Tuning Rate‐Limiting Factors for Graphite Anodes in Fast‐Charging Li‐Ion Batteries
Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 29 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202401515 |
Cover
Loading…
Abstract | Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a typical localized high‐concentration electrolyte consisting of lithium bis(fluorosulfonyl)imide in dimethoxyethane with 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether as a diluent is selected to investigate the RDS of lithiation process in graphite anode, including the diffusion of solvated Li+ in the electrolyte, the desolvation behavior of solvated Li+, the Li+ transfer in solid electrolyte interphase (SEI) on the graphite surface, and the Li+ diffusion in bulk graphite. The results indicated that the rate performance of graphite anode in LHCE lies in the balance between Li+ desolvation process and Li+ migration in SEI. Through the regulation of solvated Li+ structure and SEI component, excellent fast‐charging performance can be obtained in the LHCE. The present studies not only offer fresh insights in the mechanistic understanding of fast‐charging batteries, but also provide new clues to the performance improvement of graphite anodes.
Localized high‐concentration electrolytes (LHCEs) with varying concentrations are designed to investigate the rate‐determining steps (RDSs) in the lithiation process of graphite anodes. It is revealed that the desolvation of solvated Li+ and the Li+ transfer in solid electrolyte interphase (SEI) are the RDSs for fast‐charging of graphite. This study provides new insights into electrolyte design for the fast‐charging lithium‐ion batteries. |
---|---|
AbstractList | Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a typical localized high‐concentration electrolyte consisting of lithium bis(fluorosulfonyl)imide in dimethoxyethane with 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether as a diluent is selected to investigate the RDS of lithiation process in graphite anode, including the diffusion of solvated Li+ in the electrolyte, the desolvation behavior of solvated Li+, the Li+ transfer in solid electrolyte interphase (SEI) on the graphite surface, and the Li+ diffusion in bulk graphite. The results indicated that the rate performance of graphite anode in LHCE lies in the balance between Li+ desolvation process and Li+ migration in SEI. Through the regulation of solvated Li+ structure and SEI component, excellent fast‐charging performance can be obtained in the LHCE. The present studies not only offer fresh insights in the mechanistic understanding of fast‐charging batteries, but also provide new clues to the performance improvement of graphite anodes. Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a typical localized high‐concentration electrolyte consisting of lithium bis(fluorosulfonyl)imide in dimethoxyethane with 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether as a diluent is selected to investigate the RDS of lithiation process in graphite anode, including the diffusion of solvated Li + in the electrolyte, the desolvation behavior of solvated Li + , the Li + transfer in solid electrolyte interphase (SEI) on the graphite surface, and the Li + diffusion in bulk graphite. The results indicated that the rate performance of graphite anode in LHCE lies in the balance between Li + desolvation process and Li + migration in SEI. Through the regulation of solvated Li + structure and SEI component, excellent fast‐charging performance can be obtained in the LHCE. The present studies not only offer fresh insights in the mechanistic understanding of fast‐charging batteries, but also provide new clues to the performance improvement of graphite anodes. Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging Li‐ion batteries. However, the rate‐determining steps (RDS) for fast‐charging electrodes (i.e., graphite anode) in LHCE remain unclear. Herein, a typical localized high‐concentration electrolyte consisting of lithium bis(fluorosulfonyl)imide in dimethoxyethane with 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether as a diluent is selected to investigate the RDS of lithiation process in graphite anode, including the diffusion of solvated Li+ in the electrolyte, the desolvation behavior of solvated Li+, the Li+ transfer in solid electrolyte interphase (SEI) on the graphite surface, and the Li+ diffusion in bulk graphite. The results indicated that the rate performance of graphite anode in LHCE lies in the balance between Li+ desolvation process and Li+ migration in SEI. Through the regulation of solvated Li+ structure and SEI component, excellent fast‐charging performance can be obtained in the LHCE. The present studies not only offer fresh insights in the mechanistic understanding of fast‐charging batteries, but also provide new clues to the performance improvement of graphite anodes. Localized high‐concentration electrolytes (LHCEs) with varying concentrations are designed to investigate the rate‐determining steps (RDSs) in the lithiation process of graphite anodes. It is revealed that the desolvation of solvated Li+ and the Li+ transfer in solid electrolyte interphase (SEI) are the RDSs for fast‐charging of graphite. This study provides new insights into electrolyte design for the fast‐charging lithium‐ion batteries. |
Author | Zhao, Wenguang Sheng, Tian Pan, Feng Yin, Zu‐Wei Huang, Yuxiang Li, Jun‐Tao Ji, Yuchen Yang, Luyi Cao, Aimin Wang, Yinchao |
Author_xml | – sequence: 1 givenname: Yinchao surname: Wang fullname: Wang, Yinchao organization: Peking University Shenzhen Graduate School – sequence: 2 givenname: Yuchen surname: Ji fullname: Ji, Yuchen organization: Peking University Shenzhen Graduate School – sequence: 3 givenname: Zu‐Wei surname: Yin fullname: Yin, Zu‐Wei email: yinzuwei@xmu.edu.cn organization: Xiamen University – sequence: 4 givenname: Tian surname: Sheng fullname: Sheng, Tian organization: Anhui Normal University – sequence: 5 givenname: Aimin surname: Cao fullname: Cao, Aimin organization: Peking University Shenzhen Graduate School – sequence: 6 givenname: Wenguang surname: Zhao fullname: Zhao, Wenguang organization: Peking University Shenzhen Graduate School – sequence: 7 givenname: Yuxiang surname: Huang fullname: Huang, Yuxiang organization: Peking University Shenzhen Graduate School – sequence: 8 givenname: Jun‐Tao surname: Li fullname: Li, Jun‐Tao organization: Xiamen University – sequence: 9 givenname: Feng orcidid: 0000-0002-1362-4336 surname: Pan fullname: Pan, Feng email: panfeng@pkusz.edu.cn organization: Peking University Shenzhen Graduate School – sequence: 10 givenname: Luyi surname: Yang fullname: Yang, Luyi email: yangly@pkusz.edu.cn organization: Peking University Shenzhen Graduate School |
BookMark | eNqFkM9KAzEQh4Mo2Favnhc8b82f3U1zrNXWwoogFXoL2WzSprRJTVKkNx_BZ_RJ3KVSQRBPM5P5vgn8uuDUOqsAuEKwjyDEN6LWmz6GOIMoR_kJ6KACFSmBeHB67NH8HHRDWEGIKCVZB8xnO2vsInkWUX2-f5RmY2I7j4WMzodEO59MvNguTVTJ0LpahcTYZh1ig4-Wwi9avDTNNHU2uRUxKm9UuABnWqyDuvyuPfAyvp-NHtLyaTIdDctUEkTzFClY0ApVFdWY1BrnqCAwk5IpURAliKa0eZOUtgtGqppprBhmulCZJBkjPXB9uLv17nWnQuQrt_O2-ZITOEB5hgtIGyo7UNK7ELzSXJooonE2emHWHEHeZsjbDPkxw0br_9K23myE3_8tsIPwZtZq_w_Nh3fjxx_3C6k8iFY |
CitedBy_id | crossref_primary_10_1002_aenm_202405363 crossref_primary_10_1016_j_cej_2024_158116 crossref_primary_10_1016_j_cej_2025_159623 crossref_primary_10_1016_j_jcis_2025_02_032 crossref_primary_10_1016_j_xcrp_2024_102153 crossref_primary_10_1039_D4TA05076B crossref_primary_10_1021_acsenergylett_4c01920 crossref_primary_10_1016_j_cej_2025_161452 |
Cites_doi | 10.1038/nmat4738 10.1002/aenm.201901075 10.1002/aenm.202000368 10.1002/cjoc.202300487 10.1039/C9CS00728H 10.1002/sstr.202000010 10.1016/j.carbon.2016.04.008 10.1038/s41467-022-29199-3 10.1016/j.rineng.2022.100472 10.1149/1945-7111/abd60e 10.1149/1945-7111/ac4b87 10.1002/aenm.201902618 10.1021/acs.jpcc.2c08357 10.3390/ma14164683 10.1002/aenm.202101126 10.1002/inf2.12000 10.1039/D1CS00629K 10.1039/D1EE03422G 10.1016/j.eng.2018.10.008 10.1002/adfm.202200796 10.1021/acsami.9b02236 10.1016/j.jpowsour.2015.03.164 10.1016/j.cjsc.2023.100032 10.1002/smll.202205315 10.1038/s41560-023-01387-5 10.1038/nnano.2016.237 10.1038/s41467-022-32794-z 10.1002/agt2.153 10.1002/aenm.202203307 10.1002/anie.202009738 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202401515 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202401515 ADFM202401515 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2022YFB2502103 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China funderid: 22288102 – fundername: National Natural Science Foundation of China funderid: 22309153 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality funderid: ZDSYS201707281026184; JSGG20220831095604008 – fundername: Guangdong Provincial Department of Science and Technology funderid: 2017B030301013 – fundername: Fundamental Research Funds for the Central Universities funderid: 20720230039 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3175-1e067b1bb7f23df2516304cc9ea63ea3f77251c77516393bd9f2e929f6e4c3493 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 00:14:04 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Tue Jul 01 00:30:59 EDT 2025 Wed Jan 22 17:17:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-1e067b1bb7f23df2516304cc9ea63ea3f77251c77516393bd9f2e929f6e4c3493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1362-4336 |
PQID | 3081542607 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3081542607 crossref_citationtrail_10_1002_adfm_202401515 crossref_primary_10_1002_adfm_202401515 wiley_primary_10_1002_adfm_202401515_ADFM202401515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2023; 13 2021; 168 2019; 11 2019; 10 2019; 1 2020; 60 2023; 8 2015; 286 2023; 127 2016; 105 2020; 10 2021; 50 2016; 16 2016; 11 2023; 42 2021; 14 2018; 4 2021; 11 2020; 1 2022; 3 2020; 49 2022; 13 2022; 15 2024; 42 2022; 32 2022; 19 2022; 169 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 60 start-page: 3402 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 4683 year: 2021 publication-title: Materials – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 42 start-page: 43 year: 2024 publication-title: Chin. J. Struct. Chem. – volume: 4 start-page: 831 year: 2018 publication-title: Engineering – volume: 11 start-page: 1039 year: 2016 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 1365 year: 2023 publication-title: Nat. Energy – volume: 1 year: 2020 publication-title: Small Struct. – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 49 start-page: 3806 year: 2020 publication-title: Chem. Soc. Rev. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 15 year: 2022 publication-title: Results Eng. – volume: 13 start-page: 2575 year: 2022 publication-title: Nat. Commun. – volume: 13 start-page: 5250 year: 2022 publication-title: Nat. Commun. – volume: 127 start-page: 2755 year: 2023 publication-title: J. Phys. Chem. C – volume: 15 start-page: 1647 year: 2022 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 42 year: 2023 publication-title: Chin. J. Struct. Chem. – volume: 286 start-page: 330 year: 2015 publication-title: J. Power Sources – volume: 1 start-page: 6 year: 2019 publication-title: InfoMat – volume: 105 start-page: 52 year: 2016 publication-title: Carbon – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 50 year: 2021 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 57 year: 2016 publication-title: Nat. Mater. – volume: 19 year: 2022 publication-title: Small – volume: 3 year: 2022 publication-title: Aggregate – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – ident: e_1_2_7_3_1 doi: 10.1038/nmat4738 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201901075 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.202000368 – ident: e_1_2_7_18_1 doi: 10.1002/cjoc.202300487 – ident: e_1_2_7_13_1 doi: 10.1039/C9CS00728H – ident: e_1_2_7_17_1 doi: 10.1002/sstr.202000010 – ident: e_1_2_7_12_1 doi: 10.1016/j.carbon.2016.04.008 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-022-29199-3 – ident: e_1_2_7_5_1 doi: 10.1016/j.rineng.2022.100472 – ident: e_1_2_7_19_1 doi: 10.1149/1945-7111/abd60e – ident: e_1_2_7_15_1 doi: 10.1149/1945-7111/ac4b87 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.201902618 – ident: e_1_2_7_16_1 doi: 10.1021/acs.jpcc.2c08357 – ident: e_1_2_7_25_1 doi: 10.3390/ma14164683 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.202101126 – ident: e_1_2_7_10_1 doi: 10.1002/inf2.12000 – ident: e_1_2_7_28_1 doi: 10.1039/D1CS00629K – ident: e_1_2_7_23_1 doi: 10.1039/D1EE03422G – ident: e_1_2_7_7_1 doi: 10.1016/j.eng.2018.10.008 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.202200796 – ident: e_1_2_7_29_1 doi: 10.1021/acsami.9b02236 – ident: e_1_2_7_6_1 doi: 10.1016/j.jpowsour.2015.03.164 – ident: e_1_2_7_8_1 doi: 10.1016/j.cjsc.2023.100032 – ident: e_1_2_7_4_1 doi: 10.1002/smll.202205315 – ident: e_1_2_7_30_1 doi: 10.1038/s41560-023-01387-5 – ident: e_1_2_7_1_1 doi: 10.1038/nnano.2016.237 – ident: e_1_2_7_24_1 doi: 10.1038/s41467-022-32794-z – ident: e_1_2_7_21_1 doi: 10.1002/agt2.153 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.202203307 – ident: e_1_2_7_20_1 doi: 10.1002/anie.202009738 |
SSID | ssj0017734 |
Score | 2.548567 |
Snippet | Localized high‐concentration electrolyte (LHCE) is considered to be a promising substitution for the conventional carbonate electrolytes in fast‐charging... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Charging Diffusion rate Electrolytes fast‐charging batteries Graphite graphite anode Lithium-ion batteries localized high‐concentration electrolyte rate‐determining steps Solid electrolytes |
Title | Tuning Rate‐Limiting Factors for Graphite Anodes in Fast‐Charging Li‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202401515 https://www.proquest.com/docview/3081542607 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4IwoFeUBiSlvHzmusgFAQZahaqVsUPyJVoBTRdmHiJ_Ab-SXcxU3aIiEk2GLZFyU-2_fZvvuOkAumhaeizDhCStighEo5oZsaUIgxwtNKiSJ_Su_R7w7F_cgbrUTxW36I6sANZ0axXuMET-W0tSQNTXWGkeRgkdAmwyKMDluIivoVfxQLAnut7DN08GKjkrWx7bbWxdet0hJqrgLWwuLEOyQtv9U6mjw15zPZVG_faBz_8zO7ZHsBR2nHjp89smHyfbK1QlJ4QEaDOZ6d0D6g0s_3jyIiCsuxzdRDAfXSW6S9BvBKO_lEmykd51A9nUFzvM7HPEj0YQylu0lOLaMnbNAPyTC-GVx1nUU-BkchynCYAdMmmZRB5nKdATLyeVsoFZnU5yblGSB1j6kgwIqISx1lrgH4lflGKC4ifkRq-SQ3x4R6WSS0CHyNhHJuyiINgiEPYT9qmB9GdeKU-kjUgqwcc2Y8J5Zm2U2wx5Kqx-rksmr_Ymk6fmzZKNWbLKbrNOEAjDzk6g_qxC309Mtbks513KtKJ38ROiWb-GxdfxukNnudmzMAODN5XgziL8CC8ts |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFL0qdAEsoDwqArR4gcRqAI89r2VEmoaSZBElUnaj8WOkiGpSNcmGFZ_Qb-yXcO84MwlIFRJdemyPxr723GP7-hyAC25koJPcelIpXKDEWnuxn1k0iLUyMFrLUj-l1w87I_ljHFTRhHQXxvFD1BtuNDPK_zVNcNqQvl6xhmYmp6vk6JLIKW_AR5L1JhGD1qBmkOJR5A6WQ04hXnxc8Tbe-Ncv67_0SyuwuQ5ZS5_T3gNVfa0LNXm4WszVlX58ReT4X835BLtLRMqabgjtwwdbHMDOGk_hIYyHC9o-YQMEpn-f_pSXoijddmI9DIEv-07M14hfWbOYGjtjkwKzZ3MsTif6JIXEuhNM3U0L5kg9cY1-BKP2t-Ftx1tKMniagIbHLXo3xZWKcl-YHMFRKG6k1onNQmEzkSNYD7iOIspIhDJJ7ltEYHlopRYyEZ9hs5gW9hhYkCfSyCg0xCnnZzwxWDEWMS5JLQ_jpAFeZZBUL_nKSTbjZ-qYlv2Ueiyte6wBl3X5X46p458lzyr7pssZO0sFYqOA6PqjBvilod54S9pstXt16uQ9lc5hqzPsddPuXf_-FLbpuYsEPoPN-e-F_YJ4Z66-liP6GfRJ9vU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gOjBt7g-cxA8VU2Tvo6LWt8iorC30uYBi9IVd_fiyZ_gb_SXONPs1lUQQY9pMqXJZDpfHvMNwA7XMlCJNZ4sClygxEp5sZ8bVIgxMtBKySp_ytV1eHovz1tBaySK3_FD1BtuZBnV_5oM_Enb_U_S0FxbiiRHj0Q-eRwmZYgWQ7DotiaQ4lHkzpVDTje8eGtI23jg73-V_-qWPrHmKGKtXE46B_nwY91Nk4e9fq_YUy_feBz_05t5mB3gUdZ0E2gBxky5CDMjLIVL0Lrr0-YJu0VY-v76VoVEUTl1qXoYwl52QrzXiF5Zs-xo02XtEqu7PWxO5_mUCIldtrF01imZo_TEFfoy3KfHd4en3iAhg6cIZnjcoG8reFFE1hfaIjQKxYFUKjF5KEwuLEL1gKsooopEFDqxvkH8ZUMjlZCJWIGJslOaVWCBTaSWUaiJUc7PeaJRMBYxLkgND-OkAd5QH5kasJVT0ozHzPEs-xmNWFaPWAN26_ZPjqfjx5YbQ_VmA3vtZgKRUUBk_VED_EpPv7wlax6lV3Vp7S9C2zB1c5Rml2fXF-swTY_dNeANmOg9980mgp1esVXN5w8rwvWt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Rate%E2%80%90Limiting+Factors+for+Graphite+Anodes+in+Fast%E2%80%90Charging+Li%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Yinchao&rft.au=Ji%2C+Yuchen&rft.au=Yin%2C+Zu%E2%80%90Wei&rft.au=Sheng%2C+Tian&rft.date=2024-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=29&rft_id=info:doi/10.1002%2Fadfm.202401515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202401515 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |