Heuristic Design of Cathode Hybrid Coating for Power‐Limited Sulfide‐Based All‐Solid‐State Lithium Batteries

Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 33
Main Authors Liang, Yuhao, Liu, Hong, Wang, Guoxu, Wang, Chao, Li, Dabing, Ni, Yu, Fan, Li‐Zhen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic migration blocking in the composite cathode is neglected habitually. A heuristic “polymer‐patched inorganic” cathode coating strategy is presented herein. Single‐crystalline LiNi0.6Co0.2Mn0.2O2 (SNCM) particles are uniformly coated with a hybrid layer comprising nanoscale Li1.4Al0.4Ti1.6(PO4)3 (LATP) and cyclized polyacrylonitrile (cPAN), via a scalable solution‐based method. The LATP coating ensures rapid Li+ transfer across the interface and offers high oxidation tolerance. cPAN partially‐submerges and patches the imperfections of the LATP coating layer, producing a high‐quality protective coating without compromising electronic transfer. Accordingly, sulfide‐based ASSBs employing the hybrid‐modified SNCM cathode demonstrate competitive electrochemical performance in terms of capacity retention (72.7% over 500 cycles, at 0.5 C), and rate capability (87.3 mAh g−1 at 2 C, 5 times that of the pristine SNCM). Significant improvements are attributed to the homogeneity and functionality of the coating, which mitigates parasitic reactions at the interface while simultaneously preserving indispensable electronic percolation. This work offers a brand‐new cathode coating protocol for sulfide‐based all‐solid‐state to achieve longevity and good power. A heuristic “polymer‐patched inorganic” cathode coating strategy applied in sulfide‐based all‐solid‐state batteries is proposed to mitigate interfacial parasitic reactions while simultaneously assuring indispensable electronic percolation. The novel hybrid coating can be prepared by a scalable and convenient solution‐based method, and allows all‐solid‐state lithium batteries to achieve longevity and good power.
AbstractList Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic migration blocking in the composite cathode is neglected habitually. A heuristic “polymer‐patched inorganic” cathode coating strategy is presented herein. Single‐crystalline LiNi 0.6 Co 0.2 Mn 0.2 O 2 (SNCM) particles are uniformly coated with a hybrid layer comprising nanoscale Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) and cyclized polyacrylonitrile (cPAN), via a scalable solution‐based method. The LATP coating ensures rapid Li + transfer across the interface and offers high oxidation tolerance. cPAN partially‐submerges and patches the imperfections of the LATP coating layer, producing a high‐quality protective coating without compromising electronic transfer. Accordingly, sulfide‐based ASSBs employing the hybrid‐modified SNCM cathode demonstrate competitive electrochemical performance in terms of capacity retention (72.7% over 500 cycles, at 0.5 C), and rate capability (87.3 mAh g −1 at 2 C, 5 times that of the pristine SNCM). Significant improvements are attributed to the homogeneity and functionality of the coating, which mitigates parasitic reactions at the interface while simultaneously preserving indispensable electronic percolation. This work offers a brand‐new cathode coating protocol for sulfide‐based all‐solid‐state to achieve longevity and good power.
Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic migration blocking in the composite cathode is neglected habitually. A heuristic “polymer‐patched inorganic” cathode coating strategy is presented herein. Single‐crystalline LiNi0.6Co0.2Mn0.2O2 (SNCM) particles are uniformly coated with a hybrid layer comprising nanoscale Li1.4Al0.4Ti1.6(PO4)3 (LATP) and cyclized polyacrylonitrile (cPAN), via a scalable solution‐based method. The LATP coating ensures rapid Li+ transfer across the interface and offers high oxidation tolerance. cPAN partially‐submerges and patches the imperfections of the LATP coating layer, producing a high‐quality protective coating without compromising electronic transfer. Accordingly, sulfide‐based ASSBs employing the hybrid‐modified SNCM cathode demonstrate competitive electrochemical performance in terms of capacity retention (72.7% over 500 cycles, at 0.5 C), and rate capability (87.3 mAh g−1 at 2 C, 5 times that of the pristine SNCM). Significant improvements are attributed to the homogeneity and functionality of the coating, which mitigates parasitic reactions at the interface while simultaneously preserving indispensable electronic percolation. This work offers a brand‐new cathode coating protocol for sulfide‐based all‐solid‐state to achieve longevity and good power.
Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic migration blocking in the composite cathode is neglected habitually. A heuristic “polymer‐patched inorganic” cathode coating strategy is presented herein. Single‐crystalline LiNi0.6Co0.2Mn0.2O2 (SNCM) particles are uniformly coated with a hybrid layer comprising nanoscale Li1.4Al0.4Ti1.6(PO4)3 (LATP) and cyclized polyacrylonitrile (cPAN), via a scalable solution‐based method. The LATP coating ensures rapid Li+ transfer across the interface and offers high oxidation tolerance. cPAN partially‐submerges and patches the imperfections of the LATP coating layer, producing a high‐quality protective coating without compromising electronic transfer. Accordingly, sulfide‐based ASSBs employing the hybrid‐modified SNCM cathode demonstrate competitive electrochemical performance in terms of capacity retention (72.7% over 500 cycles, at 0.5 C), and rate capability (87.3 mAh g−1 at 2 C, 5 times that of the pristine SNCM). Significant improvements are attributed to the homogeneity and functionality of the coating, which mitigates parasitic reactions at the interface while simultaneously preserving indispensable electronic percolation. This work offers a brand‐new cathode coating protocol for sulfide‐based all‐solid‐state to achieve longevity and good power. A heuristic “polymer‐patched inorganic” cathode coating strategy applied in sulfide‐based all‐solid‐state batteries is proposed to mitigate interfacial parasitic reactions while simultaneously assuring indispensable electronic percolation. The novel hybrid coating can be prepared by a scalable and convenient solution‐based method, and allows all‐solid‐state lithium batteries to achieve longevity and good power.
Author Liang, Yuhao
Wang, Chao
Li, Dabing
Fan, Li‐Zhen
Liu, Hong
Wang, Guoxu
Ni, Yu
Author_xml – sequence: 1
  givenname: Yuhao
  surname: Liang
  fullname: Liang, Yuhao
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Guoxu
  surname: Wang
  fullname: Wang, Guoxu
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Dabing
  surname: Li
  fullname: Li, Dabing
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Yu
  surname: Ni
  fullname: Ni, Yu
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Li‐Zhen
  orcidid: 0000-0003-2270-4458
  surname: Fan
  fullname: Fan, Li‐Zhen
  email: fanlizhen@ustb.edu.cn
  organization: University of Science and Technology Beijing
BookMark eNqFkE1rGzEQhkVJIc7HNWdBznYl7a5We7SdpC64TSHJedFKo2TMeuVIWoxv-Qn5jfklXeOSQiB0LvPBPPMy7wk56nwHhFxwNuGMiW8auvVEMCEYL4riCxlxyfOxVDk7eq8zcUzOY1yxIfKKsywbkbSAPmBMaOgVRHzsqHd0rtOTt0AXuyagpXOvE3aP1PlAf_sthLeX1yWuMYGld33r0MIwmek49NO2Heo736Ld56QT0CWmJ-zXdKZTgoAQz8hXp9sI53_zKXm4ub6fL8bL2-8_5tPl2GS8LMbcKalAOlWqLLeNlLmqhGRNySwvGmOcyaum0ZXjWpkGKuaUACOctSxjwGV2Si4PdzfBP_cQU73yfegGyVqUTJVMVmU2bE0OWyb4GAO4ehNwrcOu5qzem1vvza3fzR2A_ANgcHgUfZeCxvZzrDpgW2xh9x-Renr96-c_9g_xQZWB
CitedBy_id crossref_primary_10_1021_acsaem_3c01472
crossref_primary_10_1021_jacs_4c02115
crossref_primary_10_1016_j_ensm_2023_103138
crossref_primary_10_1002_aenm_202404459
crossref_primary_10_1016_j_apsusc_2024_161347
crossref_primary_10_1016_j_ensm_2024_103570
crossref_primary_10_1002_aenm_202203631
crossref_primary_10_1038_s41467_025_58113_w
crossref_primary_10_1002_adem_202300566
crossref_primary_10_1016_j_est_2024_114210
crossref_primary_10_1021_acs_energyfuels_4c02275
crossref_primary_10_1002_adfm_202311564
crossref_primary_10_1016_j_flatc_2024_100693
crossref_primary_10_1016_j_nanoen_2025_110749
crossref_primary_10_1002_ange_202403617
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1021_acsami_4c06803
crossref_primary_10_1063_5_0117248
crossref_primary_10_1016_j_ensm_2023_103027
crossref_primary_10_1039_D4CS00415A
crossref_primary_10_1016_j_partic_2023_04_005
crossref_primary_10_1002_adfm_202412177
crossref_primary_10_1016_j_pmatsci_2024_101339
crossref_primary_10_1016_j_electacta_2025_146052
crossref_primary_10_1002_anie_202403617
crossref_primary_10_1002_aenm_202301230
crossref_primary_10_1016_j_etran_2023_100272
crossref_primary_10_1039_D3MH01151H
crossref_primary_10_1002_aenm_202401281
crossref_primary_10_1007_s10008_024_05900_y
crossref_primary_10_1002_batt_202200502
crossref_primary_10_1016_j_cej_2024_157394
crossref_primary_10_1039_D4NJ05234J
crossref_primary_10_1016_j_jcis_2024_08_035
crossref_primary_10_1016_j_ensm_2023_103034
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1016_j_ensm_2023_102779
crossref_primary_10_1021_acsenergylett_4c01457
crossref_primary_10_1007_s40820_025_01683_7
crossref_primary_10_1002_advs_202300985
crossref_primary_10_1038_s41467_024_52768_7
crossref_primary_10_1002_adfm_202313685
crossref_primary_10_1360_TB_2024_0526
crossref_primary_10_1002_bte2_20220059
crossref_primary_10_1021_acs_jpclett_4c03539
crossref_primary_10_1002_adfm_202407007
crossref_primary_10_1021_accountsmr_4c00156
crossref_primary_10_1002_inf2_12606
crossref_primary_10_1016_j_cej_2024_158152
crossref_primary_10_1021_acs_iecr_3c03758
crossref_primary_10_1039_D3QM00964E
crossref_primary_10_1002_adfm_202304371
crossref_primary_10_1016_j_ensm_2023_103089
crossref_primary_10_1016_j_ensm_2024_103976
crossref_primary_10_1016_j_coelec_2023_101251
Cites_doi 10.1149/1.1838178
10.1038/s41560-020-0575-z
10.1021/acs.chemmater.7b00931
10.1016/j.polymdegradstab.2007.03.023
10.1016/j.nima.2008.11.056
10.1002/aenm.201702028
10.1038/s41560-019-0513-0
10.1021/nl5046318
10.1002/aenm.201900626
10.1016/j.elecom.2007.02.008
10.1002/smll.201900235
10.1073/pnas.1821672117
10.1016/j.ensm.2020.01.027
10.1021/acsenergylett.0c00256
10.1002/aenm.202100881
10.1002/adma.200502604
10.1021/acs.chemmater.8b03321
10.1038/nenergy.2017.74
10.1038/s41563-019-0431-3
10.1016/j.ensm.2020.05.007
10.1002/anie.201913368
10.1016/S0378-7753(02)00002-2
10.1149/1945-7111/ac3850
10.1038/nenergy.2016.30
10.1021/acsami.7b01137
10.1007/BF02376083
10.1021/acs.chemmater.0c04660
10.1021/cm5016959
10.1002/adfm.201909140
10.1002/aenm.201902881
10.3390/polym10020186
10.1038/s41467-020-16824-2
10.1021/jp1088788
10.1016/j.mattod.2021.02.011
10.1038/s41557-018-0019-6
10.1016/j.ensm.2020.12.003
10.1002/anie.200703900
10.1002/aenm.202100210
10.1016/j.joule.2021.04.001
10.1016/S0008-6223(03)00391-9
10.1002/aenm.202003583
10.1149/2.0991707jes
10.1016/j.electacta.2009.11.096
10.1002/aenm.202100126
10.1016/j.ensm.2021.03.015
10.1038/451652a
10.1002/inf2.12292
10.1002/anie.202011484
10.1021/acs.jpcc.6b12885
10.1016/j.ssi.2015.06.001
10.1016/0013-4686(62)87046-7
10.1016/j.joule.2018.09.008
10.1038/s41467-019-11299-2
10.1149/1945-7111/abf8d7
10.1021/acs.nanolett.9b04597
10.1002/aenm.201903778
10.1038/s41467-021-26895-4
10.1021/acsenergylett.9b01693
10.1016/j.ensm.2020.01.009
10.1002/smll.202103830
10.1021/acssuschemeng.9b05539
10.1038/s41560-020-0565-1
10.1038/s41563-019-0576-0
10.1016/j.joule.2019.02.006
10.1021/acs.chemmater.6b00610
10.1016/S0167-2738(98)00541-4
10.1002/anie.200250452
10.1002/aenm.201902698
10.1039/C8EE01053F
10.1038/s41578-019-0157-5
10.1021/acsenergylett.8b00275
10.1038/s41560-021-00952-0
10.1021/acsami.9b13955
10.1021/jp102050s
10.1021/acs.chemrev.0c00431
10.1038/s41578-021-00320-0
10.1016/j.nanoen.2020.104686
10.1002/aenm.202000904
10.1038/nmat3066
10.1002/adma.201901131
10.1002/adma.200401286
10.1021/acs.chemmater.0c01825
10.1039/D0EE03212C
10.1002/adma.201500180
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202201555
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202201555
AENM202201555
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U21A2080&51872027
– fundername: Beijing Natural Science Foundation
  funderid: Z200011
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3175-1f868e6f87834db66489260b70d15bccfc49bba9f1a8cbe90f82ec2fdd030e163
ISSN 1614-6832
IngestDate Fri Jul 25 12:16:04 EDT 2025
Tue Jul 01 01:43:45 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed Jan 22 16:24:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-1f868e6f87834db66489260b70d15bccfc49bba9f1a8cbe90f82ec2fdd030e163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2270-4458
PQID 2708706973
PQPubID 886389
PageCount 13
ParticipantIDs proquest_journals_2708706973
crossref_primary_10_1002_aenm_202201555
crossref_citationtrail_10_1002_aenm_202201555
wiley_primary_10_1002_aenm_202201555_AENM202201555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 1, 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2020 2020 2021; 5 10 11
2020 2019 2020; 5 15 32
2020 2022; 10 7
2021 2021; 49 168
2019; 10
2021 2017; 5 121
2020 2020 2019; 5 19 18
2007 2006 2020 2018; 9 18 5 30
2019 2014; 11 26
2017; 29
2018 2003; 10 41
2020 2002 1963; 30 8 8
2016 2011 2008 2005 2020; 1 10 47 17 20
2016 2015; 28 278
2021 2021 2020; 11 11 30
2021 2003; 38 42
2020; 8
2021; 14
2021; 35
2020 2020; 72 27
2021; 12
2021; 33
2015 2021; 15 168
2010; 114
2008 2020; 451 117
2021 2019 2018; 6 31 11
2020 2017 2020; 11 164 27
1997; 144
2020 1999 2007; 59 121 92
2020 2017 2018; 10 9 3
2019 2015; 4 27
2019 2018 2020; 9 2 120
2002; 108
2010 2010; 114 55
2019 2021 2021; 3 17 11
2017 2018 2020; 2 10 60
2009; 600
2018 2020 2022; 8 5 4
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_3_5
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_9_3
e_1_2_7_23_3
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_35_3
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_32_3
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_36_2
e_1_2_7_38_1
References_xml – volume: 2 10 60
  start-page: 532 1355
  year: 2017 2018 2020
  publication-title: Nat. Energy Nat. Chem. Angew. Chem., Int. Ed.
– volume: 28 278
  start-page: 2400 98
  year: 2016 2015
  publication-title: Chem. Mater. Solid State Ionics
– volume: 35
  start-page: 661
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 9 2 120
  start-page: 2208 7745
  year: 2019 2018 2020
  publication-title: Adv. Energy Mater. Joule Chem. Rev.
– volume: 5 15 32
  start-page: 1243 6123
  year: 2020 2019 2020
  publication-title: ACS Energy Lett. Small Chem. Mater.
– volume: 5 19 18
  start-page: 259 428 1278
  year: 2020 2020 2019
  publication-title: Nat. Energy Nat. Mater. Nat. Mater.
– volume: 11 164 27
  start-page: 3050 140
  year: 2020 2017 2020
  publication-title: Nat. Commun. J. Electrochem. Soc. Energy Storage Mater.
– volume: 11 11 30
  start-page: 98
  year: 2021 2021 2020
  publication-title: Adv. Energy Mater. Adv. Energy Mater. Energy Storage Mater.
– volume: 144
  start-page: 4279
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 6669
  year: 2021
  publication-title: Nat. Commun.
– volume: 451 117
  start-page: 652
  year: 2008 2020
  publication-title: Nature Proc. Natl. Acad. Sci. USA
– volume: 108
  start-page: 64
  year: 2002
  publication-title: J. Power Sources
– volume: 9 18 5 30
  start-page: 1486 2226 299 8190
  year: 2007 2006 2020 2018
  publication-title: Electrochem. Commun. Adv. Mater. Nat. Energy Chem. Mater.
– volume: 114 55
  start-page: 2384
  year: 2010 2010
  publication-title: J. Phys. Chem. C Electrochim. Acta
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 30 8 8
  start-page: 300 905
  year: 2020 2002 1963
  publication-title: Adv. Funct. Mater. Ionics Electrochim. Acta
– volume: 72 27
  start-page: 117
  year: 2020 2020
  publication-title: Nano Energy Energy Storage Mater.
– volume: 38 42
  start-page: 309 1618
  year: 2021 2003
  publication-title: Energy Storage Mater. Angew. Chem., Int. Ed.
– volume: 600
  start-page: 94
  year: 2009
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 10
  start-page: 3447
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 437
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 33
  start-page: 2110
  year: 2021
  publication-title: Chem. Mater.
– volume: 15 168
  start-page: 2910
  year: 2015 2021
  publication-title: Nano Lett. J. Electrochem. Soc.
– volume: 114
  start-page: 9528
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 10 9 3
  start-page: 992
  year: 2020 2017 2018
  publication-title: Adv. Energy Mater. ACS Appl. Mater. Interfaces ACS Energy Lett.
– volume: 8
  start-page: 5819
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10 41
  start-page: 186 2805
  year: 2018 2003
  publication-title: Polymers Carbon
– volume: 49 168
  start-page: 145
  year: 2021 2021
  publication-title: Mater. Today J. Electrochem. Soc.
– volume: 3 17 11
  start-page: 1252
  year: 2019 2021 2021
  publication-title: Joule Small Adv. Energy Mater.
– volume: 5 121
  start-page: 1371 3286
  year: 2021 2017
  publication-title: Joule J. Phys. Chem. C
– volume: 6 31 11
  start-page: 1003 1945
  year: 2021 2019 2018
  publication-title: Nat. Rev. Mater. Adv. Mater. Energy Environ. Sci.
– volume: 8 5 4
  start-page: 26
  year: 2018 2020 2022
  publication-title: Adv. Energy Mater. Nat. Energy Infomat
– volume: 59 121 92
  start-page: 4448 141 1421
  year: 2020 1999 2007
  publication-title: Angew. Chem., Int. Ed. Solid State Ionics Polym. Degrad. Stab.
– volume: 4 27
  start-page: 2418 3473
  year: 2019 2015
  publication-title: ACS Energy Lett. Adv. Mater.
– volume: 1 10 47 17 20
  start-page: 682 755 918 2303
  year: 2016 2011 2008 2005 2020
  publication-title: Nat. Energy Nat. Mater. Angew. Chem., Int. Ed. Adv. Mater. Nano Lett.
– volume: 10 7
  start-page: 83
  year: 2020 2022
  publication-title: Adv. Energy Mater. Nat. Energy
– volume: 11 26
  start-page: 4248
  year: 2019 2014
  publication-title: ACS Appl. Mater. Interfaces Chem. Mater.
– volume: 5 10 11
  start-page: 105
  year: 2020 2020 2021
  publication-title: Nat. Rev. Mater. Adv. Energy Mater. Adv. Energy Mater.
– volume: 29
  start-page: 5574
  year: 2017
  publication-title: Chem. Mater.
– ident: e_1_2_7_30_1
  doi: 10.1149/1.1838178
– ident: e_1_2_7_6_3
  doi: 10.1038/s41560-020-0575-z
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.chemmater.7b00931
– ident: e_1_2_7_32_3
  doi: 10.1016/j.polymdegradstab.2007.03.023
– ident: e_1_2_7_26_1
  doi: 10.1016/j.nima.2008.11.056
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201702028
– ident: e_1_2_7_9_2
  doi: 10.1038/s41560-019-0513-0
– ident: e_1_2_7_29_1
  doi: 10.1021/nl5046318
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201900626
– ident: e_1_2_7_6_1
  doi: 10.1016/j.elecom.2007.02.008
– ident: e_1_2_7_12_2
  doi: 10.1002/smll.201900235
– ident: e_1_2_7_1_2
  doi: 10.1073/pnas.1821672117
– ident: e_1_2_7_22_3
  doi: 10.1016/j.ensm.2020.01.027
– ident: e_1_2_7_12_1
  doi: 10.1021/acsenergylett.0c00256
– ident: e_1_2_7_14_3
  doi: 10.1002/aenm.202100881
– ident: e_1_2_7_6_2
  doi: 10.1002/adma.200502604
– ident: e_1_2_7_6_4
  doi: 10.1021/acs.chemmater.8b03321
– ident: e_1_2_7_15_1
  doi: 10.1038/nenergy.2017.74
– ident: e_1_2_7_4_3
  doi: 10.1038/s41563-019-0431-3
– ident: e_1_2_7_23_3
  doi: 10.1016/j.ensm.2020.05.007
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.201913368
– ident: e_1_2_7_34_1
  doi: 10.1016/S0378-7753(02)00002-2
– ident: e_1_2_7_29_2
  doi: 10.1149/1945-7111/ac3850
– ident: e_1_2_7_3_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_7_11_2
  doi: 10.1021/acsami.7b01137
– ident: e_1_2_7_35_2
  doi: 10.1007/BF02376083
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.chemmater.0c04660
– ident: e_1_2_7_18_2
  doi: 10.1021/cm5016959
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201909140
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.201902881
– ident: e_1_2_7_31_1
  doi: 10.3390/polym10020186
– ident: e_1_2_7_22_1
  doi: 10.1038/s41467-020-16824-2
– ident: e_1_2_7_36_1
  doi: 10.1021/jp1088788
– ident: e_1_2_7_10_1
  doi: 10.1016/j.mattod.2021.02.011
– ident: e_1_2_7_15_2
  doi: 10.1038/s41557-018-0019-6
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ensm.2020.12.003
– ident: e_1_2_7_3_3
  doi: 10.1002/anie.200703900
– ident: e_1_2_7_8_3
  doi: 10.1002/aenm.202100210
– ident: e_1_2_7_21_1
  doi: 10.1016/j.joule.2021.04.001
– ident: e_1_2_7_31_2
  doi: 10.1016/S0008-6223(03)00391-9
– ident: e_1_2_7_23_2
  doi: 10.1002/aenm.202003583
– ident: e_1_2_7_22_2
  doi: 10.1149/2.0991707jes
– ident: e_1_2_7_36_2
  doi: 10.1016/j.electacta.2009.11.096
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.202100126
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ensm.2021.03.015
– ident: e_1_2_7_1_1
  doi: 10.1038/451652a
– ident: e_1_2_7_9_3
  doi: 10.1002/inf2.12292
– ident: e_1_2_7_15_3
  doi: 10.1002/anie.202011484
– ident: e_1_2_7_21_2
  doi: 10.1021/acs.jpcc.6b12885
– ident: e_1_2_7_19_2
  doi: 10.1016/j.ssi.2015.06.001
– ident: e_1_2_7_35_3
  doi: 10.1016/0013-4686(62)87046-7
– ident: e_1_2_7_5_2
  doi: 10.1016/j.joule.2018.09.008
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-019-11299-2
– ident: e_1_2_7_10_2
  doi: 10.1149/1945-7111/abf8d7
– ident: e_1_2_7_3_5
  doi: 10.1021/acs.nanolett.9b04597
– ident: e_1_2_7_8_2
  doi: 10.1002/aenm.201903778
– ident: e_1_2_7_17_1
  doi: 10.1038/s41467-021-26895-4
– ident: e_1_2_7_24_1
  doi: 10.1021/acsenergylett.9b01693
– ident: e_1_2_7_7_2
  doi: 10.1016/j.ensm.2020.01.009
– ident: e_1_2_7_14_2
  doi: 10.1002/smll.202103830
– ident: e_1_2_7_25_1
  doi: 10.1021/acssuschemeng.9b05539
– ident: e_1_2_7_4_1
  doi: 10.1038/s41560-020-0565-1
– ident: e_1_2_7_4_2
  doi: 10.1038/s41563-019-0576-0
– ident: e_1_2_7_14_1
  doi: 10.1016/j.joule.2019.02.006
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.chemmater.6b00610
– ident: e_1_2_7_32_2
  doi: 10.1016/S0167-2738(98)00541-4
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.200250452
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.201902698
– ident: e_1_2_7_2_3
  doi: 10.1039/C8EE01053F
– ident: e_1_2_7_8_1
  doi: 10.1038/s41578-019-0157-5
– ident: e_1_2_7_11_3
  doi: 10.1021/acsenergylett.8b00275
– ident: e_1_2_7_13_2
  doi: 10.1038/s41560-021-00952-0
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.9b13955
– ident: e_1_2_7_33_1
  doi: 10.1021/jp102050s
– ident: e_1_2_7_5_3
  doi: 10.1021/acs.chemrev.0c00431
– ident: e_1_2_7_2_1
  doi: 10.1038/s41578-021-00320-0
– ident: e_1_2_7_7_1
  doi: 10.1016/j.nanoen.2020.104686
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.202000904
– ident: e_1_2_7_3_2
  doi: 10.1038/nmat3066
– ident: e_1_2_7_2_2
  doi: 10.1002/adma.201901131
– ident: e_1_2_7_3_4
  doi: 10.1002/adma.200401286
– ident: e_1_2_7_12_3
  doi: 10.1021/acs.chemmater.0c01825
– ident: e_1_2_7_39_1
  doi: 10.1039/D0EE03212C
– ident: e_1_2_7_24_2
  doi: 10.1002/adma.201500180
SSID ssj0000491033
Score 2.5816026
Snippet Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms all‐solid‐state batteries
cathode coatings
Cathodes
Cathodic coating (process)
Electrochemical analysis
electronic percolation
Heuristic
Homogeneity
interfacial stability
Lithium batteries
Oxidation
Percolation
Polyacrylonitrile
Protective coatings
sulfide solid electrolytes
Title Heuristic Design of Cathode Hybrid Coating for Power‐Limited Sulfide‐Based All‐Solid‐State Lithium Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202201555
https://www.proquest.com/docview/2708706973
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLMgHJA5VIHESNzmWpUuF2oK0rVROkZ_aSqVB0EjAiZ_AmZ_HL2EcP5rluXBJk5Hrtp7Pnhl35jNCDxljAIuMRTkr8gjiDR1xKWjESMIBHppJYmqHZ3M6WWYvVvmq1_vayVpqdvyx-PTLupL_0SrIQK-mSvYfNBs6BQHcg37hChqG64V0PFGNJVqGZcMkYthiK3MktBpMPppaLJjvbOeTJV-ZE9FCdoMrbYKlY6PXUgX5U7BrcjDabILktN7ATwtPxj01ZBtn6-bNwPJz-kxET2frEwuUrSwEr9gOR0j_Wbtt6tfNGav30qa1hLWzpu0-v233vKk_ND8Kj_173a4FBLw-Leuia2NnTQYPIqKF2wZVXZllegoLOekA1tJr_GQgLOEsU1vDQkCI8RjzvSn0f__PX1Yny-m0WoxXi0vokEAIAmvo4ejZbHoadvAgtkritK3g8N_Qs4LG5Mn5jzjv9exDmW5A1Ho0i2voqgtF8Mji6jrqqe0NdKVDUHkT7QLCsEUYrjV2CMMWYdghDAPCcIuwb5-_OGxhhy2QtKjCgCq4b_FkXg2SsEMSDki6hZYn48XxJHLndETCeJ9RogtaKKoLc2iL5JRmRQlhMh_GMsm5EFpkJees1AkrBFdlrAuiBNFSgoVREBDcRgfbeqvuIJwNqaRSak4ZyTh4x6mIU5FwQVNOlVJ9FPlxrIQjsTdnqWwqS79NKjPuVRj3PnoU2r-19C2_bXnk1VK5Kf6-IsPY5AGUw7SPSKuqv_RSjcbzWXi6--c-76HL-6lxhA527xp1H1zcHX_gsPYdZJqnng
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heuristic+Design+of+Cathode+Hybrid+Coating+for+Power%E2%80%90Limited+Sulfide%E2%80%90Based+All%E2%80%90Solid%E2%80%90State+Lithium+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Liang%2C+Yuhao&rft.au=Liu%2C+Hong&rft.au=Wang%2C+Guoxu&rft.au=Wang%2C+Chao&rft.date=2022-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=33&rft_id=info:doi/10.1002%2Faenm.202201555&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon