Palladium‐Boride Nanoflowers with Controllable Boron Content for Formic Acid Electrooxidation

The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron con...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 38
Main Authors Liu, Yi‐Ming, Miao, Bo‐Qiang, Yang, Han‐Yue, Ai, Xuan, Wang, Tian‐Jiao, Shi, Feng, Chen, Pei, Chen, Yu
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing PdII‐dimethylglyoxime as precursor and NaBH4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m−2), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications. Palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content and crystal phase transition from face‐centered cubic to hexagonal close‐packed are synthesized by a simple wet chemical reduction method. Pd‐B NFs obtained after 12‐h reaction possess modified Pd surface electronic structure by d‐sp orbital hybridization, thus perform the optimized adsorption behavior of key intermediate, demonstrating remarkable performance towards formic acid electrooxidation.
AbstractList The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing PdII‐dimethylglyoxime as precursor and NaBH4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m−2), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications. Palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content and crystal phase transition from face‐centered cubic to hexagonal close‐packed are synthesized by a simple wet chemical reduction method. Pd‐B NFs obtained after 12‐h reaction possess modified Pd surface electronic structure by d‐sp orbital hybridization, thus perform the optimized adsorption behavior of key intermediate, demonstrating remarkable performance towards formic acid electrooxidation.
The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing Pd II ‐dimethylglyoxime as precursor and NaBH 4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m −2 ), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d ‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications.
The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing PdII‐dimethylglyoxime as precursor and NaBH4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m−2), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications.
Author Shi, Feng
Wang, Tian‐Jiao
Liu, Yi‐Ming
Yang, Han‐Yue
Ai, Xuan
Chen, Pei
Chen, Yu
Miao, Bo‐Qiang
Author_xml – sequence: 1
  givenname: Yi‐Ming
  surname: Liu
  fullname: Liu, Yi‐Ming
  organization: Shaanxi Normal University
– sequence: 2
  givenname: Bo‐Qiang
  surname: Miao
  fullname: Miao, Bo‐Qiang
  organization: Shaanxi Normal University
– sequence: 3
  givenname: Han‐Yue
  surname: Yang
  fullname: Yang, Han‐Yue
  organization: Shaanxi Normal University
– sequence: 4
  givenname: Xuan
  surname: Ai
  fullname: Ai, Xuan
  email: aixuan@snnu.edu.cn
  organization: Shaanxi Normal University
– sequence: 5
  givenname: Tian‐Jiao
  surname: Wang
  fullname: Wang, Tian‐Jiao
  email: wangtj@snnu.edu.cn
  organization: Shaanxi Normal University
– sequence: 6
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  organization: Shaanxi Normal University
– sequence: 7
  givenname: Pei
  surname: Chen
  fullname: Chen, Pei
  organization: Shaanxi Normal University
– sequence: 8
  givenname: Yu
  orcidid: 0000-0001-9545-6761
  surname: Chen
  fullname: Chen, Yu
  email: chenyu001@snnu.edu.cn
  organization: Shaanxi Normal University
BookMark eNqFkMtKAzEUhoNUsK1uXQdct-YyaWaWtbYq1MtCwV1IJ2cwJZPUzJTanY_gM_okTlupIIghkEP4vnM4fwe1fPCA0CklfUoIO9emKPuMsKS5qThAbTqggx4nLG3ta_p8hDpVNSeESsmTNlIP2jlt7LL8fP-4CNEawHfah8KFFcQKr2z9gkfB1zE03MwBbqDgt1_ga1yEiCchljbHw9waPHaQN2x4s0bXNvhjdFhoV8HJ99tFT5Px4-i6N72_uhkNp72cUyl6gs8SIYzRjKfJLJVGEi2YZtpARlgmpRQ6g1wAB0OB6CxLiJQFAS0Tk4DgXXS267uI4XUJVa3mYRl9M1Jx2pyMyXRD9XdUHkNVRSjUItpSx7WiRG1CVJsQ1T7ERkh-Cbmtt4vVUVv3t5bttJV1sP5niBpeTm5_3C-DFoq3
CitedBy_id crossref_primary_10_1007_s42114_025_01282_5
crossref_primary_10_1016_j_apcatb_2025_125041
crossref_primary_10_1039_D5TA00245A
crossref_primary_10_1002_advs_202407051
crossref_primary_10_1002_slct_202401006
crossref_primary_10_1021_acsami_4c14531
crossref_primary_10_1039_D4TA04802D
crossref_primary_10_1007_s11771_024_5831_0
crossref_primary_10_1039_D5RA00302D
Cites_doi 10.1002/anie.201915663
10.1021/ja5008917
10.1021/jacs.7b01125
10.1002/adfm.201603852
10.3866/PKU.WHXB201905023
10.1039/C9CC06004A
10.1002/smll.201703940
10.1002/anie.201308620
10.1039/b820837a
10.1016/j.jechem.2019.02.015
10.1002/anie.200502172
10.1038/ncomms6787
10.1021/jp900349g
10.1021/am100647u
10.1039/C8TA05710A
10.1002/cctc.201901260
10.1021/ja9004915
10.1016/j.cjsc.2023.100095
10.1038/s41467-021-27793-5
10.1021/ja800656y
10.1021/acscatal.0c03555
10.1038/nature11115
10.1002/smtd.201800211
10.1016/j.apcatb.2020.119106
10.1002/anie.201703209
10.1021/acs.nanolett.7b00870
10.1002/adfm.202000534
10.1016/S1872-2067(21)63899-8
10.1021/jacs.7b12506
10.1016/j.electacta.2016.10.201
10.1002/aenm.202100157
10.1002/anie.201002501
10.1016/j.nanoen.2018.12.018
10.1021/ja310566z
10.1007/s12274-021-3471-3
10.1021/jacs.9b06120
10.1002/cey2.170
10.1002/anie.201702430
10.1002/anie.201105516
10.1021/acssuschemeng.9b00258
10.1021/acsami.0c15074
10.1021/ja500393g
10.1021/cs500227j
10.1016/j.nanoen.2017.11.033
10.1002/aenm.202201823
10.1021/acscatal.5b01497
10.1002/anie.201203078
10.1016/j.jpowsour.2015.01.100
10.1002/aenm.202203893
10.1088/1361-6528/ad18ea
10.1002/anie.200906987
10.1002/aenm.201901503
10.1126/science.296.5571.1222
10.1002/aenm.201803369
10.1002/anie.201511032
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202402485
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202402485
ADFM202402485
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22272103; 22309108
– fundername: Young Scientist Initiative Project of School of Materials Science and Engineering at Shaanxi Normal University
  funderid: 2023YSIP‐MSE‐SNNU008
– fundername: Science and Technology Innovation Team of Shaanxi Province
  funderid: 2023‐CX‐TD‐27
– fundername: Fundamental Research Funds for the Central Universities
  funderid: GK202304011; GK202202001
– fundername: Sanqin scholars innovation teams in Shaanxi Province
– fundername: Postdoctoral Research Foundation of China
  funderid: 2023TQ0204
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3175-53b455dda2384b87d70a52a2ade90297775a9ec5e3ed1e0a994077f0ea74d4e53
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 01:08:50 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 00:30:59 EDT 2025
Wed Jan 22 17:14:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-53b455dda2384b87d70a52a2ade90297775a9ec5e3ed1e0a994077f0ea74d4e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9545-6761
PQID 3111192785
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_3111192785
crossref_primary_10_1002_adfm_202402485
crossref_citationtrail_10_1002_adfm_202402485
wiley_primary_10_1002_adfm_202402485_ADFM202402485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021 2024; 11 35
2023; 42
2019; 9
2013 2009 2008 2009 2010; 53 2 130 131 2
2021 2016 2017 2014 2013; 11 222 56 136 135
2020; 30
2018 2022; 6 4
2018 2017 2020; 140 56 6
2022 2018 2023 2020 2021 2019 2015 2014 2015 2017 2016; 12 14 13 274 15 12 2 4 280 42 27
2020 2019 2020 2017 2019; 12 37 36 17 55
2017; 56
2020 2016 2019 2019; 59 55 9 7
2015 2021 2019 2014 2014; 5 11 141 136 5
2022; 13
2012 2002 2006 2012 2012 2010 2010; 486 296 45 51 51 49 49
2017 2019 2019; 139 3 57
2022; 43
2009 2014; 113 136
e_1_2_7_1_6
e_1_2_7_3_4
e_1_2_7_1_5
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_17_9
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_17_8
e_1_2_7_7_4
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_17_6
e_1_2_7_7_2
e_1_2_7_17_5
e_1_2_7_1_7
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_17_4
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_7_5
e_1_2_7_17_10
e_1_2_7_17_11
e_1_2_7_2_5
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_8_5
e_1_2_7_8_4
Qiu X. (e_1_2_7_17_7) 2015; 2
Lv H. (e_1_2_7_11_3) 2020; 6
References_xml – volume: 43
  start-page: 611
  year: 2022
  publication-title: Chinese J. Catal.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 42
  year: 2023
  publication-title: Chinese J. Struc. Chem.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 113 136
  start-page: 8366 4861
  year: 2009 2014
  publication-title: J. Phys. Chem. C J. Am. Chem. Soc.
– volume: 53 2 130 131 2
  start-page: 122 915 5406 4588 2965
  year: 2013 2009 2008 2009 2010
  publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces
– volume: 12 37 36 17 55
  start-page: 157 2727
  year: 2020 2019 2020 2017 2019
  publication-title: ACS Appl. Mater. Interfaces J. Energy Chem. Acta Phys.‐Chim. Sin. Nano Lett. Chem. Commun.
– volume: 59 55 9 7
  start-page: 3961 2488 5620
  year: 2020 2016 2019 2019
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Energy Mater. ACS Sustainable Chem. Eng.
– volume: 56
  start-page: 6578
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 11 35
  start-page: 4722
  year: 2021 2024
  publication-title: ACS Catal. Nanotechnology
– volume: 6 4
  start-page: 283
  year: 2018 2022
  publication-title: J. Mater. Chem. A Carbon Energy
– volume: 486 296 45 51 51 49 49
  start-page: 43 1222 981 9448 187 6998 2211
  year: 2012 2002 2006 2012 2012 2010 2010
  publication-title: Nature Science Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 5 11 141 136 5
  start-page: 6579 4722 4861 5787
  year: 2015 2021 2019 2014 2014
  publication-title: ACS Catal. ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. Nat. Commun.
– volume: 11 222 56 136 135
  start-page: 481 7121 6542 1201
  year: 2021 2016 2017 2014 2013
  publication-title: Adv. Energy Mater. Electrochim. Acta Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 12 14 13 274 15 12 2 4 280 42 27
  start-page: 280 504 2402 141 353
  year: 2022 2018 2023 2020 2021 2019 2015 2014 2015 2017 2016
  publication-title: Adv. Energy Mater. Small Adv. Energy Mater. Appl. Catal. B‐Environ. Nano Res. ChemCatChem Adv. Mater. ACS Catal. J. Power Sources Nano Energy Adv. Funct. Mater.
– volume: 139 3 57
  start-page: 5201 1
  year: 2017 2019 2019
  publication-title: J. Am. Chem. Soc. Small Methods Nano Energy
– volume: 140 56 6
  start-page: 2880 6578 2347
  year: 2018 2017 2020
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. ACS Catal.
– volume: 13
  start-page: 38
  year: 2022
  publication-title: Nat. Commun.
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201915663
– ident: e_1_2_7_7_4
  doi: 10.1021/ja5008917
– ident: e_1_2_7_4_1
  doi: 10.1021/jacs.7b01125
– ident: e_1_2_7_17_11
  doi: 10.1002/adfm.201603852
– ident: e_1_2_7_2_3
  doi: 10.3866/PKU.WHXB201905023
– ident: e_1_2_7_2_5
  doi: 10.1039/C9CC06004A
– ident: e_1_2_7_17_2
  doi: 10.1002/smll.201703940
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.201308620
– volume: 2
  year: 2015
  ident: e_1_2_7_17_7
  publication-title: Adv. Mater.
– ident: e_1_2_7_3_2
  doi: 10.1039/b820837a
– ident: e_1_2_7_2_2
  doi: 10.1016/j.jechem.2019.02.015
– ident: e_1_2_7_1_3
  doi: 10.1002/anie.200502172
– ident: e_1_2_7_7_5
  doi: 10.1038/ncomms6787
– ident: e_1_2_7_9_1
  doi: 10.1021/jp900349g
– ident: e_1_2_7_3_5
  doi: 10.1021/am100647u
– ident: e_1_2_7_16_1
  doi: 10.1039/C8TA05710A
– ident: e_1_2_7_17_6
  doi: 10.1002/cctc.201901260
– ident: e_1_2_7_3_4
  doi: 10.1021/ja9004915
– ident: e_1_2_7_14_1
  doi: 10.1016/j.cjsc.2023.100095
– ident: e_1_2_7_15_1
  doi: 10.1038/s41467-021-27793-5
– ident: e_1_2_7_3_3
  doi: 10.1021/ja800656y
– ident: e_1_2_7_12_1
  doi: 10.1021/acscatal.0c03555
– ident: e_1_2_7_1_1
  doi: 10.1038/nature11115
– ident: e_1_2_7_4_2
  doi: 10.1002/smtd.201800211
– ident: e_1_2_7_17_4
  doi: 10.1016/j.apcatb.2020.119106
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.201703209
– ident: e_1_2_7_2_4
  doi: 10.1021/acs.nanolett.7b00870
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.202000534
– ident: e_1_2_7_5_1
  doi: 10.1016/S1872-2067(21)63899-8
– ident: e_1_2_7_11_1
  doi: 10.1021/jacs.7b12506
– ident: e_1_2_7_8_2
  doi: 10.1016/j.electacta.2016.10.201
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.202100157
– ident: e_1_2_7_1_6
  doi: 10.1002/anie.201002501
– ident: e_1_2_7_4_3
  doi: 10.1016/j.nanoen.2018.12.018
– ident: e_1_2_7_8_5
  doi: 10.1021/ja310566z
– ident: e_1_2_7_9_2
  doi: 10.1021/ja5008917
– ident: e_1_2_7_17_5
  doi: 10.1007/s12274-021-3471-3
– ident: e_1_2_7_7_2
  doi: 10.1021/acscatal.0c03555
– ident: e_1_2_7_7_3
  doi: 10.1021/jacs.9b06120
– ident: e_1_2_7_16_2
  doi: 10.1002/cey2.170
– ident: e_1_2_7_8_3
  doi: 10.1002/anie.201702430
– ident: e_1_2_7_1_5
  doi: 10.1002/anie.201105516
– ident: e_1_2_7_6_4
  doi: 10.1021/acssuschemeng.9b00258
– ident: e_1_2_7_2_1
  doi: 10.1021/acsami.0c15074
– ident: e_1_2_7_8_4
  doi: 10.1021/ja500393g
– ident: e_1_2_7_17_8
  doi: 10.1021/cs500227j
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.201703209
– ident: e_1_2_7_17_10
  doi: 10.1016/j.nanoen.2017.11.033
– ident: e_1_2_7_17_1
  doi: 10.1002/aenm.202201823
– ident: e_1_2_7_7_1
  doi: 10.1021/acscatal.5b01497
– ident: e_1_2_7_1_4
  doi: 10.1002/anie.201203078
– ident: e_1_2_7_17_9
  doi: 10.1016/j.jpowsour.2015.01.100
– ident: e_1_2_7_17_3
  doi: 10.1002/aenm.202203893
– ident: e_1_2_7_12_2
  doi: 10.1088/1361-6528/ad18ea
– ident: e_1_2_7_1_7
  doi: 10.1002/anie.200906987
– volume: 6
  start-page: 2347
  year: 2020
  ident: e_1_2_7_11_3
  publication-title: ACS Catal.
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201901503
– ident: e_1_2_7_1_2
  doi: 10.1126/science.296.5571.1222
– ident: e_1_2_7_6_3
  doi: 10.1002/aenm.201803369
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.201511032
SSID ssj0017734
Score 2.5294228
Snippet The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Boron
Chemical reduction
Controllability
Crystal lattices
Cubic lattice
Density functional theory
electrocatalysis
Electrocatalysts
Electronic structure
Formic acid
formic acid oxidation
Fuel cells
metal boride
Nanocrystals
nanoflowers
Palladium
Phase transitions
Reducing agents
Title Palladium‐Boride Nanoflowers with Controllable Boron Content for Formic Acid Electrooxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202402485
https://www.proquest.com/docview/3111192785
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iFz34Fqu15CB42nY3mzS7xz4pYkXUQm9LssnCYm2lDxBP_gR_o7_EzKbdtoIIettHsmQzSebLZOYbhC6Z9IiMqXQoTYhDzZhyJJVVRxswETCpaSIzts_baqdHr_usvxLFb_khcoMbzIxsvYYJLuSksiQNFSqBSHI4HaABRJmDwxagovucP8rj3B4rVz1w8PL6C9ZGl1TWq69rpSXUXAWsmcZp7yGxaKt1NHkqz6ayHL99o3H8z8_so905HMU1O34O0IYeHqKdFZLCIxTdga1dpbPnz_eP-micKo3NmjxKBlmCNQyWXNywHu8DCMTCdWBFyB4ZjYYNKsZtg4zTGNfiVOGWTbwzek1tOqdj1Gu3HhsdZ56WwYkBbDjMl5QxpYSRJpUBV9wVjAgilA4hFRbnTIQ6ZtrXytOuCEOzaeSJqwWnimrmn6DN4WioTxEWXiB95lZDXwTUJ0IQbfZfVJtSQSJit4CchViieM5ZDqkzBpFlWyYRdFyUd1wBXeXlXyxbx48liwspR_NZO4l80B8h4fCaZOL65StRrdnu5ndnf6l0jrbh2rqtFdHmdDzTFwbnTGUJbdWa3ZuHUjamvwCXHPcN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06H9QHv8X5mQfBp2qbJkv7uE3H1CkiCr6FpEmhODeZG4hP_gR_o7_E3GatUxBBH5smpc1Nek9ubs5BaJ-pgKiEKo_SlHjUjilPUVXzjAUTEVOGpipn-7ystW_p2R0rsgnhLIzjhygDbjAz8v81THAISB99soZKncJRctgeoBGbRjMg652vqq5LBqmAc7exXAsgxSu4K3gbfXL0tf1Xv_QJNicha-5zWotIFW_rUk3uD0dDdZi8fCNy_NfnLKGFMSLFdTeEltGU6a2g-QmewlUkriDcrrPRw_vrW6M_yLTB9rfcT7u5xhqGYC5uuqT3LpzFwg0gRsiLrFPDFhjjlgXHWYLrSabxidPe6T9nTtFpDd22Tm6abW-szOAlgDc8FirKmNbSGpSqiGvuS0YkkdrEoIbFOZOxSZgJjQ6ML-PYrht56hvJqaaGheuo0uv3zAbCMohUyPxaHMqIhkRKYuwSjBpbK0pl4leRV9hFJGPaclDP6ApHuEwEdJwoO66KDsr6j46w48ea24WZxXjiPokQXEhMONwmub1-eYqoH7cuyqvNvzTaQ7Ptm4uO6Jxenm-hOSh3WWzbqDIcjMyOhT1DtZsP7A9AJvmU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-QPTgW3ysmoPgqdqmSdMe112Lb0QU9haSJoXiurvoLognf4K_0V9iptmtqyCCHptOSpOZZL4kk28Q2mMqICqjyqM0Jx61NuUpqiLPWDARM2Vorkq2z6vo5I6etVhr7Ba_44eoNtxgZJTzNQzwns4PP0lDpc7hJjmcDtCYTaJpGvkx2HXzpiKQCjh358pRABFeQWtE2-iTw6_1v7qlT6w5jlhLl5MuIDn6WRdpcn8w6KuD7OUbj-N_WrOI5od4FNedAS2hCdNZRnNjLIUrSFzDZrsuBg_vr29H3cdCG2wn5W7eLjOsYdjKxQ0X8t6Gm1j4CGgRyiLr0rCFxTi10LjIcD0rND52mXe6z4XL57SK7tLj28aJN8zL4GWANjwWKsqY1tKqk6qYa-5LRiSR2iSQC4tzJhOTMRMaHRhfJoldNfLcN5JTTQ0L19BUp9sx6wjLIFYh86MklDENiZTE2AUYNVYqzmXmbyBvpBaRDUnLIXdGWzi6ZSKg40TVcRtov5LvObqOHyVrIy2L4bB9EiE4kIRweE1Kdf3yFVFvppfV0-ZfKu2imetmKi5Or8630CwUuxC2GprqPw7MtsU8fbVTmvUHb5j4TA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palladium%E2%80%90Boride+Nanoflowers+with+Controllable+Boron+Content+for+Formic+Acid+Electrooxidation&rft.jtitle=Advanced+functional+materials&rft.au=Yi%E2%80%90Ming+Liu&rft.au=Bo%E2%80%90Qiang+Miao&rft.au=Han%E2%80%90Yue+Yang&rft.au=Ai%2C+Xuan&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=38&rft_id=info:doi/10.1002%2Fadfm.202402485&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon