Recent Advances in Asymmetric Transformations of Unactivated Alkanes and Cycloalkanes through Direct C—H Functionalization

Comprehensive Summary The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combin...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 40; no. 23; pp. 2825 - 2837
Main Authors Cheng, Shiyan, Li, Qianyu, Cheng, Xiuliang, Lin, Yu‐Mei, Gong, Lei
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.12.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Comprehensive Summary The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combined with asymmetric catalysis, provide appealing access to high value‐added enantiomer‐enriched compounds but are far less developed. This review focuses on recent progress in (i) asymmetric reactions of alkanes or cycloalkanes with prochiral substrates which generate a stereocenter adjacent to the cleaved C(sp3)–H bond, and (ii) C(sp3)–H enantiodiscriminatory reactions creating a new stereogenic center on the carbon of a cleaved C(sp3)–H bond. Elegant strategies are discussed, including (a) metal carbene‐induced C—H insertions by chiral rhodium catalysts, (b) metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, (c) enzyme catalysis by cytochromes P450 variants, and (d) dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA). These catalytic systems can not only precisely recognize primary, secondary and tertiary C—H bonds at specific positions in alkanes and cycloalkanes, but also support a high level of stereoselectivity in the reactions. It is expected that the advances will stimulate further progress in asymmetric catalysis, synthetic methodology, pharmaceutical development and industrial processes. Recent studies on asymmetric synthesis through direct and selective C—H functionalization of alkanes and cycloalkanes, based on metal carbene‐induced C—H insertions by chiral rhodium catalysts, metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, enzyme catalysis by cytochromes P450 variants, and dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA), are summarized and discussed.
AbstractList The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combined with asymmetric catalysis, provide appealing access to high value‐added enantiomer‐enriched compounds but are far less developed. This review focuses on recent progress in ( i ) asymmetric reactions of alkanes or cycloalkanes with prochiral substrates which generate a stereocenter adjacent to the cleaved C(sp 3 )–H bond, and ( ii ) C(sp 3 )–H enantiodiscriminatory reactions creating a new stereogenic center on the carbon of a cleaved C(sp 3 )–H bond. Elegant strategies are discussed, including ( a ) metal carbene‐induced C—H insertions by chiral rhodium catalysts, ( b ) metal‐ oxo ‐mediated C—H oxidation by biomimetic manganese catalysts, ( c ) enzyme catalysis by cytochromes P450 variants, and ( d ) dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA). These catalytic systems can not only precisely recognize primary, secondary and tertiary C—H bonds at specific positions in alkanes and cycloalkanes, but also support a high level of stereoselectivity in the reactions. It is expected that the advances will stimulate further progress in asymmetric catalysis, synthetic methodology, pharmaceutical development and industrial processes.
Comprehensive SummaryThe direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combined with asymmetric catalysis, provide appealing access to high value‐added enantiomer‐enriched compounds but are far less developed. This review focuses on recent progress in (i) asymmetric reactions of alkanes or cycloalkanes with prochiral substrates which generate a stereocenter adjacent to the cleaved C(sp3)–H bond, and (ii) C(sp3)–H enantiodiscriminatory reactions creating a new stereogenic center on the carbon of a cleaved C(sp3)–H bond. Elegant strategies are discussed, including (a) metal carbene‐induced C—H insertions by chiral rhodium catalysts, (b) metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, (c) enzyme catalysis by cytochromes P450 variants, and (d) dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA). These catalytic systems can not only precisely recognize primary, secondary and tertiary C—H bonds at specific positions in alkanes and cycloalkanes, but also support a high level of stereoselectivity in the reactions. It is expected that the advances will stimulate further progress in asymmetric catalysis, synthetic methodology, pharmaceutical development and industrial processes.
Comprehensive Summary The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process, which has attracted intense interest from academia and industry. Methods to control chemo‐ and site‐selectivity, combined with asymmetric catalysis, provide appealing access to high value‐added enantiomer‐enriched compounds but are far less developed. This review focuses on recent progress in (i) asymmetric reactions of alkanes or cycloalkanes with prochiral substrates which generate a stereocenter adjacent to the cleaved C(sp3)–H bond, and (ii) C(sp3)–H enantiodiscriminatory reactions creating a new stereogenic center on the carbon of a cleaved C(sp3)–H bond. Elegant strategies are discussed, including (a) metal carbene‐induced C—H insertions by chiral rhodium catalysts, (b) metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, (c) enzyme catalysis by cytochromes P450 variants, and (d) dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA). These catalytic systems can not only precisely recognize primary, secondary and tertiary C—H bonds at specific positions in alkanes and cycloalkanes, but also support a high level of stereoselectivity in the reactions. It is expected that the advances will stimulate further progress in asymmetric catalysis, synthetic methodology, pharmaceutical development and industrial processes. Recent studies on asymmetric synthesis through direct and selective C—H functionalization of alkanes and cycloalkanes, based on metal carbene‐induced C—H insertions by chiral rhodium catalysts, metal‐oxo‐mediated C—H oxidation by biomimetic manganese catalysts, enzyme catalysis by cytochromes P450 variants, and dual catalysis by a photocatalyst and a chiral Lewis acid (CLA) or a chiral phosphoric acid (CPA), are summarized and discussed.
Author Cheng, Xiuliang
Lin, Yu‐Mei
Gong, Lei
Li, Qianyu
Cheng, Shiyan
Author_xml – sequence: 1
  givenname: Shiyan
  surname: Cheng
  fullname: Cheng, Shiyan
  organization: Xiamen University
– sequence: 2
  givenname: Qianyu
  surname: Li
  fullname: Li, Qianyu
  organization: Xiamen University
– sequence: 3
  givenname: Xiuliang
  surname: Cheng
  fullname: Cheng, Xiuliang
  organization: Xiamen University
– sequence: 4
  givenname: Yu‐Mei
  surname: Lin
  fullname: Lin, Yu‐Mei
  organization: Xiamen University
– sequence: 5
  givenname: Lei
  surname: Gong
  fullname: Gong, Lei
  email: gongl@xmu.edu.cn
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen
BookMark eNqFkE1LxDAQhoMo-Hn1HPDcNUmbxh6X-o0giIK3MptMNWs30SSrrHjwR_gL_SV2XVEQxNMMw_O8DO86WXbeISHbnA04Y2JXj70eCCYEY0Uul8gaL3mRKVbK5X5njGclK65XyXqM455XSpRr5OUCNbpEh-YRnMZIraPDOJtMMAWr6WUAF1sfJpCsd5H6ll450Mk-QkJDh90duF4CZ2g9052Hr0O6DX56c0v3bUCdaP3--nZMD6dOz2Ogs8-feZtkpYUu4tbX3CBXhweX9XF2dn50Ug_PMp1zJTOOFdMGCslRSpMzzRUqHIm8AA0qL0G2I2BSjQyvjDJMcpkXKEqDek_BqMo3yM4i9z74hynG1Iz9NPR_xEaonElR8Ir3VLGgdPAxBmwbbdPnnymA7RrOmnnPzbzn5rvnXhv80u6DnUCY_S1UC-HJdjj7h27q0_P6x_0A9IOV6w
CitedBy_id crossref_primary_10_1002_ange_202310112
crossref_primary_10_1021_jacs_3c07008
crossref_primary_10_1002_chem_202302542
crossref_primary_10_1039_D2QO01491B
crossref_primary_10_1021_acs_joc_4c02132
crossref_primary_10_1039_D2CC05569D
crossref_primary_10_1002_cctc_202401380
crossref_primary_10_1021_acscatal_4c00312
crossref_primary_10_1039_D4CC03383C
crossref_primary_10_6023_cjoc202311032
crossref_primary_10_1021_jacs_3c12513
crossref_primary_10_1016_j_tetlet_2025_155516
crossref_primary_10_1039_D4QO01179A
crossref_primary_10_1002_anie_202310112
crossref_primary_10_1021_jacs_2c10148
crossref_primary_10_1039_D3SC01118F
crossref_primary_10_1016_j_tetlet_2024_154939
crossref_primary_10_6023_cjoc202407027
crossref_primary_10_1002_ejoc_202400272
crossref_primary_10_1021_jacs_4c06023
crossref_primary_10_1021_acscatal_3c04661
crossref_primary_10_1002_cjoc_202400725
crossref_primary_10_1021_acs_orglett_3c00844
crossref_primary_10_1021_acs_orglett_3c00722
Cites_doi 10.1021/ja994136c
10.1021/acscatal.8b03054
10.1021/acscentsci.6b00368
10.1126/science.aad9289
10.1038/s41467-021-22690-3
10.1021/acs.accounts.5b00348
10.1021/acscatal.0c00610
10.1002/anie.202110233
10.1038/s41586-019-1655-8
10.1039/c0cs00217h
10.1021/ja971915p
10.1021/ic300457z
10.1039/c0cs00063a
10.1039/D1CS00556A
10.1021/ol060893l
10.1021/acs.accounts.6b00621
10.1021/acscatal.8b03654
10.31635/ccschem.020.202000151
10.1002/anie.201409224
10.1038/s41929-019-0357-9
10.1038/s41586-018-0808-5
10.1021/jacs.0c05373
10.1126/science.aaf7783
10.1021/acs.orglett.1c00801
10.1038/nature17651
10.1002/ejoc.201601485
10.1002/anie.200803157
10.1021/ja0303790
10.1021/cr9500500
10.1038/nature24641
10.1021/jacs.0c04801
10.1021/jacs.9b02811
10.1126/science.328.5986.1624
10.1038/s41570-019-0099-x
10.1038/s41467-019-11392-6
10.1039/D0OB00854K
10.1038/s41929-019-0417-1
10.1038/nchem.2783
10.1038/s41467-019-11688-7
10.1021/acs.chemrev.6b00620
10.6023/cjoc202205032
10.1002/anie.201609105
10.1038/417507a
10.1039/D1CC04073A
10.1021/ja00204a047
10.1021/acs.accounts.8b00265
10.1039/C8CC03165G
10.1039/D0GC01035A
10.1021/acs.accounts.6b00339
10.1038/s41467-019-13705-1
10.1126/science.aat9750
10.1021/ar020230d
10.6023/cjoc202006008
10.1021/ja961682m
10.1021/ja9515213
10.1039/a904100a
10.1021/jacs.8b01662
10.1021/acscatal.6b02392
10.1002/anie.200601814
10.1038/s41557-018-0087-7
10.31635/ccschem.020.202000565
10.1021/jacs.7b03781
10.1021/jacs.0c00212
10.1038/s41557-018-0020-0
10.1021/jacs.0c10415
10.1021/cr00028a010
10.1021/jacs.8b09251
10.1039/c3ra46996d
10.1038/nature14255
10.1038/s41586-018-0799-2
10.1021/ja202969z
10.1021/acs.chemrev.6b00657
10.1021/acs.chemrev.1c00263
10.1016/S1872-2067(21)63953-0
10.1038/nature14127
10.1021/jacs.9b07960
10.1021/ja411912p
ContentType Journal Article
Copyright 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH.
2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
Copyright_xml – notice: 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH.
– notice: 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cjoc.202200435
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1614-7065
EndPage 2837
ExternalDocumentID 10_1002_cjoc_202200435
CJOC202200435
Genre researchArticle
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
29B
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXDM
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCEZO
CDRFL
CHBEP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FA0
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P4D
Q.N
Q11
QB0
QRW
R.K
RK2
RNS
ROL
RWI
RX1
RYL
SUPJJ
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
-SB
-S~
.Y3
31~
53G
5VR
5XA
5XC
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEYWJ
AFUIB
AGHNM
AGQPQ
AGYGG
AZFZN
BDRZF
BZXJU
CAJEB
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
PALCI
Q--
RIWAO
RJQFR
SAMSI
TGP
U1G
U5L
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3175-1e90cda451e55d30c17e7eb234aca736a5fba057bd19d7d051534e26dec87ab93
IEDL.DBID DR2
ISSN 1001-604X
IngestDate Fri Jul 25 11:11:30 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Tue Jul 01 03:35:30 EDT 2025
Wed Jan 22 16:31:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-1e90cda451e55d30c17e7eb234aca736a5fba057bd19d7d051534e26dec87ab93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2730524191
PQPubID 986331
PageCount 1
ParticipantIDs proquest_journals_2730524191
crossref_citationtrail_10_1002_cjoc_202200435
crossref_primary_10_1002_cjoc_202200435
wiley_primary_10_1002_cjoc_202200435_CJOC202200435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 1 December 2022
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationYear 2022
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2018; 361
1997; 119
2017; 3
2021; 23
2019; 10
2018; 564
1989; 111
2019; 565
2020; 10
2017; 551
2014; 136
2017; 9
2017; 117
2012; 51
2020; 18
2022; 122
2015; 48
2018; 8
2020; 3
2014; 4
2020; 2
1999; 18
2016; 353
2000; 122
2003; 125
2016; 49
2016; 351
2019; 3
2018; 140
2021; 3
2017; 2017
2010; 328
2020; 142
2020; 40
2019; 2
2022; 51
2011; 40
2015; 54
2003; 36
2006; 8
1996; 96
2022; 43
2002; 417
2019; 141
2011; 133
2017; 139
2017; 50
2021; 57
2016; 6
2021; 12
2006; 45
2022
2017; 56
2008; 47
2015; 519
2015; 517
2018; 51
2020; 22
2016; 533
2021; 60
2018; 10
1994; 94
2018; 54
2019; 574
1996; 118
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
Wang Y. (e_1_2_6_14_1) 2018; 140
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 141
  start-page: 14126
  year: 2019
  end-page: 14130
  article-title: Hydrogen Atom Transfer Induced Boron Retaining Coupling of Organoboronic Esters and Organolithium Reagents
  publication-title: J. Am. Chem. Soc.
– volume: 361
  start-page: 668
  year: 2018
  end-page: 672
  article-title: Selective Functionalization of Methane, Ethane, and Higher Alkanes by Cerium Photocatalysis
  publication-title: Science
– volume: 3
  start-page: 351
  year: 2020
  end-page: 357
  article-title: Enantioselective C—H Functionalization of Bicyclo[1.1.1]pentanes
  publication-title: Nat. Catal.
– year: 2022
  article-title: Recent Advances in Visible‐Light Photocatalytic Asymmetric Synthesis Enabled by Chiral Lewis Acids
  publication-title: Chin. J. Org. Chem.
– volume: 133
  start-page: 10352
  year: 2011
  end-page: 10355
  article-title: Catalytic Asymmetric C—H Insertions of Rhodium(II) Azavinyl Carbenes
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2377
  year: 2021
  article-title: Photocatalytic Three‐Component Asymmetric Sulfonylation via Direct C(sp )–H Functionalization
  publication-title: Nat. Commun.
– volume: 50
  start-page: 620
  year: 2017
  end-page: 626
  article-title: Large‐Scale Selective Functionalization of Alkanes
  publication-title: Acc. Chem. Res.
– volume: 122
  start-page: 3063
  year: 2000
  end-page: 3070
  article-title: Catalytic Asymmetric C—H Activation of Alkanes and Tetrahydrofuran
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 3157
  year: 2021
  end-page: 3161
  article-title: Asymmetric Photocatalytic C(sp )–H Bond Addition to ‐Substituted Acrylates
  publication-title: Org. Lett.
– volume: 3
  start-page: 347
  year: 2019
  end-page: 360
  article-title: Dirhodium Tetracarboxylates as Catalysts for Selective Intermolecular C—H Functionalization
  publication-title: Nat. Rev. Chem.
– volume: 22
  start-page: 3376
  year: 2020
  end-page: 3396
  article-title: Photocatalytic Hydrogen Atom Transfer: the Philosopher's Stone for Late‐Stage Functionalization?
  publication-title: Green Chem.
– volume: 551
  start-page: 609
  year: 2017
  end-page: 613
  article-title: Site‐selective and Stereoselective Functionalization of Non‐ activated Tertiary C—H Bonds
  publication-title: Nature
– volume: 142
  start-page: 6216
  year: 2020
  end-page: 6226
  article-title: Cerium‐Catalyzed C—H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 9016
  year: 2017
  end-page: 9085
  article-title: Recent Advances in Radical C—H Activation/Radical Cross‐Coupling
  publication-title: Chem. Rev.
– volume: 533
  start-page: 230
  year: 2016
  end-page: 234
  article-title: Site‐Selective and Stereoselective Functionalization of Unactivated C—H bonds
  publication-title: Nature
– volume: 54
  start-page: 9559
  year: 2018
  end-page: 9570
  article-title: Enantioselective Aliphatic C—H Bond Oxidation Catalyzed by Bioinspired Complexes
  publication-title: Chem. Commun.
– volume: 48
  start-page: 2895
  year: 2015
  end-page: 2903
  article-title: Tuning Reactivity and Selectivity in Hydrogen Atom Transfer from Aliphatic C−H Bonds to Alkoxyl Radicals: Role of Structural and Medium Effects
  publication-title: Acc. Chem. Res.
– volume: 96
  start-page: 2841
  year: 1996
  end-page: 2888
  article-title: Heme‐Containing Oxygenases
  publication-title: Chem. Rev.
– volume: 8
  start-page: 10676
  year: 2018
  end-page: 10682
  article-title: Comparison of Reactivity and Enantioselectivity between Chiral Bimetallic Catalysts: Bismuth‐Rhodium‐ and Dirhodium‐Catalyzed Carbene Chemistry
  publication-title: ACS Catal.
– volume: 51
  start-page: 2171
  year: 2022
  end-page: 2223
  article-title: Electronic control over site‐selectivity in hydrogen atom transfer (HAT) based C(sp )–H functionalization promoted by electrophilic reagents
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 583
  year: 2018
  end-page: 591
  article-title: Manganese‐Catalysed Benzylic C(sp )–H Amination for Late‐Stage Functionalization
  publication-title: Nat. Chem.
– volume: 328
  start-page: 1624
  year: 2010
  end-page: 1626
  article-title: Natural Gas from Shale Bursts onto the Scene
  publication-title: Science
– volume: 51
  start-page: 5850
  year: 2012
  end-page: 5856
  article-title: Enantioselective Manganese‐Porphyrin‐Catalyzed Epoxidation and C−H Hydroxylation with Hydrogen Peroxide in Water/Methanol Solutions
  publication-title: Inorg. Chem.
– volume: 125
  start-page: 13442
  year: 2003
  end-page: 13450
  article-title: Regio‐ and Enantioselective Alkane Hydroxylation with Engineered Cytochromes P450 BM‐3
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1884
  year: 2020
  end-page: 1893
  article-title: Copper‐Catalyzed Benzylic C—H Bond Thiocyanation: Enabling Late‐Stage Diversifications
  publication-title: CCS Chem.
– volume: 8
  start-page: 11502
  year: 2018
  end-page: 11512
  article-title: Pd(0)‐Catalyzed Bidentate Auxiliary Directed Enantioselective Benzylic C—H Arylation of 3‐Arylpropanamides Using the BINOL Phosphoramidete Ligand
  publication-title: ACS Catal.
– volume: 574
  start-page: 516
  year: 2019
  end-page: 521
  article-title: Site‐Specific Allylic C—H Bond Functionalization with a Copper‐ Bound ‐Centred Radical
  publication-title: Nature
– volume: 140
  start-page: 15850
  year: 2018
  end-page: 15858
  article-title: Copper(II)‐Catalyzed Asymmetric Photoredox Reactions: Enantioselective Alkylation of Imines Driven by Visible Light
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1791
  year: 1999
  end-page: 1792
  article-title: Enantioselective Hydroxylation of Benzylic C—H Bonds by ‐Symmetric Chiral Oxoruthenium Porphyrins
  publication-title: Chem. Commun.
– volume: 4
  start-page: 6173
  year: 2014
  end-page: 6214
  article-title: Recent Development of Direct Asymmetric Functionalization of Inert C—H Bonds
  publication-title: RSC Adv.
– volume: 3
  start-page: 3329
  year: 2021
  end-page: 3340
  publication-title: CCS Chem.
– volume: 141
  start-page: 7194
  year: 2019
  end-page: 7201
  article-title: Iridium‐Catalyzed Enantioselective C(sp )–H Amidation Controlled by Attractive Noncovalent Interactions
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 3437
  year: 2006
  end-page: 3440
  article-title: Dirhodium Tetracarboxylate Derived from Adamantylglycine as a Chiral Catalyst for Carbenoid Reactions
  publication-title: Org. Lett.
– volume: 136
  start-page: 2555
  year: 2014
  end-page: 2563
  article-title: Copper‐Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 547
  year: 1996
  end-page: 556
  article-title: Predicting the Diastereoselectivity of Rh‐Mediated Intramolecular C—H Insertion
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3549
  year: 2019
  article-title: Enantioselective benzylic C—H arylation via photoredox and nickel dual catalysis
  publication-title: Nat. Commun.
– volume: 122
  start-page: 1875
  year: 2022
  end-page: 1924
  article-title: Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C−H Bonds Elaboration
  publication-title: Chem. Rev.
– volume: 565
  start-page: 67
  year: 2019
  end-page: 72
  article-title: Enzymatic Assembly of Carbon‐Carbon Bonds via Iron‐Catalysed C—H functionalization
  publication-title: Nature
– volume: 36
  start-page: 255
  year: 2003
  end-page: 263
  article-title: Bond Dissociation Energies of Organic Molecules
  publication-title: Acc. Chem. Res.
– volume: 142
  start-page: 12493
  year: 2020
  end-page: 12500
  article-title: Enantioselective Copper‐Catalyzed Alkynylation of Benzylic C—H Bonds via Radical Relay
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 49
  year: 2017
  end-page: 51
  article-title: Radical Enantioselective C(sp )–H Functionalization
  publication-title: Angew. Chem. Int. Ed.
– volume: 142
  start-page: 12015
  year: 2020
  end-page: 12019
  article-title: Pd(II)‐Catalyzed Enantioselective ‐C(sp )–H Functionalizations of Free Cyclopropylmethylamines
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5689
  year: 2019
  article-title: Copper‐Catalyzed Enantioselective Sonogashira‐Type Oxidative Cross‐ Coupling of Unactivated C(sp )–H Bonds with Alkynes
  publication-title: Nat. Commun.
– volume: 51
  start-page: 2036
  year: 2018
  end-page: 2046
  article-title: Copper‐Catalyzed Radical Relay for Asymmetric Radical Transformations
  publication-title: Acc. Chem. Res.
– volume: 40
  start-page: 3686
  year: 2020
  end-page: 3696
  article-title: Recent Progress in C(sp )–H Asymmetric Oxidation Catalyzed by Bioinspired Metal Complexes
  publication-title: Chin. J. Org. Chem.
– volume: 119
  start-page: 9075
  year: 1997
  end-page: 9076
  article-title: Asymmetric Intermolecular Carbenoid C—H Insertions Catalyzed by Rhodium(II) ( )‐ ‐( ‐Dodecylphenyl)sulfonylprolinate
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 20828
  year: 2020
  end-page: 20836
  article-title: Enantioselective Intermolecular Radical C—H Amination
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 691
  year: 2015
  end-page: 695
  article-title: Enantiotopos‐Selective C—H Oxygenation Catalyzed by a Supramolecular Ruthenium Complex
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 1048
  year: 2018
  end-page: 1055
  article-title: Design of Catalysts for Site‐Selective and Enantioselective Functionalization of Non‐activated Primary C—H Bonds
  publication-title: Nat. Chem.
– volume: 517
  start-page: 600
  year: 2015
  end-page: 604
  article-title: Metal‐Catalysed Azidation of Tertiary C—H Bonds Suitable for Late‐Stage Functionalization
  publication-title: Nature
– volume: 140
  start-page: 7678
  year: 2018
  end-page: 7684
  article-title: Epimerization of Tertiary Carbon Centers via Reversible Cleavage of Unactivated C(sp )–H Bonds
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4786
  year: 2020
  end-page: 4790
  article-title: Light‐Mediated Asymmetric Aliphatic C—H Alkylation with Hydrogen Atom Transfer Catalyst and Chiral Phosphoric Acid
  publication-title: ACS Catal.
– volume: 118
  start-page: 8837
  year: 1996
  end-page: 8846
  article-title: Chiral Catalyst Controlled Diastereoselection and Regioselection in Intramolecular Carbon‐Hydrogen Insertion Reactions of Diazoacetates
  publication-title: J. Am. Chem. Soc.
– volume: 519
  start-page: 74
  year: 2015
  end-page: 77
  article-title: The Direct Arylation of Allylic sp C—H bonds Organic and Photoredox Catalysis
  publication-title: Nature
– volume: 139
  start-page: 7709
  year: 2017
  end-page: 7712
  article-title: Copper‐Catalyzed Arylation of Benzylic C−H bonds with Alkylarenes as the Limiting Reagents
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 8537
  year: 1989
  end-page: 8538
  article-title: Asymmetric Hydroxylation by a Chiral Iron Porphyrin
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3804
  year: 2019
  article-title: Photocatalytic Enantioselective ‐Aminoalkylation of Acyclic Imine Derivatives by a Chiral Copper Catalyst
  publication-title: Nat. Commun.
– volume: 117
  start-page: 9433
  year: 2017
  end-page: 9520
  article-title: Organocatalysis in Inert C—H Bond Functionalization
  publication-title: Chem. Rev.
– volume: 140
  start-page: 4792
  year: 2018
  end-page: 4796
  article-title: Enantioselective Radical Cyclization for Construction of 5‐Membered Ring Structures by Metalloradical C—H Alkylation
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 629
  year: 2017
  end-page: 634
  article-title: Enantioselective, Intermolecular Benzylic C—H Amination Catalysed by an Engineered Iron‐haem Enzyme
  publication-title: Nat. Chem.
– volume: 43
  start-page: 564
  year: 2022
  end-page: 570
  article-title: Photocatalyzed Site‐Selective C(sp )–H Sulfonylation of Toluene Derivatives and Cycloalkanes with Inorganic Sulfinates
  publication-title: Chin. J. Catal.
– volume: 47
  start-page: 9747
  year: 2008
  end-page: 9751
  publication-title: Angew. Chem. Int. Ed.
– volume: 353
  start-page: 1014
  year: 2016
  end-page: 1018
  article-title: Enantioselective Cyanation of Benzylic C—H Bonds via Copper‐Catalyzed Radical Relay
  publication-title: Science
– volume: 57
  start-page: 9956
  year: 2021
  end-page: 9967
  article-title: Homogeneous Catalytic C(sp )–H Functionalization of Gaseous Alkanes
  publication-title: Chem. Commun.
– volume: 2
  start-page: 1016
  year: 2019
  end-page: 1026
  article-title: Photocatalytic Regio‐ and Stereoselective C(sp )–H Functionalization of Benzylic and Allylic Hydrocarbons as well as Unactivated Alkanes
  publication-title: Nat. Catal.
– volume: 40
  start-page: 1937
  year: 2011
  end-page: 1949
  article-title: Direct Sp ‐C–H activation and functionalization of alcohol and ether
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 6422
  year: 2006
  end-page: 6425
  article-title: Recent Advances in Catalytic Enantioselective Intermolecular C—H Functionalization
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  start-page: 4519
  year: 2020
  end-page: 4532
  publication-title: Org. Biomol. Chem.
– volume: 417
  start-page: 507
  year: 2002
  end-page: 514
  article-title: Understanding and Exploiting C−H Bond Activation
  publication-title: Nature
– volume: 60
  start-page: 26710
  year: 2021
  end-page: 26717
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 7652
  year: 2016
  end-page: 7656
  article-title: Rh(I)/NHC*‐Catalyzed Site‐ and Enantioselective Functionalization of C(sp )–H Bonds Toward Chiral Triarylmethanes
  publication-title: ACS Catal.
– volume: 564
  start-page: 395
  year: 2018
  end-page: 399
  article-title: Desymmetrization of Cyclohexanes by Site‐ and Stereoselective C—H Functionalization
  publication-title: Nature
– volume: 94
  start-page: 1091
  year: 1994
  end-page: 1160
  article-title: Organic Synthesis with ‐Diazo Carbonyl Compounds
  publication-title: Chem. Rev.
– volume: 3
  start-page: 196
  year: 2017
  end-page: 204
  article-title: Highly Enantioselective Oxidation of Nonactivated Aliphatic C—H Bonds with Hydrogen Peroxide Catalyzed by Manganese Complexes
  publication-title: ACS Cent. Sci.
– volume: 40
  start-page: 1857
  year: 2011
  end-page: 1869
  article-title: Guiding Principles for Site Selective and Stereoselective Intermolecular C—H Functionalization by Donor/ Acceptor Rhodium Carbenes
  publication-title: Chem. Soc. Rev.
– volume: 351
  start-page: 1421
  year: 2016
  end-page: 1424
  article-title: Catalyst‐Controlled Selectivity in the C—H Borylation of Methane and Ethane
  publication-title: Science
– volume: 2017
  start-page: 2056
  year: 2017
  end-page: 2071
  article-title: Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis
  publication-title: Eur. J. Org. Chem.
– volume: 49
  start-page: 2232
  year: 2016
  end-page: 2242
  article-title: Decatungstate Anion for Photocatalyzed "Window Ledge" Reactions
  publication-title: Acc. Chem. Res.
– ident: e_1_2_6_44_1
  doi: 10.1021/ja994136c
– ident: e_1_2_6_51_1
  doi: 10.1021/acscatal.8b03054
– ident: e_1_2_6_59_1
  doi: 10.1021/acscentsci.6b00368
– ident: e_1_2_6_7_1
  doi: 10.1126/science.aad9289
– ident: e_1_2_6_72_1
  doi: 10.1038/s41467-021-22690-3
– ident: e_1_2_6_60_1
  doi: 10.1021/acs.accounts.5b00348
– ident: e_1_2_6_73_1
  doi: 10.1021/acscatal.0c00610
– ident: e_1_2_6_22_1
  doi: 10.1002/anie.202110233
– ident: e_1_2_6_23_1
  doi: 10.1038/s41586-019-1655-8
– ident: e_1_2_6_37_1
  doi: 10.1039/c0cs00217h
– ident: e_1_2_6_43_1
  doi: 10.1021/ja971915p
– ident: e_1_2_6_57_1
  doi: 10.1021/ic300457z
– ident: e_1_2_6_29_1
  doi: 10.1039/c0cs00063a
– ident: e_1_2_6_34_1
  doi: 10.1039/D1CS00556A
– ident: e_1_2_6_45_1
  doi: 10.1021/ol060893l
– ident: e_1_2_6_5_1
  doi: 10.1021/acs.accounts.6b00621
– ident: e_1_2_6_19_1
  doi: 10.1021/acscatal.8b03654
– ident: e_1_2_6_28_1
  doi: 10.31635/ccschem.020.202000151
– ident: e_1_2_6_55_1
  doi: 10.1002/anie.201409224
– ident: e_1_2_6_71_1
  doi: 10.1038/s41929-019-0357-9
– ident: e_1_2_6_8_1
  doi: 10.1038/s41586-018-0808-5
– ident: e_1_2_6_26_1
  doi: 10.1021/jacs.0c05373
– ident: e_1_2_6_16_1
  doi: 10.1126/science.aaf7783
– ident: e_1_2_6_74_1
  doi: 10.1021/acs.orglett.1c00801
– ident: e_1_2_6_78_1
  doi: 10.1038/nature17651
– volume: 140
  start-page: 7678
  year: 2018
  ident: e_1_2_6_14_1
  article-title: Epimerization of Tertiary Carbon Centers via Reversible Cleavage of Unactivated C(sp3)–H Bonds
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_61_1
  doi: 10.1002/ejoc.201601485
– ident: e_1_2_6_46_1
  doi: 10.1002/anie.200803157
– ident: e_1_2_6_77_1
  doi: 10.1021/ja0303790
– ident: e_1_2_6_75_1
  doi: 10.1021/cr9500500
– ident: e_1_2_6_48_1
  doi: 10.1038/nature24641
– ident: e_1_2_6_11_1
  doi: 10.1021/jacs.0c04801
– ident: e_1_2_6_18_1
  doi: 10.1021/jacs.9b02811
– ident: e_1_2_6_2_1
  doi: 10.1126/science.328.5986.1624
– ident: e_1_2_6_4_1
  doi: 10.1038/s41570-019-0099-x
– ident: e_1_2_6_21_1
  doi: 10.1038/s41467-019-11392-6
– ident: e_1_2_6_63_1
  doi: 10.1039/D0OB00854K
– ident: e_1_2_6_49_1
  doi: 10.1038/s41929-019-0417-1
– ident: e_1_2_6_76_1
  doi: 10.1038/nchem.2783
– ident: e_1_2_6_69_1
  doi: 10.1038/s41467-019-11688-7
– ident: e_1_2_6_31_1
  doi: 10.1021/acs.chemrev.6b00620
– ident: e_1_2_6_70_1
  doi: 10.6023/cjoc202205032
– ident: e_1_2_6_36_1
  doi: 10.1002/anie.201609105
– ident: e_1_2_6_3_1
  doi: 10.1038/417507a
– ident: e_1_2_6_35_1
  doi: 10.1039/D1CC04073A
– ident: e_1_2_6_56_1
  doi: 10.1021/ja00204a047
– ident: e_1_2_6_38_1
  doi: 10.1021/acs.accounts.8b00265
– ident: e_1_2_6_53_1
  doi: 10.1039/C8CC03165G
– ident: e_1_2_6_62_1
  doi: 10.1039/D0GC01035A
– ident: e_1_2_6_64_1
  doi: 10.1021/acs.accounts.6b00339
– ident: e_1_2_6_20_1
  doi: 10.1038/s41467-019-13705-1
– ident: e_1_2_6_10_1
  doi: 10.1126/science.aat9750
– ident: e_1_2_6_30_1
  doi: 10.1021/ar020230d
– ident: e_1_2_6_54_1
  doi: 10.6023/cjoc202006008
– ident: e_1_2_6_41_1
  doi: 10.1021/ja961682m
– ident: e_1_2_6_42_1
  doi: 10.1021/ja9515213
– ident: e_1_2_6_58_1
  doi: 10.1039/a904100a
– ident: e_1_2_6_24_1
  doi: 10.1021/jacs.8b01662
– ident: e_1_2_6_17_1
  doi: 10.1021/acscatal.6b02392
– ident: e_1_2_6_39_1
  doi: 10.1002/anie.200601814
– ident: e_1_2_6_50_1
  doi: 10.1038/s41557-018-0087-7
– ident: e_1_2_6_67_1
  doi: 10.31635/ccschem.020.202000565
– ident: e_1_2_6_25_1
  doi: 10.1021/jacs.7b03781
– ident: e_1_2_6_12_1
  doi: 10.1021/jacs.0c00212
– ident: e_1_2_6_13_1
  doi: 10.1038/s41557-018-0020-0
– ident: e_1_2_6_27_1
  doi: 10.1021/jacs.0c10415
– ident: e_1_2_6_40_1
  doi: 10.1021/cr00028a010
– ident: e_1_2_6_68_1
  doi: 10.1021/jacs.8b09251
– ident: e_1_2_6_52_1
  doi: 10.1039/c3ra46996d
– ident: e_1_2_6_15_1
  doi: 10.1038/nature14255
– ident: e_1_2_6_79_1
  doi: 10.1038/s41586-018-0799-2
– ident: e_1_2_6_47_1
  doi: 10.1021/ja202969z
– ident: e_1_2_6_32_1
  doi: 10.1021/acs.chemrev.6b00657
– ident: e_1_2_6_33_1
  doi: 10.1021/acs.chemrev.1c00263
– ident: e_1_2_6_66_1
  doi: 10.1016/S1872-2067(21)63953-0
– ident: e_1_2_6_6_1
  doi: 10.1038/nature14127
– ident: e_1_2_6_65_1
  doi: 10.1021/jacs.9b07960
– ident: e_1_2_6_9_1
  doi: 10.1021/ja411912p
SSID ssj0027726
Score 2.41968
SecondaryResourceType review_article
Snippet Comprehensive Summary The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization...
The direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization is a useful process,...
Comprehensive SummaryThe direct conversion of unactivated alkanes and cycloalkanes into structurally diverse molecules through aliphatic C—H functionalization...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2825
SubjectTerms Alkane
Alkanes
Asymmetric catalysis
Asymmetry
Biomimetics
Catalysis
Catalysts
Control methods
Cycloalkanes
Cytochromes P450
C—H functionalization
Direct conversion
Enantiomers
Enantioselectivity
Hydrogen bonds
Lewis acid
Manganese
Oxidation
Phosphoric acid
Rhodium
Selectivity
Site‐selectivity
Stereoselectivity
Substrates
Title Recent Advances in Asymmetric Transformations of Unactivated Alkanes and Cycloalkanes through Direct C—H Functionalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.202200435
https://www.proquest.com/docview/2730524191
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xLk6n5EHwKVubNun6OIpjDFSQDfZWcivoZit2EyY--CP8hf4Sk6bdRRBB39qSlDbnJOdLOOf7ALhwBE0wSzASkjKk8S1BnAUctf0Eu5Rx5RWakdc3tDf0-yMyWqnit_wQiwM3MzOK9dpMcMbz1pI0VDxkhoIQGzN7psrcJGwZVHSHlzuuoNBbMzxDiDr-qGJtdHBrvft6VFpCzVXAWkSc7g5g1bfaRJNxczblTfH6jcbxPz-zC7ZLOAo71n_2wIZK98FmVKnAHYA3jSt1XIIdmyuQw_sUdvL546NR4hJwsIJ7tf_CLIHD1NRKvGgMK2FnMmZ6LYUslTCai0nGygelPBC0Ky6MPt8_erCrY6w9miyLQw_BsHs1iHqoVGxAwuAQ5KrQEZL5xFWESM8RbqACvXf3fCZY4FFGEs40QuTSDWUgjb6M5ytMpRLtgPHQOwK1NEvVMYAhJZgnMlSCMD8JKFdEwxklQ09ISfykDlBlsViUdOZGVWMSWyJmHJsxjRdjWgeXi_ZPlsjjx5aNygHickLnsUZ5DtFoJ3TrABeW_OUtcdS_jRZ3J3_pdAq2zLVNnmmA2vR5ps40BJry88LNvwB2OwEh
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL34WOjGtzg6ahaCq2ibNqldDsVhfIyCzIC7kldBHTvijILiwo_wC_0Sk6adUUEEXTYkpU3u4yTcnAOw40mWEZ4RLBXj2OBbigWPBD4IM-IzLnRQaEa2z1irGx5f0qqa0N6FcfwQowM36xlFvLYObg-k98esofK6bzkIiV3ngE7CtJX1LnZVF2S854oKxTXLNISZF15WvI0e2f86_mteGoPNz5C1yDnNeRDV17pSk5u9h6HYk8_fiBz_9TsLMFciUtRwJrQIEzpfgpmkEoJbhhcDLU1qQg1XLjBAVzlqDJ5ub60Yl0SdT9DXmDDqZ6ib2-sSjwbGKtTo3XATThHPFUqeZK_Py4ZSIQi5oIuS99e3FmqaNOtOJ8v7oSvQbR52khYuRRuwtFAE-zr2pOIh9TWlKvCkH-nIbN-DkEseBYzTTHADEoXyYxUpKzEThJowpeVBxEUcrMJU3s_1GqCYUSIyFWtJeZhFTGhqEI1WcSCVomFWA1wtWSpLRnMrrNFLHRczSe2cpqM5rcHuqP-d4_L4sWe9soC09OlBaoCeRw3gif0akGIpf3lLmhyfJ6On9b8M2oaZVqd9mp4enZ1swKxtd7U0dZga3j_oTYOIhmKrsPkPf64FPA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL1iQxq88LGBKNuYH5B4cpc4ttM8VtmqssFAqJX6FvlTGmvTau0mDfHAj-AX7pdgx0nbTUJI7DGWHSX29b3H1r3nALyPFLdEWIKV5gI7fMuwFKnEHWpJzIU0SaUZ-fmM94f0ZMRGa1X8gR9ieeHmd0blr_0Gn2l7uCINVd-nnoKQ-GVO2AY8pjzqeLs--kZWR660ElzzREOYR3TU0DZG5PDu-LthaYU11xFrFXJ6z0E0HxsyTS7aVwvZVj_u8Tg-5G9ewLMaj6JuMKCX8MiU2_Akb2TgduCnA5YuMKFuSBaYo_MSdec3k4mX4lJosAZ8nQGjqUXD0hdLXDsQq1F3fCGcM0Wi1Ci_UeOpqBtqfSAUXC7Kb3_97qOeC7LhbrKuDn0Fw97xIO_jWrIBKw9EcGyySGlBWWwY00mk4tSk7vCeUKFEmnDBrBQOIkodZzrVXmAmoYZwbVQnFTJLXsNmOS3NG0AZZ0RanRnFBLUpl4Y5PGN0liitGbUtwM2KFarmM_eyGuMiMDGTws9psZzTFnxY9p8FJo-_9txrDKCod_S8cDAvYg7uZHELSLWS_3hLkZ98yZdPb_9n0AFsfT3qFZ8-np3uwlPfHBJp9mBzcXll9h0cWsh3lcX_AYnpA_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Asymmetric+Transformations+of+Unactivated+Alkanes+and+Cycloalkanes+through+Direct+C%E2%80%94H+Functionalization&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Cheng%2C+Shiyan&rft.au=Li%2C+Qianyu&rft.au=Cheng%2C+Xiuliang&rft.au=Yu%E2%80%90Mei+Lin&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=40&rft.issue=23&rft.spage=2825&rft.epage=2837&rft_id=info:doi/10.1002%2Fcjoc.202200435&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon