Tuning Rate‐Limiting Factors for Graphite Anodes in Fast‐Charging Li‐Ion Batteries

Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 29
Main Authors Wang, Yinchao, Ji, Yuchen, Yin, Zu‐Wei, Sheng, Tian, Cao, Aimin, Zhao, Wenguang, Huang, Yuxiang, Li, Jun‐Tao, Pan, Feng, Yang, Luyi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202401515

Cover

Loading…
Abstract Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a typical localized high‐concentration electrolyte consisting of lithium bis(fluorosulfonyl)imide in dimethoxyethane with 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether as a diluent is selected to investigate the RDS of lithiation process in graphite anode, including the diffusion of solvated Li+ in the electrolyte, the desolvation behavior of solvated Li+, the Li+ transfer in solid electrolyte interphase (SEI) on the graphite surface, and the Li+ diffusion in bulk graphite. The results indicated that the rate performance of graphite anode in LHCE lies in the balance between Li+ desolvation process and Li+ migration in SEI. Through the regulation of solvated Li+ structure and SEI component, excellent fast‐charging performance can be obtained in the LHCE. The present studies not only offer fresh insights in the mechanistic understanding of fast‐charging batteries, but also provide new clues to the performance improvement of graphite anodes. Localized high‐concentration electrolytes (LHCEs) with varying concentrations are designed to investigate the rate‐determining steps (RDSs) in the lithiation process of graphite anodes. It is revealed that the desolvation of solvated Li+ and the Li+ transfer in solid electrolyte interphase (SEI) are the RDSs for fast‐charging of graphite. This study provides new insights into electrolyte design for the fast‐charging lithium‐ion batteries.
AbstractList Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a typical localized high‐concentration electrolyte consisting of lithium bis(fluorosulfonyl)imide in dimethoxyethane with 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether as a diluent is selected to investigate the RDS of lithiation process in graphite anode, including the diffusion of solvated Li+ in the electrolyte, the desolvation behavior of solvated Li+, the Li+ transfer in solid electrolyte interphase (SEI) on the graphite surface, and the Li+ diffusion in bulk graphite. The results indicated that the rate performance of graphite anode in LHCE lies in the balance between Li+ desolvation process and Li+ migration in SEI. Through the regulation of solvated Li+ structure and SEI component, excellent fast‐charging performance can be obtained in the LHCE. The present studies not only offer fresh insights in the mechanistic understanding of fast‐charging batteries, but also provide new clues to the performance improvement of graphite anodes.
Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a typical localized high‐concentration electrolyte consisting of lithium bis(fluorosulfonyl)imide in dimethoxyethane with 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether as a diluent is selected to investigate the RDS of lithiation process in graphite anode, including the diffusion of solvated Li + in the electrolyte, the desolvation behavior of solvated Li + , the Li + transfer in solid electrolyte interphase (SEI) on the graphite surface, and the Li + diffusion in bulk graphite. The results indicated that the rate performance of graphite anode in LHCE lies in the balance between Li + desolvation process and Li + migration in SEI. Through the regulation of solvated Li + structure and SEI component, excellent fast‐charging performance can be obtained in the LHCE. The present studies not only offer fresh insights in the mechanistic understanding of fast‐charging batteries, but also provide new clues to the performance improvement of graphite anodes.
Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a typical localized high‐concentration electrolyte consisting of lithium bis(fluorosulfonyl)imide in dimethoxyethane with 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether as a diluent is selected to investigate the RDS of lithiation process in graphite anode, including the diffusion of solvated Li+ in the electrolyte, the desolvation behavior of solvated Li+, the Li+ transfer in solid electrolyte interphase (SEI) on the graphite surface, and the Li+ diffusion in bulk graphite. The results indicated that the rate performance of graphite anode in LHCE lies in the balance between Li+ desolvation process and Li+ migration in SEI. Through the regulation of solvated Li+ structure and SEI component, excellent fast‐charging performance can be obtained in the LHCE. The present studies not only offer fresh insights in the mechanistic understanding of fast‐charging batteries, but also provide new clues to the performance improvement of graphite anodes. Localized high‐concentration electrolytes (LHCEs) with varying concentrations are designed to investigate the rate‐determining steps (RDSs) in the lithiation process of graphite anodes. It is revealed that the desolvation of solvated Li+ and the Li+ transfer in solid electrolyte interphase (SEI) are the RDSs for fast‐charging of graphite. This study provides new insights into electrolyte design for the fast‐charging lithium‐ion batteries.
Author Zhao, Wenguang
Sheng, Tian
Pan, Feng
Yin, Zu‐Wei
Huang, Yuxiang
Li, Jun‐Tao
Ji, Yuchen
Yang, Luyi
Cao, Aimin
Wang, Yinchao
Author_xml – sequence: 1
  givenname: Yinchao
  surname: Wang
  fullname: Wang, Yinchao
  organization: Peking University Shenzhen Graduate School
– sequence: 2
  givenname: Yuchen
  surname: Ji
  fullname: Ji, Yuchen
  organization: Peking University Shenzhen Graduate School
– sequence: 3
  givenname: Zu‐Wei
  surname: Yin
  fullname: Yin, Zu‐Wei
  email: yinzuwei@xmu.edu.cn
  organization: Xiamen University
– sequence: 4
  givenname: Tian
  surname: Sheng
  fullname: Sheng, Tian
  organization: Anhui Normal University
– sequence: 5
  givenname: Aimin
  surname: Cao
  fullname: Cao, Aimin
  organization: Peking University Shenzhen Graduate School
– sequence: 6
  givenname: Wenguang
  surname: Zhao
  fullname: Zhao, Wenguang
  organization: Peking University Shenzhen Graduate School
– sequence: 7
  givenname: Yuxiang
  surname: Huang
  fullname: Huang, Yuxiang
  organization: Peking University Shenzhen Graduate School
– sequence: 8
  givenname: Jun‐Tao
  surname: Li
  fullname: Li, Jun‐Tao
  organization: Xiamen University
– sequence: 9
  givenname: Feng
  orcidid: 0000-0002-1362-4336
  surname: Pan
  fullname: Pan, Feng
  email: panfeng@pkusz.edu.cn
  organization: Peking University Shenzhen Graduate School
– sequence: 10
  givenname: Luyi
  surname: Yang
  fullname: Yang, Luyi
  email: yangly@pkusz.edu.cn
  organization: Peking University Shenzhen Graduate School
BookMark eNqFkM9KAzEQh4Mo2Favnhc8b82f3U1zrNXWwoogFXoL2WzSprRJTVKkNx_BZ_RJ3KVSQRBPM5P5vgn8uuDUOqsAuEKwjyDEN6LWmz6GOIMoR_kJ6KACFSmBeHB67NH8HHRDWEGIKCVZB8xnO2vsInkWUX2-f5RmY2I7j4WMzodEO59MvNguTVTJ0LpahcTYZh1ig4-Wwi9avDTNNHU2uRUxKm9UuABnWqyDuvyuPfAyvp-NHtLyaTIdDctUEkTzFClY0ApVFdWY1BrnqCAwk5IpURAliKa0eZOUtgtGqppprBhmulCZJBkjPXB9uLv17nWnQuQrt_O2-ZITOEB5hgtIGyo7UNK7ELzSXJooonE2emHWHEHeZsjbDPkxw0br_9K23myE3_8tsIPwZtZq_w_Nh3fjxx_3C6k8iFY
CitedBy_id crossref_primary_10_1002_aenm_202405363
crossref_primary_10_1016_j_cej_2024_158116
crossref_primary_10_1016_j_cej_2025_159623
crossref_primary_10_1016_j_jcis_2025_02_032
crossref_primary_10_1016_j_xcrp_2024_102153
crossref_primary_10_1039_D4TA05076B
crossref_primary_10_1021_acsenergylett_4c01920
crossref_primary_10_1016_j_cej_2025_161452
Cites_doi 10.1038/nmat4738
10.1002/aenm.201901075
10.1002/aenm.202000368
10.1002/cjoc.202300487
10.1039/C9CS00728H
10.1002/sstr.202000010
10.1016/j.carbon.2016.04.008
10.1038/s41467-022-29199-3
10.1016/j.rineng.2022.100472
10.1149/1945-7111/abd60e
10.1149/1945-7111/ac4b87
10.1002/aenm.201902618
10.1021/acs.jpcc.2c08357
10.3390/ma14164683
10.1002/aenm.202101126
10.1002/inf2.12000
10.1039/D1CS00629K
10.1039/D1EE03422G
10.1016/j.eng.2018.10.008
10.1002/adfm.202200796
10.1021/acsami.9b02236
10.1016/j.jpowsour.2015.03.164
10.1016/j.cjsc.2023.100032
10.1002/smll.202205315
10.1038/s41560-023-01387-5
10.1038/nnano.2016.237
10.1038/s41467-022-32794-z
10.1002/agt2.153
10.1002/aenm.202203307
10.1002/anie.202009738
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202401515
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202401515
ADFM202401515
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2022YFB2502103
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 22288102
– fundername: National Natural Science Foundation of China
  funderid: 22309153
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  funderid: ZDSYS201707281026184; JSGG20220831095604008
– fundername: Guangdong Provincial Department of Science and Technology
  funderid: 2017B030301013
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 20720230039
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3175-1e067b1bb7f23df2516304cc9ea63ea3f77251c77516393bd9f2e929f6e4c3493
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 00:14:04 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Tue Jul 01 00:30:59 EDT 2025
Wed Jan 22 17:17:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-1e067b1bb7f23df2516304cc9ea63ea3f77251c77516393bd9f2e929f6e4c3493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1362-4336
PQID 3081542607
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3081542607
crossref_citationtrail_10_1002_adfm_202401515
crossref_primary_10_1002_adfm_202401515
wiley_primary_10_1002_adfm_202401515_ADFM202401515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2023; 13
2021; 168
2019; 11
2019; 10
2019; 1
2020; 60
2023; 8
2015; 286
2023; 127
2016; 105
2020; 10
2021; 50
2016; 16
2016; 11
2023; 42
2021; 14
2018; 4
2021; 11
2020; 1
2022; 3
2020; 49
2022; 13
2022; 15
2024; 42
2022; 32
2022; 19
2022; 169
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 60
  start-page: 3402
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 4683
  year: 2021
  publication-title: Materials
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 43
  year: 2024
  publication-title: Chin. J. Struct. Chem.
– volume: 4
  start-page: 831
  year: 2018
  publication-title: Engineering
– volume: 11
  start-page: 1039
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 1365
  year: 2023
  publication-title: Nat. Energy
– volume: 1
  year: 2020
  publication-title: Small Struct.
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 49
  start-page: 3806
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 15
  year: 2022
  publication-title: Results Eng.
– volume: 13
  start-page: 2575
  year: 2022
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5250
  year: 2022
  publication-title: Nat. Commun.
– volume: 127
  start-page: 2755
  year: 2023
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 1647
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  year: 2023
  publication-title: Chin. J. Struct. Chem.
– volume: 286
  start-page: 330
  year: 2015
  publication-title: J. Power Sources
– volume: 1
  start-page: 6
  year: 2019
  publication-title: InfoMat
– volume: 105
  start-page: 52
  year: 2016
  publication-title: Carbon
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 50
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 57
  year: 2016
  publication-title: Nat. Mater.
– volume: 19
  year: 2022
  publication-title: Small
– volume: 3
  year: 2022
  publication-title: Aggregate
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_3_1
  doi: 10.1038/nmat4738
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201901075
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.202000368
– ident: e_1_2_7_18_1
  doi: 10.1002/cjoc.202300487
– ident: e_1_2_7_13_1
  doi: 10.1039/C9CS00728H
– ident: e_1_2_7_17_1
  doi: 10.1002/sstr.202000010
– ident: e_1_2_7_12_1
  doi: 10.1016/j.carbon.2016.04.008
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-022-29199-3
– ident: e_1_2_7_5_1
  doi: 10.1016/j.rineng.2022.100472
– ident: e_1_2_7_19_1
  doi: 10.1149/1945-7111/abd60e
– ident: e_1_2_7_15_1
  doi: 10.1149/1945-7111/ac4b87
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.201902618
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.jpcc.2c08357
– ident: e_1_2_7_25_1
  doi: 10.3390/ma14164683
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.202101126
– ident: e_1_2_7_10_1
  doi: 10.1002/inf2.12000
– ident: e_1_2_7_28_1
  doi: 10.1039/D1CS00629K
– ident: e_1_2_7_23_1
  doi: 10.1039/D1EE03422G
– ident: e_1_2_7_7_1
  doi: 10.1016/j.eng.2018.10.008
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.202200796
– ident: e_1_2_7_29_1
  doi: 10.1021/acsami.9b02236
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jpowsour.2015.03.164
– ident: e_1_2_7_8_1
  doi: 10.1016/j.cjsc.2023.100032
– ident: e_1_2_7_4_1
  doi: 10.1002/smll.202205315
– ident: e_1_2_7_30_1
  doi: 10.1038/s41560-023-01387-5
– ident: e_1_2_7_1_1
  doi: 10.1038/nnano.2016.237
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-022-32794-z
– ident: e_1_2_7_21_1
  doi: 10.1002/agt2.153
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.202203307
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202009738
SSID ssj0017734
Score 2.548567
Snippet Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Charging
Diffusion rate
Electrolytes
fast‐charging batteries
Graphite
graphite anode
Lithium-ion batteries
localized high‐concentration electrolyte
rate‐determining steps
Solid electrolytes
Title Tuning Rate‐Limiting Factors for Graphite Anodes in Fast‐Charging Li‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202401515
https://www.proquest.com/docview/3081542607
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4IwoFeUBiSlvHzmusgFAQZahaqVsUPyJVoBTRdmHiJ_Ab-SXcxU3aIiEk2GLZFyU-2_fZvvuOkAumhaeizDhCStighEo5oZsaUIgxwtNKiSJ_Su_R7w7F_cgbrUTxW36I6sANZ0axXuMET-W0tSQNTXWGkeRgkdAmwyKMDluIivoVfxQLAnut7DN08GKjkrWx7bbWxdet0hJqrgLWwuLEOyQtv9U6mjw15zPZVG_faBz_8zO7ZHsBR2nHjp89smHyfbK1QlJ4QEaDOZ6d0D6g0s_3jyIiCsuxzdRDAfXSW6S9BvBKO_lEmykd51A9nUFzvM7HPEj0YQylu0lOLaMnbNAPyTC-GVx1nUU-BkchynCYAdMmmZRB5nKdATLyeVsoFZnU5yblGSB1j6kgwIqISx1lrgH4lflGKC4ifkRq-SQ3x4R6WSS0CHyNhHJuyiINgiEPYT9qmB9GdeKU-kjUgqwcc2Y8J5Zm2U2wx5Kqx-rksmr_Ymk6fmzZKNWbLKbrNOEAjDzk6g_qxC309Mtbks513KtKJ38ROiWb-GxdfxukNnudmzMAODN5XgziL8CC8ts
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFL0qdAEsoDwqArR4gcRqAI89r2VEmoaSZBElUnaj8WOkiGpSNcmGFZ_Qb-yXcO84MwlIFRJdemyPxr723GP7-hyAC25koJPcelIpXKDEWnuxn1k0iLUyMFrLUj-l1w87I_ljHFTRhHQXxvFD1BtuNDPK_zVNcNqQvl6xhmYmp6vk6JLIKW_AR5L1JhGD1qBmkOJR5A6WQ04hXnxc8Tbe-Ncv67_0SyuwuQ5ZS5_T3gNVfa0LNXm4WszVlX58ReT4X835BLtLRMqabgjtwwdbHMDOGk_hIYyHC9o-YQMEpn-f_pSXoijddmI9DIEv-07M14hfWbOYGjtjkwKzZ3MsTif6JIXEuhNM3U0L5kg9cY1-BKP2t-Ftx1tKMniagIbHLXo3xZWKcl-YHMFRKG6k1onNQmEzkSNYD7iOIspIhDJJ7ltEYHlopRYyEZ9hs5gW9hhYkCfSyCg0xCnnZzwxWDEWMS5JLQ_jpAFeZZBUL_nKSTbjZ-qYlv2Ueiyte6wBl3X5X46p458lzyr7pssZO0sFYqOA6PqjBvilod54S9pstXt16uQ9lc5hqzPsddPuXf_-FLbpuYsEPoPN-e-F_YJ4Z66-liP6GfRJ9vU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gOjBt7g-cxA8VU2Tvo6LWt8iorC30uYBi9IVd_fiyZ_gb_SXONPs1lUQQY9pMqXJZDpfHvMNwA7XMlCJNZ4sClygxEp5sZ8bVIgxMtBKySp_ytV1eHovz1tBaySK3_FD1BtuZBnV_5oM_Enb_U_S0FxbiiRHj0Q-eRwmZYgWQ7DotiaQ4lHkzpVDTje8eGtI23jg73-V_-qWPrHmKGKtXE46B_nwY91Nk4e9fq_YUy_feBz_05t5mB3gUdZ0E2gBxky5CDMjLIVL0Lrr0-YJu0VY-v76VoVEUTl1qXoYwl52QrzXiF5Zs-xo02XtEqu7PWxO5_mUCIldtrF01imZo_TEFfoy3KfHd4en3iAhg6cIZnjcoG8reFFE1hfaIjQKxYFUKjF5KEwuLEL1gKsooopEFDqxvkH8ZUMjlZCJWIGJslOaVWCBTaSWUaiJUc7PeaJRMBYxLkgND-OkAd5QH5kasJVT0ozHzPEs-xmNWFaPWAN26_ZPjqfjx5YbQ_VmA3vtZgKRUUBk_VED_EpPv7wlax6lV3Vp7S9C2zB1c5Rml2fXF-swTY_dNeANmOg9980mgp1esVXN5w8rwvWt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Rate%E2%80%90Limiting+Factors+for+Graphite+Anodes+in+Fast%E2%80%90Charging+Li%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Yinchao&rft.au=Ji%2C+Yuchen&rft.au=Yin%2C+Zu%E2%80%90Wei&rft.au=Sheng%2C+Tian&rft.date=2024-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=29&rft_id=info:doi/10.1002%2Fadfm.202401515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202401515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon