Possibilities of Increasing the Usability of Sputtered AZO Films as a Transparent Electrode

Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon solar cells. However, it is difficult to obtain suitable electrical properties at low deposition temperatures. Moreover, the AZO films with low t...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 216; no. 7
Main Author Novák, Petr
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 10.04.2019
Subjects
Online AccessGet full text
ISSN1862-6300
1862-6319
DOI10.1002/pssa.201800814

Cover

Loading…
Abstract Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon solar cells. However, it is difficult to obtain suitable electrical properties at low deposition temperatures. Moreover, the AZO films with low thickness exhibit significantly higher average resistivity, which limits their usability, especially if they are prepared on flexible substrates. A lot of effort is invested to replace indium tin oxide (ITO) to a much greater extent now, since Indium is rare and its price is rising, thus the preparation of low‐thickness AZO films at low temperature is also subject of intense research. The presented paper summarizes the reported results, discusses the causes of the differences between ITO and AZO films, and suggests the direction of research and the potential solution that should lead to increased usability of AZO films and also possible replacement of ITO films. This paper reviews the influence of deposition parameters on the electrical properties of aluminum doped zinc oxide, which is cheap and non‐toxic transparent conductive material, but its usability is limited due to higher resistivity of low thickness ZnO films prepared at low temperature. The main reasons are discussed and the potential solutions to improve the electrical properties are proposed.
AbstractList Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon solar cells. However, it is difficult to obtain suitable electrical properties at low deposition temperatures. Moreover, the AZO films with low thickness exhibit significantly higher average resistivity, which limits their usability, especially if they are prepared on flexible substrates. A lot of effort is invested to replace indium tin oxide (ITO) to a much greater extent now, since Indium is rare and its price is rising, thus the preparation of low‐thickness AZO films at low temperature is also subject of intense research. The presented paper summarizes the reported results, discusses the causes of the differences between ITO and AZO films, and suggests the direction of research and the potential solution that should lead to increased usability of AZO films and also possible replacement of ITO films.
Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon solar cells. However, it is difficult to obtain suitable electrical properties at low deposition temperatures. Moreover, the AZO films with low thickness exhibit significantly higher average resistivity, which limits their usability, especially if they are prepared on flexible substrates. A lot of effort is invested to replace indium tin oxide (ITO) to a much greater extent now, since Indium is rare and its price is rising, thus the preparation of low‐thickness AZO films at low temperature is also subject of intense research. The presented paper summarizes the reported results, discusses the causes of the differences between ITO and AZO films, and suggests the direction of research and the potential solution that should lead to increased usability of AZO films and also possible replacement of ITO films. This paper reviews the influence of deposition parameters on the electrical properties of aluminum doped zinc oxide, which is cheap and non‐toxic transparent conductive material, but its usability is limited due to higher resistivity of low thickness ZnO films prepared at low temperature. The main reasons are discussed and the potential solutions to improve the electrical properties are proposed.
Author Novák, Petr
Author_xml – sequence: 1
  givenname: Petr
  surname: Novák
  fullname: Novák, Petr
  email: petrnov@ntc.zcu.cz
  organization: University of West Bohemia
BookMark eNqFkNFLwzAQxoNMcJu--hzwefOSpmn7OMamg8GEbS_6ULL0ohldW5MM2X9v52SCIMLBHdz97rv7eqRT1RUScstgyAD4feO9GnJgKUDKxAXpslTygYxY1jnXAFek5_0WQMQiYV3y8lR7bze2tMGip7Whs0o7VN5WrzS8IV179dU9HHvLZh8COizo6HlBp7bcearaoCunKt8oh1WgkxJ1cHWB1-TSqNLjzXfuk_V0sho_DuaLh9l4NB_oiCVigAa4AcVYIlHzOMow01mGrBA82WRatqcbaYRUsTQZSAZKm5QlsUkLrYwuoj65O-1tXP2-Rx_ybb13VSuZcw6ytQOEbKeGpynt2pcdmrxxdqfcIWeQHw3MjwbmZwNbQPwCtA0q2LoKTtnybyw7YR-2xMM_IvnTcjn6YT8B_yCIWQ
CitedBy_id crossref_primary_10_3390_nano12010172
crossref_primary_10_1016_j_tsf_2023_139942
crossref_primary_10_1007_s10854_023_10438_2
crossref_primary_10_1016_j_tsf_2020_138245
crossref_primary_10_1088_1361_6528_ab7ceb
crossref_primary_10_1007_s10971_023_06183_x
crossref_primary_10_1116_1_5129684
crossref_primary_10_1088_1361_6463_ad1791
crossref_primary_10_1149_2_0261912jss
crossref_primary_10_2339_politeknik_873160
crossref_primary_10_1016_j_apsusc_2021_150925
crossref_primary_10_1016_j_apsusc_2022_152588
crossref_primary_10_1016_j_physb_2021_413535
Cites_doi 10.1016/j.tsf.2018.06.036
10.1016/j.jpcs.2012.07.017
10.1016/j.spmi.2014.12.001
10.1063/1.4962943
10.1016/j.tsf.2009.09.189
10.1039/c2cp41139c
10.1117/1.OE.52.3.033801
10.1103/PhysRevApplied.5.024009
10.1039/C7CP02936E
10.1016/j.tsf.2018.05.029
10.1088/0022-3727/18/10/018
10.1016/S0040-6090(99)00085-1
10.1017/S0305004100019952
10.1080/00018735200101151
10.1016/j.tsf.2008.11.103
10.1103/PhysRevB.66.035203
10.1016/j.apsusc.2008.09.023
10.1063/1.5038162
10.1063/1.2053360
10.1002/pssa.201431469
10.1016/S0169-4332(01)00582-7
10.1063/1.4811647
10.1063/1.4906353
10.1016/j.surfcoat.2011.01.050
10.1016/j.tsf.2007.10.082
10.1088/0022-3727/44/2/025401
10.1063/1.1992666
10.1063/1.4922152
10.1109/T-ED.1983.21207
10.1002/pssa.201700951
10.1103/PhysRevB.73.205203
10.1063/1.4770452
10.1016/j.tsf.2016.03.022
10.1088/0022-3727/49/41/413002
10.1016/j.mssp.2018.01.027
10.1016/j.solmat.2010.02.026
10.1016/j.tsf.2017.02.017
10.1016/j.tsf.2008.09.059
10.2109/jcersj.115.254
10.1016/0040-6090(89)90892-4
10.1063/1.4916725
10.1063/1.1783613
10.1016/j.tsf.2015.11.059
10.1088/0953-8984/2/28/011
10.1063/1.324477
10.1016/j.tsf.2011.10.037
10.1038/nphoton.2012.282
10.1016/0022-3093(93)90584-K
10.1063/1.4896839
10.1016/j.vacuum.2013.09.009
10.1002/pssr.201308238
10.1063/1.321593
10.1103/PhysRevB.88.245201
10.1116/1.3430556
10.1002/pssa.201228014
10.1007/978-3-540-73612-7
10.1016/j.tsf.2010.08.168
10.1166/sl.2014.3399
10.1016/j.tsf.2007.05.084
10.1088/0034-4885/72/12/126501
10.1116/1.1626641
10.1016/j.solmat.2016.07.020
10.1016/j.displa.2013.06.004
10.1002/ppap.201500179
10.1063/1.3074373
10.1063/1.2719158
10.1088/0268-1242/20/4/008
10.1063/1.2216354
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/pssa.201800814
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
EndPage n/a
ExternalDocumentID 10_1002_pssa_201800814
PSSA201800814
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
.Y3
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEYWJ
AFFNX
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3174-ef02f0a1176ec2539e9c99e1d427b9c6186f6f46a56f90610acf8175f8dcafcd3
IEDL.DBID DR2
ISSN 1862-6300
IngestDate Wed Aug 13 04:01:49 EDT 2025
Tue Jul 01 00:55:12 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Wed Jan 22 16:21:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-ef02f0a1176ec2539e9c99e1d427b9c6186f6f46a56f90610acf8175f8dcafcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2206008046
PQPubID 1036347
PageCount 10
ParticipantIDs proquest_journals_2206008046
crossref_primary_10_1002_pssa_201800814
crossref_citationtrail_10_1002_pssa_201800814
wiley_primary_10_1002_pssa_201800814_PSSA201800814
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 10, 2019
PublicationDateYYYYMMDD 2019-04-10
PublicationDate_xml – month: 04
  year: 2019
  text: April 10, 2019
  day: 10
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 79
2004; 22
2009; 518
2001; 183
2006; 73
2018; 124
2000; 293
2005; 20
2012; 14
2009; 517
2017; 634
2012; 209
1993; 166
1985; 18
2011; 520
2010; 519
2011; 205
2009; 94
2018; 658
2015; 212
2010; 28
2018; 1700783
2008; 517
2013; 52
2008; 516
1975; 46
2016; 157
2014; 8
2016; 49
2014; 12
2018; 79
2014; 116
2018; 660
2015; 3
2016; 605
2013; 88
2018; 1700951
1989; 174
2008
2007; 90
1983; 30
2005; 87
2013; 102
2016; 120
2016; 13
2007; 115
2016; 5
1990; 2
2004; 96
2012; 112
1938; 34
2009; 72
2016; 614
2013; 34
2002; 66
2013; 74
1999; 351
2011; 44
2005; 98
1978; 49
2017; 19
2015; 117
2012; 6
2008; 255
2006; 100
2014; 101
2010; 94
1952; 1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Gordillo G. (e_1_2_9_70_1) 2000; 293
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Minami T. (e_1_2_9_27_1) 2018; 1700783
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 72
  start-page: 126501
  year: 2009
  publication-title: Rep. Prog. Phys
– volume: 20
  start-page: S62
  year: 2005
  publication-title: Semicond. Sci. Technol
– volume: 658
  start-page: 27
  year: 2018
  publication-title: Thin Solid Films
– volume: 73
  start-page: 205203
  year: 2006
  publication-title: Phys. Rev. B − Condens. Matter Mater. Phys
– volume: 52
  start-page: 033801
  year: 2013
  publication-title: Opt. Eng
– volume: 120
  start-page: 125302
  year: 2016
  publication-title: J. Appl. Phys
– volume: 74
  start-page: 45
  year: 2013
  publication-title: J. Phys. Chem. Solids
– volume: 124
  start-page: 065304
  year: 2018
  publication-title: J. Appl. Phys
– volume: 79
  start-page: 135
  year: 2018
  publication-title: Mater. Sci. Semicond. Process
– volume: 5
  start-page: 1
  year: 2016
  publication-title: Phys. Rev. Appl
– volume: 1700783
  start-page: 1
  year: 2018
  publication-title: Phys. Status Solidi Appl. Mater. Sci
– volume: 66
  start-page: 035203
  year: 2002
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 3501
  year: 2004
  publication-title: J. Appl. Phys
– volume: 351
  start-page: 247
  year: 1999
  publication-title: Thin Solid Films
– volume: 614
  start-page: 62
  year: 2016
  publication-title: Thin Solid Films
– volume: 90
  start-page: 8
  year: 2007
  publication-title: Appl. Phys. Lett
– volume: 519
  start-page: 1521
  year: 2010
  publication-title: Thin Solid Films
– volume: 2
  start-page: 6207
  year: 1990
  publication-title: J. Phys. Condens. Matter
– volume: 49
  start-page: 5565
  year: 1978
  publication-title: J. Appl. Phys
– volume: 94
  start-page: 937
  year: 2010
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 30
  start-page: 764
  year: 1983
  publication-title: IEEE Trans. Electron Devices
– volume: 28
  start-page: 846
  year: 2010
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film
– volume: 157
  start-page: 742
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 517
  start-page: 3265
  year: 2009
  publication-title: Thin Solid Films
– volume: 117
  start-page: 155301
  year: 2015
  publication-title: J. Appl. Phys
– volume: 49
  start-page: 413002
  year: 2016
  publication-title: J. Phys. D. Appl. Phys
– volume: 8
  start-page: 172
  year: 2014
  publication-title: Phys. Status Solidi − Rapid Res. Lett
– volume: 293
  start-page: 293
  year: 2000
  publication-title: Thin Film
– year: 2008
– volume: 1
  start-page: 1
  year: 1952
  publication-title: Adv. Phys
– volume: 516
  start-page: 5829
  year: 2008
  publication-title: Thin Solid Films
– volume: 6
  start-page: 809
  year: 2012
  publication-title: Nat. Photonics
– volume: 116
  start-page: 143704
  year: 2014
  publication-title: J. Appl. Phys
– volume: 517
  start-page: 1474
  year: 2008
  publication-title: Thin Solid Films
– volume: 18
  start-page: 2081
  year: 1985
  publication-title: J. Phys. D. Appl. Phys
– volume: 183
  start-page: 137
  year: 2001
  publication-title: Appl. Surf
– volume: 46
  start-page: 5247
  year: 1975
  publication-title: J. Appl. Phys
– volume: 117
  start-page: 045304
  year: 2015
  publication-title: J. Appl. Phys
– volume: 660
  start-page: 471
  year: 2018
  publication-title: Thin Solid Films
– volume: 22
  start-page: 20
  year: 2004
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film
– volume: 13
  start-page: 54
  year: 2016
  publication-title: Plasma Process. Polym
– volume: 255
  start-page: 3195
  year: 2008
  publication-title: Appl. Surf. Sci
– volume: 516
  start-page: 4620
  year: 2008
  publication-title: Thin Solid Films
– volume: 100
  start-page: 1
  year: 2006
  publication-title: J. Appl. Phys
– volume: 212
  start-page: 348
  year: 2015
  publication-title: Phys. Status Solidi Appl. Mater. Sci
– volume: 112
  start-page: 123713
  year: 2012
  publication-title: J. Appl. Phys
– volume: 1700951
  start-page: 1700951
  year: 2018
  publication-title: Phys. Status Solidi
– volume: 79
  start-page: 148
  year: 2015
  publication-title: Superlattices Microstruct
– volume: 102
  start-page: 10
  year: 2013
  publication-title: Appl. Phys. Lett
– volume: 520
  start-page: 1395
  year: 2011
  publication-title: Thin Solid Films
– volume: 87
  start-page: 1
  year: 2005
  publication-title: Appl. Phys. Lett
– volume: 34
  start-page: 326
  year: 2013
  publication-title: Displays
– volume: 634
  start-page: 169
  year: 2017
  publication-title: Thin Solid Films
– volume: 166
  start-page: 441
  year: 1993
– volume: 14
  start-page: 11610
  year: 2012
  publication-title: Phys. Chem. Chem. Phys
– volume: 88
  start-page: 1
  year: 2013
  publication-title: Phys. Rev. B − Condens. Matter Mater. Phys
– volume: 94
  start-page: 1
  year: 2009
  publication-title: Appl. Phys. Lett
– volume: 605
  start-page: 20
  year: 2016
  publication-title: Thin Solid Films
– volume: 19
  start-page: 27866
  year: 2017
  publication-title: Phys. Chem. Chem. Phys
– volume: 174
  start-page: 217
  year: 1989
  publication-title: Thin Solid Films
– volume: 518
  start-page: 2961
  year: 2009
  publication-title: Thin Solid Films
– volume: 3
  start-page: 060701
  year: 2015
  publication-title: APL Mater
– volume: 115
  start-page: 254
  year: 2007
  publication-title: J. Ceram. Soc. Japan
– volume: 98
  start-page: 041301
  year: 2005
  publication-title: J. Appl. Phys
– volume: 12
  start-page: 1
  year: 2014
  publication-title: Sens. Lett
– volume: 44
  start-page: 025401
  year: 2011
  publication-title: J. Phys. D. Appl. Phys
– volume: 101
  start-page: 250
  year: 2014
  publication-title: Vacuum
– volume: 209
  start-page: 1251
  year: 2012
  publication-title: Phys. Status Solidi
– volume: 205
  start-page: S294
  year: 2011
  publication-title: Surf. Coatings Technol
– volume: 34
  start-page: 100
  year: 1938
  publication-title: Math. Proc. Cambridge Philos. Soc
– ident: e_1_2_9_9_1
  doi: 10.1016/j.tsf.2018.06.036
– ident: e_1_2_9_54_1
  doi: 10.1016/j.jpcs.2012.07.017
– ident: e_1_2_9_16_1
  doi: 10.1016/j.spmi.2014.12.001
– ident: e_1_2_9_30_1
  doi: 10.1063/1.4962943
– ident: e_1_2_9_33_1
  doi: 10.1016/j.tsf.2009.09.189
– ident: e_1_2_9_55_1
  doi: 10.1039/c2cp41139c
– ident: e_1_2_9_22_1
  doi: 10.1117/1.OE.52.3.033801
– ident: e_1_2_9_36_1
  doi: 10.1103/PhysRevApplied.5.024009
– volume: 1700783
  start-page: 1
  year: 2018
  ident: e_1_2_9_27_1
  publication-title: Phys. Status Solidi Appl. Mater. Sci
– ident: e_1_2_9_57_1
  doi: 10.1039/C7CP02936E
– ident: e_1_2_9_65_1
  doi: 10.1016/j.tsf.2018.05.029
– ident: e_1_2_9_47_1
  doi: 10.1088/0022-3727/18/10/018
– ident: e_1_2_9_19_1
  doi: 10.1016/S0040-6090(99)00085-1
– ident: e_1_2_9_25_1
  doi: 10.1017/S0305004100019952
– ident: e_1_2_9_26_1
  doi: 10.1080/00018735200101151
– ident: e_1_2_9_13_1
  doi: 10.1016/j.tsf.2008.11.103
– ident: e_1_2_9_43_1
  doi: 10.1103/PhysRevB.66.035203
– ident: e_1_2_9_15_1
  doi: 10.1016/j.apsusc.2008.09.023
– ident: e_1_2_9_64_1
  doi: 10.1063/1.5038162
– ident: e_1_2_9_53_1
  doi: 10.1063/1.2053360
– ident: e_1_2_9_2_1
  doi: 10.1002/pssa.201431469
– ident: e_1_2_9_17_1
  doi: 10.1016/S0169-4332(01)00582-7
– ident: e_1_2_9_59_1
  doi: 10.1063/1.4811647
– ident: e_1_2_9_28_1
  doi: 10.1063/1.4906353
– ident: e_1_2_9_61_1
  doi: 10.1016/j.surfcoat.2011.01.050
– ident: e_1_2_9_49_1
  doi: 10.1016/j.tsf.2007.10.082
– ident: e_1_2_9_3_1
  doi: 10.1088/0022-3727/44/2/025401
– ident: e_1_2_9_21_1
  doi: 10.1063/1.1992666
– ident: e_1_2_9_14_1
  doi: 10.1063/1.4922152
– ident: e_1_2_9_39_1
  doi: 10.1109/T-ED.1983.21207
– ident: e_1_2_9_29_1
  doi: 10.1002/pssa.201700951
– ident: e_1_2_9_51_1
  doi: 10.1103/PhysRevB.73.205203
– ident: e_1_2_9_46_1
  doi: 10.1063/1.4770452
– ident: e_1_2_9_48_1
  doi: 10.1016/j.tsf.2016.03.022
– ident: e_1_2_9_10_1
  doi: 10.1088/0022-3727/49/41/413002
– ident: e_1_2_9_71_1
  doi: 10.1016/j.mssp.2018.01.027
– ident: e_1_2_9_67_1
  doi: 10.1016/j.solmat.2010.02.026
– ident: e_1_2_9_6_1
  doi: 10.1016/j.tsf.2017.02.017
– ident: e_1_2_9_11_1
  doi: 10.1016/j.tsf.2008.09.059
– ident: e_1_2_9_34_1
  doi: 10.2109/jcersj.115.254
– ident: e_1_2_9_37_1
  doi: 10.1016/0040-6090(89)90892-4
– ident: e_1_2_9_7_1
  doi: 10.1063/1.4916725
– ident: e_1_2_9_4_1
  doi: 10.1063/1.1783613
– ident: e_1_2_9_18_1
  doi: 10.1016/j.tsf.2015.11.059
– ident: e_1_2_9_41_1
  doi: 10.1088/0953-8984/2/28/011
– ident: e_1_2_9_45_1
  doi: 10.1063/1.324477
– ident: e_1_2_9_69_1
  doi: 10.1016/j.tsf.2011.10.037
– ident: e_1_2_9_5_1
  doi: 10.1038/nphoton.2012.282
– ident: e_1_2_9_42_1
  doi: 10.1016/0022-3093(93)90584-K
– volume: 293
  start-page: 293
  year: 2000
  ident: e_1_2_9_70_1
  publication-title: Thin Film
– ident: e_1_2_9_35_1
  doi: 10.1063/1.4896839
– ident: e_1_2_9_8_1
  doi: 10.1016/j.vacuum.2013.09.009
– ident: e_1_2_9_31_1
  doi: 10.1002/pssr.201308238
– ident: e_1_2_9_44_1
  doi: 10.1063/1.321593
– ident: e_1_2_9_56_1
  doi: 10.1103/PhysRevB.88.245201
– ident: e_1_2_9_62_1
  doi: 10.1116/1.3430556
– ident: e_1_2_9_24_1
  doi: 10.1002/pssa.201228014
– ident: e_1_2_9_38_1
  doi: 10.1007/978-3-540-73612-7
– ident: e_1_2_9_68_1
  doi: 10.1016/j.tsf.2010.08.168
– ident: e_1_2_9_32_1
  doi: 10.1166/sl.2014.3399
– ident: e_1_2_9_40_1
  doi: 10.1016/j.tsf.2007.05.084
– ident: e_1_2_9_20_1
  doi: 10.1088/0034-4885/72/12/126501
– ident: e_1_2_9_63_1
  doi: 10.1116/1.1626641
– ident: e_1_2_9_66_1
  doi: 10.1016/j.solmat.2016.07.020
– ident: e_1_2_9_12_1
  doi: 10.1016/j.displa.2013.06.004
– ident: e_1_2_9_23_1
  doi: 10.1002/ppap.201500179
– ident: e_1_2_9_58_1
  doi: 10.1063/1.3074373
– ident: e_1_2_9_50_1
  doi: 10.1063/1.2719158
– ident: e_1_2_9_52_1
  doi: 10.1088/0268-1242/20/4/008
– ident: e_1_2_9_60_1
  doi: 10.1063/1.2216354
SSID ssj0045471
Score 2.3432794
Snippet Aluminum‐doped zinc oxide (AZO) is a suitable material for use as transparent electrode. Due to its lower price it is applied in the production of silicon...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum
aluminum‐doped zinc oxide
Electrical properties
Electrodes
Indium tin oxides
magnetron sputtering
Photovoltaic cells
Solar cells
Substrates
Thickness
thin film
transparent conductive oxides
Usability
Zinc oxide
Title Possibilities of Increasing the Usability of Sputtered AZO Films as a Transparent Electrode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.201800814
https://www.proquest.com/docview/2206008046
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDDARfvIvTKXkQfMrWprfkccjGENThHAx9KGkuIM5t2O5BP705vc0JIij0oaVJSXM7_7Qnv4PQBXMCOwe6kuhEUuJrnhBhmCHaS5jtL17EBWxOvrkNB2P_ehJMvuziL_gQ9Qc3GBn5fA0DXCRpZwUNXaQpcINcBlYNgKDgsAWq6L7mRwGsKl9xWdlOgC1VURsd2lnPvm6VVlLzq2DNLU5_B4mqrIWjyUt7mSVt-fEN4_ifl9lF26Ucxd2i_-yhDT3bR5u5W6hMD9DTcJ6W_rN2RY3nBtv5BNzYrcHDVjricUHozd7h3miRR73WCncf73D_efqaYmEPXBDUYdtZhntF3B2lD9G433u4GpAyHAORVmT4RBuHGke4bhRqSQOPay45167yaZRwCeB9Exo_FEFouJUJjpCGWXVimJLCSOUdocZsPtPHCHvKUCoDCQsaX7IgUSoQzA1lxJVVEKyJSNUcsSxZ5RAyYxoXlGUaQ4XFdYU10WWdflFQOn5M2apaNy5HaxpT6oQgnf2wiWjeTL88JR6ORt366uQvmU7Rlj3Pf0y5Tgs1srelPrP6JkvO8z78CUc98kQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ZS-wwFIcPLoj3xV3uuOZB8Cnapsskj4M4jLs4Dog-lDYLiDoz3NaH619vTrq4gAgKfWmblDbb-SU9-Q7ADvciOwb6kupMMhpqkdHUcEN1kHHbXoK2SHFz8tl53BuExzdR7U2Ie2FKPkSz4IY9w43X2MFxQXr_jRo6znMEB_kczVo4CdMY1tvNqq4aghTiqtycywp3inSpmtvosf2P-T_apTex-V6yOpvTnYesftvS1eRh77nI9uTLJ5Djrz5nAeYqRUo6ZRNahAk9XIIZ5xkq82W4uxzllQutnVSTkSF2SEFPdmvziFWPZFBCeov_eK8_doGvtSKd2wvSvX98yklqD1JC1HHnWUEOy9A7Sq_AoHt4fdCjVUQGKq3OCKk2HjNe6vvtWEsWBUILKYT2VcjamZDI3jexCeM0io2wSsFLpeFWoBiuZGqkClZhajga6r9AAmUYk5HEOU0oeZQpFaXcj2VbKCsieAtoXR-JrHDlGDXjMSlByyzBAkuaAmvBbpN-XII6vky5UVdvUnXYPGHMi1E9h3ELmKunb56SXPb7neZs7SeZtmG2d312mpwenZ-swx973f2n8r0NmCr-PetNK3eKbMs16Fd06vZf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ba9swFIcPXcbGXtrdytL1oofBnpTYsixLj6FN6GXLwrJA2B6MrAuUpkmonYftr59kO05SGIMN_GJbNrZ0pPOTffQdgA88iN0YGCpsMkUwNSLD0nKLTZRxZy9RIqRfnPx5yC4n9HoaT7dW8Vd8iOaDm-8Z5XjtO_hS2-4GGrrMc88NCrn3avQJPKUs4N6uL742AClPqyqnXE63Yw-XWmMbA9LdvX7XLW205rZiLV3O4ADk-mGrSJO7zqrIOurXI47j_7zNS9iv9SjqVQb0CvbM_DU8K-NCVf4GfowWeR1A66bUaGGRG1B8HLvzeMhpRzSpEL3FT39uvCzTXhuNet-_oMHt7D5H0m2oQqj7dWcF6leJd7R5C5NB_9v5Ja7zMWDlVAbFxgbEBjIME2YUiSNhhBLChJqSJBPKk_cts5TJmFnhdEIgleVOnliulbRKR4fQmi_m5h2gSFtCVKz8jIYqHmdax5KHTCVCOwnB24DXzZGqGlbuc2bM0gqzTFJfYWlTYW342JRfVpiOP5Y8XrduWnfXPCUkYF47U9YGUjbTX-6SjsbjXrN39C8XncHz0cUg_XQ1vHkPL9zh8idVGBxDq3hYmROndYrstDTn365N9Rc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibilities+of+Increasing+the+Usability+of+Sputtered+AZO+Films+as+a+Transparent+Electrode&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Nov%C3%A1k%2C+Petr&rft.date=2019-04-10&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=216&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssa.201800814&rft.externalDBID=10.1002%252Fpssa.201800814&rft.externalDocID=PSSA201800814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon