Possibilities of Increasing the Usability of Sputtered AZO Films as a Transparent Electrode
Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon solar cells. However, it is difficult to obtain suitable electrical properties at low deposition temperatures. Moreover, the AZO films with low t...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 216; no. 7 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
10.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1862-6300 1862-6319 |
DOI | 10.1002/pssa.201800814 |
Cover
Loading…
Abstract | Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon solar cells. However, it is difficult to obtain suitable electrical properties at low deposition temperatures. Moreover, the AZO films with low thickness exhibit significantly higher average resistivity, which limits their usability, especially if they are prepared on flexible substrates. A lot of effort is invested to replace indium tin oxide (ITO) to a much greater extent now, since Indium is rare and its price is rising, thus the preparation of low‐thickness AZO films at low temperature is also subject of intense research. The presented paper summarizes the reported results, discusses the causes of the differences between ITO and AZO films, and suggests the direction of research and the potential solution that should lead to increased usability of AZO films and also possible replacement of ITO films.
This paper reviews the influence of deposition parameters on the electrical properties of aluminum doped zinc oxide, which is cheap and non‐toxic transparent conductive material, but its usability is limited due to higher resistivity of low thickness ZnO films prepared at low temperature. The main reasons are discussed and the potential solutions to improve the electrical properties are proposed. |
---|---|
AbstractList | Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon solar cells. However, it is difficult to obtain suitable electrical properties at low deposition temperatures. Moreover, the AZO films with low thickness exhibit significantly higher average resistivity, which limits their usability, especially if they are prepared on flexible substrates. A lot of effort is invested to replace indium tin oxide (ITO) to a much greater extent now, since Indium is rare and its price is rising, thus the preparation of low‐thickness AZO films at low temperature is also subject of intense research. The presented paper summarizes the reported results, discusses the causes of the differences between ITO and AZO films, and suggests the direction of research and the potential solution that should lead to increased usability of AZO films and also possible replacement of ITO films. Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon solar cells. However, it is difficult to obtain suitable electrical properties at low deposition temperatures. Moreover, the AZO films with low thickness exhibit significantly higher average resistivity, which limits their usability, especially if they are prepared on flexible substrates. A lot of effort is invested to replace indium tin oxide (ITO) to a much greater extent now, since Indium is rare and its price is rising, thus the preparation of low‐thickness AZO films at low temperature is also subject of intense research. The presented paper summarizes the reported results, discusses the causes of the differences between ITO and AZO films, and suggests the direction of research and the potential solution that should lead to increased usability of AZO films and also possible replacement of ITO films. This paper reviews the influence of deposition parameters on the electrical properties of aluminum doped zinc oxide, which is cheap and non‐toxic transparent conductive material, but its usability is limited due to higher resistivity of low thickness ZnO films prepared at low temperature. The main reasons are discussed and the potential solutions to improve the electrical properties are proposed. |
Author | Novák, Petr |
Author_xml | – sequence: 1 givenname: Petr surname: Novák fullname: Novák, Petr email: petrnov@ntc.zcu.cz organization: University of West Bohemia |
BookMark | eNqFkNFLwzAQxoNMcJu--hzwefOSpmn7OMamg8GEbS_6ULL0ohldW5MM2X9v52SCIMLBHdz97rv7eqRT1RUScstgyAD4feO9GnJgKUDKxAXpslTygYxY1jnXAFek5_0WQMQiYV3y8lR7bze2tMGip7Whs0o7VN5WrzS8IV179dU9HHvLZh8COizo6HlBp7bcearaoCunKt8oh1WgkxJ1cHWB1-TSqNLjzXfuk_V0sho_DuaLh9l4NB_oiCVigAa4AcVYIlHzOMow01mGrBA82WRatqcbaYRUsTQZSAZKm5QlsUkLrYwuoj65O-1tXP2-Rx_ybb13VSuZcw6ytQOEbKeGpynt2pcdmrxxdqfcIWeQHw3MjwbmZwNbQPwCtA0q2LoKTtnybyw7YR-2xMM_IvnTcjn6YT8B_yCIWQ |
CitedBy_id | crossref_primary_10_3390_nano12010172 crossref_primary_10_1016_j_tsf_2023_139942 crossref_primary_10_1007_s10854_023_10438_2 crossref_primary_10_1016_j_tsf_2020_138245 crossref_primary_10_1088_1361_6528_ab7ceb crossref_primary_10_1007_s10971_023_06183_x crossref_primary_10_1116_1_5129684 crossref_primary_10_1088_1361_6463_ad1791 crossref_primary_10_1149_2_0261912jss crossref_primary_10_2339_politeknik_873160 crossref_primary_10_1016_j_apsusc_2021_150925 crossref_primary_10_1016_j_apsusc_2022_152588 crossref_primary_10_1016_j_physb_2021_413535 |
Cites_doi | 10.1016/j.tsf.2018.06.036 10.1016/j.jpcs.2012.07.017 10.1016/j.spmi.2014.12.001 10.1063/1.4962943 10.1016/j.tsf.2009.09.189 10.1039/c2cp41139c 10.1117/1.OE.52.3.033801 10.1103/PhysRevApplied.5.024009 10.1039/C7CP02936E 10.1016/j.tsf.2018.05.029 10.1088/0022-3727/18/10/018 10.1016/S0040-6090(99)00085-1 10.1017/S0305004100019952 10.1080/00018735200101151 10.1016/j.tsf.2008.11.103 10.1103/PhysRevB.66.035203 10.1016/j.apsusc.2008.09.023 10.1063/1.5038162 10.1063/1.2053360 10.1002/pssa.201431469 10.1016/S0169-4332(01)00582-7 10.1063/1.4811647 10.1063/1.4906353 10.1016/j.surfcoat.2011.01.050 10.1016/j.tsf.2007.10.082 10.1088/0022-3727/44/2/025401 10.1063/1.1992666 10.1063/1.4922152 10.1109/T-ED.1983.21207 10.1002/pssa.201700951 10.1103/PhysRevB.73.205203 10.1063/1.4770452 10.1016/j.tsf.2016.03.022 10.1088/0022-3727/49/41/413002 10.1016/j.mssp.2018.01.027 10.1016/j.solmat.2010.02.026 10.1016/j.tsf.2017.02.017 10.1016/j.tsf.2008.09.059 10.2109/jcersj.115.254 10.1016/0040-6090(89)90892-4 10.1063/1.4916725 10.1063/1.1783613 10.1016/j.tsf.2015.11.059 10.1088/0953-8984/2/28/011 10.1063/1.324477 10.1016/j.tsf.2011.10.037 10.1038/nphoton.2012.282 10.1016/0022-3093(93)90584-K 10.1063/1.4896839 10.1016/j.vacuum.2013.09.009 10.1002/pssr.201308238 10.1063/1.321593 10.1103/PhysRevB.88.245201 10.1116/1.3430556 10.1002/pssa.201228014 10.1007/978-3-540-73612-7 10.1016/j.tsf.2010.08.168 10.1166/sl.2014.3399 10.1016/j.tsf.2007.05.084 10.1088/0034-4885/72/12/126501 10.1116/1.1626641 10.1016/j.solmat.2016.07.020 10.1016/j.displa.2013.06.004 10.1002/ppap.201500179 10.1063/1.3074373 10.1063/1.2719158 10.1088/0268-1242/20/4/008 10.1063/1.2216354 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/pssa.201800814 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6319 |
EndPage | n/a |
ExternalDocumentID | 10_1002_pssa_201800814 PSSA201800814 |
Genre | article |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BHBCM BMNLL BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA GYQRN H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT .Y3 AANHP AAYXX ACBWZ ACRPL ACYXJ ADNMO AEYWJ AFFNX AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION LW6 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3174-ef02f0a1176ec2539e9c99e1d427b9c6186f6f46a56f90610acf8175f8dcafcd3 |
IEDL.DBID | DR2 |
ISSN | 1862-6300 |
IngestDate | Wed Aug 13 04:01:49 EDT 2025 Tue Jul 01 00:55:12 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Wed Jan 22 16:21:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-ef02f0a1176ec2539e9c99e1d427b9c6186f6f46a56f90610acf8175f8dcafcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2206008046 |
PQPubID | 1036347 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2206008046 crossref_primary_10_1002_pssa_201800814 crossref_citationtrail_10_1002_pssa_201800814 wiley_primary_10_1002_pssa_201800814_PSSA201800814 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 10, 2019 |
PublicationDateYYYYMMDD | 2019-04-10 |
PublicationDate_xml | – month: 04 year: 2019 text: April 10, 2019 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 79 2004; 22 2009; 518 2001; 183 2006; 73 2018; 124 2000; 293 2005; 20 2012; 14 2009; 517 2017; 634 2012; 209 1993; 166 1985; 18 2011; 520 2010; 519 2011; 205 2009; 94 2018; 658 2015; 212 2010; 28 2018; 1700783 2008; 517 2013; 52 2008; 516 1975; 46 2016; 157 2014; 8 2016; 49 2014; 12 2018; 79 2014; 116 2018; 660 2015; 3 2016; 605 2013; 88 2018; 1700951 1989; 174 2008 2007; 90 1983; 30 2005; 87 2013; 102 2016; 120 2016; 13 2007; 115 2016; 5 1990; 2 2004; 96 2012; 112 1938; 34 2009; 72 2016; 614 2013; 34 2002; 66 2013; 74 1999; 351 2011; 44 2005; 98 1978; 49 2017; 19 2015; 117 2012; 6 2008; 255 2006; 100 2014; 101 2010; 94 1952; 1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Gordillo G. (e_1_2_9_70_1) 2000; 293 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Minami T. (e_1_2_9_27_1) 2018; 1700783 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 72 start-page: 126501 year: 2009 publication-title: Rep. Prog. Phys – volume: 20 start-page: S62 year: 2005 publication-title: Semicond. Sci. Technol – volume: 658 start-page: 27 year: 2018 publication-title: Thin Solid Films – volume: 73 start-page: 205203 year: 2006 publication-title: Phys. Rev. B − Condens. Matter Mater. Phys – volume: 52 start-page: 033801 year: 2013 publication-title: Opt. Eng – volume: 120 start-page: 125302 year: 2016 publication-title: J. Appl. Phys – volume: 74 start-page: 45 year: 2013 publication-title: J. Phys. Chem. Solids – volume: 124 start-page: 065304 year: 2018 publication-title: J. Appl. Phys – volume: 79 start-page: 135 year: 2018 publication-title: Mater. Sci. Semicond. Process – volume: 5 start-page: 1 year: 2016 publication-title: Phys. Rev. Appl – volume: 1700783 start-page: 1 year: 2018 publication-title: Phys. Status Solidi Appl. Mater. Sci – volume: 66 start-page: 035203 year: 2002 publication-title: Phys. Rev. B – volume: 96 start-page: 3501 year: 2004 publication-title: J. Appl. Phys – volume: 351 start-page: 247 year: 1999 publication-title: Thin Solid Films – volume: 614 start-page: 62 year: 2016 publication-title: Thin Solid Films – volume: 90 start-page: 8 year: 2007 publication-title: Appl. Phys. Lett – volume: 519 start-page: 1521 year: 2010 publication-title: Thin Solid Films – volume: 2 start-page: 6207 year: 1990 publication-title: J. Phys. Condens. Matter – volume: 49 start-page: 5565 year: 1978 publication-title: J. Appl. Phys – volume: 94 start-page: 937 year: 2010 publication-title: Sol. Energy Mater. Sol. Cells – volume: 30 start-page: 764 year: 1983 publication-title: IEEE Trans. Electron Devices – volume: 28 start-page: 846 year: 2010 publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film – volume: 157 start-page: 742 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 517 start-page: 3265 year: 2009 publication-title: Thin Solid Films – volume: 117 start-page: 155301 year: 2015 publication-title: J. Appl. Phys – volume: 49 start-page: 413002 year: 2016 publication-title: J. Phys. D. Appl. Phys – volume: 8 start-page: 172 year: 2014 publication-title: Phys. Status Solidi − Rapid Res. Lett – volume: 293 start-page: 293 year: 2000 publication-title: Thin Film – year: 2008 – volume: 1 start-page: 1 year: 1952 publication-title: Adv. Phys – volume: 516 start-page: 5829 year: 2008 publication-title: Thin Solid Films – volume: 6 start-page: 809 year: 2012 publication-title: Nat. Photonics – volume: 116 start-page: 143704 year: 2014 publication-title: J. Appl. Phys – volume: 517 start-page: 1474 year: 2008 publication-title: Thin Solid Films – volume: 18 start-page: 2081 year: 1985 publication-title: J. Phys. D. Appl. Phys – volume: 183 start-page: 137 year: 2001 publication-title: Appl. Surf – volume: 46 start-page: 5247 year: 1975 publication-title: J. Appl. Phys – volume: 117 start-page: 045304 year: 2015 publication-title: J. Appl. Phys – volume: 660 start-page: 471 year: 2018 publication-title: Thin Solid Films – volume: 22 start-page: 20 year: 2004 publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film – volume: 13 start-page: 54 year: 2016 publication-title: Plasma Process. Polym – volume: 255 start-page: 3195 year: 2008 publication-title: Appl. Surf. Sci – volume: 516 start-page: 4620 year: 2008 publication-title: Thin Solid Films – volume: 100 start-page: 1 year: 2006 publication-title: J. Appl. Phys – volume: 212 start-page: 348 year: 2015 publication-title: Phys. Status Solidi Appl. Mater. Sci – volume: 112 start-page: 123713 year: 2012 publication-title: J. Appl. Phys – volume: 1700951 start-page: 1700951 year: 2018 publication-title: Phys. Status Solidi – volume: 79 start-page: 148 year: 2015 publication-title: Superlattices Microstruct – volume: 102 start-page: 10 year: 2013 publication-title: Appl. Phys. Lett – volume: 520 start-page: 1395 year: 2011 publication-title: Thin Solid Films – volume: 87 start-page: 1 year: 2005 publication-title: Appl. Phys. Lett – volume: 34 start-page: 326 year: 2013 publication-title: Displays – volume: 634 start-page: 169 year: 2017 publication-title: Thin Solid Films – volume: 166 start-page: 441 year: 1993 – volume: 14 start-page: 11610 year: 2012 publication-title: Phys. Chem. Chem. Phys – volume: 88 start-page: 1 year: 2013 publication-title: Phys. Rev. B − Condens. Matter Mater. Phys – volume: 94 start-page: 1 year: 2009 publication-title: Appl. Phys. Lett – volume: 605 start-page: 20 year: 2016 publication-title: Thin Solid Films – volume: 19 start-page: 27866 year: 2017 publication-title: Phys. Chem. Chem. Phys – volume: 174 start-page: 217 year: 1989 publication-title: Thin Solid Films – volume: 518 start-page: 2961 year: 2009 publication-title: Thin Solid Films – volume: 3 start-page: 060701 year: 2015 publication-title: APL Mater – volume: 115 start-page: 254 year: 2007 publication-title: J. Ceram. Soc. Japan – volume: 98 start-page: 041301 year: 2005 publication-title: J. Appl. Phys – volume: 12 start-page: 1 year: 2014 publication-title: Sens. Lett – volume: 44 start-page: 025401 year: 2011 publication-title: J. Phys. D. Appl. Phys – volume: 101 start-page: 250 year: 2014 publication-title: Vacuum – volume: 209 start-page: 1251 year: 2012 publication-title: Phys. Status Solidi – volume: 205 start-page: S294 year: 2011 publication-title: Surf. Coatings Technol – volume: 34 start-page: 100 year: 1938 publication-title: Math. Proc. Cambridge Philos. Soc – ident: e_1_2_9_9_1 doi: 10.1016/j.tsf.2018.06.036 – ident: e_1_2_9_54_1 doi: 10.1016/j.jpcs.2012.07.017 – ident: e_1_2_9_16_1 doi: 10.1016/j.spmi.2014.12.001 – ident: e_1_2_9_30_1 doi: 10.1063/1.4962943 – ident: e_1_2_9_33_1 doi: 10.1016/j.tsf.2009.09.189 – ident: e_1_2_9_55_1 doi: 10.1039/c2cp41139c – ident: e_1_2_9_22_1 doi: 10.1117/1.OE.52.3.033801 – ident: e_1_2_9_36_1 doi: 10.1103/PhysRevApplied.5.024009 – volume: 1700783 start-page: 1 year: 2018 ident: e_1_2_9_27_1 publication-title: Phys. Status Solidi Appl. Mater. Sci – ident: e_1_2_9_57_1 doi: 10.1039/C7CP02936E – ident: e_1_2_9_65_1 doi: 10.1016/j.tsf.2018.05.029 – ident: e_1_2_9_47_1 doi: 10.1088/0022-3727/18/10/018 – ident: e_1_2_9_19_1 doi: 10.1016/S0040-6090(99)00085-1 – ident: e_1_2_9_25_1 doi: 10.1017/S0305004100019952 – ident: e_1_2_9_26_1 doi: 10.1080/00018735200101151 – ident: e_1_2_9_13_1 doi: 10.1016/j.tsf.2008.11.103 – ident: e_1_2_9_43_1 doi: 10.1103/PhysRevB.66.035203 – ident: e_1_2_9_15_1 doi: 10.1016/j.apsusc.2008.09.023 – ident: e_1_2_9_64_1 doi: 10.1063/1.5038162 – ident: e_1_2_9_53_1 doi: 10.1063/1.2053360 – ident: e_1_2_9_2_1 doi: 10.1002/pssa.201431469 – ident: e_1_2_9_17_1 doi: 10.1016/S0169-4332(01)00582-7 – ident: e_1_2_9_59_1 doi: 10.1063/1.4811647 – ident: e_1_2_9_28_1 doi: 10.1063/1.4906353 – ident: e_1_2_9_61_1 doi: 10.1016/j.surfcoat.2011.01.050 – ident: e_1_2_9_49_1 doi: 10.1016/j.tsf.2007.10.082 – ident: e_1_2_9_3_1 doi: 10.1088/0022-3727/44/2/025401 – ident: e_1_2_9_21_1 doi: 10.1063/1.1992666 – ident: e_1_2_9_14_1 doi: 10.1063/1.4922152 – ident: e_1_2_9_39_1 doi: 10.1109/T-ED.1983.21207 – ident: e_1_2_9_29_1 doi: 10.1002/pssa.201700951 – ident: e_1_2_9_51_1 doi: 10.1103/PhysRevB.73.205203 – ident: e_1_2_9_46_1 doi: 10.1063/1.4770452 – ident: e_1_2_9_48_1 doi: 10.1016/j.tsf.2016.03.022 – ident: e_1_2_9_10_1 doi: 10.1088/0022-3727/49/41/413002 – ident: e_1_2_9_71_1 doi: 10.1016/j.mssp.2018.01.027 – ident: e_1_2_9_67_1 doi: 10.1016/j.solmat.2010.02.026 – ident: e_1_2_9_6_1 doi: 10.1016/j.tsf.2017.02.017 – ident: e_1_2_9_11_1 doi: 10.1016/j.tsf.2008.09.059 – ident: e_1_2_9_34_1 doi: 10.2109/jcersj.115.254 – ident: e_1_2_9_37_1 doi: 10.1016/0040-6090(89)90892-4 – ident: e_1_2_9_7_1 doi: 10.1063/1.4916725 – ident: e_1_2_9_4_1 doi: 10.1063/1.1783613 – ident: e_1_2_9_18_1 doi: 10.1016/j.tsf.2015.11.059 – ident: e_1_2_9_41_1 doi: 10.1088/0953-8984/2/28/011 – ident: e_1_2_9_45_1 doi: 10.1063/1.324477 – ident: e_1_2_9_69_1 doi: 10.1016/j.tsf.2011.10.037 – ident: e_1_2_9_5_1 doi: 10.1038/nphoton.2012.282 – ident: e_1_2_9_42_1 doi: 10.1016/0022-3093(93)90584-K – volume: 293 start-page: 293 year: 2000 ident: e_1_2_9_70_1 publication-title: Thin Film – ident: e_1_2_9_35_1 doi: 10.1063/1.4896839 – ident: e_1_2_9_8_1 doi: 10.1016/j.vacuum.2013.09.009 – ident: e_1_2_9_31_1 doi: 10.1002/pssr.201308238 – ident: e_1_2_9_44_1 doi: 10.1063/1.321593 – ident: e_1_2_9_56_1 doi: 10.1103/PhysRevB.88.245201 – ident: e_1_2_9_62_1 doi: 10.1116/1.3430556 – ident: e_1_2_9_24_1 doi: 10.1002/pssa.201228014 – ident: e_1_2_9_38_1 doi: 10.1007/978-3-540-73612-7 – ident: e_1_2_9_68_1 doi: 10.1016/j.tsf.2010.08.168 – ident: e_1_2_9_32_1 doi: 10.1166/sl.2014.3399 – ident: e_1_2_9_40_1 doi: 10.1016/j.tsf.2007.05.084 – ident: e_1_2_9_20_1 doi: 10.1088/0034-4885/72/12/126501 – ident: e_1_2_9_63_1 doi: 10.1116/1.1626641 – ident: e_1_2_9_66_1 doi: 10.1016/j.solmat.2016.07.020 – ident: e_1_2_9_12_1 doi: 10.1016/j.displa.2013.06.004 – ident: e_1_2_9_23_1 doi: 10.1002/ppap.201500179 – ident: e_1_2_9_58_1 doi: 10.1063/1.3074373 – ident: e_1_2_9_50_1 doi: 10.1063/1.2719158 – ident: e_1_2_9_52_1 doi: 10.1088/0268-1242/20/4/008 – ident: e_1_2_9_60_1 doi: 10.1063/1.2216354 |
SSID | ssj0045471 |
Score | 2.3432794 |
Snippet | Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aluminum aluminum‐doped zinc oxide Electrical properties Electrodes Indium tin oxides magnetron sputtering Photovoltaic cells Solar cells Substrates Thickness thin film transparent conductive oxides Usability Zinc oxide |
Title | Possibilities of Increasing the Usability of Sputtered AZO Films as a Transparent Electrode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.201800814 https://www.proquest.com/docview/2206008046 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDDARfvIvTKXkQfMrWprfkccjGENThHAx9KGkuIM5t2O5BP705vc0JIij0oaVJSXM7_7Qnv4PQBXMCOwe6kuhEUuJrnhBhmCHaS5jtL17EBWxOvrkNB2P_ehJMvuziL_gQ9Qc3GBn5fA0DXCRpZwUNXaQpcINcBlYNgKDgsAWq6L7mRwGsKl9xWdlOgC1VURsd2lnPvm6VVlLzq2DNLU5_B4mqrIWjyUt7mSVt-fEN4_ifl9lF26Ucxd2i_-yhDT3bR5u5W6hMD9DTcJ6W_rN2RY3nBtv5BNzYrcHDVjricUHozd7h3miRR73WCncf73D_efqaYmEPXBDUYdtZhntF3B2lD9G433u4GpAyHAORVmT4RBuHGke4bhRqSQOPay45167yaZRwCeB9Exo_FEFouJUJjpCGWXVimJLCSOUdocZsPtPHCHvKUCoDCQsaX7IgUSoQzA1lxJVVEKyJSNUcsSxZ5RAyYxoXlGUaQ4XFdYU10WWdflFQOn5M2apaNy5HaxpT6oQgnf2wiWjeTL88JR6ORt366uQvmU7Rlj3Pf0y5Tgs1srelPrP6JkvO8z78CUc98kQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ZS-wwFIcPLoj3xV3uuOZB8Cnapsskj4M4jLs4Dog-lDYLiDoz3NaH619vTrq4gAgKfWmblDbb-SU9-Q7ADvciOwb6kupMMhpqkdHUcEN1kHHbXoK2SHFz8tl53BuExzdR7U2Ie2FKPkSz4IY9w43X2MFxQXr_jRo6znMEB_kczVo4CdMY1tvNqq4aghTiqtycywp3inSpmtvosf2P-T_apTex-V6yOpvTnYesftvS1eRh77nI9uTLJ5Djrz5nAeYqRUo6ZRNahAk9XIIZ5xkq82W4uxzllQutnVSTkSF2SEFPdmvziFWPZFBCeov_eK8_doGvtSKd2wvSvX98yklqD1JC1HHnWUEOy9A7Sq_AoHt4fdCjVUQGKq3OCKk2HjNe6vvtWEsWBUILKYT2VcjamZDI3jexCeM0io2wSsFLpeFWoBiuZGqkClZhajga6r9AAmUYk5HEOU0oeZQpFaXcj2VbKCsieAtoXR-JrHDlGDXjMSlByyzBAkuaAmvBbpN-XII6vky5UVdvUnXYPGHMi1E9h3ELmKunb56SXPb7neZs7SeZtmG2d312mpwenZ-swx973f2n8r0NmCr-PetNK3eKbMs16Fd06vZf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ba9swFIcPXcbGXtrdytL1oofBnpTYsixLj6FN6GXLwrJA2B6MrAuUpkmonYftr59kO05SGIMN_GJbNrZ0pPOTffQdgA88iN0YGCpsMkUwNSLD0nKLTZRxZy9RIqRfnPx5yC4n9HoaT7dW8Vd8iOaDm-8Z5XjtO_hS2-4GGrrMc88NCrn3avQJPKUs4N6uL742AClPqyqnXE63Yw-XWmMbA9LdvX7XLW205rZiLV3O4ADk-mGrSJO7zqrIOurXI47j_7zNS9iv9SjqVQb0CvbM_DU8K-NCVf4GfowWeR1A66bUaGGRG1B8HLvzeMhpRzSpEL3FT39uvCzTXhuNet-_oMHt7D5H0m2oQqj7dWcF6leJd7R5C5NB_9v5Ja7zMWDlVAbFxgbEBjIME2YUiSNhhBLChJqSJBPKk_cts5TJmFnhdEIgleVOnliulbRKR4fQmi_m5h2gSFtCVKz8jIYqHmdax5KHTCVCOwnB24DXzZGqGlbuc2bM0gqzTFJfYWlTYW342JRfVpiOP5Y8XrduWnfXPCUkYF47U9YGUjbTX-6SjsbjXrN39C8XncHz0cUg_XQ1vHkPL9zh8idVGBxDq3hYmROndYrstDTn365N9Rc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibilities+of+Increasing+the+Usability+of+Sputtered+AZO+Films+as+a+Transparent+Electrode&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Nov%C3%A1k%2C+Petr&rft.date=2019-04-10&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=216&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssa.201800814&rft.externalDBID=10.1002%252Fpssa.201800814&rft.externalDocID=PSSA201800814 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |