
– volume: 1
  start-page: 100012
  year: 2022
  publication-title: Adv. Powder Mater.
– volume: 137
  start-page: 15090
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1431
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 16184
  year: 2016
  publication-title: Nat. Energy
– volume: 143
  start-page: 1854
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1901139
  year: 2019
  publication-title: Adv. Mater.
– volume: 116
  start-page: 12466
  year: 2016
  publication-title: Chem. Rev.
– volume: 85
  start-page: 106030
  year: 2021
  publication-title: Nano Energy
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.6b03125
– ident: e_1_2_8_36_1
  doi: 10.1021/cr200434v
– ident: e_1_2_8_15_1
  doi: 10.1039/C3CS60374A
– ident: e_1_2_8_54_1
  doi: 10.1126/science.1254227
– ident: e_1_2_8_63_1
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201801029
– ident: e_1_2_8_43_1
  doi: 10.1016/j.apcatb.2020.118988
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.200300610
– ident: e_1_2_8_59_1
  doi: 10.1016/j.jechem.2020.09.014
– ident: e_1_2_8_34_1
  doi: 10.1021/jacs.0c10285
– ident: e_1_2_8_42_1
  doi: 10.1016/j.apcatb.2020.119740
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201604103
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.201809689
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.201806432
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ccr.2017.09.001
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.201901139
– ident: e_1_2_8_37_1
  doi: 10.1016/j.nanoen.2021.106030
– ident: e_1_2_8_69_1
  doi: 10.1002/anie.201801029
– ident: e_1_2_8_38_1
  doi: 10.1021/ja502379c
– ident: e_1_2_8_46_1
  doi: 10.1002/anie.202009700
– ident: e_1_2_8_61_1
  doi: 10.1002/sia.2758
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.0c08913
– ident: e_1_2_8_11_1
  doi: 10.1126/science.aad8892
– ident: e_1_2_8_51_1
  doi: 10.1016/j.chempr.2017.05.014
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201701820
– ident: e_1_2_8_18_1
  doi: 10.1016/j.nanoen.2021.105830
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.chemrev.9b00223
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201906449
– ident: e_1_2_8_22_1
  doi: 10.1039/C3CS60215J
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-020-15200-4
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.chemrev.9b00246
– ident: e_1_2_8_44_1
  doi: 10.1021/jacs.9b02417
– ident: e_1_2_8_52_1
  doi: 10.1007/s40820-020-00528-9
– ident: e_1_2_8_39_1
  doi: 10.1002/anie.201804881
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.5b10977
– ident: e_1_2_8_68_1
  doi: 10.1038/ncomms7616
– ident: e_1_2_8_25_1
  doi: 10.1021/cr9003924
– ident: e_1_2_8_66_1
  doi: 10.1016/j.apcatb.2021.120580
– ident: e_1_2_8_19_1
  doi: 10.1016/j.apmate.2021.10.003
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cej.2021.132733
– ident: e_1_2_8_65_1
  doi: 10.1016/j.jechem.2021.06.037
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aaf5050
– ident: e_1_2_8_5_1
  doi: 10.1093/nsr/nww062
– ident: e_1_2_8_58_1
  doi: 10.1002/smtd.201600030
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.202004846
– ident: e_1_2_8_31_1
  doi: 10.1021/jacs.6b12353
– ident: e_1_2_8_8_1
  doi: 10.1021/acsenergylett.8b01774
– ident: e_1_2_8_16_1
  doi: 10.1021/jacs.5b10699
– ident: e_1_2_8_35_1
  doi: 10.1039/C6CS00343E
– ident: e_1_2_8_48_1
  doi: 10.1021/ja500432h
– ident: e_1_2_8_2_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201604607
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201809144
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jechem.2020.09.014
– ident: e_1_2_8_56_1
  doi: 10.1038/nenergy.2016.184
– volume: 12
  start-page: 5
  year: 1975
  ident: e_1_2_8_62_1
  publication-title: Phys. Rev. B.
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.1702081114
– volume: 58
  start-page: m507
  year: 2002
  ident: e_1_2_8_49_1
  publication-title: ActaCryst.
– ident: e_1_2_8_53_1
  doi: 10.1351/pac198254112201
– ident: e_1_2_8_64_1
  doi: 10.1021/acscatal.0c02944
– ident: e_1_2_8_55_1
  doi: 10.1038/ncomms5477
– volume: 4
  start-page: 10
  year: 2021
  ident: e_1_2_8_60_1
  publication-title: Nat. Energy
– ident: e_1_2_8_14_1
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.chemrev.6b00346
– ident: e_1_2_8_27_1
  doi: 10.1039/C9CS00334G
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1141483
– ident: e_1_2_8_33_1
  doi: 10.1021/acsenergylett.9b02625
– ident: e_1_2_8_67_1
  doi: 10.1002/anie.202103824
SSID ssj0002511797
Score 2.280366
Snippet Accurate introduction of catalytic active sites to precise locations on the catalyst surface is a challenge in designing and synthesizing high‐efficiency...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Catalysts
Chemical synthesis
Density functional theory
Electrochemical fabrication
Electrolytes
Iron
Metal-organic frameworks
metal–organic frameworks (MOFs)
Mossbauer spectroscopy
Nickel
nickel–iron oxyhydroxides
Oxygen evolution reactions
Photoelectrons
structure–property relationships
Title Metal‐Organic Frameworks‐Derived Nickel–Iron Oxyhydroxide with Highly Active Edge Sites for Electrochemical Oxygen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsstr.202200085
https://www.proquest.com/docview/2723632982
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZCOcAFlT9RWpAPSBwiF8fr_TuWkqpUDSCSit5WXturrloSlDRVwwFVvABIvGGfhPHa691WQRQuq8Sx1958345nxuMxQi9ikHAhZZJwkYKBErGcCCESIlRYhJJqranZjTx4F-0e8L3D8LDT-dGKWpqf5pvy69J9Jf-DKpQBrmaX7D8g628KBfAZ8IUrIAzXG2E80KA6-3AFu61SGl3UxlvN_E9vYDRnoFoC7sfatwjeTgH79-eLo4WaTs5Lpa1b1sR-nCy6W5Uo7PbNhq5hafyzJiSxb8_NkXWiAWgO4-v2z9yTtrXd4Wez8G1T1M6nTbTivvW6vi7Jfjn3Pp4jMbGlbjI1ssh5s3fmZK_0FPzgSj_psu20AHu3Dn9zso1FACXoElYQ6yVlTjgHbQ7SpTLf5pCdwcNsmq4qLbKZ3eoV_WuTng9FtGmbWWbaZ779LXSbgd1hBOfgW-O0M_ZYXB3Y4wdbJwKl7NXVIVxVdBrrpW0DVUrMaBXdc9YH3rJUuo86evwA3dmuD_17iL5XlLq8-OnIhBsyQaGjEbY0urz4ZQiE2wTChkDYEghbAmFDIFwRCAOB8DUCYUsg7An0CB3s9Efbu8Qd00GkUT5JVHCuUia1EJSqXk65YDJMKZehipWKRcFlL5I0TRJOg1TyRAumda_gZtFY8uAxWhlPxvoJwkLniWQ0FpLlPFZ5kkYCahdUcCWjkK0hUv-nmXQ57M1RKifZchjX0Etf_4vN3vLHmhs1RJl7w2cZAwZEAUsT6JhVsP3lLtlwOProvz29ce_r6G7zlmygFXgv9TNQdk_z5xUBfwOA1qrY
linkProvider ISSN International Centre
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6V9lAuiPIjWkrxAcRpVWfi_TtwiNpECW2KRBJUcVm89mxBrRKUDaW5IZ4AiSfpK_VJGO9f6QEhIfW4lu1deWY8n2fH3wC8CHmH8yUaT-mYDygBpp7WOvK09TPfSCKS7jby8CjoT9SbY_94BS7ruzAlP0QTcHOWUezXzsBdQHr3mjU0zxeO0BOxwA1VXuUBLb_xqS1_PdhnEb9E7HXHe32vKizgGecuvSBTysZoSGspbSuVSqPxY6mMb0NrQ50p0wqMjCM-_rRjoyLSSNTKlPvNZVSb570Daw5KsSGtdd5PPkyawI7D7GFR1AUD1kJ2mFiTRUrcvfnRN53hNcL9EycXjq53H-5VCFV0SpXagBWaPoD1vbow3EP4MSRG7Ffff5b3OI3o1QleOTfus0qfkxWsYqfEvX4N5rOpeHux_LS089nFZ0vCxX6FSzA5W4pOsd-Krj0hMWL4mwtG0aJbFucxFZuBG86KLrrnlaE8gsmtrPhjWJ3OpvQEhKY0MihDbTBVoU2jONDcO5NaWRP4uAlevaaJqXjOXbmNs6RkaMbEySBpZLAJr5r-X0qGj7_23K5FlFSWnicYYjtoYxzxi7EQ2z9mSUaj8bvmaet_Bj2H9f54eJgcDo4OnsJd117mF27D6mL-lZ4xTlqkO5VmCvh428bwG2MvJKM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuFU9RKMUHEKdVnYn3deghahI1lBZEGlRxWbz2LCCqpMqmj9wQv6BS_wi_iV_S8b5KDwgJqce1xt6VZ8bz2Tv-BuBlyCucL9F4Sse8QQkw9bTWkaetn_lGEpF0t5F394LtsXpz4B8swa_6LkzJD9EcuDnPKNZr5-BHNtu4Ig3N87nj80QsYEOVVrlDi1PetOWbwx5r-BXioL-_te1VdQU846KlF2RK2RgNaS2lbadSaTR-LJXxbWhtqDNl2oGRccS7n05sVEQaidqZcn-5jOrwuLdg2edQKFuw3P04_jRuznUcZA-Lmi4YsBFyvMSaK1LixvWPvh4LrwDunzC5iHODe7BSAVTRLS3qPizR5AHc2arrwj2En7vEgP33j_PyGqcRgzq_K-fGHlv0CVnBFvadWOpiOJtOxLuzxdeFnU3PvlkS7uhXuPySw4XoFsut6NsvJEaMfnPBIFr0y9o8piIzcN3ZzkX_pPKTRzC-kRl_DK3JdEJPQGhKI4My1AZTFdo0igPN0pnUyprAx1Xw6jlNTEVz7qptHCYlQTMmTgdJo4NVeN3IH5UEH3-VXKtVlFSOnicYYifoYBzxi7FQ2z9GSUaj_Q_N09P_6fQCbr_vDZK3w72dZ3DXNZfZhWvQms-O6TmjpHm6XhmmgM837QuXPtkjww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%90Organic+Frameworks%E2%80%90Derived+Nickel%E2%80%93Iron+Oxyhydroxide+with+Highly+Active+Edge+Sites+for+Electrochemical+Oxygen+Evolution&rft.jtitle=Small+structures&rft.au=Lan%2C+Bi-Liu&rft.au=Shao%2C+Bing&rft.au=Yang%2C+Fu-Jie&rft.au=Pang%2C+Wei&rft.date=2022-10-01&rft.issn=2688-4062&rft.eissn=2688-4062&rft.volume=3&rft.issue=10&rft_id=info:doi/10.1002%2Fsstr.202200085&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sstr_202200085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4062&client=summon