Robust Anode‐Free Sodium Metal Batteries Enabled by Artificial Sodium Formate Interface

Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 22
Main Authors Wang, Chaozhi, Zheng, Ying, Chen, Zhe‐Ning, Zhang, Rongrong, He, Wei, Li, Kaixuan, Yan, Sen, Cui, Jingqin, Fang, Xiaoliang, Yan, Jiawei, Xu, Gang, Peng, Dongliang, Ren, Bin, Zheng, Nanfeng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202204125

Cover

Loading…
Abstract Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging. Herein, it is demonstrated that sodium formate (HCOONa), one component of the solid electrolyte interphase (SEI) naturally formed on sodium metal anode, is a promising candidate for designing high‐performance artificial SEI layers, which can suppress the sodium dendrite formation and reduce the side reactions between sodium and the electrolyte. Profiting from the HCOONa interface, the Na|Na3V2(PO4)3 battery with a high mass loading of Na3V2(PO4)3 (10 mg cm−2) exhibits a superior cycling stability with an ultralow decay rate of 0.004% per cycle over 800 cycles. More impressively, a single molecular layer of HCOONa in situ formed on commercial copper current collector helps to extend the lifespan of the anode‐free Cu|Na3V2(PO4)3 battery to 400 cycles with 88.2% capacity relation, representing the longest cycle lifetime reported in anode‐free NMBs. An in situ formed HCOONa interface is proposed to protect sodium metal anodes and construct stable anode‐free sodium metal batteries. The HCOONa interface can suppress the growth of dendrites and reduce the parasitic reaction of the electrolyte, which effectively improves the capacity and cycling stability of anode‐free sodium metal batteries.
AbstractList Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging. Herein, it is demonstrated that sodium formate (HCOONa), one component of the solid electrolyte interphase (SEI) naturally formed on sodium metal anode, is a promising candidate for designing high‐performance artificial SEI layers, which can suppress the sodium dendrite formation and reduce the side reactions between sodium and the electrolyte. Profiting from the HCOONa interface, the Na|Na 3 V 2 (PO 4 ) 3 battery with a high mass loading of Na 3 V 2 (PO 4 ) 3 (10 mg cm −2 ) exhibits a superior cycling stability with an ultralow decay rate of 0.004% per cycle over 800 cycles. More impressively, a single molecular layer of HCOONa in situ formed on commercial copper current collector helps to extend the lifespan of the anode‐free Cu|Na 3 V 2 (PO 4 ) 3 battery to 400 cycles with 88.2% capacity relation, representing the longest cycle lifetime reported in anode‐free NMBs.
Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging. Herein, it is demonstrated that sodium formate (HCOONa), one component of the solid electrolyte interphase (SEI) naturally formed on sodium metal anode, is a promising candidate for designing high‐performance artificial SEI layers, which can suppress the sodium dendrite formation and reduce the side reactions between sodium and the electrolyte. Profiting from the HCOONa interface, the Na|Na3V2(PO4)3 battery with a high mass loading of Na3V2(PO4)3 (10 mg cm−2) exhibits a superior cycling stability with an ultralow decay rate of 0.004% per cycle over 800 cycles. More impressively, a single molecular layer of HCOONa in situ formed on commercial copper current collector helps to extend the lifespan of the anode‐free Cu|Na3V2(PO4)3 battery to 400 cycles with 88.2% capacity relation, representing the longest cycle lifetime reported in anode‐free NMBs. An in situ formed HCOONa interface is proposed to protect sodium metal anodes and construct stable anode‐free sodium metal batteries. The HCOONa interface can suppress the growth of dendrites and reduce the parasitic reaction of the electrolyte, which effectively improves the capacity and cycling stability of anode‐free sodium metal batteries.
Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging. Herein, it is demonstrated that sodium formate (HCOONa), one component of the solid electrolyte interphase (SEI) naturally formed on sodium metal anode, is a promising candidate for designing high‐performance artificial SEI layers, which can suppress the sodium dendrite formation and reduce the side reactions between sodium and the electrolyte. Profiting from the HCOONa interface, the Na|Na3V2(PO4)3 battery with a high mass loading of Na3V2(PO4)3 (10 mg cm−2) exhibits a superior cycling stability with an ultralow decay rate of 0.004% per cycle over 800 cycles. More impressively, a single molecular layer of HCOONa in situ formed on commercial copper current collector helps to extend the lifespan of the anode‐free Cu|Na3V2(PO4)3 battery to 400 cycles with 88.2% capacity relation, representing the longest cycle lifetime reported in anode‐free NMBs.
Author Fang, Xiaoliang
Zheng, Nanfeng
Wang, Chaozhi
Yan, Jiawei
Li, Kaixuan
Zheng, Ying
Peng, Dongliang
Yan, Sen
Cui, Jingqin
He, Wei
Xu, Gang
Ren, Bin
Chen, Zhe‐Ning
Zhang, Rongrong
Author_xml – sequence: 1
  givenname: Chaozhi
  surname: Wang
  fullname: Wang, Chaozhi
  organization: Xiamen University
– sequence: 2
  givenname: Ying
  surname: Zheng
  fullname: Zheng, Ying
  organization: Xiamen University
– sequence: 3
  givenname: Zhe‐Ning
  surname: Chen
  fullname: Chen, Zhe‐Ning
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Rongrong
  surname: Zhang
  fullname: Zhang, Rongrong
  organization: Xiamen University
– sequence: 5
  givenname: Wei
  surname: He
  fullname: He, Wei
  organization: Xiamen University
– sequence: 6
  givenname: Kaixuan
  surname: Li
  fullname: Li, Kaixuan
  organization: Xiamen University
– sequence: 7
  givenname: Sen
  surname: Yan
  fullname: Yan, Sen
  organization: Xiamen University
– sequence: 8
  givenname: Jingqin
  surname: Cui
  fullname: Cui, Jingqin
  organization: Xiamen University
– sequence: 9
  givenname: Xiaoliang
  orcidid: 0000-0001-6048-9926
  surname: Fang
  fullname: Fang, Xiaoliang
  email: x.l.fang@xmu.edu.cn
  organization: Xiamen University
– sequence: 10
  givenname: Jiawei
  surname: Yan
  fullname: Yan, Jiawei
  organization: Xiamen University
– sequence: 11
  givenname: Gang
  surname: Xu
  fullname: Xu, Gang
  organization: Chinese Academy of Sciences
– sequence: 12
  givenname: Dongliang
  surname: Peng
  fullname: Peng, Dongliang
  organization: Xiamen University
– sequence: 13
  givenname: Bin
  surname: Ren
  fullname: Ren, Bin
  organization: Xiamen University
– sequence: 14
  givenname: Nanfeng
  surname: Zheng
  fullname: Zheng, Nanfeng
  organization: Xiamen University
BookMark eNqFkMtKw0AUhgepYK3dug64bp1L0mSWsbRaaBW8LFyFk8kZmJJk6mSCdOcj-Iw-iSktFQRxNvPDfN-cw39OerWtkZBLRseMUn4NWFdjTjmnIePRCemzCQtHkySkvWMW_IwMm2ZNuxNKRoXok9dHm7eND9LaFvj18Tl3iMGTLUxbBSv0UAY34D06g00wqyEvsQjybZA6b7RRpns_wHPrKvAYLOqO1qDwgpxqKBscHu4BeZnPnqd3o-XD7WKaLkdKsDga8aLbo4uiYFAUkcQcaKxjBSrPgeVcA2iMGJUyRsETHQvJlARJaaFzkEoMyNX-342zby02Plvb1tXdyIwnXCRRzGPaUeGeUs42jUOdKePBG1t7B6bMGM12PWa7HrNjj502_qVtnKnAbf8W5F54NyVu_6GzdHa_-nG_AUrliRM
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c04331
crossref_primary_10_1021_acsami_4c21435
crossref_primary_10_1002_aenm_202400371
crossref_primary_10_1039_D4TC02740J
crossref_primary_10_1002_pol_20240114
crossref_primary_10_1007_s10934_024_01744_z
crossref_primary_10_3390_batteries9070345
crossref_primary_10_1039_D4EE05871B
crossref_primary_10_1039_D5EE00136F
crossref_primary_10_1002_adfm_202313823
crossref_primary_10_1039_D4TA06873D
crossref_primary_10_1002_adfm_202421790
crossref_primary_10_1002_ange_202313447
crossref_primary_10_1002_smtd_202401884
crossref_primary_10_1039_D4QI00654B
crossref_primary_10_1016_j_ensm_2024_103840
crossref_primary_10_1002_adma_202405310
crossref_primary_10_3390_batteries9080402
crossref_primary_10_1002_sus2_258
crossref_primary_10_1002_adfm_202414041
crossref_primary_10_1002_adma_202311256
crossref_primary_10_3390_batteries11030097
crossref_primary_10_1039_D4SC06630H
crossref_primary_10_1039_D3EE03477A
crossref_primary_10_1039_D3NR05814J
crossref_primary_10_1039_D4EE05369A
crossref_primary_10_3390_batteries9080408
crossref_primary_10_1039_D4QI01500B
crossref_primary_10_20517_microstructures_2024_13
crossref_primary_10_1016_j_cej_2023_146930
crossref_primary_10_1002_cnl2_144
crossref_primary_10_1016_j_cej_2024_150559
crossref_primary_10_1002_eem2_12883
crossref_primary_10_1007_s12274_024_6588_3
crossref_primary_10_1002_smll_202401215
crossref_primary_10_1002_anie_202313447
crossref_primary_10_1007_s40843_024_3084_4
crossref_primary_10_1016_j_nanoen_2024_110010
crossref_primary_10_1002_aenm_202405917
crossref_primary_10_1038_s41565_024_01848_2
crossref_primary_10_1002_adfm_202315309
crossref_primary_10_34133_energymatadv_0063
crossref_primary_10_1039_D4MH00529E
crossref_primary_10_1039_D3EE02082G
crossref_primary_10_1039_D4CC06261B
crossref_primary_10_1021_jacs_3c08224
crossref_primary_10_1021_acs_nanolett_4c04282
crossref_primary_10_1002_adma_202402337
crossref_primary_10_1002_aenm_202402284
crossref_primary_10_1002_adma_202409976
crossref_primary_10_1021_acs_nanolett_4c00562
crossref_primary_10_1002_adfm_202408617
crossref_primary_10_1016_j_nanoen_2025_110780
crossref_primary_10_1039_D4TA02925A
crossref_primary_10_1016_j_mattod_2024_01_002
crossref_primary_10_1002_adfm_202406080
crossref_primary_10_1002_aenm_202402711
crossref_primary_10_1002_adma_202310347
crossref_primary_10_1002_adsu_202300400
Cites_doi 10.1016/j.xcrp.2020.100044
10.1002/jcc.21759
10.1016/j.chempr.2020.06.036
10.1021/acs.jpcc.7b08433
10.1103/PhysRevLett.77.3865
10.1016/0927-0256(96)00008-0
10.1016/j.joule.2017.11.004
10.1002/adma.202106353
10.1021/acsami.5b02904
10.1002/adfm.201602353
10.1021/acs.chemrev.8b00642
10.1002/adfm.201100854
10.1038/s41560-019-0428-9
10.1002/aenm.201702764
10.1039/D0EE02423F
10.1063/1.3382344
10.1038/s41560-020-0634-5
10.1002/smtd.201800169
10.1016/j.nanoen.2020.105344
10.1002/anie.201711552
10.1103/PhysRevB.54.11169
10.1038/s41467-021-21683-6
10.1039/c3ee40847g
10.1021/ja305366r
10.1021/acsami.9b06760
10.1021/acsenergylett.7b00500
10.1002/adma.202105855
10.1002/ange.201801818
10.1038/s41565-020-0749-7
10.1016/j.nanoen.2016.09.013
10.1016/j.jpowsour.2018.06.056
10.1016/j.nanoen.2019.104387
10.1103/PhysRevB.47.558
10.1021/acsnano.0c03259
10.1149/2.0851714jes
10.1021/cr500003w
10.1039/C8EE01373J
10.1002/adfm.201901924
10.1103/PhysRevB.50.17953
10.1021/acsenergylett.6b00491
10.1016/j.ensm.2017.10.007
10.1038/s41586-020-2783-x
10.1038/s41467-018-06443-3
10.1039/C6CS00776G
10.1038/s41560-021-00839-0
10.1002/ange.202014241
10.1016/S0378-7753(00)00431-6
10.1103/PhysRevB.13.5188
10.1021/acs.nanolett.6b05174
10.1002/anie.201703937
10.1038/s41467-017-00742-x
10.1038/nenergy.2017.83
10.1002/adma.201606663
10.1021/ja3091438
10.1038/s41560-022-01033-6
10.1021/acs.nanolett.7b01138
10.1021/acscentsci.5b00328
10.1126/sciadv.aat5168
10.1021/acs.chemrev.1c00838
10.1002/adma.202106005
10.1002/adma.201807495
10.1149/2.0091513jes
10.1002/smll.201703717
10.1002/smll.201901274
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202204125
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202204125
AENM202204125
Genre article
GrantInformation_xml – fundername: Opening Project of PCOSS of Xiamen University
  funderid: 201908
– fundername: National Key R&D Program of China
  funderid: 2020YFB1505800
– fundername: NSF of China
  funderid: 92161107
– fundername: Youth Innovation Fund of Xiamen City
  funderid: 3502Z20206047
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3175-2d033c313d1add59eba07f7cacbba1b2faafe510997e328f7391c9a900dfba9c3
ISSN 1614-6832
IngestDate Fri Jul 25 10:23:38 EDT 2025
Tue Jul 01 01:43:50 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed Jan 22 16:20:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-2d033c313d1add59eba07f7cacbba1b2faafe510997e328f7391c9a900dfba9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6048-9926
PQID 2823857270
PQPubID 886389
PageCount 11
ParticipantIDs proquest_journals_2823857270
crossref_citationtrail_10_1002_aenm_202204125
crossref_primary_10_1002_aenm_202204125
wiley_primary_10_1002_aenm_202204125_AENM202204125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2017; 2
2019; 11
2000; 89
2017; 46
2019; 15
2016; 30
2020; 15
2020; 14
2013; 6
1996; 77
2022; 122
2018; 130
2018; 9
2020; 6
2018; 8
2020; 5
2018; 2
2012; 134
2021; 34
2020; 1
2021; 33
2018; 4
2022; 34
2019; 29
2011; 21
2019; 119
2018; 30
2017; 164
2017; 121
1996; 6
2015; 162
2015; 1
1993; 47
2021; 6
2019; 4
2019; 3
2019; 31
2011; 32
2017; 29
2020; 78
2020; 586
2015; 7
2014; 114
1996; 54
2021; 14
2018; 396
2016; 1
1976; 13
2021; 12
2017; 17
2017; 56
2010; 132
2018
2013; 135
2020; 69
2021; 133
2018; 11
1994; 50
2016; 26
2022; 17
2018; 14
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Zhao C. Z. (e_1_2_8_27_1) 2018
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
Soto F. A. (e_1_2_8_44_1) 2018; 30
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Schafzahl L. (e_1_2_8_41_1) 2018; 30
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 57
  start-page: 734
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 30
  start-page: 3338
  year: 2018
  publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th
– volume: 8
  start-page: 898
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  start-page: 3315
  year: 2018
  publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th
– volume: 12
  start-page: 1452
  year: 2021
  publication-title: Nat. Commun.
– volume: 119
  start-page: 5416
  year: 2019
  publication-title: Chem. Rev.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 118
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 2
  start-page: 184
  year: 2018
  publication-title: Joule
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 21
  start-page: 3859
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 89
  start-page: 206
  year: 2000
  publication-title: J. Power Sources
– volume: 6
  start-page: 2242
  year: 2020
  publication-title: Chem
– volume: 56
  year: 2017
  publication-title: Angew. Chem. Int., Ed.
– volume: 133
  start-page: 6043
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 2338
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 122
  start-page: 8053
  year: 2022
  publication-title: Chem. Rev.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 3
  year: 2019
  publication-title: Small
– volume: 2
  start-page: 2051
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 396
  start-page: 304
  year: 2018
  publication-title: J. Power Sources
– volume: 46
  start-page: 3529
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 1173
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 683
  year: 2019
  publication-title: Nat. Energy
– volume: 586
  start-page: 390
  year: 2020
  publication-title: Nature
– volume: 9
  start-page: 3870
  year: 2018
  publication-title: Nat. Commun.
– volume: 130
  start-page: 7860
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– start-page: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 6
  start-page: 653
  year: 2021
  publication-title: Nat. Energy
– volume: 69
  year: 2020
  publication-title: Nano Energy
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2673
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 825
  year: 2016
  publication-title: Nano Energy
– volume: 1
  start-page: 449
  year: 2015
  publication-title: ACS Cent. Sci.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 5
  start-page: 526
  year: 2020
  publication-title: Nat. Energy
– volume: 47
  start-page: 558
  year: 1993
  publication-title: Phys. Rev. B
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 382
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 8744
  year: 2020
  publication-title: ACS Nano
– volume: 26
  start-page: 7094
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 3792
  year: 2017
  publication-title: Nano Lett.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 17
  start-page: 511
  year: 2022
  publication-title: Nat. Energy
– volume: 15
  start-page: 883
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 1296
  year: 2017
  publication-title: Nano Lett.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 1456
  year: 2011
  publication-title: J. Comput. Chem.
– ident: e_1_2_8_22_1
  doi: 10.1016/j.xcrp.2020.100044
– ident: e_1_2_8_54_1
  doi: 10.1002/jcc.21759
– ident: e_1_2_8_17_1
  doi: 10.1016/j.chempr.2020.06.036
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.jpcc.7b08433
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_52_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_8_63_1
  doi: 10.1016/j.joule.2017.11.004
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.202106353
– ident: e_1_2_8_43_1
  doi: 10.1021/acsami.5b02904
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.201602353
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.chemrev.8b00642
– ident: e_1_2_8_48_1
  doi: 10.1002/adfm.201100854
– ident: e_1_2_8_35_1
  doi: 10.1038/s41560-019-0428-9
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.201702764
– ident: e_1_2_8_30_1
  doi: 10.1039/D0EE02423F
– ident: e_1_2_8_53_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_36_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_8_67_1
  doi: 10.1002/smtd.201800169
– ident: e_1_2_8_37_1
  doi: 10.1016/j.nanoen.2020.105344
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.201711552
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_64_1
  doi: 10.1038/s41467-021-21683-6
– ident: e_1_2_8_2_1
  doi: 10.1039/c3ee40847g
– ident: e_1_2_8_45_1
  doi: 10.1021/ja305366r
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.9b06760
– ident: e_1_2_8_7_1
  doi: 10.1021/acsenergylett.7b00500
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.202105855
– ident: e_1_2_8_16_1
  doi: 10.1002/ange.201801818
– ident: e_1_2_8_18_1
  doi: 10.1038/s41565-020-0749-7
– ident: e_1_2_8_15_1
  doi: 10.1016/j.nanoen.2016.09.013
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jpowsour.2018.06.056
– ident: e_1_2_8_13_1
  doi: 10.1016/j.nanoen.2019.104387
– ident: e_1_2_8_57_1
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.0c03259
– ident: e_1_2_8_51_1
  doi: 10.1149/2.0851714jes
– ident: e_1_2_8_38_1
  doi: 10.1021/cr500003w
– ident: e_1_2_8_60_1
  doi: 10.1039/C8EE01373J
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.201901924
– volume: 30
  start-page: 3315
  year: 2018
  ident: e_1_2_8_44_1
  publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_6_1
  doi: 10.1021/acsenergylett.6b00491
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ensm.2017.10.007
– ident: e_1_2_8_61_1
  doi: 10.1038/s41586-020-2783-x
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-018-06443-3
– volume: 30
  start-page: 3338
  year: 2018
  ident: e_1_2_8_41_1
  publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th
– ident: e_1_2_8_3_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_8_34_1
  doi: 10.1038/s41560-021-00839-0
– ident: e_1_2_8_50_1
  doi: 10.1002/ange.202014241
– ident: e_1_2_8_49_1
  doi: 10.1016/S0378-7753(00)00431-6
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.nanolett.6b05174
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.201703937
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-017-00742-x
– ident: e_1_2_8_26_1
  doi: 10.1038/nenergy.2017.83
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201606663
– ident: e_1_2_8_1_1
  doi: 10.1021/ja3091438
– ident: e_1_2_8_32_1
  doi: 10.1038/s41560-022-01033-6
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.nanolett.7b01138
– ident: e_1_2_8_14_1
  doi: 10.1021/acscentsci.5b00328
– ident: e_1_2_8_62_1
  doi: 10.1126/sciadv.aat5168
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.chemrev.1c00838
– start-page: 4
  year: 2018
  ident: e_1_2_8_27_1
  publication-title: Sci. Adv.
– ident: e_1_2_8_65_1
  doi: 10.1002/adma.202106005
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201807495
– ident: e_1_2_8_40_1
  doi: 10.1149/2.0091513jes
– ident: e_1_2_8_29_1
  doi: 10.1002/smll.201703717
– ident: e_1_2_8_66_1
  doi: 10.1002/smll.201901274
SSID ssj0000491033
Score 2.625268
Snippet Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms anode‐free batteries
Batteries
Battery cycles
Copper
Cycles
Decay rate
Electrolytes
Rechargeable batteries
Sodium
sodium dendrites
sodium formate
sodium metal anodes
sodium metal batteries
Solid electrolytes
Stability
Title Robust Anode‐Free Sodium Metal Batteries Enabled by Artificial Sodium Formate Interface
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202204125
https://www.proquest.com/docview/2823857270
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVc59Ieiq6om6TgoUAPBluJ1MajkdgIitqHLEByEkiJagKkUuHYh-TUTyiQP8yXdLiIktE9F0Egx7LIeZpNMyOE3qZlWfJEhgR0Q0QicJmJCJOE0CRVgpY8YKaOe75IDk6ij6fx6WBw28taWq_k--Lml3Ul9-EqjAFfdZXsf3DWXxQG4Bz4C0fgMBz_iceHjVxfrcbgwpfKZy3MlkqNj5ryYv1lPFe61tH20ASXeDw1lVLG5pwsTZaQDpg74pkxX10uZSWKjSShSZsroGyxoKY0K-wi8lZq7J2L5ub8ogtIKzt-1upIk0tghR1M-tte9OZ9FPuwqT8vGzfhYhOUdTlUTpyC8idJ5iKYqj9mmzR5Gcx6WKO0p469svpJ1tvesULVuqEApbpxWNxptfZNvqeM_0xrewBPF3M__wBtUfA96BBtTfbnn4586A6cqjBgpnSjXV_bDjSgHzb_ZNPc6XyYvidkTJnjJ-ix80HwxALqKRqo-hl61OtM-RydWWhhA627b981qLDFCTagwh5U2IEKy2vcgaoldqDCHlQv0Mlserx3QNxXOEihbUtCS1grnLIyBF0YcyVFkFZpIQopRShpJUSlYv2CNVWMZlXKeFhwwYOgrKTgBXuJhnVTq1cIRxFYyyLJQLHFYDiqrIolD1UglUwqwfgIkXaz8sK1qNdfSrnMbXNtmuvNzf3mjtA7T__VNmf5LeVOu_e5e4CvcpqBvRrDLQUjRA0__nKVfAMfr-_zo230sHtQdtBwtVyrXTBrV_KNg9kPLmOZOw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Anode%E2%80%90Free+Sodium+Metal+Batteries+Enabled+by+Artificial+Sodium+Formate+Interface&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Chaozhi&rft.au=Zheng%2C+Ying&rft.au=Chen%2C+Zhe%E2%80%90Ning&rft.au=Zhang%2C+Rongrong&rft.date=2023-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202204125&rft.externalDBID=10.1002%252Faenm.202204125&rft.externalDocID=AENM202204125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon