Dual‐Targeting Photosensitizer‐Peptide Amphiphile Conjugate for Enzyme‐Triggered Drug Delivery and Synergistic Chemo‐Photodynamic Tumor Therapy

Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GF...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 7; no. 19
Main Authors Cheng, Yin‐Jia, Qin, Si‐Yong, Liu, Wen‐Long, Ma, Yi‐Han, Chen, Xiao‐Sui, Zhang, Ai‐Qing, Zhang, Xian‐Zheng
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GFLG‐R7‐RGD or pPAC) is designed to encapsulate doxorubicin (DOX) for enhanced chemo‐photodynamic tumor therapy. The amphiphilic nature of pPAC leads to the formation of core‐shell structured nanomicelles in aqueous media, where DOX is loaded in the inner core. The DOX@pPAC nanomicelle displays efficient tumor cellular uptake via integrin receptor‐mediated endocytosis using RGD peptide. After successful cell internalization with the aid of R8 peptide, DOX@pPAC exhibits rapid release of DOX and protoporphyrin IX‐peptide conjugate (PpIX‐peptide) due to the Cathepsin B‐triggered hydrolysis of GFLG linker. Simultaneously, triphenylphosphonium TPP cation will accumulate photosensitizer PpIX in subcellular mitochondria, followed by in situ generation of phototoxic reactive oxygen species (ROS) under light irradiation. In vitro investigations demonstrate that the synergistic chemotherapy and photodynamic therapy (PDT) of fabricated nanomicelles can significantly maximize the therapeutic effect against tumor cells with the minimal off‐target cytotoxicity. This work may provide an all‐in‐one nanosystem toward enhanced chemo‐photodynamic tumor therapy. The designed nanosystem (DOX@pPAC) based on covalent conjugation of photosensitizer PpIX and physical embedding of DOX, displays dual‐targeting property and synergistic chemo‐photodynamic therapy of tumor.
AbstractList Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GFLG‐R7‐RGD or pPAC) is designed to encapsulate doxorubicin (DOX) for enhanced chemo‐photodynamic tumor therapy. The amphiphilic nature of pPAC leads to the formation of core‐shell structured nanomicelles in aqueous media, where DOX is loaded in the inner core. The DOX@pPAC nanomicelle displays efficient tumor cellular uptake via integrin receptor‐mediated endocytosis using RGD peptide. After successful cell internalization with the aid of R8 peptide, DOX@pPAC exhibits rapid release of DOX and protoporphyrin IX‐peptide conjugate (PpIX‐peptide) due to the Cathepsin B‐triggered hydrolysis of GFLG linker. Simultaneously, triphenylphosphonium TPP cation will accumulate photosensitizer PpIX in subcellular mitochondria, followed by in situ generation of phototoxic reactive oxygen species (ROS) under light irradiation. In vitro investigations demonstrate that the synergistic chemotherapy and photodynamic therapy (PDT) of fabricated nanomicelles can significantly maximize the therapeutic effect against tumor cells with the minimal off‐target cytotoxicity. This work may provide an all‐in‐one nanosystem toward enhanced chemo‐photodynamic tumor therapy.
Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GFLG‐R 7 ‐RGD or pPAC) is designed to encapsulate doxorubicin (DOX) for enhanced chemo‐photodynamic tumor therapy. The amphiphilic nature of pPAC leads to the formation of core‐shell structured nanomicelles in aqueous media, where DOX is loaded in the inner core. The DOX@pPAC nanomicelle displays efficient tumor cellular uptake via integrin receptor‐mediated endocytosis using RGD peptide. After successful cell internalization with the aid of R 8 peptide, DOX@pPAC exhibits rapid release of DOX and protoporphyrin IX‐peptide conjugate (PpIX‐peptide) due to the Cathepsin B‐triggered hydrolysis of GFLG linker. Simultaneously, triphenylphosphonium TPP cation will accumulate photosensitizer PpIX in subcellular mitochondria, followed by in situ generation of phototoxic reactive oxygen species (ROS) under light irradiation. In vitro investigations demonstrate that the synergistic chemotherapy and photodynamic therapy (PDT) of fabricated nanomicelles can significantly maximize the therapeutic effect against tumor cells with the minimal off‐target cytotoxicity. This work may provide an all‐in‐one nanosystem toward enhanced chemo‐photodynamic tumor therapy.
Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers always elevates the risk of composition uncertainty. Here, a dual‐targeting photosensitizer‐peptide amphiphile conjugate (PpIX‐GGGK(TPP)GG‐GFLG‐R7‐RGD or pPAC) is designed to encapsulate doxorubicin (DOX) for enhanced chemo‐photodynamic tumor therapy. The amphiphilic nature of pPAC leads to the formation of core‐shell structured nanomicelles in aqueous media, where DOX is loaded in the inner core. The DOX@pPAC nanomicelle displays efficient tumor cellular uptake via integrin receptor‐mediated endocytosis using RGD peptide. After successful cell internalization with the aid of R8 peptide, DOX@pPAC exhibits rapid release of DOX and protoporphyrin IX‐peptide conjugate (PpIX‐peptide) due to the Cathepsin B‐triggered hydrolysis of GFLG linker. Simultaneously, triphenylphosphonium TPP cation will accumulate photosensitizer PpIX in subcellular mitochondria, followed by in situ generation of phototoxic reactive oxygen species (ROS) under light irradiation. In vitro investigations demonstrate that the synergistic chemotherapy and photodynamic therapy (PDT) of fabricated nanomicelles can significantly maximize the therapeutic effect against tumor cells with the minimal off‐target cytotoxicity. This work may provide an all‐in‐one nanosystem toward enhanced chemo‐photodynamic tumor therapy. The designed nanosystem (DOX@pPAC) based on covalent conjugation of photosensitizer PpIX and physical embedding of DOX, displays dual‐targeting property and synergistic chemo‐photodynamic therapy of tumor.
Author Cheng, Yin‐Jia
Chen, Xiao‐Sui
Liu, Wen‐Long
Ma, Yi‐Han
Qin, Si‐Yong
Zhang, Xian‐Zheng
Zhang, Ai‐Qing
Author_xml – sequence: 1
  givenname: Yin‐Jia
  orcidid: 0000-0001-6445-3138
  surname: Cheng
  fullname: Cheng, Yin‐Jia
  email: ChengYJ@mail.scuec.edu.cn
  organization: South‐Central University for Nationalities
– sequence: 2
  givenname: Si‐Yong
  surname: Qin
  fullname: Qin, Si‐Yong
  organization: South‐Central University for Nationalities
– sequence: 3
  givenname: Wen‐Long
  surname: Liu
  fullname: Liu, Wen‐Long
  organization: South‐Central University for Nationalities
– sequence: 4
  givenname: Yi‐Han
  surname: Ma
  fullname: Ma, Yi‐Han
  organization: South‐Central University for Nationalities
– sequence: 5
  givenname: Xiao‐Sui
  surname: Chen
  fullname: Chen, Xiao‐Sui
  organization: South‐Central University for Nationalities
– sequence: 6
  givenname: Ai‐Qing
  surname: Zhang
  fullname: Zhang, Ai‐Qing
  organization: South‐Central University for Nationalities
– sequence: 7
  givenname: Xian‐Zheng
  orcidid: 0000-0001-6242-6005
  surname: Zhang
  fullname: Zhang, Xian‐Zheng
  email: xz-zhang@whu.edu.cn
  organization: Wuhan University
BookMark eNqFkctq3DAUhkVIIZdmm7Ug65nq4st4OcwkTSChgU7WRpaOPRpsyZHkFGeVR-gu75cnicyUNhRKQSAh_d93QP8JOjTWAELnlMwpIeyLUJ2eM8IIIQVPD9Axo0U2y3lKDj-cj9CZ97uYoZRRtuDH6HU9iPbt5edGuAaCNg2-39pgPRivg34GF9_uoQ9aAV52_VbH1QJeWbMbGhEA19bhS_M8djBZnG4acKDw2g0NXkOrn8CNWBiFv48GXKN90BKvttDZyTzNUqMRXbzcDF10bbbgRD9-Rp9q0Xo4-7Wfooery83qenb77evNank7k5zm6YxWKZdFvsjzhDEOqkpVltFUMl7lSqpKAcvqgqUkz2Ra16qiCScFsErJipGK8VN0sff2zj4O4EO5s4MzcWTJkqQgiyK6YyrZp6Sz3juoS6mDCNqa4IRuS0rKqYVyaqH83ULE5n9hvdOdcOO_gWIP_IifPP4nXS7Xdzd_2HfAdaQD
CitedBy_id crossref_primary_10_1002_smll_202205787
crossref_primary_10_3390_pharmaceutics14081735
crossref_primary_10_3389_fbioe_2022_875034
crossref_primary_10_3390_pharmaceutics15092252
crossref_primary_10_1002_cam4_6800
crossref_primary_10_1021_jacs_2c13732
crossref_primary_10_1021_acs_biomac_2c01416
crossref_primary_10_1016_j_cej_2022_135240
crossref_primary_10_3389_fchem_2021_763057
crossref_primary_10_1039_D2TB02248F
crossref_primary_10_1016_j_drudis_2024_103965
crossref_primary_10_1021_acs_jmedchem_4c02633
crossref_primary_10_1007_s12274_023_5392_9
crossref_primary_10_1021_acsami_1c03277
Cites_doi 10.1164/rccm.200504-613PP
10.1002/mabi.201500091
10.1021/am507898z
10.1080/09205063.2017.1325095
10.1016/j.cossms.2011.08.001
10.1016/j.ijpharm.2014.04.008
10.1039/c0sm01218a
10.1021/nn401667z
10.1021/acs.biomac.7b01006
10.1039/B915149B
10.1002/adma.201605021
10.1002/psc.2954
10.1016/j.biomaterials.2009.01.006
10.1039/C5PY00125K
10.1002/adfm.201700220
10.1039/C6NJ02357F
10.1002/psc.2633
10.1021/acsami.5b00752
10.1002/smll.201301885
10.1021/acsbiomaterials.9b00099
10.1039/C9NR10646D
10.1038/srep03468
10.1007/s11095-013-1095-3
10.1016/j.biomaterials.2014.07.059
10.1016/j.biomaterials.2010.10.047
10.1039/c2py20299a
10.1177/1533034614556192
10.1002/adfm.201500590
10.1016/j.jphotobiol.2009.04.001
10.1002/anie.201506262
10.1021/bc0602735
10.1039/b914342b
10.1038/nbt1387
10.1002/adhm.201300601
10.1016/j.jconrel.2015.11.016
10.1002/adhm.201300651
10.1590/S0100-879X2006005000142
10.1002/adfm.201604671
10.1016/j.biomaterials.2018.10.005
10.1002/advs.201700113
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.202000935
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_202000935
ADMI202000935
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51703251; 51833007; 51690152
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AFKRA
AFPKN
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PTHSS
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3175-1b53c978774223edb5d6615c23b7dcdbde26f925076c5ffdb14309e2bdcb20b23
ISSN 2196-7350
IngestDate Fri Jul 25 11:52:21 EDT 2025
Tue Jul 01 00:39:37 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Sat Aug 24 01:36:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3175-1b53c978774223edb5d6615c23b7dcdbde26f925076c5ffdb14309e2bdcb20b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6445-3138
0000-0001-6242-6005
PQID 2449089877
PQPubID 2034582
PageCount 9
ParticipantIDs proquest_journals_2449089877
crossref_citationtrail_10_1002_admi_202000935
crossref_primary_10_1002_admi_202000935
wiley_primary_10_1002_admi_202000935_ADMI202000935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2007; 18
2015 2015 2017; 6 7 28
2014; 468
2017; 41
2015; 25
2005; 172
2009; 96
2014; 3
2017; 4
2019; 5
2017; 28
2014 2017 2017 2016; 35 28 18 55
2014 2017 2010; 3 27 40
2015 2015 2013 2015; 15 7 30 220
2017 2009; 29 30
2020; 12
2014 2017 2010 2011 2011; 20 23 39 7 15
2007; 40
2008 2013; 26 3
2013; 7
2017 2015 2017 2019; 27 14 27 188
2011 2012; 32 3
2014; 10
e_1_2_7_3_4
e_1_2_7_6_1
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_6_4
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_3_5
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_21_1
e_1_2_7_20_1
Li S. Y. (e_1_2_7_13_2) 2017; 27
References_xml – volume: 3
  start-page: 1299
  year: 2014
  publication-title: Adv. Healthcare Mater.
– volume: 7
  start-page: 5965
  year: 2013
  publication-title: ACS Nano
– volume: 41
  start-page: 2468
  year: 2017
  publication-title: New J. Chem.
– volume: 26 3
  start-page: 343 3468
  year: 2008 2013
  publication-title: Nat. Biotechnol. Sci. Rep.
– volume: 10
  start-page: 1133
  year: 2014
  publication-title: Small
– volume: 3 27 40
  start-page: 1240 340
  year: 2014 2017 2010
  publication-title: Adv. Healthcare Mater. Adv. Funct. Mater. Chem. Soc. Rev.
– volume: 96
  start-page: 1
  year: 2009
  publication-title: J. Photochem. Photobiol., B
– volume: 172
  start-page: 1487
  year: 2005
  publication-title: Am. J. Respir. Crit. Care
– volume: 27 14 27 188
  start-page: 355 1
  year: 2017 2015 2017 2019
  publication-title: Adv. Funct. Mater. Technol. Cancer Res. Treat. Adv. Funct. Mater. Biomaterials
– volume: 25
  start-page: 2961
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 468
  start-page: 26
  year: 2014
  publication-title: Int. J. Pharm.
– volume: 20 23 39 7 15
  start-page: 453 82 3394 4122 225
  year: 2014 2017 2010 2011 2011
  publication-title: J. Pept. Sci. J. Pept. Sci. Chem. Soc. Rev. Soft Matter Curr. Opin. Solid State Mater. Sci
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 40
  start-page: 1025
  year: 2007
  publication-title: Braz. J. Med. Biol. Res.
– volume: 18
  start-page: 702
  year: 2007
  publication-title: Bioconjugate Chem.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 29 30
  start-page: 2606
  year: 2017 2009
  publication-title: Adv. Mater. Biomaterials
– volume: 5
  start-page: 1878
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 28
  start-page: 1338
  year: 2017
  publication-title: J. Biomater. Sci., Polym. Ed.
– volume: 6 7 28
  start-page: 3512 9078 1338
  year: 2015 2015 2017
  publication-title: Polym. Chem. ACS Appl. Mater. Interfaces J. Biomater. Sci., Polym. Ed.
– volume: 15 7 30 220
  start-page: 1571 5736 2757 545
  year: 2015 2015 2013 2015
  publication-title: Macromol. Biosci. ACS Appl. Mater. Interfaces Pharm. Res. J. Controlled Release
– volume: 35 28 18 55
  start-page: 9529 1338 3621 1050
  year: 2014 2017 2017 2016
  publication-title: Biomaterials J. Biomater. Sci., Polym. Ed. Biomacromolecules Angew. Chem.
– volume: 32 3
  start-page: 1678 2479
  year: 2011 2012
  publication-title: Biomaterials Polym. Chem.
– ident: e_1_2_7_1_1
  doi: 10.1164/rccm.200504-613PP
– ident: e_1_2_7_10_1
  doi: 10.1002/mabi.201500091
– ident: e_1_2_7_10_2
  doi: 10.1021/am507898z
– ident: e_1_2_7_22_1
  doi: 10.1080/09205063.2017.1325095
– ident: e_1_2_7_3_5
  doi: 10.1016/j.cossms.2011.08.001
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ijpharm.2014.04.008
– ident: e_1_2_7_3_4
  doi: 10.1039/c0sm01218a
– ident: e_1_2_7_4_1
  doi: 10.1021/nn401667z
– ident: e_1_2_7_6_3
  doi: 10.1021/acs.biomac.7b01006
– ident: e_1_2_7_13_3
  doi: 10.1039/B915149B
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201605021
– ident: e_1_2_7_3_2
  doi: 10.1002/psc.2954
– ident: e_1_2_7_2_2
  doi: 10.1016/j.biomaterials.2009.01.006
– ident: e_1_2_7_7_1
  doi: 10.1039/C5PY00125K
– ident: e_1_2_7_12_3
  doi: 10.1002/adfm.201700220
– ident: e_1_2_7_9_1
  doi: 10.1039/C6NJ02357F
– ident: e_1_2_7_3_1
  doi: 10.1002/psc.2633
– ident: e_1_2_7_7_2
  doi: 10.1021/acsami.5b00752
– ident: e_1_2_7_5_1
  doi: 10.1002/smll.201301885
– ident: e_1_2_7_21_1
  doi: 10.1021/acsbiomaterials.9b00099
– ident: e_1_2_7_7_3
  doi: 10.1080/09205063.2017.1325095
– ident: e_1_2_7_23_1
  doi: 10.1039/C9NR10646D
– ident: e_1_2_7_6_2
  doi: 10.1080/09205063.2017.1325095
– ident: e_1_2_7_20_2
  doi: 10.1038/srep03468
– ident: e_1_2_7_10_3
  doi: 10.1007/s11095-013-1095-3
– ident: e_1_2_7_6_1
  doi: 10.1016/j.biomaterials.2014.07.059
– ident: e_1_2_7_18_1
  doi: 10.1016/j.biomaterials.2010.10.047
– ident: e_1_2_7_18_2
  doi: 10.1039/c2py20299a
– ident: e_1_2_7_12_2
  doi: 10.1177/1533034614556192
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201500590
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jphotobiol.2009.04.001
– ident: e_1_2_7_6_4
  doi: 10.1002/anie.201506262
– ident: e_1_2_7_16_1
  doi: 10.1021/bc0602735
– ident: e_1_2_7_3_3
  doi: 10.1039/b914342b
– volume: 27
  start-page: 1604916.1604911
  year: 2017
  ident: e_1_2_7_13_2
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_20_1
  doi: 10.1038/nbt1387
– ident: e_1_2_7_8_1
  doi: 10.1002/adhm.201300601
– ident: e_1_2_7_10_4
  doi: 10.1016/j.jconrel.2015.11.016
– ident: e_1_2_7_13_1
  doi: 10.1002/adhm.201300651
– ident: e_1_2_7_14_1
  doi: 10.1590/S0100-879X2006005000142
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201604671
– ident: e_1_2_7_12_4
  doi: 10.1016/j.biomaterials.2018.10.005
– ident: e_1_2_7_11_1
  doi: 10.1002/advs.201700113
SSID ssj0001121283
Score 2.2770517
Snippet Chemo‐photodynamic therapy is an attractive strategy in tumor treatment. However, the combination of chemotherapeutic drug and photosensitizer in nanocarriers...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aqueous solutions
biomaterials
Cathepsin B
Conjugates
Doxorubicin
Drug delivery systems
drug release
enzyme‐responsive
Light irradiation
micelles
Mitochondria
Peptides
Photodynamic therapy
Toxicity
tumor therapy
Tumors
Title Dual‐Targeting Photosensitizer‐Peptide Amphiphile Conjugate for Enzyme‐Triggered Drug Delivery and Synergistic Chemo‐Photodynamic Tumor Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202000935
https://www.proquest.com/docview/2449089877
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdKJyQuiL-iMJAPSBymlNZpkvVY0aEyUTS0Fm1covhPtkxtOrXNYT3xEbjx7TjwSXjPdpxsKmIgVVFjx89p3i_P77k_PxPyWvq-2E9kx2PBvvJ6jEkvCQWc9ns93g0ktMIJ_fGncDTtHZ4EJ43GzxprqVjztthsXVfyP1qFMtArrpL9B806oVAA30G_cAQNw_FWOh4WycyxFSaa042R_9H5Yr1YITN9nW1AJeUVR8hgkbiS5PI8g88Mt6zLLwqcSdN0w4N8czVXlUSI3M9wL8-94bI4A9M0QxKHSdh0fIWLBnWW5z1MOrCoesHepdnofm9SzEHupJa6oMx4W3IPwGM2j0pnrlimSBGrOAfKmKLTLHfyDzM3knw2CRCOM1d5urAjMXKMskIzCFXV9mOtepwYya5yZF8UOwcCAW_JprOmEsxu6EW-SWHbVlvKrK2P6pDubx1CTEraRM6zNnaFUz5BNViWBIEbY6hjNpos0CzG9rFrf4fsMAhjWJPsDL5Mv06rWcAuuA46V6y73TKzaIe9vX4T1z2nKhyqB1XaK5o8IPdtOEMHBpsPSUPlj8hdTSsWq8fkByL017fvDpv0BjahzqKSVqikDpUUUEkNKlFKiUeKeKQlHingkdbwSDUeUXINiVQjkVokPiHT9weTdyPPbgXiCXRwvS4PfNGHwSUCc-IryQMJjmUgmM8jKSSXioVpH9z5KBRBmkoOYUCnrxiXgrMOZ_5T0swXuXpGaJqGXRlFImTgjUMwkHR5EqCbrXwB5b0W8crHHAubJx-3a5nF23XbIm_c9ZcmQ8wfr9wttRZbK7KKwb3Gv97hl7UI05r8i5R4MBx_cGfPb937C3KvenV2SXO9LNRLcKjX_JVF5W-gVskX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RoKpcUOlDpISyh0qcLOy1106OEQkKjyAknKrqxfI-HIISu0riQzjxE7jx__glzNhOUg4ICcmXtXfH8s7Ozrfj2W8BfmnXVc1Y2xYXTWN5nGsr9hUWW54nHaGxFQX0-5d-b-Cd_RHLbELaC1PyQ6wCbmQZxXxNBk4B6aM1a2isJyNc4PFiVS4-wCZBm2YNNtu_B38H60CLg7NzQceJxulbgSvsJXmjzY9eCnnpnNaI83_cWjiek8-wXSFG1i5VvAMbJv0CH4vMTTX7Co-dPB4_3T-ERUo3OiJ2dZPNsxklps9Hd2aKz64odUUb1kbVjfAaG3acpbc5hdAYolbWTe8WE0NScLE-pOM7WWeaD1kH-wjH-oLFqWbXC9onWBA7M-IZyEgyvUuXp9qzMJ-grLDkKfgGg5NueNyzqtMWLEUYwnKkcBWuKREPImQwWgqNvlso7spAKy214X7SQsQU-EokiZaItOyW4VIryW3J3e9QS7PU7AJLEt_RQaB8joAH8VbsyFgQkjGuwvteHaxlN0eqoiKnEzHGUUmizCNSS7RSSx0OV_X_lSQcr9ZsLLUWVcY4ixDB0N9N_LI68EKTb0iJ2p3-6ar04z2NDuBTL-xfRBenl-d7sEX3yxTABtTm09zsI5SZy5_VYH0GbrfxGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4CMQF8VptefqwEqeIxIkTeqwIFY8FVaJFiEsUexy2qE1Q2xzKiZ_Ajf_HL2EmSVs4oJWQcnFiTxSPx_ONM_7M2B9wXX0cg20JeWwsTwiwYl9jse55ypGArWhB_-raP-t4F3fy7tMu_pIfYrrgRpZRzNdk4E-QHM1IQ2PodzG-E0VQLufZIlHl4bhebNx27juzdRYHJ-eCjRNt07cCV9oT7kZbHH0V8tU3zQDnZ9ha-J3mGlutACNvlBpeZ3Mm3WBLReKmHm6ytzCPe-8vr-0ioxv9EG_9y0bZkPLSR91nM8BnLcpcAcMbqLkuXj3DT7L0MacVNI6glZ-mz-O-ISkYqz_Q6Z08HOQPPMQuwqE-5nEK_GZM2wQLXmdONAMZSaZ3QXmoPW_nfZTVLmkKtlinedo-ObOqwxYsTRDCcpR0NYaUCAcRMRhQEtB1Sy1cFYAGBUb4SR0BU-BrmSSgEGjZdSMUaCVsJdxfbCHNUvOb8STxHQgC7QvEOwi3YkfFkoCMcTXe92rMmnRzpCsmcjoQoxeVHMoiIrVEU7XU2OG0_lPJwfFtzd2J1qLKFocRAhj6uYlfVmOi0OR_pESN8Op8Wtr-SaMDttwKm9Hf8-vLHbZCt8sEwF22MBrkZg-BzEjtV2P1A_9a8EI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Targeting+Photosensitizer%E2%80%90Peptide+Amphiphile+Conjugate+for+Enzyme%E2%80%90Triggered+Drug+Delivery+and+Synergistic+Chemo%E2%80%90Photodynamic+Tumor+Therapy&rft.jtitle=Advanced+materials+interfaces&rft.au=Cheng%2C+Yin%E2%80%90Jia&rft.au=Qin%2C+Si%E2%80%90Yong&rft.au=Liu%2C+Wen%E2%80%90Long&rft.au=Ma%2C+Yi%E2%80%90Han&rft.date=2020-10-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=7&rft.issue=19&rft_id=info:doi/10.1002%2Fadmi.202000935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202000935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon