Dual‐Targeting Photosensitizer‐Peptide Amphiphile Conjugate for Enzyme‐Triggered Drug Delivery and Synergistic Chemo‐Photodynamic Tumor Therapy
Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GF...
Saved in:
Published in | Advanced materials interfaces Vol. 7; no. 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GFLG‐R7‐RGD or pPAC) is designed to encapsulate doxorubicin (DOX) for enhanced chemo‐photodynamic tumor therapy. The amphiphilic nature of pPAC leads to the formation of core‐shell structured nanomicelles in aqueous media, where DOX is loaded in the inner core. The DOX@pPAC nanomicelle displays efficient tumor cellular uptake via integrin receptor‐mediated endocytosis using RGD peptide. After successful cell internalization with the aid of R8 peptide, DOX@pPAC exhibits rapid release of DOX and protoporphyrin IX‐peptide conjugate (PpIX‐peptide) due to the Cathepsin B‐triggered hydrolysis of GFLG linker. Simultaneously, triphenylphosphonium TPP cation will accumulate photosensitizer PpIX in subcellular mitochondria, followed by in situ generation of phototoxic reactive oxygen species (ROS) under light irradiation. In vitro investigations demonstrate that the synergistic chemotherapy and photodynamic therapy (PDT) of fabricated nanomicelles can significantly maximize the therapeutic effect against tumor cells with the minimal off‐target cytotoxicity. This work may provide an all‐in‐one nanosystem toward enhanced chemo‐photodynamic tumor therapy.
The designed nanosystem (DOX@pPAC) based on covalent conjugation of photosensitizer PpIX and physical embedding of DOX, displays dual‐targeting property and synergistic chemo‐photodynamic therapy of tumor. |
---|---|
AbstractList | Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GFLG‐R7‐RGD or pPAC) is designed to encapsulate doxorubicin (DOX) for enhanced chemo‐photodynamic tumor therapy. The amphiphilic nature of pPAC leads to the formation of core‐shell structured nanomicelles in aqueous media, where DOX is loaded in the inner core. The DOX@pPAC nanomicelle displays efficient tumor cellular uptake via integrin receptor‐mediated endocytosis using RGD peptide. After successful cell internalization with the aid of R8 peptide, DOX@pPAC exhibits rapid release of DOX and protoporphyrin IX‐peptide conjugate (PpIX‐peptide) due to the Cathepsin B‐triggered hydrolysis of GFLG linker. Simultaneously, triphenylphosphonium TPP cation will accumulate photosensitizer PpIX in subcellular mitochondria, followed by in situ generation of phototoxic reactive oxygen species (ROS) under light irradiation. In vitro investigations demonstrate that the synergistic chemotherapy and photodynamic therapy (PDT) of fabricated nanomicelles can significantly maximize the therapeutic effect against tumor cells with the minimal off‐target cytotoxicity. This work may provide an all‐in‐one nanosystem toward enhanced chemo‐photodynamic tumor therapy. Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GFLG‐R 7 ‐RGD or pPAC) is designed to encapsulate doxorubicin (DOX) for enhanced chemo‐photodynamic tumor therapy. The amphiphilic nature of pPAC leads to the formation of core‐shell structured nanomicelles in aqueous media, where DOX is loaded in the inner core. The DOX@pPAC nanomicelle displays efficient tumor cellular uptake via integrin receptor‐mediated endocytosis using RGD peptide. After successful cell internalization with the aid of R 8 peptide, DOX@pPAC exhibits rapid release of DOX and protoporphyrin IX‐peptide conjugate (PpIX‐peptide) due to the Cathepsin B‐triggered hydrolysis of GFLG linker. Simultaneously, triphenylphosphonium TPP cation will accumulate photosensitizer PpIX in subcellular mitochondria, followed by in situ generation of phototoxic reactive oxygen species (ROS) under light irradiation. In vitro investigations demonstrate that the synergistic chemotherapy and photodynamic therapy (PDT) of fabricated nanomicelles can significantly maximize the therapeutic effect against tumor cells with the minimal off‐target cytotoxicity. This work may provide an all‐in‐one nanosystem toward enhanced chemo‐photodynamic tumor therapy. Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GFLG‐R7‐RGD or pPAC) is designed to encapsulate doxorubicin (DOX) for enhanced chemo‐photodynamic tumor therapy. The amphiphilic nature of pPAC leads to the formation of core‐shell structured nanomicelles in aqueous media, where DOX is loaded in the inner core. The DOX@pPAC nanomicelle displays efficient tumor cellular uptake via integrin receptor‐mediated endocytosis using RGD peptide. After successful cell internalization with the aid of R8 peptide, DOX@pPAC exhibits rapid release of DOX and protoporphyrin IX‐peptide conjugate (PpIX‐peptide) due to the Cathepsin B‐triggered hydrolysis of GFLG linker. Simultaneously, triphenylphosphonium TPP cation will accumulate photosensitizer PpIX in subcellular mitochondria, followed by in situ generation of phototoxic reactive oxygen species (ROS) under light irradiation. In vitro investigations demonstrate that the synergistic chemotherapy and photodynamic therapy (PDT) of fabricated nanomicelles can significantly maximize the therapeutic effect against tumor cells with the minimal off‐target cytotoxicity. This work may provide an all‐in‐one nanosystem toward enhanced chemo‐photodynamic tumor therapy. The designed nanosystem (DOX@pPAC) based on covalent conjugation of photosensitizer PpIX and physical embedding of DOX, displays dual‐targeting property and synergistic chemo‐photodynamic therapy of tumor. |
Author | Cheng, Yin‐Jia Chen, Xiao‐Sui Liu, Wen‐Long Ma, Yi‐Han Qin, Si‐Yong Zhang, Xian‐Zheng Zhang, Ai‐Qing |
Author_xml | – sequence: 1 givenname: Yin‐Jia orcidid: 0000-0001-6445-3138 surname: Cheng fullname: Cheng, Yin‐Jia email: ChengYJ@mail.scuec.edu.cn organization: South‐Central University for Nationalities – sequence: 2 givenname: Si‐Yong surname: Qin fullname: Qin, Si‐Yong organization: South‐Central University for Nationalities – sequence: 3 givenname: Wen‐Long surname: Liu fullname: Liu, Wen‐Long organization: South‐Central University for Nationalities – sequence: 4 givenname: Yi‐Han surname: Ma fullname: Ma, Yi‐Han organization: South‐Central University for Nationalities – sequence: 5 givenname: Xiao‐Sui surname: Chen fullname: Chen, Xiao‐Sui organization: South‐Central University for Nationalities – sequence: 6 givenname: Ai‐Qing surname: Zhang fullname: Zhang, Ai‐Qing organization: South‐Central University for Nationalities – sequence: 7 givenname: Xian‐Zheng orcidid: 0000-0001-6242-6005 surname: Zhang fullname: Zhang, Xian‐Zheng email: xz-zhang@whu.edu.cn organization: Wuhan University |
BookMark | eNqFkctq3DAUhkVIIZdmm7Ug65nq4st4OcwkTSChgU7WRpaOPRpsyZHkFGeVR-gu75cnicyUNhRKQSAh_d93QP8JOjTWAELnlMwpIeyLUJ2eM8IIIQVPD9Axo0U2y3lKDj-cj9CZ97uYoZRRtuDH6HU9iPbt5edGuAaCNg2-39pgPRivg34GF9_uoQ9aAV52_VbH1QJeWbMbGhEA19bhS_M8djBZnG4acKDw2g0NXkOrn8CNWBiFv48GXKN90BKvttDZyTzNUqMRXbzcDF10bbbgRD9-Rp9q0Xo4-7Wfooery83qenb77evNank7k5zm6YxWKZdFvsjzhDEOqkpVltFUMl7lSqpKAcvqgqUkz2Ra16qiCScFsErJipGK8VN0sff2zj4O4EO5s4MzcWTJkqQgiyK6YyrZp6Sz3juoS6mDCNqa4IRuS0rKqYVyaqH83ULE5n9hvdOdcOO_gWIP_IifPP4nXS7Xdzd_2HfAdaQD |
CitedBy_id | crossref_primary_10_1002_smll_202205787 crossref_primary_10_3390_pharmaceutics14081735 crossref_primary_10_3389_fbioe_2022_875034 crossref_primary_10_3390_pharmaceutics15092252 crossref_primary_10_1002_cam4_6800 crossref_primary_10_1021_jacs_2c13732 crossref_primary_10_1021_acs_biomac_2c01416 crossref_primary_10_1016_j_cej_2022_135240 crossref_primary_10_3389_fchem_2021_763057 crossref_primary_10_1039_D2TB02248F crossref_primary_10_1016_j_drudis_2024_103965 crossref_primary_10_1021_acs_jmedchem_4c02633 crossref_primary_10_1007_s12274_023_5392_9 crossref_primary_10_1021_acsami_1c03277 |
Cites_doi | 10.1164/rccm.200504-613PP 10.1002/mabi.201500091 10.1021/am507898z 10.1080/09205063.2017.1325095 10.1016/j.cossms.2011.08.001 10.1016/j.ijpharm.2014.04.008 10.1039/c0sm01218a 10.1021/nn401667z 10.1021/acs.biomac.7b01006 10.1039/B915149B 10.1002/adma.201605021 10.1002/psc.2954 10.1016/j.biomaterials.2009.01.006 10.1039/C5PY00125K 10.1002/adfm.201700220 10.1039/C6NJ02357F 10.1002/psc.2633 10.1021/acsami.5b00752 10.1002/smll.201301885 10.1021/acsbiomaterials.9b00099 10.1039/C9NR10646D 10.1038/srep03468 10.1007/s11095-013-1095-3 10.1016/j.biomaterials.2014.07.059 10.1016/j.biomaterials.2010.10.047 10.1039/c2py20299a 10.1177/1533034614556192 10.1002/adfm.201500590 10.1016/j.jphotobiol.2009.04.001 10.1002/anie.201506262 10.1021/bc0602735 10.1039/b914342b 10.1038/nbt1387 10.1002/adhm.201300601 10.1016/j.jconrel.2015.11.016 10.1002/adhm.201300651 10.1590/S0100-879X2006005000142 10.1002/adfm.201604671 10.1016/j.biomaterials.2018.10.005 10.1002/advs.201700113 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.202000935 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_202000935 ADMI202000935 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51703251; 51833007; 51690152 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAYXX ABJCF ABJNI ACCMX ADMLS AFKRA AFPKN ARAPS BENPR BGLVJ CCPQU CITATION EJD GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PTHSS 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3175-1b53c978774223edb5d6615c23b7dcdbde26f925076c5ffdb14309e2bdcb20b23 |
ISSN | 2196-7350 |
IngestDate | Fri Jul 25 11:52:21 EDT 2025 Tue Jul 01 00:39:37 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Sat Aug 24 01:36:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3175-1b53c978774223edb5d6615c23b7dcdbde26f925076c5ffdb14309e2bdcb20b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6445-3138 0000-0001-6242-6005 |
PQID | 2449089877 |
PQPubID | 2034582 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2449089877 crossref_citationtrail_10_1002_admi_202000935 crossref_primary_10_1002_admi_202000935 wiley_primary_10_1002_admi_202000935_ADMI202000935 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2007; 18 2015 2015 2017; 6 7 28 2014; 468 2017; 41 2015; 25 2005; 172 2009; 96 2014; 3 2017; 4 2019; 5 2017; 28 2014 2017 2017 2016; 35 28 18 55 2014 2017 2010; 3 27 40 2015 2015 2013 2015; 15 7 30 220 2017 2009; 29 30 2020; 12 2014 2017 2010 2011 2011; 20 23 39 7 15 2007; 40 2008 2013; 26 3 2013; 7 2017 2015 2017 2019; 27 14 27 188 2011 2012; 32 3 2014; 10 e_1_2_7_3_4 e_1_2_7_6_1 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_6_4 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_3_5 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_21_1 e_1_2_7_20_1 Li S. Y. (e_1_2_7_13_2) 2017; 27 |
References_xml | – volume: 3 start-page: 1299 year: 2014 publication-title: Adv. Healthcare Mater. – volume: 7 start-page: 5965 year: 2013 publication-title: ACS Nano – volume: 41 start-page: 2468 year: 2017 publication-title: New J. Chem. – volume: 26 3 start-page: 343 3468 year: 2008 2013 publication-title: Nat. Biotechnol. Sci. Rep. – volume: 10 start-page: 1133 year: 2014 publication-title: Small – volume: 3 27 40 start-page: 1240 340 year: 2014 2017 2010 publication-title: Adv. Healthcare Mater. Adv. Funct. Mater. Chem. Soc. Rev. – volume: 96 start-page: 1 year: 2009 publication-title: J. Photochem. Photobiol., B – volume: 172 start-page: 1487 year: 2005 publication-title: Am. J. Respir. Crit. Care – volume: 27 14 27 188 start-page: 355 1 year: 2017 2015 2017 2019 publication-title: Adv. Funct. Mater. Technol. Cancer Res. Treat. Adv. Funct. Mater. Biomaterials – volume: 25 start-page: 2961 year: 2015 publication-title: Adv. Funct. Mater. – volume: 468 start-page: 26 year: 2014 publication-title: Int. J. Pharm. – volume: 20 23 39 7 15 start-page: 453 82 3394 4122 225 year: 2014 2017 2010 2011 2011 publication-title: J. Pept. Sci. J. Pept. Sci. Chem. Soc. Rev. Soft Matter Curr. Opin. Solid State Mater. Sci – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 40 start-page: 1025 year: 2007 publication-title: Braz. J. Med. Biol. Res. – volume: 18 start-page: 702 year: 2007 publication-title: Bioconjugate Chem. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 29 30 start-page: 2606 year: 2017 2009 publication-title: Adv. Mater. Biomaterials – volume: 5 start-page: 1878 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 28 start-page: 1338 year: 2017 publication-title: J. Biomater. Sci., Polym. Ed. – volume: 6 7 28 start-page: 3512 9078 1338 year: 2015 2015 2017 publication-title: Polym. Chem. ACS Appl. Mater. Interfaces J. Biomater. Sci., Polym. Ed. – volume: 15 7 30 220 start-page: 1571 5736 2757 545 year: 2015 2015 2013 2015 publication-title: Macromol. Biosci. ACS Appl. Mater. Interfaces Pharm. Res. J. Controlled Release – volume: 35 28 18 55 start-page: 9529 1338 3621 1050 year: 2014 2017 2017 2016 publication-title: Biomaterials J. Biomater. Sci., Polym. Ed. Biomacromolecules Angew. Chem. – volume: 32 3 start-page: 1678 2479 year: 2011 2012 publication-title: Biomaterials Polym. Chem. – ident: e_1_2_7_1_1 doi: 10.1164/rccm.200504-613PP – ident: e_1_2_7_10_1 doi: 10.1002/mabi.201500091 – ident: e_1_2_7_10_2 doi: 10.1021/am507898z – ident: e_1_2_7_22_1 doi: 10.1080/09205063.2017.1325095 – ident: e_1_2_7_3_5 doi: 10.1016/j.cossms.2011.08.001 – ident: e_1_2_7_17_1 doi: 10.1016/j.ijpharm.2014.04.008 – ident: e_1_2_7_3_4 doi: 10.1039/c0sm01218a – ident: e_1_2_7_4_1 doi: 10.1021/nn401667z – ident: e_1_2_7_6_3 doi: 10.1021/acs.biomac.7b01006 – ident: e_1_2_7_13_3 doi: 10.1039/B915149B – ident: e_1_2_7_2_1 doi: 10.1002/adma.201605021 – ident: e_1_2_7_3_2 doi: 10.1002/psc.2954 – ident: e_1_2_7_2_2 doi: 10.1016/j.biomaterials.2009.01.006 – ident: e_1_2_7_7_1 doi: 10.1039/C5PY00125K – ident: e_1_2_7_12_3 doi: 10.1002/adfm.201700220 – ident: e_1_2_7_9_1 doi: 10.1039/C6NJ02357F – ident: e_1_2_7_3_1 doi: 10.1002/psc.2633 – ident: e_1_2_7_7_2 doi: 10.1021/acsami.5b00752 – ident: e_1_2_7_5_1 doi: 10.1002/smll.201301885 – ident: e_1_2_7_21_1 doi: 10.1021/acsbiomaterials.9b00099 – ident: e_1_2_7_7_3 doi: 10.1080/09205063.2017.1325095 – ident: e_1_2_7_23_1 doi: 10.1039/C9NR10646D – ident: e_1_2_7_6_2 doi: 10.1080/09205063.2017.1325095 – ident: e_1_2_7_20_2 doi: 10.1038/srep03468 – ident: e_1_2_7_10_3 doi: 10.1007/s11095-013-1095-3 – ident: e_1_2_7_6_1 doi: 10.1016/j.biomaterials.2014.07.059 – ident: e_1_2_7_18_1 doi: 10.1016/j.biomaterials.2010.10.047 – ident: e_1_2_7_18_2 doi: 10.1039/c2py20299a – ident: e_1_2_7_12_2 doi: 10.1177/1533034614556192 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201500590 – ident: e_1_2_7_19_1 doi: 10.1016/j.jphotobiol.2009.04.001 – ident: e_1_2_7_6_4 doi: 10.1002/anie.201506262 – ident: e_1_2_7_16_1 doi: 10.1021/bc0602735 – ident: e_1_2_7_3_3 doi: 10.1039/b914342b – volume: 27 start-page: 1604916.1604911 year: 2017 ident: e_1_2_7_13_2 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_20_1 doi: 10.1038/nbt1387 – ident: e_1_2_7_8_1 doi: 10.1002/adhm.201300601 – ident: e_1_2_7_10_4 doi: 10.1016/j.jconrel.2015.11.016 – ident: e_1_2_7_13_1 doi: 10.1002/adhm.201300651 – ident: e_1_2_7_14_1 doi: 10.1590/S0100-879X2006005000142 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201604671 – ident: e_1_2_7_12_4 doi: 10.1016/j.biomaterials.2018.10.005 – ident: e_1_2_7_11_1 doi: 10.1002/advs.201700113 |
SSID | ssj0001121283 |
Score | 2.2770517 |
Snippet | Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aqueous solutions biomaterials Cathepsin B Conjugates Doxorubicin Drug delivery systems drug release enzyme‐responsive Light irradiation micelles Mitochondria Peptides Photodynamic therapy Toxicity tumor therapy Tumors |
Title | Dual‐Targeting Photosensitizer‐Peptide Amphiphile Conjugate for Enzyme‐Triggered Drug Delivery and Synergistic Chemo‐Photodynamic Tumor Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202000935 https://www.proquest.com/docview/2449089877 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdKJyQuiL-iMJAPSBymlNZpkvVY0aEyUTS0Fm1covhPtkxtOrXNYT3xEbjx7TjwSXjPdpxsKmIgVVFjx89p3i_P77k_PxPyWvq-2E9kx2PBvvJ6jEkvCQWc9ns93g0ktMIJ_fGncDTtHZ4EJ43GzxprqVjztthsXVfyP1qFMtArrpL9B806oVAA30G_cAQNw_FWOh4WycyxFSaa042R_9H5Yr1YITN9nW1AJeUVR8hgkbiS5PI8g88Mt6zLLwqcSdN0w4N8czVXlUSI3M9wL8-94bI4A9M0QxKHSdh0fIWLBnWW5z1MOrCoesHepdnofm9SzEHupJa6oMx4W3IPwGM2j0pnrlimSBGrOAfKmKLTLHfyDzM3knw2CRCOM1d5urAjMXKMskIzCFXV9mOtepwYya5yZF8UOwcCAW_JprOmEsxu6EW-SWHbVlvKrK2P6pDubx1CTEraRM6zNnaFUz5BNViWBIEbY6hjNpos0CzG9rFrf4fsMAhjWJPsDL5Mv06rWcAuuA46V6y73TKzaIe9vX4T1z2nKhyqB1XaK5o8IPdtOEMHBpsPSUPlj8hdTSsWq8fkByL017fvDpv0BjahzqKSVqikDpUUUEkNKlFKiUeKeKQlHingkdbwSDUeUXINiVQjkVokPiHT9weTdyPPbgXiCXRwvS4PfNGHwSUCc-IryQMJjmUgmM8jKSSXioVpH9z5KBRBmkoOYUCnrxiXgrMOZ_5T0swXuXpGaJqGXRlFImTgjUMwkHR5EqCbrXwB5b0W8crHHAubJx-3a5nF23XbIm_c9ZcmQ8wfr9wttRZbK7KKwb3Gv97hl7UI05r8i5R4MBx_cGfPb937C3KvenV2SXO9LNRLcKjX_JVF5W-gVskX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RoKpcUOlDpISyh0qcLOy1106OEQkKjyAknKrqxfI-HIISu0riQzjxE7jx__glzNhOUg4ICcmXtXfH8s7Ozrfj2W8BfmnXVc1Y2xYXTWN5nGsr9hUWW54nHaGxFQX0-5d-b-Cd_RHLbELaC1PyQ6wCbmQZxXxNBk4B6aM1a2isJyNc4PFiVS4-wCZBm2YNNtu_B38H60CLg7NzQceJxulbgSvsJXmjzY9eCnnpnNaI83_cWjiek8-wXSFG1i5VvAMbJv0CH4vMTTX7Co-dPB4_3T-ERUo3OiJ2dZPNsxklps9Hd2aKz64odUUb1kbVjfAaG3acpbc5hdAYolbWTe8WE0NScLE-pOM7WWeaD1kH-wjH-oLFqWbXC9onWBA7M-IZyEgyvUuXp9qzMJ-grLDkKfgGg5NueNyzqtMWLEUYwnKkcBWuKREPImQwWgqNvlso7spAKy214X7SQsQU-EokiZaItOyW4VIryW3J3e9QS7PU7AJLEt_RQaB8joAH8VbsyFgQkjGuwvteHaxlN0eqoiKnEzHGUUmizCNSS7RSSx0OV_X_lSQcr9ZsLLUWVcY4ixDB0N9N_LI68EKTb0iJ2p3-6ar04z2NDuBTL-xfRBenl-d7sEX3yxTABtTm09zsI5SZy5_VYH0GbrfxGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4CMQF8VptefqwEqeIxIkTeqwIFY8FVaJFiEsUexy2qE1Q2xzKiZ_Ajf_HL2EmSVs4oJWQcnFiTxSPx_ONM_7M2B9wXX0cg20JeWwsTwiwYl9jse55ypGArWhB_-raP-t4F3fy7tMu_pIfYrrgRpZRzNdk4E-QHM1IQ2PodzG-E0VQLufZIlHl4bhebNx27juzdRYHJ-eCjRNt07cCV9oT7kZbHH0V8tU3zQDnZ9ha-J3mGlutACNvlBpeZ3Mm3WBLReKmHm6ytzCPe-8vr-0ioxv9EG_9y0bZkPLSR91nM8BnLcpcAcMbqLkuXj3DT7L0MacVNI6glZ-mz-O-ISkYqz_Q6Z08HOQPPMQuwqE-5nEK_GZM2wQLXmdONAMZSaZ3QXmoPW_nfZTVLmkKtlinedo-ObOqwxYsTRDCcpR0NYaUCAcRMRhQEtB1Sy1cFYAGBUb4SR0BU-BrmSSgEGjZdSMUaCVsJdxfbCHNUvOb8STxHQgC7QvEOwi3YkfFkoCMcTXe92rMmnRzpCsmcjoQoxeVHMoiIrVEU7XU2OG0_lPJwfFtzd2J1qLKFocRAhj6uYlfVmOi0OR_pESN8Op8Wtr-SaMDttwKm9Hf8-vLHbZCt8sEwF22MBrkZg-BzEjtV2P1A_9a8EI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Targeting+Photosensitizer%E2%80%90Peptide+Amphiphile+Conjugate+for+Enzyme%E2%80%90Triggered+Drug+Delivery+and+Synergistic+Chemo%E2%80%90Photodynamic+Tumor+Therapy&rft.jtitle=Advanced+materials+interfaces&rft.au=Cheng%2C+Yin%E2%80%90Jia&rft.au=Qin%2C+Si%E2%80%90Yong&rft.au=Liu%2C+Wen%E2%80%90Long&rft.au=Ma%2C+Yi%E2%80%90Han&rft.date=2020-10-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=7&rft.issue=19&rft_id=info:doi/10.1002%2Fadmi.202000935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202000935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |