Recent Advances in Asymmetric Transformations of Unactivated Alkanes and Cycloalkanes through Direct C—H Functionalization
Comprehensive Summary The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combin...
Saved in:
Published in | Chinese journal of chemistry Vol. 40; no. 23; pp. 2825 - 2837 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.12.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Comprehensive Summary
The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combined with asymmetric catalysis, provide appealing access to high value‐added enantiomer‐enriched compounds but are far less developed. This review focuses on recent progress in (i) asymmetric reactions of alkanes or cycloalkanes with prochiral substrates which generate a stereocenter adjacent to the cleaved C(sp3)–H bond, and (ii) C(sp3)–H enantiodiscriminatory reactions creating a new stereogenic center on the carbon of a cleaved C(sp3)–H bond. Elegant strategies are discussed, including (a) metal carbene‐induced C—H insertions by chiral rhodium catalysts, (b) metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, (c) enzyme catalysis by cytochromes P450 variants, and (d) dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA). These catalytic systems can not only precisely recognize primary, secondary and tertiary C—H bonds at specific positions in alkanes and cycloalkanes, but also support a high level of stereoselectivity in the reactions. It is expected that the advances will stimulate further progress in asymmetric catalysis, synthetic methodology, pharmaceutical development and industrial processes.
Recent studies on asymmetric synthesis through direct and selective C—H functionalization of alkanes and cycloalkanes, based on metal carbene‐induced C—H insertions by chiral rhodium catalysts, metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, enzyme catalysis by cytochromes P450 variants, and dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA), are summarized and discussed. |
---|---|
AbstractList | The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combined with asymmetric catalysis, provide appealing access to high value‐added enantiomer‐enriched compounds but are far less developed. This review focuses on recent progress in (
i
) asymmetric reactions of alkanes or cycloalkanes with prochiral substrates which generate a stereocenter adjacent to the cleaved C(sp
3
)–H bond, and (
ii
) C(sp
3
)–H enantiodiscriminatory reactions creating a new stereogenic center on the carbon of a cleaved C(sp
3
)–H bond. Elegant strategies are discussed, including (
a
) metal carbene‐induced C—H insertions by chiral rhodium catalysts, (
b
) metal‐
oxo
‐mediated C—H oxidation by biomimetic manganese catalysts, (
c
) enzyme catalysis by cytochromes P450 variants, and (
d
) dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA). These catalytic systems can not only precisely recognize primary, secondary and tertiary C—H bonds at specific positions in alkanes and cycloalkanes, but also support a high level of stereoselectivity in the reactions. It is expected that the advances will stimulate further progress in asymmetric catalysis, synthetic methodology, pharmaceutical development and industrial processes. Comprehensive SummaryThe direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combined with asymmetric catalysis, provide appealing access to high value‐added enantiomer‐enriched compounds but are far less developed. This review focuses on recent progress in (i) asymmetric reactions of alkanes or cycloalkanes with prochiral substrates which generate a stereocenter adjacent to the cleaved C(sp3)–H bond, and (ii) C(sp3)–H enantiodiscriminatory reactions creating a new stereogenic center on the carbon of a cleaved C(sp3)–H bond. Elegant strategies are discussed, including (a) metal carbene‐induced C—H insertions by chiral rhodium catalysts, (b) metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, (c) enzyme catalysis by cytochromes P450 variants, and (d) dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA). These catalytic systems can not only precisely recognize primary, secondary and tertiary C—H bonds at specific positions in alkanes and cycloalkanes, but also support a high level of stereoselectivity in the reactions. It is expected that the advances will stimulate further progress in asymmetric catalysis, synthetic methodology, pharmaceutical development and industrial processes. Comprehensive Summary The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combined with asymmetric catalysis, provide appealing access to high value‐added enantiomer‐enriched compounds but are far less developed. This review focuses on recent progress in (i) asymmetric reactions of alkanes or cycloalkanes with prochiral substrates which generate a stereocenter adjacent to the cleaved C(sp3)–H bond, and (ii) C(sp3)–H enantiodiscriminatory reactions creating a new stereogenic center on the carbon of a cleaved C(sp3)–H bond. Elegant strategies are discussed, including (a) metal carbene‐induced C—H insertions by chiral rhodium catalysts, (b) metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, (c) enzyme catalysis by cytochromes P450 variants, and (d) dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA). These catalytic systems can not only precisely recognize primary, secondary and tertiary C—H bonds at specific positions in alkanes and cycloalkanes, but also support a high level of stereoselectivity in the reactions. It is expected that the advances will stimulate further progress in asymmetric catalysis, synthetic methodology, pharmaceutical development and industrial processes. Recent studies on asymmetric synthesis through direct and selective C—H functionalization of alkanes and cycloalkanes, based on metal carbene‐induced C—H insertions by chiral rhodium catalysts, metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, enzyme catalysis by cytochromes P450 variants, and dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA), are summarized and discussed. |
Author | Cheng, Xiuliang Lin, Yu‐Mei Gong, Lei Li, Qianyu Cheng, Shiyan |
Author_xml | – sequence: 1 givenname: Shiyan surname: Cheng fullname: Cheng, Shiyan organization: Xiamen University – sequence: 2 givenname: Qianyu surname: Li fullname: Li, Qianyu organization: Xiamen University – sequence: 3 givenname: Xiuliang surname: Cheng fullname: Cheng, Xiuliang organization: Xiamen University – sequence: 4 givenname: Yu‐Mei surname: Lin fullname: Lin, Yu‐Mei organization: Xiamen University – sequence: 5 givenname: Lei surname: Gong fullname: Gong, Lei email: gongl@xmu.edu.cn organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen |
BookMark | eNqFkE1LxDAQhoMo-Hn1HPDcNUmbxh6X-o0giIK3MptMNWs30SSrrHjwR_gL_SV2XVEQxNMMw_O8DO86WXbeISHbnA04Y2JXj70eCCYEY0Uul8gaL3mRKVbK5X5njGclK65XyXqM455XSpRr5OUCNbpEh-YRnMZIraPDOJtMMAWr6WUAF1sfJpCsd5H6ll450Mk-QkJDh90duF4CZ2g9052Hr0O6DX56c0v3bUCdaP3--nZMD6dOz2Ogs8-feZtkpYUu4tbX3CBXhweX9XF2dn50Ug_PMp1zJTOOFdMGCslRSpMzzRUqHIm8AA0qL0G2I2BSjQyvjDJMcpkXKEqDek_BqMo3yM4i9z74hynG1Iz9NPR_xEaonElR8Ir3VLGgdPAxBmwbbdPnnymA7RrOmnnPzbzn5rvnXhv80u6DnUCY_S1UC-HJdjj7h27q0_P6x_0A9IOV6w |
CitedBy_id | crossref_primary_10_1002_ange_202310112 crossref_primary_10_1021_jacs_3c07008 crossref_primary_10_1002_chem_202302542 crossref_primary_10_1039_D2QO01491B crossref_primary_10_1021_acs_joc_4c02132 crossref_primary_10_1039_D2CC05569D crossref_primary_10_1002_cctc_202401380 crossref_primary_10_1021_acscatal_4c00312 crossref_primary_10_1039_D4CC03383C crossref_primary_10_6023_cjoc202311032 crossref_primary_10_1021_jacs_3c12513 crossref_primary_10_1016_j_tetlet_2025_155516 crossref_primary_10_1039_D4QO01179A crossref_primary_10_1002_anie_202310112 crossref_primary_10_1021_jacs_2c10148 crossref_primary_10_1039_D3SC01118F crossref_primary_10_1016_j_tetlet_2024_154939 crossref_primary_10_6023_cjoc202407027 crossref_primary_10_1002_ejoc_202400272 crossref_primary_10_1021_jacs_4c06023 crossref_primary_10_1021_acscatal_3c04661 crossref_primary_10_1002_cjoc_202400725 crossref_primary_10_1021_acs_orglett_3c00844 crossref_primary_10_1021_acs_orglett_3c00722 |
Cites_doi | 10.1021/ja994136c 10.1021/acscatal.8b03054 10.1021/acscentsci.6b00368 10.1126/science.aad9289 10.1038/s41467-021-22690-3 10.1021/acs.accounts.5b00348 10.1021/acscatal.0c00610 10.1002/anie.202110233 10.1038/s41586-019-1655-8 10.1039/c0cs00217h 10.1021/ja971915p 10.1021/ic300457z 10.1039/c0cs00063a 10.1039/D1CS00556A 10.1021/ol060893l 10.1021/acs.accounts.6b00621 10.1021/acscatal.8b03654 10.31635/ccschem.020.202000151 10.1002/anie.201409224 10.1038/s41929-019-0357-9 10.1038/s41586-018-0808-5 10.1021/jacs.0c05373 10.1126/science.aaf7783 10.1021/acs.orglett.1c00801 10.1038/nature17651 10.1002/ejoc.201601485 10.1002/anie.200803157 10.1021/ja0303790 10.1021/cr9500500 10.1038/nature24641 10.1021/jacs.0c04801 10.1021/jacs.9b02811 10.1126/science.328.5986.1624 10.1038/s41570-019-0099-x 10.1038/s41467-019-11392-6 10.1039/D0OB00854K 10.1038/s41929-019-0417-1 10.1038/nchem.2783 10.1038/s41467-019-11688-7 10.1021/acs.chemrev.6b00620 10.6023/cjoc202205032 10.1002/anie.201609105 10.1038/417507a 10.1039/D1CC04073A 10.1021/ja00204a047 10.1021/acs.accounts.8b00265 10.1039/C8CC03165G 10.1039/D0GC01035A 10.1021/acs.accounts.6b00339 10.1038/s41467-019-13705-1 10.1126/science.aat9750 10.1021/ar020230d 10.6023/cjoc202006008 10.1021/ja961682m 10.1021/ja9515213 10.1039/a904100a 10.1021/jacs.8b01662 10.1021/acscatal.6b02392 10.1002/anie.200601814 10.1038/s41557-018-0087-7 10.31635/ccschem.020.202000565 10.1021/jacs.7b03781 10.1021/jacs.0c00212 10.1038/s41557-018-0020-0 10.1021/jacs.0c10415 10.1021/cr00028a010 10.1021/jacs.8b09251 10.1039/c3ra46996d 10.1038/nature14255 10.1038/s41586-018-0799-2 10.1021/ja202969z 10.1021/acs.chemrev.6b00657 10.1021/acs.chemrev.1c00263 10.1016/S1872-2067(21)63953-0 10.1038/nature14127 10.1021/jacs.9b07960 10.1021/ja411912p |
ContentType | Journal Article |
Copyright | 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH. 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH |
Copyright_xml | – notice: 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH. – notice: 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cjoc.202200435 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1614-7065 |
EndPage | 2837 |
ExternalDocumentID | 10_1002_cjoc_202200435 CJOC202200435 |
Genre | researchArticle |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 29B 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCEZO CDRFL CHBEP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 FA0 G-S G.N GODZA H.T H.X HGLYW HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P4D Q.N Q11 QB0 QRW R.K RK2 RNS ROL RWI RX1 RYL SUPJJ W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT -SB -S~ .Y3 31~ 53G 5VR 5XA 5XC AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEYWJ AFUIB AGHNM AGQPQ AGYGG AZFZN BDRZF BZXJU CAJEB CITATION EJD FEDTE HF~ HVGLF LH4 PALCI Q-- RIWAO RJQFR SAMSI TGP U1G U5L AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3175-1e90cda451e55d30c17e7eb234aca736a5fba057bd19d7d051534e26dec87ab93 |
IEDL.DBID | DR2 |
ISSN | 1001-604X |
IngestDate | Fri Jul 25 11:11:30 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Tue Jul 01 03:35:30 EDT 2025 Wed Jan 22 16:31:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-1e90cda451e55d30c17e7eb234aca736a5fba057bd19d7d051534e26dec87ab93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2730524191 |
PQPubID | 986331 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2730524191 crossref_citationtrail_10_1002_cjoc_202200435 crossref_primary_10_1002_cjoc_202200435 wiley_primary_10_1002_cjoc_202200435_CJOC202200435 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 1 December 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationYear | 2022 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2018; 361 1997; 119 2017; 3 2021; 23 2019; 10 2018; 564 1989; 111 2019; 565 2020; 10 2017; 551 2014; 136 2017; 9 2017; 117 2012; 51 2020; 18 2022; 122 2015; 48 2018; 8 2020; 3 2014; 4 2020; 2 1999; 18 2016; 353 2000; 122 2003; 125 2016; 49 2016; 351 2019; 3 2018; 140 2021; 3 2017; 2017 2010; 328 2020; 142 2020; 40 2019; 2 2022; 51 2011; 40 2015; 54 2003; 36 2006; 8 1996; 96 2022; 43 2002; 417 2019; 141 2011; 133 2017; 139 2017; 50 2021; 57 2016; 6 2021; 12 2006; 45 2022 2017; 56 2008; 47 2015; 519 2015; 517 2018; 51 2020; 22 2016; 533 2021; 60 2018; 10 1994; 94 2018; 54 2019; 574 1996; 118 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 Wang Y. (e_1_2_6_14_1) 2018; 140 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 141 start-page: 14126 year: 2019 end-page: 14130 article-title: Hydrogen Atom Transfer Induced Boron Retaining Coupling of Organoboronic Esters and Organolithium Reagents publication-title: J. Am. Chem. Soc. – volume: 361 start-page: 668 year: 2018 end-page: 672 article-title: Selective Functionalization of Methane, Ethane, and Higher Alkanes by Cerium Photocatalysis publication-title: Science – volume: 3 start-page: 351 year: 2020 end-page: 357 article-title: Enantioselective C—H Functionalization of Bicyclo[1.1.1]pentanes publication-title: Nat. Catal. – year: 2022 article-title: Recent Advances in Visible‐Light Photocatalytic Asymmetric Synthesis Enabled by Chiral Lewis Acids publication-title: Chin. J. Org. Chem. – volume: 133 start-page: 10352 year: 2011 end-page: 10355 article-title: Catalytic Asymmetric C—H Insertions of Rhodium(II) Azavinyl Carbenes publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2377 year: 2021 article-title: Photocatalytic Three‐Component Asymmetric Sulfonylation via Direct C(sp )–H Functionalization publication-title: Nat. Commun. – volume: 50 start-page: 620 year: 2017 end-page: 626 article-title: Large‐Scale Selective Functionalization of Alkanes publication-title: Acc. Chem. Res. – volume: 122 start-page: 3063 year: 2000 end-page: 3070 article-title: Catalytic Asymmetric C—H Activation of Alkanes and Tetrahydrofuran publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 3157 year: 2021 end-page: 3161 article-title: Asymmetric Photocatalytic C(sp )–H Bond Addition to ‐Substituted Acrylates publication-title: Org. Lett. – volume: 3 start-page: 347 year: 2019 end-page: 360 article-title: Dirhodium Tetracarboxylates as Catalysts for Selective Intermolecular C—H Functionalization publication-title: Nat. Rev. Chem. – volume: 22 start-page: 3376 year: 2020 end-page: 3396 article-title: Photocatalytic Hydrogen Atom Transfer: the Philosopher's Stone for Late‐Stage Functionalization? publication-title: Green Chem. – volume: 551 start-page: 609 year: 2017 end-page: 613 article-title: Site‐selective and Stereoselective Functionalization of Non‐ activated Tertiary C—H Bonds publication-title: Nature – volume: 142 start-page: 6216 year: 2020 end-page: 6226 article-title: Cerium‐Catalyzed C—H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 9016 year: 2017 end-page: 9085 article-title: Recent Advances in Radical C—H Activation/Radical Cross‐Coupling publication-title: Chem. Rev. – volume: 533 start-page: 230 year: 2016 end-page: 234 article-title: Site‐Selective and Stereoselective Functionalization of Unactivated C—H bonds publication-title: Nature – volume: 54 start-page: 9559 year: 2018 end-page: 9570 article-title: Enantioselective Aliphatic C—H Bond Oxidation Catalyzed by Bioinspired Complexes publication-title: Chem. Commun. – volume: 48 start-page: 2895 year: 2015 end-page: 2903 article-title: Tuning Reactivity and Selectivity in Hydrogen Atom Transfer from Aliphatic C−H Bonds to Alkoxyl Radicals: Role of Structural and Medium Effects publication-title: Acc. Chem. Res. – volume: 96 start-page: 2841 year: 1996 end-page: 2888 article-title: Heme‐Containing Oxygenases publication-title: Chem. Rev. – volume: 8 start-page: 10676 year: 2018 end-page: 10682 article-title: Comparison of Reactivity and Enantioselectivity between Chiral Bimetallic Catalysts: Bismuth‐Rhodium‐ and Dirhodium‐Catalyzed Carbene Chemistry publication-title: ACS Catal. – volume: 51 start-page: 2171 year: 2022 end-page: 2223 article-title: Electronic control over site‐selectivity in hydrogen atom transfer (HAT) based C(sp )–H functionalization promoted by electrophilic reagents publication-title: Chem. Soc. Rev. – volume: 10 start-page: 583 year: 2018 end-page: 591 article-title: Manganese‐Catalysed Benzylic C(sp )–H Amination for Late‐Stage Functionalization publication-title: Nat. Chem. – volume: 328 start-page: 1624 year: 2010 end-page: 1626 article-title: Natural Gas from Shale Bursts onto the Scene publication-title: Science – volume: 51 start-page: 5850 year: 2012 end-page: 5856 article-title: Enantioselective Manganese‐Porphyrin‐Catalyzed Epoxidation and C−H Hydroxylation with Hydrogen Peroxide in Water/Methanol Solutions publication-title: Inorg. Chem. – volume: 125 start-page: 13442 year: 2003 end-page: 13450 article-title: Regio‐ and Enantioselective Alkane Hydroxylation with Engineered Cytochromes P450 BM‐3 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1884 year: 2020 end-page: 1893 article-title: Copper‐Catalyzed Benzylic C—H Bond Thiocyanation: Enabling Late‐Stage Diversifications publication-title: CCS Chem. – volume: 8 start-page: 11502 year: 2018 end-page: 11512 article-title: Pd(0)‐Catalyzed Bidentate Auxiliary Directed Enantioselective Benzylic C—H Arylation of 3‐Arylpropanamides Using the BINOL Phosphoramidete Ligand publication-title: ACS Catal. – volume: 574 start-page: 516 year: 2019 end-page: 521 article-title: Site‐Specific Allylic C—H Bond Functionalization with a Copper‐ Bound ‐Centred Radical publication-title: Nature – volume: 140 start-page: 15850 year: 2018 end-page: 15858 article-title: Copper(II)‐Catalyzed Asymmetric Photoredox Reactions: Enantioselective Alkylation of Imines Driven by Visible Light publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1791 year: 1999 end-page: 1792 article-title: Enantioselective Hydroxylation of Benzylic C—H Bonds by ‐Symmetric Chiral Oxoruthenium Porphyrins publication-title: Chem. Commun. – volume: 4 start-page: 6173 year: 2014 end-page: 6214 article-title: Recent Development of Direct Asymmetric Functionalization of Inert C—H Bonds publication-title: RSC Adv. – volume: 3 start-page: 3329 year: 2021 end-page: 3340 publication-title: CCS Chem. – volume: 141 start-page: 7194 year: 2019 end-page: 7201 article-title: Iridium‐Catalyzed Enantioselective C(sp )–H Amidation Controlled by Attractive Noncovalent Interactions publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3437 year: 2006 end-page: 3440 article-title: Dirhodium Tetracarboxylate Derived from Adamantylglycine as a Chiral Catalyst for Carbenoid Reactions publication-title: Org. Lett. – volume: 136 start-page: 2555 year: 2014 end-page: 2563 article-title: Copper‐Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 547 year: 1996 end-page: 556 article-title: Predicting the Diastereoselectivity of Rh‐Mediated Intramolecular C—H Insertion publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3549 year: 2019 article-title: Enantioselective benzylic C—H arylation via photoredox and nickel dual catalysis publication-title: Nat. Commun. – volume: 122 start-page: 1875 year: 2022 end-page: 1924 article-title: Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C−H Bonds Elaboration publication-title: Chem. Rev. – volume: 565 start-page: 67 year: 2019 end-page: 72 article-title: Enzymatic Assembly of Carbon‐Carbon Bonds via Iron‐Catalysed C—H functionalization publication-title: Nature – volume: 36 start-page: 255 year: 2003 end-page: 263 article-title: Bond Dissociation Energies of Organic Molecules publication-title: Acc. Chem. Res. – volume: 142 start-page: 12493 year: 2020 end-page: 12500 article-title: Enantioselective Copper‐Catalyzed Alkynylation of Benzylic C—H Bonds via Radical Relay publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 49 year: 2017 end-page: 51 article-title: Radical Enantioselective C(sp )–H Functionalization publication-title: Angew. Chem. Int. Ed. – volume: 142 start-page: 12015 year: 2020 end-page: 12019 article-title: Pd(II)‐Catalyzed Enantioselective ‐C(sp )–H Functionalizations of Free Cyclopropylmethylamines publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5689 year: 2019 article-title: Copper‐Catalyzed Enantioselective Sonogashira‐Type Oxidative Cross‐ Coupling of Unactivated C(sp )–H Bonds with Alkynes publication-title: Nat. Commun. – volume: 51 start-page: 2036 year: 2018 end-page: 2046 article-title: Copper‐Catalyzed Radical Relay for Asymmetric Radical Transformations publication-title: Acc. Chem. Res. – volume: 40 start-page: 3686 year: 2020 end-page: 3696 article-title: Recent Progress in C(sp )–H Asymmetric Oxidation Catalyzed by Bioinspired Metal Complexes publication-title: Chin. J. Org. Chem. – volume: 119 start-page: 9075 year: 1997 end-page: 9076 article-title: Asymmetric Intermolecular Carbenoid C—H Insertions Catalyzed by Rhodium(II) ( )‐ ‐( ‐Dodecylphenyl)sulfonylprolinate publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 20828 year: 2020 end-page: 20836 article-title: Enantioselective Intermolecular Radical C—H Amination publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 691 year: 2015 end-page: 695 article-title: Enantiotopos‐Selective C—H Oxygenation Catalyzed by a Supramolecular Ruthenium Complex publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 1048 year: 2018 end-page: 1055 article-title: Design of Catalysts for Site‐Selective and Enantioselective Functionalization of Non‐activated Primary C—H Bonds publication-title: Nat. Chem. – volume: 517 start-page: 600 year: 2015 end-page: 604 article-title: Metal‐Catalysed Azidation of Tertiary C—H Bonds Suitable for Late‐Stage Functionalization publication-title: Nature – volume: 140 start-page: 7678 year: 2018 end-page: 7684 article-title: Epimerization of Tertiary Carbon Centers via Reversible Cleavage of Unactivated C(sp )–H Bonds publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4786 year: 2020 end-page: 4790 article-title: Light‐Mediated Asymmetric Aliphatic C—H Alkylation with Hydrogen Atom Transfer Catalyst and Chiral Phosphoric Acid publication-title: ACS Catal. – volume: 118 start-page: 8837 year: 1996 end-page: 8846 article-title: Chiral Catalyst Controlled Diastereoselection and Regioselection in Intramolecular Carbon‐Hydrogen Insertion Reactions of Diazoacetates publication-title: J. Am. Chem. Soc. – volume: 519 start-page: 74 year: 2015 end-page: 77 article-title: The Direct Arylation of Allylic sp C—H bonds Organic and Photoredox Catalysis publication-title: Nature – volume: 139 start-page: 7709 year: 2017 end-page: 7712 article-title: Copper‐Catalyzed Arylation of Benzylic C−H bonds with Alkylarenes as the Limiting Reagents publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 8537 year: 1989 end-page: 8538 article-title: Asymmetric Hydroxylation by a Chiral Iron Porphyrin publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3804 year: 2019 article-title: Photocatalytic Enantioselective ‐Aminoalkylation of Acyclic Imine Derivatives by a Chiral Copper Catalyst publication-title: Nat. Commun. – volume: 117 start-page: 9433 year: 2017 end-page: 9520 article-title: Organocatalysis in Inert C—H Bond Functionalization publication-title: Chem. Rev. – volume: 140 start-page: 4792 year: 2018 end-page: 4796 article-title: Enantioselective Radical Cyclization for Construction of 5‐Membered Ring Structures by Metalloradical C—H Alkylation publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 629 year: 2017 end-page: 634 article-title: Enantioselective, Intermolecular Benzylic C—H Amination Catalysed by an Engineered Iron‐haem Enzyme publication-title: Nat. Chem. – volume: 43 start-page: 564 year: 2022 end-page: 570 article-title: Photocatalyzed Site‐Selective C(sp )–H Sulfonylation of Toluene Derivatives and Cycloalkanes with Inorganic Sulfinates publication-title: Chin. J. Catal. – volume: 47 start-page: 9747 year: 2008 end-page: 9751 publication-title: Angew. Chem. Int. Ed. – volume: 353 start-page: 1014 year: 2016 end-page: 1018 article-title: Enantioselective Cyanation of Benzylic C—H Bonds via Copper‐Catalyzed Radical Relay publication-title: Science – volume: 57 start-page: 9956 year: 2021 end-page: 9967 article-title: Homogeneous Catalytic C(sp )–H Functionalization of Gaseous Alkanes publication-title: Chem. Commun. – volume: 2 start-page: 1016 year: 2019 end-page: 1026 article-title: Photocatalytic Regio‐ and Stereoselective C(sp )–H Functionalization of Benzylic and Allylic Hydrocarbons as well as Unactivated Alkanes publication-title: Nat. Catal. – volume: 40 start-page: 1937 year: 2011 end-page: 1949 article-title: Direct Sp ‐C–H activation and functionalization of alcohol and ether publication-title: Chem. Soc. Rev. – volume: 45 start-page: 6422 year: 2006 end-page: 6425 article-title: Recent Advances in Catalytic Enantioselective Intermolecular C—H Functionalization publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 4519 year: 2020 end-page: 4532 publication-title: Org. Biomol. Chem. – volume: 417 start-page: 507 year: 2002 end-page: 514 article-title: Understanding and Exploiting C−H Bond Activation publication-title: Nature – volume: 60 start-page: 26710 year: 2021 end-page: 26717 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 7652 year: 2016 end-page: 7656 article-title: Rh(I)/NHC*‐Catalyzed Site‐ and Enantioselective Functionalization of C(sp )–H Bonds Toward Chiral Triarylmethanes publication-title: ACS Catal. – volume: 564 start-page: 395 year: 2018 end-page: 399 article-title: Desymmetrization of Cyclohexanes by Site‐ and Stereoselective C—H Functionalization publication-title: Nature – volume: 94 start-page: 1091 year: 1994 end-page: 1160 article-title: Organic Synthesis with ‐Diazo Carbonyl Compounds publication-title: Chem. Rev. – volume: 3 start-page: 196 year: 2017 end-page: 204 article-title: Highly Enantioselective Oxidation of Nonactivated Aliphatic C—H Bonds with Hydrogen Peroxide Catalyzed by Manganese Complexes publication-title: ACS Cent. Sci. – volume: 40 start-page: 1857 year: 2011 end-page: 1869 article-title: Guiding Principles for Site Selective and Stereoselective Intermolecular C—H Functionalization by Donor/ Acceptor Rhodium Carbenes publication-title: Chem. Soc. Rev. – volume: 351 start-page: 1421 year: 2016 end-page: 1424 article-title: Catalyst‐Controlled Selectivity in the C—H Borylation of Methane and Ethane publication-title: Science – volume: 2017 start-page: 2056 year: 2017 end-page: 2071 article-title: Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis publication-title: Eur. J. Org. Chem. – volume: 49 start-page: 2232 year: 2016 end-page: 2242 article-title: Decatungstate Anion for Photocatalyzed "Window Ledge" Reactions publication-title: Acc. Chem. Res. – ident: e_1_2_6_44_1 doi: 10.1021/ja994136c – ident: e_1_2_6_51_1 doi: 10.1021/acscatal.8b03054 – ident: e_1_2_6_59_1 doi: 10.1021/acscentsci.6b00368 – ident: e_1_2_6_7_1 doi: 10.1126/science.aad9289 – ident: e_1_2_6_72_1 doi: 10.1038/s41467-021-22690-3 – ident: e_1_2_6_60_1 doi: 10.1021/acs.accounts.5b00348 – ident: e_1_2_6_73_1 doi: 10.1021/acscatal.0c00610 – ident: e_1_2_6_22_1 doi: 10.1002/anie.202110233 – ident: e_1_2_6_23_1 doi: 10.1038/s41586-019-1655-8 – ident: e_1_2_6_37_1 doi: 10.1039/c0cs00217h – ident: e_1_2_6_43_1 doi: 10.1021/ja971915p – ident: e_1_2_6_57_1 doi: 10.1021/ic300457z – ident: e_1_2_6_29_1 doi: 10.1039/c0cs00063a – ident: e_1_2_6_34_1 doi: 10.1039/D1CS00556A – ident: e_1_2_6_45_1 doi: 10.1021/ol060893l – ident: e_1_2_6_5_1 doi: 10.1021/acs.accounts.6b00621 – ident: e_1_2_6_19_1 doi: 10.1021/acscatal.8b03654 – ident: e_1_2_6_28_1 doi: 10.31635/ccschem.020.202000151 – ident: e_1_2_6_55_1 doi: 10.1002/anie.201409224 – ident: e_1_2_6_71_1 doi: 10.1038/s41929-019-0357-9 – ident: e_1_2_6_8_1 doi: 10.1038/s41586-018-0808-5 – ident: e_1_2_6_26_1 doi: 10.1021/jacs.0c05373 – ident: e_1_2_6_16_1 doi: 10.1126/science.aaf7783 – ident: e_1_2_6_74_1 doi: 10.1021/acs.orglett.1c00801 – ident: e_1_2_6_78_1 doi: 10.1038/nature17651 – volume: 140 start-page: 7678 year: 2018 ident: e_1_2_6_14_1 article-title: Epimerization of Tertiary Carbon Centers via Reversible Cleavage of Unactivated C(sp3)–H Bonds publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_61_1 doi: 10.1002/ejoc.201601485 – ident: e_1_2_6_46_1 doi: 10.1002/anie.200803157 – ident: e_1_2_6_77_1 doi: 10.1021/ja0303790 – ident: e_1_2_6_75_1 doi: 10.1021/cr9500500 – ident: e_1_2_6_48_1 doi: 10.1038/nature24641 – ident: e_1_2_6_11_1 doi: 10.1021/jacs.0c04801 – ident: e_1_2_6_18_1 doi: 10.1021/jacs.9b02811 – ident: e_1_2_6_2_1 doi: 10.1126/science.328.5986.1624 – ident: e_1_2_6_4_1 doi: 10.1038/s41570-019-0099-x – ident: e_1_2_6_21_1 doi: 10.1038/s41467-019-11392-6 – ident: e_1_2_6_63_1 doi: 10.1039/D0OB00854K – ident: e_1_2_6_49_1 doi: 10.1038/s41929-019-0417-1 – ident: e_1_2_6_76_1 doi: 10.1038/nchem.2783 – ident: e_1_2_6_69_1 doi: 10.1038/s41467-019-11688-7 – ident: e_1_2_6_31_1 doi: 10.1021/acs.chemrev.6b00620 – ident: e_1_2_6_70_1 doi: 10.6023/cjoc202205032 – ident: e_1_2_6_36_1 doi: 10.1002/anie.201609105 – ident: e_1_2_6_3_1 doi: 10.1038/417507a – ident: e_1_2_6_35_1 doi: 10.1039/D1CC04073A – ident: e_1_2_6_56_1 doi: 10.1021/ja00204a047 – ident: e_1_2_6_38_1 doi: 10.1021/acs.accounts.8b00265 – ident: e_1_2_6_53_1 doi: 10.1039/C8CC03165G – ident: e_1_2_6_62_1 doi: 10.1039/D0GC01035A – ident: e_1_2_6_64_1 doi: 10.1021/acs.accounts.6b00339 – ident: e_1_2_6_20_1 doi: 10.1038/s41467-019-13705-1 – ident: e_1_2_6_10_1 doi: 10.1126/science.aat9750 – ident: e_1_2_6_30_1 doi: 10.1021/ar020230d – ident: e_1_2_6_54_1 doi: 10.6023/cjoc202006008 – ident: e_1_2_6_41_1 doi: 10.1021/ja961682m – ident: e_1_2_6_42_1 doi: 10.1021/ja9515213 – ident: e_1_2_6_58_1 doi: 10.1039/a904100a – ident: e_1_2_6_24_1 doi: 10.1021/jacs.8b01662 – ident: e_1_2_6_17_1 doi: 10.1021/acscatal.6b02392 – ident: e_1_2_6_39_1 doi: 10.1002/anie.200601814 – ident: e_1_2_6_50_1 doi: 10.1038/s41557-018-0087-7 – ident: e_1_2_6_67_1 doi: 10.31635/ccschem.020.202000565 – ident: e_1_2_6_25_1 doi: 10.1021/jacs.7b03781 – ident: e_1_2_6_12_1 doi: 10.1021/jacs.0c00212 – ident: e_1_2_6_13_1 doi: 10.1038/s41557-018-0020-0 – ident: e_1_2_6_27_1 doi: 10.1021/jacs.0c10415 – ident: e_1_2_6_40_1 doi: 10.1021/cr00028a010 – ident: e_1_2_6_68_1 doi: 10.1021/jacs.8b09251 – ident: e_1_2_6_52_1 doi: 10.1039/c3ra46996d – ident: e_1_2_6_15_1 doi: 10.1038/nature14255 – ident: e_1_2_6_79_1 doi: 10.1038/s41586-018-0799-2 – ident: e_1_2_6_47_1 doi: 10.1021/ja202969z – ident: e_1_2_6_32_1 doi: 10.1021/acs.chemrev.6b00657 – ident: e_1_2_6_33_1 doi: 10.1021/acs.chemrev.1c00263 – ident: e_1_2_6_66_1 doi: 10.1016/S1872-2067(21)63953-0 – ident: e_1_2_6_6_1 doi: 10.1038/nature14127 – ident: e_1_2_6_65_1 doi: 10.1021/jacs.9b07960 – ident: e_1_2_6_9_1 doi: 10.1021/ja411912p |
SSID | ssj0027726 |
Score | 2.41968 |
SecondaryResourceType | review_article |
Snippet | Comprehensive Summary
The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization... The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process,... Comprehensive SummaryThe direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2825 |
SubjectTerms | Alkane Alkanes Asymmetric catalysis Asymmetry Biomimetics Catalysis Catalysts Control methods Cycloalkanes Cytochromes P450 C—H functionalization Direct conversion Enantiomers Enantioselectivity Hydrogen bonds Lewis acid Manganese Oxidation Phosphoric acid Rhodium Selectivity Site‐selectivity Stereoselectivity Substrates |
Title | Recent Advances in Asymmetric Transformations of Unactivated Alkanes and Cycloalkanes through Direct C—H Functionalization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.202200435 https://www.proquest.com/docview/2730524191 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xLk6n5EHwKVubNun6OIpjDFSQDfZWcivoZit2EyY--CP8hf4Sk6bdRRBB39qSlDbnJOdLOOf7ALhwBE0wSzASkjKk8S1BnAUctf0Eu5Rx5RWakdc3tDf0-yMyWqnit_wQiwM3MzOK9dpMcMbz1pI0VDxkhoIQGzN7psrcJGwZVHSHlzuuoNBbMzxDiDr-qGJtdHBrvft6VFpCzVXAWkSc7g5g1bfaRJNxczblTfH6jcbxPz-zC7ZLOAo71n_2wIZK98FmVKnAHYA3jSt1XIIdmyuQw_sUdvL546NR4hJwsIJ7tf_CLIHD1NRKvGgMK2FnMmZ6LYUslTCai0nGygelPBC0Ky6MPt8_erCrY6w9miyLQw_BsHs1iHqoVGxAwuAQ5KrQEZL5xFWESM8RbqACvXf3fCZY4FFGEs40QuTSDWUgjb6M5ytMpRLtgPHQOwK1NEvVMYAhJZgnMlSCMD8JKFdEwxklQ09ISfykDlBlsViUdOZGVWMSWyJmHJsxjRdjWgeXi_ZPlsjjx5aNygHickLnsUZ5DtFoJ3TrABeW_OUtcdS_jRZ3J3_pdAq2zLVNnmmA2vR5ps40BJry88LNvwB2OwEh |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL34WOjGtzg6ahaCq2ibNqldDsVhfIyCzIC7kldBHTvijILiwo_wC_0Sk6adUUEEXTYkpU3u4yTcnAOw40mWEZ4RLBXj2OBbigWPBD4IM-IzLnRQaEa2z1irGx5f0qqa0N6FcfwQowM36xlFvLYObg-k98esofK6bzkIiV3ngE7CtJX1LnZVF2S854oKxTXLNISZF15WvI0e2f86_mteGoPNz5C1yDnNeRDV17pSk5u9h6HYk8_fiBz_9TsLMFciUtRwJrQIEzpfgpmkEoJbhhcDLU1qQg1XLjBAVzlqDJ5ub60Yl0SdT9DXmDDqZ6ib2-sSjwbGKtTo3XATThHPFUqeZK_Py4ZSIQi5oIuS99e3FmqaNOtOJ8v7oSvQbR52khYuRRuwtFAE-zr2pOIh9TWlKvCkH-nIbN-DkEseBYzTTHADEoXyYxUpKzEThJowpeVBxEUcrMJU3s_1GqCYUSIyFWtJeZhFTGhqEI1WcSCVomFWA1wtWSpLRnMrrNFLHRczSe2cpqM5rcHuqP-d4_L4sWe9soC09OlBaoCeRw3gif0akGIpf3lLmhyfJ6On9b8M2oaZVqd9mp4enZ1swKxtd7U0dZga3j_oTYOIhmKrsPkPf64FPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL1iQxq88LGBKNuYH5B4cpc4ttM8VtmqssFAqJX6FvlTGmvTau0mDfHAj-AX7pdgx0nbTUJI7DGWHSX29b3H1r3nALyPFLdEWIKV5gI7fMuwFKnEHWpJzIU0SaUZ-fmM94f0ZMRGa1X8gR9ieeHmd0blr_0Gn2l7uCINVd-nnoKQ-GVO2AY8pjzqeLs--kZWR660ElzzREOYR3TU0DZG5PDu-LthaYU11xFrFXJ6z0E0HxsyTS7aVwvZVj_u8Tg-5G9ewLMaj6JuMKCX8MiU2_Akb2TgduCnA5YuMKFuSBaYo_MSdec3k4mX4lJosAZ8nQGjqUXD0hdLXDsQq1F3fCGcM0Wi1Ci_UeOpqBtqfSAUXC7Kb3_97qOeC7LhbrKuDn0Fw97xIO_jWrIBKw9EcGyySGlBWWwY00mk4tSk7vCeUKFEmnDBrBQOIkodZzrVXmAmoYZwbVQnFTJLXsNmOS3NG0AZZ0RanRnFBLUpl4Y5PGN0liitGbUtwM2KFarmM_eyGuMiMDGTws9psZzTFnxY9p8FJo-_9txrDKCod_S8cDAvYg7uZHELSLWS_3hLkZ98yZdPb_9n0AFsfT3qFZ8-np3uwlPfHBJp9mBzcXll9h0cWsh3lcX_AYnpA_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Asymmetric+Transformations+of+Unactivated+Alkanes+and+Cycloalkanes+through+Direct+C%E2%80%94H+Functionalization&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Cheng%2C+Shiyan&rft.au=Li%2C+Qianyu&rft.au=Cheng%2C+Xiuliang&rft.au=Yu%E2%80%90Mei+Lin&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=40&rft.issue=23&rft.spage=2825&rft.epage=2837&rft_id=info:doi/10.1002%2Fcjoc.202200435&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon |