Heuristic Design of Cathode Hybrid Coating for Power‐Limited Sulfide‐Based All‐Solid‐State Lithium Batteries
Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 33 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic migration blocking in the composite cathode is neglected habitually. A heuristic “polymer‐patched inorganic” cathode coating strategy is presented herein. Single‐crystalline LiNi0.6Co0.2Mn0.2O2 (SNCM) particles are uniformly coated with a hybrid layer comprising nanoscale Li1.4Al0.4Ti1.6(PO4)3 (LATP) and cyclized polyacrylonitrile (cPAN), via a scalable solution‐based method. The LATP coating ensures rapid Li+ transfer across the interface and offers high oxidation tolerance. cPAN partially‐submerges and patches the imperfections of the LATP coating layer, producing a high‐quality protective coating without compromising electronic transfer. Accordingly, sulfide‐based ASSBs employing the hybrid‐modified SNCM cathode demonstrate competitive electrochemical performance in terms of capacity retention (72.7% over 500 cycles, at 0.5 C), and rate capability (87.3 mAh g−1 at 2 C, 5 times that of the pristine SNCM). Significant improvements are attributed to the homogeneity and functionality of the coating, which mitigates parasitic reactions at the interface while simultaneously preserving indispensable electronic percolation. This work offers a brand‐new cathode coating protocol for sulfide‐based all‐solid‐state to achieve longevity and good power.
A heuristic “polymer‐patched inorganic” cathode coating strategy applied in sulfide‐based all‐solid‐state batteries is proposed to mitigate interfacial parasitic reactions while simultaneously assuring indispensable electronic percolation. The novel hybrid coating can be prepared by a scalable and convenient solution‐based method, and allows all‐solid‐state lithium batteries to achieve longevity and good power. |
---|---|
AbstractList | Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic migration blocking in the composite cathode is neglected habitually. A heuristic “polymer‐patched inorganic” cathode coating strategy is presented herein. Single‐crystalline LiNi
0.6
Co
0.2
Mn
0.2
O
2
(SNCM) particles are uniformly coated with a hybrid layer comprising nanoscale Li
1.4
Al
0.4
Ti
1.6
(PO
4
)
3
(LATP) and cyclized polyacrylonitrile (cPAN), via a scalable solution‐based method. The LATP coating ensures rapid Li
+
transfer across the interface and offers high oxidation tolerance. cPAN partially‐submerges and patches the imperfections of the LATP coating layer, producing a high‐quality protective coating without compromising electronic transfer. Accordingly, sulfide‐based ASSBs employing the hybrid‐modified SNCM cathode demonstrate competitive electrochemical performance in terms of capacity retention (72.7% over 500 cycles, at 0.5 C), and rate capability (87.3 mAh g
−1
at 2 C, 5 times that of the pristine SNCM). Significant improvements are attributed to the homogeneity and functionality of the coating, which mitigates parasitic reactions at the interface while simultaneously preserving indispensable electronic percolation. This work offers a brand‐new cathode coating protocol for sulfide‐based all‐solid‐state to achieve longevity and good power. Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic migration blocking in the composite cathode is neglected habitually. A heuristic “polymer‐patched inorganic” cathode coating strategy is presented herein. Single‐crystalline LiNi0.6Co0.2Mn0.2O2 (SNCM) particles are uniformly coated with a hybrid layer comprising nanoscale Li1.4Al0.4Ti1.6(PO4)3 (LATP) and cyclized polyacrylonitrile (cPAN), via a scalable solution‐based method. The LATP coating ensures rapid Li+ transfer across the interface and offers high oxidation tolerance. cPAN partially‐submerges and patches the imperfections of the LATP coating layer, producing a high‐quality protective coating without compromising electronic transfer. Accordingly, sulfide‐based ASSBs employing the hybrid‐modified SNCM cathode demonstrate competitive electrochemical performance in terms of capacity retention (72.7% over 500 cycles, at 0.5 C), and rate capability (87.3 mAh g−1 at 2 C, 5 times that of the pristine SNCM). Significant improvements are attributed to the homogeneity and functionality of the coating, which mitigates parasitic reactions at the interface while simultaneously preserving indispensable electronic percolation. This work offers a brand‐new cathode coating protocol for sulfide‐based all‐solid‐state to achieve longevity and good power. Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet it is challenging to construct uniform coverage via a scalable approach. In addition, the implication of dielectric coatings for electronic migration blocking in the composite cathode is neglected habitually. A heuristic “polymer‐patched inorganic” cathode coating strategy is presented herein. Single‐crystalline LiNi0.6Co0.2Mn0.2O2 (SNCM) particles are uniformly coated with a hybrid layer comprising nanoscale Li1.4Al0.4Ti1.6(PO4)3 (LATP) and cyclized polyacrylonitrile (cPAN), via a scalable solution‐based method. The LATP coating ensures rapid Li+ transfer across the interface and offers high oxidation tolerance. cPAN partially‐submerges and patches the imperfections of the LATP coating layer, producing a high‐quality protective coating without compromising electronic transfer. Accordingly, sulfide‐based ASSBs employing the hybrid‐modified SNCM cathode demonstrate competitive electrochemical performance in terms of capacity retention (72.7% over 500 cycles, at 0.5 C), and rate capability (87.3 mAh g−1 at 2 C, 5 times that of the pristine SNCM). Significant improvements are attributed to the homogeneity and functionality of the coating, which mitigates parasitic reactions at the interface while simultaneously preserving indispensable electronic percolation. This work offers a brand‐new cathode coating protocol for sulfide‐based all‐solid‐state to achieve longevity and good power. A heuristic “polymer‐patched inorganic” cathode coating strategy applied in sulfide‐based all‐solid‐state batteries is proposed to mitigate interfacial parasitic reactions while simultaneously assuring indispensable electronic percolation. The novel hybrid coating can be prepared by a scalable and convenient solution‐based method, and allows all‐solid‐state lithium batteries to achieve longevity and good power. |
Author | Liang, Yuhao Wang, Chao Li, Dabing Fan, Li‐Zhen Liu, Hong Wang, Guoxu Ni, Yu |
Author_xml | – sequence: 1 givenname: Yuhao surname: Liang fullname: Liang, Yuhao organization: University of Science and Technology Beijing – sequence: 2 givenname: Hong surname: Liu fullname: Liu, Hong organization: University of Science and Technology Beijing – sequence: 3 givenname: Guoxu surname: Wang fullname: Wang, Guoxu organization: University of Science and Technology Beijing – sequence: 4 givenname: Chao surname: Wang fullname: Wang, Chao organization: University of Science and Technology Beijing – sequence: 5 givenname: Dabing surname: Li fullname: Li, Dabing organization: University of Science and Technology Beijing – sequence: 6 givenname: Yu surname: Ni fullname: Ni, Yu organization: University of Science and Technology Beijing – sequence: 7 givenname: Li‐Zhen orcidid: 0000-0003-2270-4458 surname: Fan fullname: Fan, Li‐Zhen email: fanlizhen@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNqFkE1rGzEQhkVJIc7HNWdBznYl7a5We7SdpC64TSHJedFKo2TMeuVIWoxv-Qn5jfklXeOSQiB0LvPBPPMy7wk56nwHhFxwNuGMiW8auvVEMCEYL4riCxlxyfOxVDk7eq8zcUzOY1yxIfKKsywbkbSAPmBMaOgVRHzsqHd0rtOTt0AXuyagpXOvE3aP1PlAf_sthLeX1yWuMYGld33r0MIwmek49NO2Heo736Ld56QT0CWmJ-zXdKZTgoAQz8hXp9sI53_zKXm4ub6fL8bL2-8_5tPl2GS8LMbcKalAOlWqLLeNlLmqhGRNySwvGmOcyaum0ZXjWpkGKuaUACOctSxjwGV2Si4PdzfBP_cQU73yfegGyVqUTJVMVmU2bE0OWyb4GAO4ehNwrcOu5qzem1vvza3fzR2A_ANgcHgUfZeCxvZzrDpgW2xh9x-Renr96-c_9g_xQZWB |
CitedBy_id | crossref_primary_10_1021_acsaem_3c01472 crossref_primary_10_1021_jacs_4c02115 crossref_primary_10_1016_j_ensm_2023_103138 crossref_primary_10_1002_aenm_202404459 crossref_primary_10_1016_j_apsusc_2024_161347 crossref_primary_10_1016_j_ensm_2024_103570 crossref_primary_10_1002_aenm_202203631 crossref_primary_10_1038_s41467_025_58113_w crossref_primary_10_1002_adem_202300566 crossref_primary_10_1016_j_est_2024_114210 crossref_primary_10_1021_acs_energyfuels_4c02275 crossref_primary_10_1002_adfm_202311564 crossref_primary_10_1016_j_flatc_2024_100693 crossref_primary_10_1016_j_nanoen_2025_110749 crossref_primary_10_1002_ange_202403617 crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1021_acsami_4c06803 crossref_primary_10_1063_5_0117248 crossref_primary_10_1016_j_ensm_2023_103027 crossref_primary_10_1039_D4CS00415A crossref_primary_10_1016_j_partic_2023_04_005 crossref_primary_10_1002_adfm_202412177 crossref_primary_10_1016_j_pmatsci_2024_101339 crossref_primary_10_1016_j_electacta_2025_146052 crossref_primary_10_1002_anie_202403617 crossref_primary_10_1002_aenm_202301230 crossref_primary_10_1016_j_etran_2023_100272 crossref_primary_10_1039_D3MH01151H crossref_primary_10_1002_aenm_202401281 crossref_primary_10_1007_s10008_024_05900_y crossref_primary_10_1002_batt_202200502 crossref_primary_10_1016_j_cej_2024_157394 crossref_primary_10_1039_D4NJ05234J crossref_primary_10_1016_j_jcis_2024_08_035 crossref_primary_10_1016_j_ensm_2023_103034 crossref_primary_10_1002_adma_202206402 crossref_primary_10_1016_j_ensm_2023_102779 crossref_primary_10_1021_acsenergylett_4c01457 crossref_primary_10_1007_s40820_025_01683_7 crossref_primary_10_1002_advs_202300985 crossref_primary_10_1038_s41467_024_52768_7 crossref_primary_10_1002_adfm_202313685 crossref_primary_10_1360_TB_2024_0526 crossref_primary_10_1002_bte2_20220059 crossref_primary_10_1021_acs_jpclett_4c03539 crossref_primary_10_1002_adfm_202407007 crossref_primary_10_1021_accountsmr_4c00156 crossref_primary_10_1002_inf2_12606 crossref_primary_10_1016_j_cej_2024_158152 crossref_primary_10_1021_acs_iecr_3c03758 crossref_primary_10_1039_D3QM00964E crossref_primary_10_1002_adfm_202304371 crossref_primary_10_1016_j_ensm_2023_103089 crossref_primary_10_1016_j_ensm_2024_103976 crossref_primary_10_1016_j_coelec_2023_101251 |
Cites_doi | 10.1149/1.1838178 10.1038/s41560-020-0575-z 10.1021/acs.chemmater.7b00931 10.1016/j.polymdegradstab.2007.03.023 10.1016/j.nima.2008.11.056 10.1002/aenm.201702028 10.1038/s41560-019-0513-0 10.1021/nl5046318 10.1002/aenm.201900626 10.1016/j.elecom.2007.02.008 10.1002/smll.201900235 10.1073/pnas.1821672117 10.1016/j.ensm.2020.01.027 10.1021/acsenergylett.0c00256 10.1002/aenm.202100881 10.1002/adma.200502604 10.1021/acs.chemmater.8b03321 10.1038/nenergy.2017.74 10.1038/s41563-019-0431-3 10.1016/j.ensm.2020.05.007 10.1002/anie.201913368 10.1016/S0378-7753(02)00002-2 10.1149/1945-7111/ac3850 10.1038/nenergy.2016.30 10.1021/acsami.7b01137 10.1007/BF02376083 10.1021/acs.chemmater.0c04660 10.1021/cm5016959 10.1002/adfm.201909140 10.1002/aenm.201902881 10.3390/polym10020186 10.1038/s41467-020-16824-2 10.1021/jp1088788 10.1016/j.mattod.2021.02.011 10.1038/s41557-018-0019-6 10.1016/j.ensm.2020.12.003 10.1002/anie.200703900 10.1002/aenm.202100210 10.1016/j.joule.2021.04.001 10.1016/S0008-6223(03)00391-9 10.1002/aenm.202003583 10.1149/2.0991707jes 10.1016/j.electacta.2009.11.096 10.1002/aenm.202100126 10.1016/j.ensm.2021.03.015 10.1038/451652a 10.1002/inf2.12292 10.1002/anie.202011484 10.1021/acs.jpcc.6b12885 10.1016/j.ssi.2015.06.001 10.1016/0013-4686(62)87046-7 10.1016/j.joule.2018.09.008 10.1038/s41467-019-11299-2 10.1149/1945-7111/abf8d7 10.1021/acs.nanolett.9b04597 10.1002/aenm.201903778 10.1038/s41467-021-26895-4 10.1021/acsenergylett.9b01693 10.1016/j.ensm.2020.01.009 10.1002/smll.202103830 10.1021/acssuschemeng.9b05539 10.1038/s41560-020-0565-1 10.1038/s41563-019-0576-0 10.1016/j.joule.2019.02.006 10.1021/acs.chemmater.6b00610 10.1016/S0167-2738(98)00541-4 10.1002/anie.200250452 10.1002/aenm.201902698 10.1039/C8EE01053F 10.1038/s41578-019-0157-5 10.1021/acsenergylett.8b00275 10.1038/s41560-021-00952-0 10.1021/acsami.9b13955 10.1021/jp102050s 10.1021/acs.chemrev.0c00431 10.1038/s41578-021-00320-0 10.1016/j.nanoen.2020.104686 10.1002/aenm.202000904 10.1038/nmat3066 10.1002/adma.201901131 10.1002/adma.200401286 10.1021/acs.chemmater.0c01825 10.1039/D0EE03212C 10.1002/adma.201500180 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202201555 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202201555 AENM202201555 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U21A2080&51872027 – fundername: Beijing Natural Science Foundation funderid: Z200011 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3175-1f868e6f87834db66489260b70d15bccfc49bba9f1a8cbe90f82ec2fdd030e163 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:16:04 EDT 2025 Tue Jul 01 01:43:45 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Wed Jan 22 16:24:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3175-1f868e6f87834db66489260b70d15bccfc49bba9f1a8cbe90f82ec2fdd030e163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2270-4458 |
PQID | 2708706973 |
PQPubID | 886389 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2708706973 crossref_primary_10_1002_aenm_202201555 crossref_citationtrail_10_1002_aenm_202201555 wiley_primary_10_1002_aenm_202201555_AENM202201555 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 1, 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 1, 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2020 2020 2021; 5 10 11 2020 2019 2020; 5 15 32 2020 2022; 10 7 2021 2021; 49 168 2019; 10 2021 2017; 5 121 2020 2020 2019; 5 19 18 2007 2006 2020 2018; 9 18 5 30 2019 2014; 11 26 2017; 29 2018 2003; 10 41 2020 2002 1963; 30 8 8 2016 2011 2008 2005 2020; 1 10 47 17 20 2016 2015; 28 278 2021 2021 2020; 11 11 30 2021 2003; 38 42 2020; 8 2021; 14 2021; 35 2020 2020; 72 27 2021; 12 2021; 33 2015 2021; 15 168 2010; 114 2008 2020; 451 117 2021 2019 2018; 6 31 11 2020 2017 2020; 11 164 27 1997; 144 2020 1999 2007; 59 121 92 2020 2017 2018; 10 9 3 2019 2015; 4 27 2019 2018 2020; 9 2 120 2002; 108 2010 2010; 114 55 2019 2021 2021; 3 17 11 2017 2018 2020; 2 10 60 2009; 600 2018 2020 2022; 8 5 4 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_3_5 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_9_3 e_1_2_7_23_3 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_35_3 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_32_3 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_36_2 e_1_2_7_38_1 |
References_xml | – volume: 2 10 60 start-page: 532 1355 year: 2017 2018 2020 publication-title: Nat. Energy Nat. Chem. Angew. Chem., Int. Ed. – volume: 28 278 start-page: 2400 98 year: 2016 2015 publication-title: Chem. Mater. Solid State Ionics – volume: 35 start-page: 661 year: 2021 publication-title: Energy Storage Mater. – volume: 9 2 120 start-page: 2208 7745 year: 2019 2018 2020 publication-title: Adv. Energy Mater. Joule Chem. Rev. – volume: 5 15 32 start-page: 1243 6123 year: 2020 2019 2020 publication-title: ACS Energy Lett. Small Chem. Mater. – volume: 5 19 18 start-page: 259 428 1278 year: 2020 2020 2019 publication-title: Nat. Energy Nat. Mater. Nat. Mater. – volume: 11 164 27 start-page: 3050 140 year: 2020 2017 2020 publication-title: Nat. Commun. J. Electrochem. Soc. Energy Storage Mater. – volume: 11 11 30 start-page: 98 year: 2021 2021 2020 publication-title: Adv. Energy Mater. Adv. Energy Mater. Energy Storage Mater. – volume: 144 start-page: 4279 year: 1997 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 6669 year: 2021 publication-title: Nat. Commun. – volume: 451 117 start-page: 652 year: 2008 2020 publication-title: Nature Proc. Natl. Acad. Sci. USA – volume: 108 start-page: 64 year: 2002 publication-title: J. Power Sources – volume: 9 18 5 30 start-page: 1486 2226 299 8190 year: 2007 2006 2020 2018 publication-title: Electrochem. Commun. Adv. Mater. Nat. Energy Chem. Mater. – volume: 114 55 start-page: 2384 year: 2010 2010 publication-title: J. Phys. Chem. C Electrochim. Acta – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 30 8 8 start-page: 300 905 year: 2020 2002 1963 publication-title: Adv. Funct. Mater. Ionics Electrochim. Acta – volume: 72 27 start-page: 117 year: 2020 2020 publication-title: Nano Energy Energy Storage Mater. – volume: 38 42 start-page: 309 1618 year: 2021 2003 publication-title: Energy Storage Mater. Angew. Chem., Int. Ed. – volume: 600 start-page: 94 year: 2009 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 10 start-page: 3447 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 437 year: 2021 publication-title: Energy Environ. Sci. – volume: 33 start-page: 2110 year: 2021 publication-title: Chem. Mater. – volume: 15 168 start-page: 2910 year: 2015 2021 publication-title: Nano Lett. J. Electrochem. Soc. – volume: 114 start-page: 9528 year: 2010 publication-title: J. Phys. Chem. C – volume: 10 9 3 start-page: 992 year: 2020 2017 2018 publication-title: Adv. Energy Mater. ACS Appl. Mater. Interfaces ACS Energy Lett. – volume: 8 start-page: 5819 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 10 41 start-page: 186 2805 year: 2018 2003 publication-title: Polymers Carbon – volume: 49 168 start-page: 145 year: 2021 2021 publication-title: Mater. Today J. Electrochem. Soc. – volume: 3 17 11 start-page: 1252 year: 2019 2021 2021 publication-title: Joule Small Adv. Energy Mater. – volume: 5 121 start-page: 1371 3286 year: 2021 2017 publication-title: Joule J. Phys. Chem. C – volume: 6 31 11 start-page: 1003 1945 year: 2021 2019 2018 publication-title: Nat. Rev. Mater. Adv. Mater. Energy Environ. Sci. – volume: 8 5 4 start-page: 26 year: 2018 2020 2022 publication-title: Adv. Energy Mater. Nat. Energy Infomat – volume: 59 121 92 start-page: 4448 141 1421 year: 2020 1999 2007 publication-title: Angew. Chem., Int. Ed. Solid State Ionics Polym. Degrad. Stab. – volume: 4 27 start-page: 2418 3473 year: 2019 2015 publication-title: ACS Energy Lett. Adv. Mater. – volume: 1 10 47 17 20 start-page: 682 755 918 2303 year: 2016 2011 2008 2005 2020 publication-title: Nat. Energy Nat. Mater. Angew. Chem., Int. Ed. Adv. Mater. Nano Lett. – volume: 10 7 start-page: 83 year: 2020 2022 publication-title: Adv. Energy Mater. Nat. Energy – volume: 11 26 start-page: 4248 year: 2019 2014 publication-title: ACS Appl. Mater. Interfaces Chem. Mater. – volume: 5 10 11 start-page: 105 year: 2020 2020 2021 publication-title: Nat. Rev. Mater. Adv. Energy Mater. Adv. Energy Mater. – volume: 29 start-page: 5574 year: 2017 publication-title: Chem. Mater. – ident: e_1_2_7_30_1 doi: 10.1149/1.1838178 – ident: e_1_2_7_6_3 doi: 10.1038/s41560-020-0575-z – ident: e_1_2_7_20_1 doi: 10.1021/acs.chemmater.7b00931 – ident: e_1_2_7_32_3 doi: 10.1016/j.polymdegradstab.2007.03.023 – ident: e_1_2_7_26_1 doi: 10.1016/j.nima.2008.11.056 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201702028 – ident: e_1_2_7_9_2 doi: 10.1038/s41560-019-0513-0 – ident: e_1_2_7_29_1 doi: 10.1021/nl5046318 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201900626 – ident: e_1_2_7_6_1 doi: 10.1016/j.elecom.2007.02.008 – ident: e_1_2_7_12_2 doi: 10.1002/smll.201900235 – ident: e_1_2_7_1_2 doi: 10.1073/pnas.1821672117 – ident: e_1_2_7_22_3 doi: 10.1016/j.ensm.2020.01.027 – ident: e_1_2_7_12_1 doi: 10.1021/acsenergylett.0c00256 – ident: e_1_2_7_14_3 doi: 10.1002/aenm.202100881 – ident: e_1_2_7_6_2 doi: 10.1002/adma.200502604 – ident: e_1_2_7_6_4 doi: 10.1021/acs.chemmater.8b03321 – ident: e_1_2_7_15_1 doi: 10.1038/nenergy.2017.74 – ident: e_1_2_7_4_3 doi: 10.1038/s41563-019-0431-3 – ident: e_1_2_7_23_3 doi: 10.1016/j.ensm.2020.05.007 – ident: e_1_2_7_32_1 doi: 10.1002/anie.201913368 – ident: e_1_2_7_34_1 doi: 10.1016/S0378-7753(02)00002-2 – ident: e_1_2_7_29_2 doi: 10.1149/1945-7111/ac3850 – ident: e_1_2_7_3_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_7_11_2 doi: 10.1021/acsami.7b01137 – ident: e_1_2_7_35_2 doi: 10.1007/BF02376083 – ident: e_1_2_7_37_1 doi: 10.1021/acs.chemmater.0c04660 – ident: e_1_2_7_18_2 doi: 10.1021/cm5016959 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201909140 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.201902881 – ident: e_1_2_7_31_1 doi: 10.3390/polym10020186 – ident: e_1_2_7_22_1 doi: 10.1038/s41467-020-16824-2 – ident: e_1_2_7_36_1 doi: 10.1021/jp1088788 – ident: e_1_2_7_10_1 doi: 10.1016/j.mattod.2021.02.011 – ident: e_1_2_7_15_2 doi: 10.1038/s41557-018-0019-6 – ident: e_1_2_7_38_1 doi: 10.1016/j.ensm.2020.12.003 – ident: e_1_2_7_3_3 doi: 10.1002/anie.200703900 – ident: e_1_2_7_8_3 doi: 10.1002/aenm.202100210 – ident: e_1_2_7_21_1 doi: 10.1016/j.joule.2021.04.001 – ident: e_1_2_7_31_2 doi: 10.1016/S0008-6223(03)00391-9 – ident: e_1_2_7_23_2 doi: 10.1002/aenm.202003583 – ident: e_1_2_7_22_2 doi: 10.1149/2.0991707jes – ident: e_1_2_7_36_2 doi: 10.1016/j.electacta.2009.11.096 – ident: e_1_2_7_23_1 doi: 10.1002/aenm.202100126 – ident: e_1_2_7_16_1 doi: 10.1016/j.ensm.2021.03.015 – ident: e_1_2_7_1_1 doi: 10.1038/451652a – ident: e_1_2_7_9_3 doi: 10.1002/inf2.12292 – ident: e_1_2_7_15_3 doi: 10.1002/anie.202011484 – ident: e_1_2_7_21_2 doi: 10.1021/acs.jpcc.6b12885 – ident: e_1_2_7_19_2 doi: 10.1016/j.ssi.2015.06.001 – ident: e_1_2_7_35_3 doi: 10.1016/0013-4686(62)87046-7 – ident: e_1_2_7_5_2 doi: 10.1016/j.joule.2018.09.008 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-019-11299-2 – ident: e_1_2_7_10_2 doi: 10.1149/1945-7111/abf8d7 – ident: e_1_2_7_3_5 doi: 10.1021/acs.nanolett.9b04597 – ident: e_1_2_7_8_2 doi: 10.1002/aenm.201903778 – ident: e_1_2_7_17_1 doi: 10.1038/s41467-021-26895-4 – ident: e_1_2_7_24_1 doi: 10.1021/acsenergylett.9b01693 – ident: e_1_2_7_7_2 doi: 10.1016/j.ensm.2020.01.009 – ident: e_1_2_7_14_2 doi: 10.1002/smll.202103830 – ident: e_1_2_7_25_1 doi: 10.1021/acssuschemeng.9b05539 – ident: e_1_2_7_4_1 doi: 10.1038/s41560-020-0565-1 – ident: e_1_2_7_4_2 doi: 10.1038/s41563-019-0576-0 – ident: e_1_2_7_14_1 doi: 10.1016/j.joule.2019.02.006 – ident: e_1_2_7_19_1 doi: 10.1021/acs.chemmater.6b00610 – ident: e_1_2_7_32_2 doi: 10.1016/S0167-2738(98)00541-4 – ident: e_1_2_7_16_2 doi: 10.1002/anie.200250452 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.201902698 – ident: e_1_2_7_2_3 doi: 10.1039/C8EE01053F – ident: e_1_2_7_8_1 doi: 10.1038/s41578-019-0157-5 – ident: e_1_2_7_11_3 doi: 10.1021/acsenergylett.8b00275 – ident: e_1_2_7_13_2 doi: 10.1038/s41560-021-00952-0 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.9b13955 – ident: e_1_2_7_33_1 doi: 10.1021/jp102050s – ident: e_1_2_7_5_3 doi: 10.1021/acs.chemrev.0c00431 – ident: e_1_2_7_2_1 doi: 10.1038/s41578-021-00320-0 – ident: e_1_2_7_7_1 doi: 10.1016/j.nanoen.2020.104686 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.202000904 – ident: e_1_2_7_3_2 doi: 10.1038/nmat3066 – ident: e_1_2_7_2_2 doi: 10.1002/adma.201901131 – ident: e_1_2_7_3_4 doi: 10.1002/adma.200401286 – ident: e_1_2_7_12_3 doi: 10.1021/acs.chemmater.0c01825 – ident: e_1_2_7_39_1 doi: 10.1039/D0EE03212C – ident: e_1_2_7_24_2 doi: 10.1002/adma.201500180 |
SSID | ssj0000491033 |
Score | 2.5816026 |
Snippet | Engineered cathode active materials are critical for the cycling stability and power capability of sulfide‐based all‐solid‐state lithium batteries (ASSBs), yet... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | all‐solid‐state batteries cathode coatings Cathodes Cathodic coating (process) Electrochemical analysis electronic percolation Heuristic Homogeneity interfacial stability Lithium batteries Oxidation Percolation Polyacrylonitrile Protective coatings sulfide solid electrolytes |
Title | Heuristic Design of Cathode Hybrid Coating for Power‐Limited Sulfide‐Based All‐Solid‐State Lithium Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202201555 https://www.proquest.com/docview/2708706973 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLMgHJA5VIHESNzmWpUuF2oK0rVROkZ_aSqVB0EjAiZ_AmZ_HL2EcP5rluXBJk5Hrtp7Pnhl35jNCDxljAIuMRTkr8gjiDR1xKWjESMIBHppJYmqHZ3M6WWYvVvmq1_vayVpqdvyx-PTLupL_0SrIQK-mSvYfNBs6BQHcg37hChqG64V0PFGNJVqGZcMkYthiK3MktBpMPppaLJjvbOeTJV-ZE9FCdoMrbYKlY6PXUgX5U7BrcjDabILktN7ATwtPxj01ZBtn6-bNwPJz-kxET2frEwuUrSwEr9gOR0j_Wbtt6tfNGav30qa1hLWzpu0-v233vKk_ND8Kj_173a4FBLw-Leuia2NnTQYPIqKF2wZVXZllegoLOekA1tJr_GQgLOEsU1vDQkCI8RjzvSn0f__PX1Yny-m0WoxXi0vokEAIAmvo4ejZbHoadvAgtkritK3g8N_Qs4LG5Mn5jzjv9exDmW5A1Ho0i2voqgtF8Mji6jrqqe0NdKVDUHkT7QLCsEUYrjV2CMMWYdghDAPCcIuwb5-_OGxhhy2QtKjCgCq4b_FkXg2SsEMSDki6hZYn48XxJHLndETCeJ9RogtaKKoLc2iL5JRmRQlhMh_GMsm5EFpkJees1AkrBFdlrAuiBNFSgoVREBDcRgfbeqvuIJwNqaRSak4ZyTh4x6mIU5FwQVNOlVJ9FPlxrIQjsTdnqWwqS79NKjPuVRj3PnoU2r-19C2_bXnk1VK5Kf6-IsPY5AGUw7SPSKuqv_RSjcbzWXi6--c-76HL-6lxhA527xp1H1zcHX_gsPYdZJqnng |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heuristic+Design+of+Cathode+Hybrid+Coating+for+Power%E2%80%90Limited+Sulfide%E2%80%90Based+All%E2%80%90Solid%E2%80%90State+Lithium+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Liang%2C+Yuhao&rft.au=Liu%2C+Hong&rft.au=Wang%2C+Guoxu&rft.au=Wang%2C+Chao&rft.date=2022-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=33&rft_id=info:doi/10.1002%2Faenm.202201555&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |