Robust Anode‐Free Sodium Metal Batteries Enabled by Artificial Sodium Formate Interface
Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 22 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202204125 |
Cover
Loading…
Abstract | Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging. Herein, it is demonstrated that sodium formate (HCOONa), one component of the solid electrolyte interphase (SEI) naturally formed on sodium metal anode, is a promising candidate for designing high‐performance artificial SEI layers, which can suppress the sodium dendrite formation and reduce the side reactions between sodium and the electrolyte. Profiting from the HCOONa interface, the Na|Na3V2(PO4)3 battery with a high mass loading of Na3V2(PO4)3 (10 mg cm−2) exhibits a superior cycling stability with an ultralow decay rate of 0.004% per cycle over 800 cycles. More impressively, a single molecular layer of HCOONa in situ formed on commercial copper current collector helps to extend the lifespan of the anode‐free Cu|Na3V2(PO4)3 battery to 400 cycles with 88.2% capacity relation, representing the longest cycle lifetime reported in anode‐free NMBs.
An in situ formed HCOONa interface is proposed to protect sodium metal anodes and construct stable anode‐free sodium metal batteries. The HCOONa interface can suppress the growth of dendrites and reduce the parasitic reaction of the electrolyte, which effectively improves the capacity and cycling stability of anode‐free sodium metal batteries. |
---|---|
AbstractList | Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging. Herein, it is demonstrated that sodium formate (HCOONa), one component of the solid electrolyte interphase (SEI) naturally formed on sodium metal anode, is a promising candidate for designing high‐performance artificial SEI layers, which can suppress the sodium dendrite formation and reduce the side reactions between sodium and the electrolyte. Profiting from the HCOONa interface, the Na|Na
3
V
2
(PO
4
)
3
battery with a high mass loading of Na
3
V
2
(PO
4
)
3
(10 mg cm
−2
) exhibits a superior cycling stability with an ultralow decay rate of 0.004% per cycle over 800 cycles. More impressively, a single molecular layer of HCOONa in situ formed on commercial copper current collector helps to extend the lifespan of the anode‐free Cu|Na
3
V
2
(PO
4
)
3
battery to 400 cycles with 88.2% capacity relation, representing the longest cycle lifetime reported in anode‐free NMBs. Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging. Herein, it is demonstrated that sodium formate (HCOONa), one component of the solid electrolyte interphase (SEI) naturally formed on sodium metal anode, is a promising candidate for designing high‐performance artificial SEI layers, which can suppress the sodium dendrite formation and reduce the side reactions between sodium and the electrolyte. Profiting from the HCOONa interface, the Na|Na3V2(PO4)3 battery with a high mass loading of Na3V2(PO4)3 (10 mg cm−2) exhibits a superior cycling stability with an ultralow decay rate of 0.004% per cycle over 800 cycles. More impressively, a single molecular layer of HCOONa in situ formed on commercial copper current collector helps to extend the lifespan of the anode‐free Cu|Na3V2(PO4)3 battery to 400 cycles with 88.2% capacity relation, representing the longest cycle lifetime reported in anode‐free NMBs. An in situ formed HCOONa interface is proposed to protect sodium metal anodes and construct stable anode‐free sodium metal batteries. The HCOONa interface can suppress the growth of dendrites and reduce the parasitic reaction of the electrolyte, which effectively improves the capacity and cycling stability of anode‐free sodium metal batteries. Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety under limited sodium excess conditions, ideally zero sodium excess (i.e., anode‐free architecture), is highly desired yet remains challenging. Herein, it is demonstrated that sodium formate (HCOONa), one component of the solid electrolyte interphase (SEI) naturally formed on sodium metal anode, is a promising candidate for designing high‐performance artificial SEI layers, which can suppress the sodium dendrite formation and reduce the side reactions between sodium and the electrolyte. Profiting from the HCOONa interface, the Na|Na3V2(PO4)3 battery with a high mass loading of Na3V2(PO4)3 (10 mg cm−2) exhibits a superior cycling stability with an ultralow decay rate of 0.004% per cycle over 800 cycles. More impressively, a single molecular layer of HCOONa in situ formed on commercial copper current collector helps to extend the lifespan of the anode‐free Cu|Na3V2(PO4)3 battery to 400 cycles with 88.2% capacity relation, representing the longest cycle lifetime reported in anode‐free NMBs. |
Author | Fang, Xiaoliang Zheng, Nanfeng Wang, Chaozhi Yan, Jiawei Li, Kaixuan Zheng, Ying Peng, Dongliang Yan, Sen Cui, Jingqin He, Wei Xu, Gang Ren, Bin Chen, Zhe‐Ning Zhang, Rongrong |
Author_xml | – sequence: 1 givenname: Chaozhi surname: Wang fullname: Wang, Chaozhi organization: Xiamen University – sequence: 2 givenname: Ying surname: Zheng fullname: Zheng, Ying organization: Xiamen University – sequence: 3 givenname: Zhe‐Ning surname: Chen fullname: Chen, Zhe‐Ning organization: Chinese Academy of Sciences – sequence: 4 givenname: Rongrong surname: Zhang fullname: Zhang, Rongrong organization: Xiamen University – sequence: 5 givenname: Wei surname: He fullname: He, Wei organization: Xiamen University – sequence: 6 givenname: Kaixuan surname: Li fullname: Li, Kaixuan organization: Xiamen University – sequence: 7 givenname: Sen surname: Yan fullname: Yan, Sen organization: Xiamen University – sequence: 8 givenname: Jingqin surname: Cui fullname: Cui, Jingqin organization: Xiamen University – sequence: 9 givenname: Xiaoliang orcidid: 0000-0001-6048-9926 surname: Fang fullname: Fang, Xiaoliang email: x.l.fang@xmu.edu.cn organization: Xiamen University – sequence: 10 givenname: Jiawei surname: Yan fullname: Yan, Jiawei organization: Xiamen University – sequence: 11 givenname: Gang surname: Xu fullname: Xu, Gang organization: Chinese Academy of Sciences – sequence: 12 givenname: Dongliang surname: Peng fullname: Peng, Dongliang organization: Xiamen University – sequence: 13 givenname: Bin surname: Ren fullname: Ren, Bin organization: Xiamen University – sequence: 14 givenname: Nanfeng surname: Zheng fullname: Zheng, Nanfeng organization: Xiamen University |
BookMark | eNqFkMtKw0AUhgepYK3dug64bp1L0mSWsbRaaBW8LFyFk8kZmJJk6mSCdOcj-Iw-iSktFQRxNvPDfN-cw39OerWtkZBLRseMUn4NWFdjTjmnIePRCemzCQtHkySkvWMW_IwMm2ZNuxNKRoXok9dHm7eND9LaFvj18Tl3iMGTLUxbBSv0UAY34D06g00wqyEvsQjybZA6b7RRpns_wHPrKvAYLOqO1qDwgpxqKBscHu4BeZnPnqd3o-XD7WKaLkdKsDga8aLbo4uiYFAUkcQcaKxjBSrPgeVcA2iMGJUyRsETHQvJlARJaaFzkEoMyNX-342zby02Plvb1tXdyIwnXCRRzGPaUeGeUs42jUOdKePBG1t7B6bMGM12PWa7HrNjj502_qVtnKnAbf8W5F54NyVu_6GzdHa_-nG_AUrliRM |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c04331 crossref_primary_10_1021_acsami_4c21435 crossref_primary_10_1002_aenm_202400371 crossref_primary_10_1039_D4TC02740J crossref_primary_10_1002_pol_20240114 crossref_primary_10_1007_s10934_024_01744_z crossref_primary_10_3390_batteries9070345 crossref_primary_10_1039_D4EE05871B crossref_primary_10_1039_D5EE00136F crossref_primary_10_1002_adfm_202313823 crossref_primary_10_1039_D4TA06873D crossref_primary_10_1002_adfm_202421790 crossref_primary_10_1002_ange_202313447 crossref_primary_10_1002_smtd_202401884 crossref_primary_10_1039_D4QI00654B crossref_primary_10_1016_j_ensm_2024_103840 crossref_primary_10_1002_adma_202405310 crossref_primary_10_3390_batteries9080402 crossref_primary_10_1002_sus2_258 crossref_primary_10_1002_adfm_202414041 crossref_primary_10_1002_adma_202311256 crossref_primary_10_3390_batteries11030097 crossref_primary_10_1039_D4SC06630H crossref_primary_10_1039_D3EE03477A crossref_primary_10_1039_D3NR05814J crossref_primary_10_1039_D4EE05369A crossref_primary_10_3390_batteries9080408 crossref_primary_10_1039_D4QI01500B crossref_primary_10_20517_microstructures_2024_13 crossref_primary_10_1016_j_cej_2023_146930 crossref_primary_10_1002_cnl2_144 crossref_primary_10_1016_j_cej_2024_150559 crossref_primary_10_1002_eem2_12883 crossref_primary_10_1007_s12274_024_6588_3 crossref_primary_10_1002_smll_202401215 crossref_primary_10_1002_anie_202313447 crossref_primary_10_1007_s40843_024_3084_4 crossref_primary_10_1016_j_nanoen_2024_110010 crossref_primary_10_1002_aenm_202405917 crossref_primary_10_1038_s41565_024_01848_2 crossref_primary_10_1002_adfm_202315309 crossref_primary_10_34133_energymatadv_0063 crossref_primary_10_1039_D4MH00529E crossref_primary_10_1039_D3EE02082G crossref_primary_10_1039_D4CC06261B crossref_primary_10_1021_jacs_3c08224 crossref_primary_10_1021_acs_nanolett_4c04282 crossref_primary_10_1002_adma_202402337 crossref_primary_10_1002_aenm_202402284 crossref_primary_10_1002_adma_202409976 crossref_primary_10_1021_acs_nanolett_4c00562 crossref_primary_10_1002_adfm_202408617 crossref_primary_10_1016_j_nanoen_2025_110780 crossref_primary_10_1039_D4TA02925A crossref_primary_10_1016_j_mattod_2024_01_002 crossref_primary_10_1002_adfm_202406080 crossref_primary_10_1002_aenm_202402711 crossref_primary_10_1002_adma_202310347 crossref_primary_10_1002_adsu_202300400 |
Cites_doi | 10.1016/j.xcrp.2020.100044 10.1002/jcc.21759 10.1016/j.chempr.2020.06.036 10.1021/acs.jpcc.7b08433 10.1103/PhysRevLett.77.3865 10.1016/0927-0256(96)00008-0 10.1016/j.joule.2017.11.004 10.1002/adma.202106353 10.1021/acsami.5b02904 10.1002/adfm.201602353 10.1021/acs.chemrev.8b00642 10.1002/adfm.201100854 10.1038/s41560-019-0428-9 10.1002/aenm.201702764 10.1039/D0EE02423F 10.1063/1.3382344 10.1038/s41560-020-0634-5 10.1002/smtd.201800169 10.1016/j.nanoen.2020.105344 10.1002/anie.201711552 10.1103/PhysRevB.54.11169 10.1038/s41467-021-21683-6 10.1039/c3ee40847g 10.1021/ja305366r 10.1021/acsami.9b06760 10.1021/acsenergylett.7b00500 10.1002/adma.202105855 10.1002/ange.201801818 10.1038/s41565-020-0749-7 10.1016/j.nanoen.2016.09.013 10.1016/j.jpowsour.2018.06.056 10.1016/j.nanoen.2019.104387 10.1103/PhysRevB.47.558 10.1021/acsnano.0c03259 10.1149/2.0851714jes 10.1021/cr500003w 10.1039/C8EE01373J 10.1002/adfm.201901924 10.1103/PhysRevB.50.17953 10.1021/acsenergylett.6b00491 10.1016/j.ensm.2017.10.007 10.1038/s41586-020-2783-x 10.1038/s41467-018-06443-3 10.1039/C6CS00776G 10.1038/s41560-021-00839-0 10.1002/ange.202014241 10.1016/S0378-7753(00)00431-6 10.1103/PhysRevB.13.5188 10.1021/acs.nanolett.6b05174 10.1002/anie.201703937 10.1038/s41467-017-00742-x 10.1038/nenergy.2017.83 10.1002/adma.201606663 10.1021/ja3091438 10.1038/s41560-022-01033-6 10.1021/acs.nanolett.7b01138 10.1021/acscentsci.5b00328 10.1126/sciadv.aat5168 10.1021/acs.chemrev.1c00838 10.1002/adma.202106005 10.1002/adma.201807495 10.1149/2.0091513jes 10.1002/smll.201703717 10.1002/smll.201901274 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202204125 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202204125 AENM202204125 |
Genre | article |
GrantInformation_xml | – fundername: Opening Project of PCOSS of Xiamen University funderid: 201908 – fundername: National Key R&D Program of China funderid: 2020YFB1505800 – fundername: NSF of China funderid: 92161107 – fundername: Youth Innovation Fund of Xiamen City funderid: 3502Z20206047 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3175-2d033c313d1add59eba07f7cacbba1b2faafe510997e328f7391c9a900dfba9c3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 10:23:38 EDT 2025 Tue Jul 01 01:43:50 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Wed Jan 22 16:20:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3175-2d033c313d1add59eba07f7cacbba1b2faafe510997e328f7391c9a900dfba9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6048-9926 |
PQID | 2823857270 |
PQPubID | 886389 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2823857270 crossref_citationtrail_10_1002_aenm_202204125 crossref_primary_10_1002_aenm_202204125 wiley_primary_10_1002_aenm_202204125_AENM202204125 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 2 2019; 11 2000; 89 2017; 46 2019; 15 2016; 30 2020; 15 2020; 14 2013; 6 1996; 77 2022; 122 2018; 130 2018; 9 2020; 6 2018; 8 2020; 5 2018; 2 2012; 134 2021; 34 2020; 1 2021; 33 2018; 4 2022; 34 2019; 29 2011; 21 2019; 119 2018; 30 2017; 164 2017; 121 1996; 6 2015; 162 2015; 1 1993; 47 2021; 6 2019; 4 2019; 3 2019; 31 2011; 32 2017; 29 2020; 78 2020; 586 2015; 7 2014; 114 1996; 54 2021; 14 2018; 396 2016; 1 1976; 13 2021; 12 2017; 17 2017; 56 2010; 132 2018 2013; 135 2020; 69 2021; 133 2018; 11 1994; 50 2016; 26 2022; 17 2018; 14 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Zhao C. Z. (e_1_2_8_27_1) 2018 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 Soto F. A. (e_1_2_8_44_1) 2018; 30 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Schafzahl L. (e_1_2_8_41_1) 2018; 30 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 57 start-page: 734 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 30 start-page: 3338 year: 2018 publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th – volume: 8 start-page: 898 year: 2017 publication-title: Nat. Commun. – volume: 30 start-page: 3315 year: 2018 publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th – volume: 12 start-page: 1452 year: 2021 publication-title: Nat. Commun. – volume: 119 start-page: 5416 year: 2019 publication-title: Chem. Rev. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 11 start-page: 118 year: 2018 publication-title: Energy Storage Mater. – volume: 14 year: 2018 publication-title: Small – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 2 start-page: 184 year: 2018 publication-title: Joule – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 21 start-page: 3859 year: 2011 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 89 start-page: 206 year: 2000 publication-title: J. Power Sources – volume: 6 start-page: 2242 year: 2020 publication-title: Chem – volume: 56 year: 2017 publication-title: Angew. Chem. Int., Ed. – volume: 133 start-page: 6043 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 2338 year: 2013 publication-title: Energy Environ. Sci. – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 122 start-page: 8053 year: 2022 publication-title: Chem. Rev. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 3 year: 2019 publication-title: Small – volume: 2 start-page: 2051 year: 2017 publication-title: ACS Energy Lett. – volume: 396 start-page: 304 year: 2018 publication-title: J. Power Sources – volume: 46 start-page: 3529 year: 2017 publication-title: Chem. Soc. Rev. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 1173 year: 2016 publication-title: ACS Energy Lett. – volume: 4 start-page: 683 year: 2019 publication-title: Nat. Energy – volume: 586 start-page: 390 year: 2020 publication-title: Nature – volume: 9 start-page: 3870 year: 2018 publication-title: Nat. Commun. – volume: 130 start-page: 7860 year: 2018 publication-title: Angew. Chem., Int. Ed. – start-page: 4 year: 2018 publication-title: Sci. Adv. – volume: 6 start-page: 653 year: 2021 publication-title: Nat. Energy – volume: 69 year: 2020 publication-title: Nano Energy – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 2673 year: 2018 publication-title: Energy Environ. Sci. – volume: 30 start-page: 825 year: 2016 publication-title: Nano Energy – volume: 1 start-page: 449 year: 2015 publication-title: ACS Cent. Sci. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 5 start-page: 526 year: 2020 publication-title: Nat. Energy – volume: 47 start-page: 558 year: 1993 publication-title: Phys. Rev. B – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 382 year: 2021 publication-title: Energy Environ. Sci. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 8744 year: 2020 publication-title: ACS Nano – volume: 26 start-page: 7094 year: 2016 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 3792 year: 2017 publication-title: Nano Lett. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 17 start-page: 511 year: 2022 publication-title: Nat. Energy – volume: 15 start-page: 883 year: 2020 publication-title: Nat. Nanotechnol. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 1296 year: 2017 publication-title: Nano Lett. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – volume: 32 start-page: 1456 year: 2011 publication-title: J. Comput. Chem. – ident: e_1_2_8_22_1 doi: 10.1016/j.xcrp.2020.100044 – ident: e_1_2_8_54_1 doi: 10.1002/jcc.21759 – ident: e_1_2_8_17_1 doi: 10.1016/j.chempr.2020.06.036 – ident: e_1_2_8_39_1 doi: 10.1021/acs.jpcc.7b08433 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_52_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_8_63_1 doi: 10.1016/j.joule.2017.11.004 – ident: e_1_2_8_23_1 doi: 10.1002/adma.202106353 – ident: e_1_2_8_43_1 doi: 10.1021/acsami.5b02904 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.201602353 – ident: e_1_2_8_5_1 doi: 10.1021/acs.chemrev.8b00642 – ident: e_1_2_8_48_1 doi: 10.1002/adfm.201100854 – ident: e_1_2_8_35_1 doi: 10.1038/s41560-019-0428-9 – ident: e_1_2_8_28_1 doi: 10.1002/aenm.201702764 – ident: e_1_2_8_30_1 doi: 10.1039/D0EE02423F – ident: e_1_2_8_53_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_36_1 doi: 10.1038/s41560-020-0634-5 – ident: e_1_2_8_67_1 doi: 10.1002/smtd.201800169 – ident: e_1_2_8_37_1 doi: 10.1016/j.nanoen.2020.105344 – ident: e_1_2_8_47_1 doi: 10.1002/anie.201711552 – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_64_1 doi: 10.1038/s41467-021-21683-6 – ident: e_1_2_8_2_1 doi: 10.1039/c3ee40847g – ident: e_1_2_8_45_1 doi: 10.1021/ja305366r – ident: e_1_2_8_46_1 doi: 10.1021/acsami.9b06760 – ident: e_1_2_8_7_1 doi: 10.1021/acsenergylett.7b00500 – ident: e_1_2_8_24_1 doi: 10.1002/adma.202105855 – ident: e_1_2_8_16_1 doi: 10.1002/ange.201801818 – ident: e_1_2_8_18_1 doi: 10.1038/s41565-020-0749-7 – ident: e_1_2_8_15_1 doi: 10.1016/j.nanoen.2016.09.013 – ident: e_1_2_8_42_1 doi: 10.1016/j.jpowsour.2018.06.056 – ident: e_1_2_8_13_1 doi: 10.1016/j.nanoen.2019.104387 – ident: e_1_2_8_57_1 doi: 10.1103/PhysRevB.47.558 – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.0c03259 – ident: e_1_2_8_51_1 doi: 10.1149/2.0851714jes – ident: e_1_2_8_38_1 doi: 10.1021/cr500003w – ident: e_1_2_8_60_1 doi: 10.1039/C8EE01373J – ident: e_1_2_8_21_1 doi: 10.1002/adfm.201901924 – volume: 30 start-page: 3315 year: 2018 ident: e_1_2_8_44_1 publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_6_1 doi: 10.1021/acsenergylett.6b00491 – ident: e_1_2_8_8_1 doi: 10.1016/j.ensm.2017.10.007 – ident: e_1_2_8_61_1 doi: 10.1038/s41586-020-2783-x – ident: e_1_2_8_4_1 doi: 10.1038/s41467-018-06443-3 – volume: 30 start-page: 3338 year: 2018 ident: e_1_2_8_41_1 publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th – ident: e_1_2_8_3_1 doi: 10.1039/C6CS00776G – ident: e_1_2_8_34_1 doi: 10.1038/s41560-021-00839-0 – ident: e_1_2_8_50_1 doi: 10.1002/ange.202014241 – ident: e_1_2_8_49_1 doi: 10.1016/S0378-7753(00)00431-6 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_8_33_1 doi: 10.1021/acs.nanolett.6b05174 – ident: e_1_2_8_10_1 doi: 10.1002/anie.201703937 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-017-00742-x – ident: e_1_2_8_26_1 doi: 10.1038/nenergy.2017.83 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201606663 – ident: e_1_2_8_1_1 doi: 10.1021/ja3091438 – ident: e_1_2_8_32_1 doi: 10.1038/s41560-022-01033-6 – ident: e_1_2_8_9_1 doi: 10.1021/acs.nanolett.7b01138 – ident: e_1_2_8_14_1 doi: 10.1021/acscentsci.5b00328 – ident: e_1_2_8_62_1 doi: 10.1126/sciadv.aat5168 – ident: e_1_2_8_25_1 doi: 10.1021/acs.chemrev.1c00838 – start-page: 4 year: 2018 ident: e_1_2_8_27_1 publication-title: Sci. Adv. – ident: e_1_2_8_65_1 doi: 10.1002/adma.202106005 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201807495 – ident: e_1_2_8_40_1 doi: 10.1149/2.0091513jes – ident: e_1_2_8_29_1 doi: 10.1002/smll.201703717 – ident: e_1_2_8_66_1 doi: 10.1002/smll.201901274 |
SSID | ssj0000491033 |
Score | 2.625268 |
Snippet | Sodium metal batteries (NMBs) have attracted increasing attention as next‐generation rechargeable batteries. How to improve their cycling stability and safety... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | anode‐free batteries Batteries Battery cycles Copper Cycles Decay rate Electrolytes Rechargeable batteries Sodium sodium dendrites sodium formate sodium metal anodes sodium metal batteries Solid electrolytes Stability |
Title | Robust Anode‐Free Sodium Metal Batteries Enabled by Artificial Sodium Formate Interface |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202204125 https://www.proquest.com/docview/2823857270 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVc59Ieiq6om6TgoUAPBluJ1MajkdgIitqHLEByEkiJagKkUuHYh-TUTyiQP8yXdLiIktE9F0Egx7LIeZpNMyOE3qZlWfJEhgR0Q0QicJmJCJOE0CRVgpY8YKaOe75IDk6ij6fx6WBw28taWq_k--Lml3Ul9-EqjAFfdZXsf3DWXxQG4Bz4C0fgMBz_iceHjVxfrcbgwpfKZy3MlkqNj5ryYv1lPFe61tH20ASXeDw1lVLG5pwsTZaQDpg74pkxX10uZSWKjSShSZsroGyxoKY0K-wi8lZq7J2L5ub8ogtIKzt-1upIk0tghR1M-tte9OZ9FPuwqT8vGzfhYhOUdTlUTpyC8idJ5iKYqj9mmzR5Gcx6WKO0p469svpJ1tvesULVuqEApbpxWNxptfZNvqeM_0xrewBPF3M__wBtUfA96BBtTfbnn4586A6cqjBgpnSjXV_bDjSgHzb_ZNPc6XyYvidkTJnjJ-ix80HwxALqKRqo-hl61OtM-RydWWhhA627b981qLDFCTagwh5U2IEKy2vcgaoldqDCHlQv0Mlserx3QNxXOEihbUtCS1grnLIyBF0YcyVFkFZpIQopRShpJUSlYv2CNVWMZlXKeFhwwYOgrKTgBXuJhnVTq1cIRxFYyyLJQLHFYDiqrIolD1UglUwqwfgIkXaz8sK1qNdfSrnMbXNtmuvNzf3mjtA7T__VNmf5LeVOu_e5e4CvcpqBvRrDLQUjRA0__nKVfAMfr-_zo230sHtQdtBwtVyrXTBrV_KNg9kPLmOZOw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Anode%E2%80%90Free+Sodium+Metal+Batteries+Enabled+by+Artificial+Sodium+Formate+Interface&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Chaozhi&rft.au=Zheng%2C+Ying&rft.au=Chen%2C+Zhe%E2%80%90Ning&rft.au=Zhang%2C+Rongrong&rft.date=2023-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202204125&rft.externalDBID=10.1002%252Faenm.202204125&rft.externalDocID=AENM202204125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |