Palladium‐Boride Nanoflowers with Controllable Boron Content for Formic Acid Electrooxidation
The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron con...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 38 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing PdII‐dimethylglyoxime as precursor and NaBH4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m−2), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications.
Palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content and crystal phase transition from face‐centered cubic to hexagonal close‐packed are synthesized by a simple wet chemical reduction method. Pd‐B NFs obtained after 12‐h reaction possess modified Pd surface electronic structure by d‐sp orbital hybridization, thus perform the optimized adsorption behavior of key intermediate, demonstrating remarkable performance towards formic acid electrooxidation. |
---|---|
AbstractList | The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing PdII‐dimethylglyoxime as precursor and NaBH4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m−2), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications.
Palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content and crystal phase transition from face‐centered cubic to hexagonal close‐packed are synthesized by a simple wet chemical reduction method. Pd‐B NFs obtained after 12‐h reaction possess modified Pd surface electronic structure by d‐sp orbital hybridization, thus perform the optimized adsorption behavior of key intermediate, demonstrating remarkable performance towards formic acid electrooxidation. The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing Pd II ‐dimethylglyoxime as precursor and NaBH 4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m −2 ), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d ‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications. The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing PdII‐dimethylglyoxime as precursor and NaBH4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m−2), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications. |
Author | Shi, Feng Wang, Tian‐Jiao Liu, Yi‐Ming Yang, Han‐Yue Ai, Xuan Chen, Pei Chen, Yu Miao, Bo‐Qiang |
Author_xml | – sequence: 1 givenname: Yi‐Ming surname: Liu fullname: Liu, Yi‐Ming organization: Shaanxi Normal University – sequence: 2 givenname: Bo‐Qiang surname: Miao fullname: Miao, Bo‐Qiang organization: Shaanxi Normal University – sequence: 3 givenname: Han‐Yue surname: Yang fullname: Yang, Han‐Yue organization: Shaanxi Normal University – sequence: 4 givenname: Xuan surname: Ai fullname: Ai, Xuan email: aixuan@snnu.edu.cn organization: Shaanxi Normal University – sequence: 5 givenname: Tian‐Jiao surname: Wang fullname: Wang, Tian‐Jiao email: wangtj@snnu.edu.cn organization: Shaanxi Normal University – sequence: 6 givenname: Feng surname: Shi fullname: Shi, Feng organization: Shaanxi Normal University – sequence: 7 givenname: Pei surname: Chen fullname: Chen, Pei organization: Shaanxi Normal University – sequence: 8 givenname: Yu orcidid: 0000-0001-9545-6761 surname: Chen fullname: Chen, Yu email: chenyu001@snnu.edu.cn organization: Shaanxi Normal University |
BookMark | eNqFkMtKAzEUhoNUsK1uXQdct-YyaWaWtbYq1MtCwV1IJ2cwJZPUzJTanY_gM_okTlupIIghkEP4vnM4fwe1fPCA0CklfUoIO9emKPuMsKS5qThAbTqggx4nLG3ta_p8hDpVNSeESsmTNlIP2jlt7LL8fP-4CNEawHfah8KFFcQKr2z9gkfB1zE03MwBbqDgt1_ga1yEiCchljbHw9waPHaQN2x4s0bXNvhjdFhoV8HJ99tFT5Px4-i6N72_uhkNp72cUyl6gs8SIYzRjKfJLJVGEi2YZtpARlgmpRQ6g1wAB0OB6CxLiJQFAS0Tk4DgXXS267uI4XUJVa3mYRl9M1Jx2pyMyXRD9XdUHkNVRSjUItpSx7WiRG1CVJsQ1T7ERkh-Cbmtt4vVUVv3t5bttJV1sP5niBpeTm5_3C-DFoq3 |
CitedBy_id | crossref_primary_10_1007_s42114_025_01282_5 crossref_primary_10_1016_j_apcatb_2025_125041 crossref_primary_10_1039_D5TA00245A crossref_primary_10_1002_advs_202407051 crossref_primary_10_1002_slct_202401006 crossref_primary_10_1021_acsami_4c14531 crossref_primary_10_1039_D4TA04802D crossref_primary_10_1007_s11771_024_5831_0 crossref_primary_10_1039_D5RA00302D |
Cites_doi | 10.1002/anie.201915663 10.1021/ja5008917 10.1021/jacs.7b01125 10.1002/adfm.201603852 10.3866/PKU.WHXB201905023 10.1039/C9CC06004A 10.1002/smll.201703940 10.1002/anie.201308620 10.1039/b820837a 10.1016/j.jechem.2019.02.015 10.1002/anie.200502172 10.1038/ncomms6787 10.1021/jp900349g 10.1021/am100647u 10.1039/C8TA05710A 10.1002/cctc.201901260 10.1021/ja9004915 10.1016/j.cjsc.2023.100095 10.1038/s41467-021-27793-5 10.1021/ja800656y 10.1021/acscatal.0c03555 10.1038/nature11115 10.1002/smtd.201800211 10.1016/j.apcatb.2020.119106 10.1002/anie.201703209 10.1021/acs.nanolett.7b00870 10.1002/adfm.202000534 10.1016/S1872-2067(21)63899-8 10.1021/jacs.7b12506 10.1016/j.electacta.2016.10.201 10.1002/aenm.202100157 10.1002/anie.201002501 10.1016/j.nanoen.2018.12.018 10.1021/ja310566z 10.1007/s12274-021-3471-3 10.1021/jacs.9b06120 10.1002/cey2.170 10.1002/anie.201702430 10.1002/anie.201105516 10.1021/acssuschemeng.9b00258 10.1021/acsami.0c15074 10.1021/ja500393g 10.1021/cs500227j 10.1016/j.nanoen.2017.11.033 10.1002/aenm.202201823 10.1021/acscatal.5b01497 10.1002/anie.201203078 10.1016/j.jpowsour.2015.01.100 10.1002/aenm.202203893 10.1088/1361-6528/ad18ea 10.1002/anie.200906987 10.1002/aenm.201901503 10.1126/science.296.5571.1222 10.1002/aenm.201803369 10.1002/anie.201511032 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202402485 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202402485 ADFM202402485 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22272103; 22309108 – fundername: Young Scientist Initiative Project of School of Materials Science and Engineering at Shaanxi Normal University funderid: 2023YSIP‐MSE‐SNNU008 – fundername: Science and Technology Innovation Team of Shaanxi Province funderid: 2023‐CX‐TD‐27 – fundername: Fundamental Research Funds for the Central Universities funderid: GK202304011; GK202202001 – fundername: Sanqin scholars innovation teams in Shaanxi Province – fundername: Postdoctoral Research Foundation of China funderid: 2023TQ0204 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3175-53b455dda2384b87d70a52a2ade90297775a9ec5e3ed1e0a994077f0ea74d4e53 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 01:08:50 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 00:30:59 EDT 2025 Wed Jan 22 17:14:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-53b455dda2384b87d70a52a2ade90297775a9ec5e3ed1e0a994077f0ea74d4e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9545-6761 |
PQID | 3111192785 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3111192785 crossref_primary_10_1002_adfm_202402485 crossref_citationtrail_10_1002_adfm_202402485 wiley_primary_10_1002_adfm_202402485_ADFM202402485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021 2024; 11 35 2023; 42 2019; 9 2013 2009 2008 2009 2010; 53 2 130 131 2 2021 2016 2017 2014 2013; 11 222 56 136 135 2020; 30 2018 2022; 6 4 2018 2017 2020; 140 56 6 2022 2018 2023 2020 2021 2019 2015 2014 2015 2017 2016; 12 14 13 274 15 12 2 4 280 42 27 2020 2019 2020 2017 2019; 12 37 36 17 55 2017; 56 2020 2016 2019 2019; 59 55 9 7 2015 2021 2019 2014 2014; 5 11 141 136 5 2022; 13 2012 2002 2006 2012 2012 2010 2010; 486 296 45 51 51 49 49 2017 2019 2019; 139 3 57 2022; 43 2009 2014; 113 136 e_1_2_7_1_6 e_1_2_7_3_4 e_1_2_7_1_5 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_17_9 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_17_8 e_1_2_7_7_4 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_17_6 e_1_2_7_7_2 e_1_2_7_17_5 e_1_2_7_1_7 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_17_4 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_7_5 e_1_2_7_17_10 e_1_2_7_17_11 e_1_2_7_2_5 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_8_5 e_1_2_7_8_4 Qiu X. (e_1_2_7_17_7) 2015; 2 Lv H. (e_1_2_7_11_3) 2020; 6 |
References_xml | – volume: 43 start-page: 611 year: 2022 publication-title: Chinese J. Catal. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 42 year: 2023 publication-title: Chinese J. Struc. Chem. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 113 136 start-page: 8366 4861 year: 2009 2014 publication-title: J. Phys. Chem. C J. Am. Chem. Soc. – volume: 53 2 130 131 2 start-page: 122 915 5406 4588 2965 year: 2013 2009 2008 2009 2010 publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces – volume: 12 37 36 17 55 start-page: 157 2727 year: 2020 2019 2020 2017 2019 publication-title: ACS Appl. Mater. Interfaces J. Energy Chem. Acta Phys.‐Chim. Sin. Nano Lett. Chem. Commun. – volume: 59 55 9 7 start-page: 3961 2488 5620 year: 2020 2016 2019 2019 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Energy Mater. ACS Sustainable Chem. Eng. – volume: 56 start-page: 6578 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 11 35 start-page: 4722 year: 2021 2024 publication-title: ACS Catal. Nanotechnology – volume: 6 4 start-page: 283 year: 2018 2022 publication-title: J. Mater. Chem. A Carbon Energy – volume: 486 296 45 51 51 49 49 start-page: 43 1222 981 9448 187 6998 2211 year: 2012 2002 2006 2012 2012 2010 2010 publication-title: Nature Science Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 5 11 141 136 5 start-page: 6579 4722 4861 5787 year: 2015 2021 2019 2014 2014 publication-title: ACS Catal. ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. Nat. Commun. – volume: 11 222 56 136 135 start-page: 481 7121 6542 1201 year: 2021 2016 2017 2014 2013 publication-title: Adv. Energy Mater. Electrochim. Acta Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 12 14 13 274 15 12 2 4 280 42 27 start-page: 280 504 2402 141 353 year: 2022 2018 2023 2020 2021 2019 2015 2014 2015 2017 2016 publication-title: Adv. Energy Mater. Small Adv. Energy Mater. Appl. Catal. B‐Environ. Nano Res. ChemCatChem Adv. Mater. ACS Catal. J. Power Sources Nano Energy Adv. Funct. Mater. – volume: 139 3 57 start-page: 5201 1 year: 2017 2019 2019 publication-title: J. Am. Chem. Soc. Small Methods Nano Energy – volume: 140 56 6 start-page: 2880 6578 2347 year: 2018 2017 2020 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. ACS Catal. – volume: 13 start-page: 38 year: 2022 publication-title: Nat. Commun. – ident: e_1_2_7_6_1 doi: 10.1002/anie.201915663 – ident: e_1_2_7_7_4 doi: 10.1021/ja5008917 – ident: e_1_2_7_4_1 doi: 10.1021/jacs.7b01125 – ident: e_1_2_7_17_11 doi: 10.1002/adfm.201603852 – ident: e_1_2_7_2_3 doi: 10.3866/PKU.WHXB201905023 – ident: e_1_2_7_2_5 doi: 10.1039/C9CC06004A – ident: e_1_2_7_17_2 doi: 10.1002/smll.201703940 – ident: e_1_2_7_3_1 doi: 10.1002/anie.201308620 – volume: 2 year: 2015 ident: e_1_2_7_17_7 publication-title: Adv. Mater. – ident: e_1_2_7_3_2 doi: 10.1039/b820837a – ident: e_1_2_7_2_2 doi: 10.1016/j.jechem.2019.02.015 – ident: e_1_2_7_1_3 doi: 10.1002/anie.200502172 – ident: e_1_2_7_7_5 doi: 10.1038/ncomms6787 – ident: e_1_2_7_9_1 doi: 10.1021/jp900349g – ident: e_1_2_7_3_5 doi: 10.1021/am100647u – ident: e_1_2_7_16_1 doi: 10.1039/C8TA05710A – ident: e_1_2_7_17_6 doi: 10.1002/cctc.201901260 – ident: e_1_2_7_3_4 doi: 10.1021/ja9004915 – ident: e_1_2_7_14_1 doi: 10.1016/j.cjsc.2023.100095 – ident: e_1_2_7_15_1 doi: 10.1038/s41467-021-27793-5 – ident: e_1_2_7_3_3 doi: 10.1021/ja800656y – ident: e_1_2_7_12_1 doi: 10.1021/acscatal.0c03555 – ident: e_1_2_7_1_1 doi: 10.1038/nature11115 – ident: e_1_2_7_4_2 doi: 10.1002/smtd.201800211 – ident: e_1_2_7_17_4 doi: 10.1016/j.apcatb.2020.119106 – ident: e_1_2_7_11_2 doi: 10.1002/anie.201703209 – ident: e_1_2_7_2_4 doi: 10.1021/acs.nanolett.7b00870 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.202000534 – ident: e_1_2_7_5_1 doi: 10.1016/S1872-2067(21)63899-8 – ident: e_1_2_7_11_1 doi: 10.1021/jacs.7b12506 – ident: e_1_2_7_8_2 doi: 10.1016/j.electacta.2016.10.201 – ident: e_1_2_7_8_1 doi: 10.1002/aenm.202100157 – ident: e_1_2_7_1_6 doi: 10.1002/anie.201002501 – ident: e_1_2_7_4_3 doi: 10.1016/j.nanoen.2018.12.018 – ident: e_1_2_7_8_5 doi: 10.1021/ja310566z – ident: e_1_2_7_9_2 doi: 10.1021/ja5008917 – ident: e_1_2_7_17_5 doi: 10.1007/s12274-021-3471-3 – ident: e_1_2_7_7_2 doi: 10.1021/acscatal.0c03555 – ident: e_1_2_7_7_3 doi: 10.1021/jacs.9b06120 – ident: e_1_2_7_16_2 doi: 10.1002/cey2.170 – ident: e_1_2_7_8_3 doi: 10.1002/anie.201702430 – ident: e_1_2_7_1_5 doi: 10.1002/anie.201105516 – ident: e_1_2_7_6_4 doi: 10.1021/acssuschemeng.9b00258 – ident: e_1_2_7_2_1 doi: 10.1021/acsami.0c15074 – ident: e_1_2_7_8_4 doi: 10.1021/ja500393g – ident: e_1_2_7_17_8 doi: 10.1021/cs500227j – ident: e_1_2_7_18_1 doi: 10.1002/anie.201703209 – ident: e_1_2_7_17_10 doi: 10.1016/j.nanoen.2017.11.033 – ident: e_1_2_7_17_1 doi: 10.1002/aenm.202201823 – ident: e_1_2_7_7_1 doi: 10.1021/acscatal.5b01497 – ident: e_1_2_7_1_4 doi: 10.1002/anie.201203078 – ident: e_1_2_7_17_9 doi: 10.1016/j.jpowsour.2015.01.100 – ident: e_1_2_7_17_3 doi: 10.1002/aenm.202203893 – ident: e_1_2_7_12_2 doi: 10.1088/1361-6528/ad18ea – ident: e_1_2_7_1_7 doi: 10.1002/anie.200906987 – volume: 6 start-page: 2347 year: 2020 ident: e_1_2_7_11_3 publication-title: ACS Catal. – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201901503 – ident: e_1_2_7_1_2 doi: 10.1126/science.296.5571.1222 – ident: e_1_2_7_6_3 doi: 10.1002/aenm.201803369 – ident: e_1_2_7_6_2 doi: 10.1002/anie.201511032 |
SSID | ssj0017734 |
Score | 2.5294228 |
Snippet | The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Boron Chemical reduction Controllability Crystal lattices Cubic lattice Density functional theory electrocatalysis Electrocatalysts Electronic structure Formic acid formic acid oxidation Fuel cells metal boride Nanocrystals nanoflowers Palladium Phase transitions Reducing agents |
Title | Palladium‐Boride Nanoflowers with Controllable Boron Content for Formic Acid Electrooxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202402485 https://www.proquest.com/docview/3111192785 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iFz34Fqu15CB42nY3mzS7xz4pYkXUQm9LssnCYm2lDxBP_gR_o7_EzKbdtoIIettHsmQzSebLZOYbhC6Z9IiMqXQoTYhDzZhyJJVVRxswETCpaSIzts_baqdHr_usvxLFb_khcoMbzIxsvYYJLuSksiQNFSqBSHI4HaABRJmDwxagovucP8rj3B4rVz1w8PL6C9ZGl1TWq69rpSXUXAWsmcZp7yGxaKt1NHkqz6ayHL99o3H8z8_so905HMU1O34O0IYeHqKdFZLCIxTdga1dpbPnz_eP-micKo3NmjxKBlmCNQyWXNywHu8DCMTCdWBFyB4ZjYYNKsZtg4zTGNfiVOGWTbwzek1tOqdj1Gu3HhsdZ56WwYkBbDjMl5QxpYSRJpUBV9wVjAgilA4hFRbnTIQ6ZtrXytOuCEOzaeSJqwWnimrmn6DN4WioTxEWXiB95lZDXwTUJ0IQbfZfVJtSQSJit4CchViieM5ZDqkzBpFlWyYRdFyUd1wBXeXlXyxbx48liwspR_NZO4l80B8h4fCaZOL65StRrdnu5ndnf6l0jrbh2rqtFdHmdDzTFwbnTGUJbdWa3ZuHUjamvwCXHPcN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06H9QHv8X5mQfBp2qbJkv7uE3H1CkiCr6FpEmhODeZG4hP_gR_o7_E3GatUxBBH5smpc1Nek9ubs5BaJ-pgKiEKo_SlHjUjilPUVXzjAUTEVOGpipn-7ystW_p2R0rsgnhLIzjhygDbjAz8v81THAISB99soZKncJRctgeoBGbRjMg652vqq5LBqmAc7exXAsgxSu4K3gbfXL0tf1Xv_QJNicha-5zWotIFW_rUk3uD0dDdZi8fCNy_NfnLKGFMSLFdTeEltGU6a2g-QmewlUkriDcrrPRw_vrW6M_yLTB9rfcT7u5xhqGYC5uuqT3LpzFwg0gRsiLrFPDFhjjlgXHWYLrSabxidPe6T9nTtFpDd22Tm6abW-szOAlgDc8FirKmNbSGpSqiGvuS0YkkdrEoIbFOZOxSZgJjQ6ML-PYrht56hvJqaaGheuo0uv3zAbCMohUyPxaHMqIhkRKYuwSjBpbK0pl4leRV9hFJGPaclDP6ApHuEwEdJwoO66KDsr6j46w48ea24WZxXjiPokQXEhMONwmub1-eYqoH7cuyqvNvzTaQ7Ptm4uO6Jxenm-hOSh3WWzbqDIcjMyOhT1DtZsP7A9AJvmU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-QPTgW3ysmoPgqdqmSdMe112Lb0QU9haSJoXiurvoLognf4K_0V9iptmtqyCCHptOSpOZZL4kk28Q2mMqICqjyqM0Jx61NuUpqiLPWDARM2Vorkq2z6vo5I6etVhr7Ba_44eoNtxgZJTzNQzwns4PP0lDpc7hJjmcDtCYTaJpGvkx2HXzpiKQCjh358pRABFeQWtE2-iTw6_1v7qlT6w5jlhLl5MuIDn6WRdpcn8w6KuD7OUbj-N_WrOI5od4FNedAS2hCdNZRnNjLIUrSFzDZrsuBg_vr29H3cdCG2wn5W7eLjOsYdjKxQ0X8t6Gm1j4CGgRyiLr0rCFxTi10LjIcD0rND52mXe6z4XL57SK7tLj28aJN8zL4GWANjwWKsqY1tKqk6qYa-5LRiSR2iSQC4tzJhOTMRMaHRhfJoldNfLcN5JTTQ0L19BUp9sx6wjLIFYh86MklDENiZTE2AUYNVYqzmXmbyBvpBaRDUnLIXdGWzi6ZSKg40TVcRtov5LvObqOHyVrIy2L4bB9EiE4kIRweE1Kdf3yFVFvppfV0-ZfKu2imetmKi5Or8630CwUuxC2GprqPw7MtsU8fbVTmvUHb5j4TA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palladium%E2%80%90Boride+Nanoflowers+with+Controllable+Boron+Content+for+Formic+Acid+Electrooxidation&rft.jtitle=Advanced+functional+materials&rft.au=Yi%E2%80%90Ming+Liu&rft.au=Bo%E2%80%90Qiang+Miao&rft.au=Han%E2%80%90Yue+Yang&rft.au=Ai%2C+Xuan&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=38&rft_id=info:doi/10.1002%2Fadfm.202402485&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |