Influence of Carbon and Oxygen Chemical Potentials on the Hydrogen Donor Identity During Methanation on Ni, Co, and Ni‐Co Clusters

Rate measurements in the kinetically controlled regime and equilibrium carbon and oxygen chemical titrations show two distinct mechanistic paths during COx methanation reactions on first‐row transition metal clusters. On Ni and, for a limiting set of conditions, Ni−Co clusters, the reaction occurs v...

Full description

Saved in:
Bibliographic Details
Published inChemCatChem Vol. 11; no. 4; pp. 1244 - 1255
Main Authors Lachkov, Petar T., Chin, Ya‐Huei (Cathy)
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 20.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rate measurements in the kinetically controlled regime and equilibrium carbon and oxygen chemical titrations show two distinct mechanistic paths during COx methanation reactions on first‐row transition metal clusters. On Ni and, for a limiting set of conditions, Ni−Co clusters, the reaction occurs via the addition of a hydrogen adatom into CH3* intermediates on clusters partially covered with carbon. On Co and, in a subset of conditions, Ni−Co clusters, it occurs via the donation of hydrogen from OH* to CH3* on clusters partially covered with reactive oxygen adatoms (O*). The [CO]2‐to‐[CO2] and [CO2]‐to‐[CO] operating ratios are the surrogates of carbon and oxygen chemical potentials, respectively, as a consequence of water‐gas shift equilibration. These ratios, together with the carbon and oxygen binding energies, determine the relative surface coverages of carbon and oxygen, the involvement of H* vs. OH* in the kinetically‐relevant step, and in turn, the rate dependencies. Stronger carbon and oxygen binding energies lead to more stabilized transition states of the kinetically relevant steps and larger methanation rates. Same destination, different paths: The carbon‐to‐oxygen chemical potentials and the difference in C* and O* binding energies influence the abundances of C* and O* and the identity of the hydrogen donor for methanation. Methanation occurs via H addition from H* into CH3* on Ni and Ni−Co cluster surfaces partially covered with C* and free of O* and from OH* into CH3* on Ni−Co and Co cluster surfaces partially covered with O* and free of C*.
AbstractList Rate measurements in the kinetically controlled regime and equilibrium carbon and oxygen chemical titrations show two distinct mechanistic paths during COx methanation reactions on first‐row transition metal clusters. On Ni and, for a limiting set of conditions, Ni−Co clusters, the reaction occurs via the addition of a hydrogen adatom into CH3* intermediates on clusters partially covered with carbon. On Co and, in a subset of conditions, Ni−Co clusters, it occurs via the donation of hydrogen from OH* to CH3* on clusters partially covered with reactive oxygen adatoms (O*). The [CO]2‐to‐[CO2] and [CO2]‐to‐[CO] operating ratios are the surrogates of carbon and oxygen chemical potentials, respectively, as a consequence of water‐gas shift equilibration. These ratios, together with the carbon and oxygen binding energies, determine the relative surface coverages of carbon and oxygen, the involvement of H* vs. OH* in the kinetically‐relevant step, and in turn, the rate dependencies. Stronger carbon and oxygen binding energies lead to more stabilized transition states of the kinetically relevant steps and larger methanation rates.
Rate measurements in the kinetically controlled regime and equilibrium carbon and oxygen chemical titrations show two distinct mechanistic paths during COx methanation reactions on first‐row transition metal clusters. On Ni and, for a limiting set of conditions, Ni−Co clusters, the reaction occurs via the addition of a hydrogen adatom into CH3* intermediates on clusters partially covered with carbon. On Co and, in a subset of conditions, Ni−Co clusters, it occurs via the donation of hydrogen from OH* to CH3* on clusters partially covered with reactive oxygen adatoms (O*). The [CO]2‐to‐[CO2] and [CO2]‐to‐[CO] operating ratios are the surrogates of carbon and oxygen chemical potentials, respectively, as a consequence of water‐gas shift equilibration. These ratios, together with the carbon and oxygen binding energies, determine the relative surface coverages of carbon and oxygen, the involvement of H* vs. OH* in the kinetically‐relevant step, and in turn, the rate dependencies. Stronger carbon and oxygen binding energies lead to more stabilized transition states of the kinetically relevant steps and larger methanation rates. Same destination, different paths: The carbon‐to‐oxygen chemical potentials and the difference in C* and O* binding energies influence the abundances of C* and O* and the identity of the hydrogen donor for methanation. Methanation occurs via H addition from H* into CH3* on Ni and Ni−Co cluster surfaces partially covered with C* and free of O* and from OH* into CH3* on Ni−Co and Co cluster surfaces partially covered with O* and free of C*.
Abstract Rate measurements in the kinetically controlled regime and equilibrium carbon and oxygen chemical titrations show two distinct mechanistic paths during CO x methanation reactions on first‐row transition metal clusters. On Ni and, for a limiting set of conditions, Ni−Co clusters, the reaction occurs via the addition of a hydrogen adatom into CH 3 * intermediates on clusters partially covered with carbon. On Co and, in a subset of conditions, Ni−Co clusters, it occurs via the donation of hydrogen from OH* to CH 3 * on clusters partially covered with reactive oxygen adatoms (O*). The [CO] 2 ‐to‐[CO 2 ] and [CO 2 ]‐to‐[CO] operating ratios are the surrogates of carbon and oxygen chemical potentials, respectively, as a consequence of water‐gas shift equilibration. These ratios, together with the carbon and oxygen binding energies, determine the relative surface coverages of carbon and oxygen, the involvement of H* vs. OH* in the kinetically‐relevant step, and in turn, the rate dependencies. Stronger carbon and oxygen binding energies lead to more stabilized transition states of the kinetically relevant steps and larger methanation rates.
Author Chin, Ya‐Huei (Cathy)
Lachkov, Petar T.
Author_xml – sequence: 1
  givenname: Petar T.
  surname: Lachkov
  fullname: Lachkov, Petar T.
  organization: University of Toronto
– sequence: 2
  givenname: Ya‐Huei (Cathy)
  orcidid: 0000-0003-4388-0389
  surname: Chin
  fullname: Chin, Ya‐Huei (Cathy)
  email: cathy.chin@utoronto.ca
  organization: University of Toronto
BookMark eNqFkLFOwzAQhi1UJNrCymyJtS12Esf2iFyglUphKHPkOE6bKrWL4wiyMfAAPCNPQkJRGZFOdyfd9_8n_QPQM9ZoAC4xmmCEgmulvJoECDOESUROQB-zmI5DxnnvuDN0BgZVtUUo5iElffAxN3lZa6M0tDkU0qXWQGky-PjWrLWBYqN3hZIlfLJeG1_IsoIt4TcazprM2Y6ZWmMdnGfd3TdwWrvCrOGD9htppC9avK1lMYLCjn68l8XX-6ewUJR15bWrzsFp3hrri985BM93tysxGy8e7-fiZjFWIaZkHCnGM6lJkGKMU0YRxowwxiSjaUAxiWmqojwiacQ5iyXSiEiu4rxrKs15OARXB9-9sy-1rnyytbUz7cskwCykNI5Z3FKTA6WcrSqn82Tvip10TYJR0iWddEknx6RbAT8IXotSN__QiRAr8af9BrHVhMw
CitedBy_id crossref_primary_10_1021_acscatal_0c01963
crossref_primary_10_1016_j_apcatb_2021_120567
crossref_primary_10_1021_acs_chemrev_2c00510
Cites_doi 10.1016/j.jcat.2004.02.032
10.1021/ja505286j
10.1016/S0926-860X(98)00121-5
10.1016/j.apcata.2006.12.017
10.1080/01614947408071860
10.1016/0021-9517(80)90075-5
10.1039/df9664100190
10.1016/S0926-860X(97)00186-5
10.1016/j.jcat.2013.08.019
10.1006/jcat.2002.3579
10.1016/j.jcat.2007.12.016
10.1002/9783527610846
10.1016/j.jcat.2010.04.012
10.1016/0021-9517(76)90421-8
10.1016/j.jcat.2009.10.025
10.1016/j.jcat.2004.02.034
10.1002/aic.690350109
10.1016/j.apcata.2008.03.039
10.1080/03602458108068076
10.1021/cr9001808
10.1073/pnas.11.3.179
10.1039/c1cp20547a
10.1021/ja311848e
10.1007/s10562-010-0477-y
10.1016/j.jcat.2006.02.016
10.1039/C4RA16114A
10.1021/jp040239s
10.1021/j100238a018
10.1007/s11244-007-0232-9
10.1016/j.ijhydene.2003.10.009
10.1021/jp046540q
10.1021/acs.jpcc.5b01837
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/cctc.201801545
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage 1255
ExternalDocumentID 10_1002_cctc_201801545
CCTC201801545
Genre article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: Canada Foundation for Innovation
GroupedDBID 05W
0R~
1OC
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3175-4c89dae52b111b8701185888a87b271567bc4f45b49986a0e05a9c6fa9c6cbf93
ISSN 1867-3880
IngestDate Fri Sep 13 07:37:48 EDT 2024
Fri Aug 23 03:42:38 EDT 2024
Sat Aug 24 01:00:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-4c89dae52b111b8701185888a87b271567bc4f45b49986a0e05a9c6fa9c6cbf93
ORCID 0000-0003-4388-0389
PQID 2183776686
PQPubID 986343
PageCount 12
ParticipantIDs proquest_journals_2183776686
crossref_primary_10_1002_cctc_201801545
wiley_primary_10_1002_cctc_201801545_CCTC201801545
PublicationCentury 2000
PublicationDate February 20, 2019
PublicationDateYYYYMMDD 2019-02-20
PublicationDate_xml – month: 02
  year: 2019
  text: February 20, 2019
  day: 20
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 5
2004; 224
1976; 44
2004; 29
1980; 63
2013; 308
2007; 320
2010; 269
2008
1997
2006
2011; 13
2008; 344
2006; 239
1974; 8
2014; 136
1998; 172
1981; 23
1925; 11
1997; 161
2010; 110
1983; 87
2005; 109
2013; 135
2002; 209
2015; 119
2010; 272
2008; 255
2011; 141
1989; 35
2007; 45
1966; 41
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Bergeret G. (e_1_2_7_35_1) 2008
Lide D. R. (e_1_2_7_36_1) 1997
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 135
  start-page: 6107
  year: 2013
  end-page: 6121
  publication-title: J. Am. Chem. Soc.
– volume: 255
  start-page: 6
  year: 2008
  end-page: 19
  publication-title: J. Catal.
– volume: 35
  start-page: 88
  year: 1989
  end-page: 96
  publication-title: AIChE J.
– volume: 119
  start-page: 16537
  year: 2015
  end-page: 16551
  publication-title: J. Phys. Chem. C
– volume: 320
  start-page: 98
  year: 2007
  end-page: 104
  publication-title: Appl. Catal. Gen.
– volume: 136
  start-page: 9898
  year: 2014
  end-page: 9901
  publication-title: J. Am. Chem. Soc.
– volume: 272
  start-page: 287
  year: 2010
  end-page: 297
  publication-title: J. Catal.
– volume: 172
  start-page: 131
  year: 1998
  end-page: 140
  publication-title: Appl. Catal. Gen.
– volume: 8
  start-page: 159
  year: 1974
  end-page: 210
  publication-title: Catal. Rev.
– volume: 224
  start-page: 206
  year: 2004
  end-page: 217
  publication-title: J. Catal.
– volume: 87
  start-page: 2786
  year: 1983
  end-page: 2789
  publication-title: J. Phys. Chem.
– volume: 45
  start-page: 9
  year: 2007
  end-page: 13
  publication-title: Top. Catal.
– volume: 13
  start-page: 20760
  year: 2011
  end-page: 20765
  publication-title: Phys. Chem. Chem. Phys.
– volume: 110
  start-page: 2005
  year: 2010
  end-page: 2048
  publication-title: Chem. Rev.
– volume: 269
  start-page: 255
  year: 2010
  end-page: 268
  publication-title: J. Catal.
– volume: 209
  start-page: 365
  year: 2002
  end-page: 384
  publication-title: J. Catal.
– volume: 44
  start-page: 439
  year: 1976
  end-page: 448
  publication-title: J. Catal.
– volume: 63
  start-page: 226
  year: 1980
  end-page: 234
  publication-title: J. Catal.
– volume: 41
  start-page: 190
  year: 1966
  end-page: 199
  publication-title: Discuss. Faraday Soc.
– volume: 141
  start-page: 370
  year: 2011
  end-page: 373
  publication-title: Catal. Lett.
– volume: 11
  start-page: 179
  year: 1925
  end-page: 183
  publication-title: Proc. Mont. Acad. Sci.
– volume: 109
  start-page: 2432
  year: 2005
  end-page: 2438
  publication-title: J. Phys. Chem. B
– volume: 344
  start-page: 45
  year: 2008
  end-page: 54
  publication-title: Appl. Catal. Gen.
– volume: 23
  start-page: 203
  year: 1981
  end-page: 232
  publication-title: Catal. Rev.
– volume: 308
  start-page: 282
  year: 2013
  end-page: 290
  publication-title: J. Catal.
– volume: 109
  start-page: 3460
  year: 2005
  end-page: 3471
  publication-title: J. Phys. Chem. B
– volume: 239
  start-page: 501
  year: 2006
  end-page: 506
  publication-title: J. Catal.
– start-page: 738
  year: 2008
  end-page: 765
– volume: 224
  start-page: 370
  year: 2004
  end-page: 383
  publication-title: J. Catal.
– year: 2006
– year: 1997
– volume: 29
  start-page: 1065
  year: 2004
  end-page: 1073
  publication-title: Int. J. Hydrogen Energy
– volume: 161
  start-page: 59
  year: 1997
  end-page: 78
  publication-title: Appl. Catal. Gen.
– volume: 5
  start-page: 22759
  year: 2015
  end-page: 22776
  publication-title: RSC Adv.
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jcat.2004.02.032
– ident: e_1_2_7_17_1
  doi: 10.1021/ja505286j
– ident: e_1_2_7_14_1
  doi: 10.1016/S0926-860X(98)00121-5
– ident: e_1_2_7_16_1
  doi: 10.1016/j.apcata.2006.12.017
– ident: e_1_2_7_3_1
  doi: 10.1080/01614947408071860
– ident: e_1_2_7_10_1
  doi: 10.1016/0021-9517(80)90075-5
– volume-title: CRC Handbook of Chemistry and Physics
  year: 1997
  ident: e_1_2_7_36_1
  contributor:
    fullname: Lide D. R.
– ident: e_1_2_7_27_1
  doi: 10.1039/df9664100190
– start-page: 738
  volume-title: Handb. Heterog. Catal.
  year: 2008
  ident: e_1_2_7_35_1
  contributor:
    fullname: Bergeret G.
– ident: e_1_2_7_5_1
  doi: 10.1016/S0926-860X(97)00186-5
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jcat.2013.08.019
– ident: e_1_2_7_21_1
  doi: 10.1006/jcat.2002.3579
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jcat.2007.12.016
– ident: e_1_2_7_24_1
  doi: 10.1002/9783527610846
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jcat.2010.04.012
– ident: e_1_2_7_30_1
  doi: 10.1016/0021-9517(76)90421-8
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jcat.2009.10.025
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jcat.2004.02.034
– ident: e_1_2_7_11_1
  doi: 10.1002/aic.690350109
– ident: e_1_2_7_18_1
  doi: 10.1016/j.apcata.2008.03.039
– ident: e_1_2_7_4_1
  doi: 10.1080/03602458108068076
– ident: e_1_2_7_34_1
  doi: 10.1021/cr9001808
– ident: e_1_2_7_33_1
  doi: 10.1073/pnas.11.3.179
– ident: e_1_2_7_29_1
  doi: 10.1039/c1cp20547a
– ident: e_1_2_7_32_1
– ident: e_1_2_7_23_1
  doi: 10.1021/ja311848e
– ident: e_1_2_7_28_1
  doi: 10.1007/s10562-010-0477-y
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jcat.2006.02.016
– ident: e_1_2_7_1_1
  doi: 10.1039/C4RA16114A
– ident: e_1_2_7_13_1
  doi: 10.1021/jp040239s
– ident: e_1_2_7_26_1
  doi: 10.1021/j100238a018
– ident: e_1_2_7_6_1
  doi: 10.1007/s11244-007-0232-9
– ident: e_1_2_7_9_1
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ijhydene.2003.10.009
– ident: e_1_2_7_25_1
  doi: 10.1021/jp046540q
– ident: e_1_2_7_31_1
  doi: 10.1021/acs.jpcc.5b01837
SSID ssj0069375
Score 2.2683122
Snippet Rate measurements in the kinetically controlled regime and equilibrium carbon and oxygen chemical titrations show two distinct mechanistic paths during COx...
Abstract Rate measurements in the kinetically controlled regime and equilibrium carbon and oxygen chemical titrations show two distinct mechanistic paths...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1244
SubjectTerms Adatoms
Binding energy
Carbon
Carbon dioxide
Carbon monoxide
Chemical reactions
chemisorbed oxygen
Hydrogen
hydrogen addition
Metal clusters
Methanation
Nickel
Operating ratios
Organic chemistry
Oxygen
periodic trend
transition metal cluster
Transition metals
Title Influence of Carbon and Oxygen Chemical Potentials on the Hydrogen Donor Identity During Methanation on Ni, Co, and Ni‐Co Clusters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201801545
https://www.proquest.com/docview/2183776686/abstract/
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKdoDLxF9RGMgHJA5ZRuImjnPcUqaCtMKhk8Ypsl1Hq0AxytKJcuLAB-DEB-ST8BzHSYYqMejBTSzbafN-8XvP-b1nhF6kapmIyCS6DSnzI8JTn_NJ5C-pUMs0ZCJtdms4ndPZWfT2PD4fjX4OWEvrWhzKr1vjSv5HqlAHcjVRsv8g2W5QqIBjkC-UIGEobyTjN26HERtlVYmWWvzuywb6eF0ygPe6NqSgJlOypTXONstKmzZTXerKa8N1N97URi2eKrOi3lqTJcClWU_VjuoJ544jkWkv-7Q22RYuh3auuXTGa_PVUX64vPior1pSMK-8xWHPLbCZDD7wbtzZWq2aN8xgoW7cckW7OmECoohPgsGEymAiNglnrL4Z1tmNkbpZOBygLRpMqcYAGahnMMjirVO_TSUrZZOYMmSNbdgrOfdi_w_d1zESbfZmkpv-edf_FtolSRqDU797dDw9PnE6noJRZ8ix3b9z6UAD8ur6L7hu7vQ-zNATakyZxV201_og-MgC6h4aqfI-up25rf8eoO8dsLAusAUWBsFjCyzsgIV7YGFoAcDCDli4ARZ2wMIWWHgALNNjvjrAmT5oxp6vfn37kWns4PQQnZ28XmQzv92uw5fGCPUjydIlVzERoD8F6AHwXWPGGGeJIEkY00TIqIhiAU42ozxQQcxTSQtTSFGkk0dop9SleoywSAPKCgbtYxJx-MiimASKqSQUVAZkjF66u5p_tllZ8u0SHKN9d9Pz9sm9zI1bkCSUMjpGpBHEX0bJs2yRdWdPbnz1p-hO_1Dso526WqtnYMTW4nmLqN_No5Xh
link.rule.ids 315,786,790,27957,27958
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Carbon+and+Oxygen+Chemical+Potentials+on+the+Hydrogen+Donor+Identity+During+Methanation+on+Ni%2C+Co%2C+and+Ni%E2%80%90Co+Clusters&rft.jtitle=ChemCatChem&rft.au=Lachkov%2C+Petar+T.&rft.au=Chin%2C+Ya%E2%80%90Huei+%28Cathy%29&rft.date=2019-02-20&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=11&rft.issue=4&rft.spage=1244&rft.epage=1255&rft_id=info:doi/10.1002%2Fcctc.201801545&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cctc_201801545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon