Sol Electrolyte: Pathway to Long‐Term Stable Lithium Metal Anode
Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octa...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 26 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octaphenyl polyoxyethylene (OP‐10)‐based sol electrolyte is proposed to alleviate Li anode pulverization. This sol electrolyte possesses better ionic conductivity compared to gel and solid‐state electrolytes and also homogenizes Li ion diffusion throughout the entire electrolyte efficiently. As a result, Li/Li symmetric cells using this sol electrolyte demonstrate long‐term cycling stability for up to 1800 h, with a plating capacity of 3.0 mAh cm−2 without deteriorating the integrity of the thin Li foil. Using a conventional liquid electrolyte, electrode pulverization and battery failure can be observed after just three cycles. More importantly, a parameter of “throwing power” is introduced in a metal Li battery system to characterize the homogenizing ability of Li deposition in different electrolyte systems, which can serve as a guide to the efficient selection of electrolytes for Li metal batteries.
A liquid sol electrolyte is proposed as an alternative to a gel or solid‐state electrolyte to significantly alleviate the pulverization of Li anode without changing the production process of existing commercial batteries. Uniform and dense deposition, accompanied by robust solid electrolyte interphase films ensure the long‐term cycling stability of Li anodes even at a high plating capacity of 3 mAh cm−2. |
---|---|
AbstractList | Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octaphenyl polyoxyethylene (OP‐10)‐based sol electrolyte is proposed to alleviate Li anode pulverization. This sol electrolyte possesses better ionic conductivity compared to gel and solid‐state electrolytes and also homogenizes Li ion diffusion throughout the entire electrolyte efficiently. As a result, Li/Li symmetric cells using this sol electrolyte demonstrate long‐term cycling stability for up to 1800 h, with a plating capacity of 3.0 mAh cm
−2
without deteriorating the integrity of the thin Li foil. Using a conventional liquid electrolyte, electrode pulverization and battery failure can be observed after just three cycles. More importantly, a parameter of “throwing power” is introduced in a metal Li battery system to characterize the homogenizing ability of Li deposition in different electrolyte systems, which can serve as a guide to the efficient selection of electrolytes for Li metal batteries. Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octaphenyl polyoxyethylene (OP‐10)‐based sol electrolyte is proposed to alleviate Li anode pulverization. This sol electrolyte possesses better ionic conductivity compared to gel and solid‐state electrolytes and also homogenizes Li ion diffusion throughout the entire electrolyte efficiently. As a result, Li/Li symmetric cells using this sol electrolyte demonstrate long‐term cycling stability for up to 1800 h, with a plating capacity of 3.0 mAh cm−2 without deteriorating the integrity of the thin Li foil. Using a conventional liquid electrolyte, electrode pulverization and battery failure can be observed after just three cycles. More importantly, a parameter of “throwing power” is introduced in a metal Li battery system to characterize the homogenizing ability of Li deposition in different electrolyte systems, which can serve as a guide to the efficient selection of electrolytes for Li metal batteries. A liquid sol electrolyte is proposed as an alternative to a gel or solid‐state electrolyte to significantly alleviate the pulverization of Li anode without changing the production process of existing commercial batteries. Uniform and dense deposition, accompanied by robust solid electrolyte interphase films ensure the long‐term cycling stability of Li anodes even at a high plating capacity of 3 mAh cm−2. Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octaphenyl polyoxyethylene (OP‐10)‐based sol electrolyte is proposed to alleviate Li anode pulverization. This sol electrolyte possesses better ionic conductivity compared to gel and solid‐state electrolytes and also homogenizes Li ion diffusion throughout the entire electrolyte efficiently. As a result, Li/Li symmetric cells using this sol electrolyte demonstrate long‐term cycling stability for up to 1800 h, with a plating capacity of 3.0 mAh cm−2 without deteriorating the integrity of the thin Li foil. Using a conventional liquid electrolyte, electrode pulverization and battery failure can be observed after just three cycles. More importantly, a parameter of “throwing power” is introduced in a metal Li battery system to characterize the homogenizing ability of Li deposition in different electrolyte systems, which can serve as a guide to the efficient selection of electrolytes for Li metal batteries. |
Author | Lai, Chao Li, Yinwei Sun, Chuang Dong, Jing Lu, Xidi |
Author_xml | – sequence: 1 givenname: Chuang surname: Sun fullname: Sun, Chuang organization: Jiangsu Normal University – sequence: 2 givenname: Jing surname: Dong fullname: Dong, Jing organization: Jiangsu Normal University – sequence: 3 givenname: Xidi surname: Lu fullname: Lu, Xidi organization: Jiangsu Normal University – sequence: 4 givenname: Yinwei surname: Li fullname: Li, Yinwei organization: Jiangsu Normal University – sequence: 5 givenname: Chao orcidid: 0000-0002-6021-6343 surname: Lai fullname: Lai, Chao email: laichao@jsnu.edu.cn organization: Jiangsu Normal University |
BookMark | eNqFkM1Kw0AURgdRsK1uXQ-4Tp2_JBN3tbYqpCi0grthktzYlCRTJ1NKdj6Cz-iTmFKpIIirey-ccz_4-ui4NjUgdEHJkBLCrnSWV0NGWHf4kThCPRrQwOOEyePDTl9OUb9pVoTQMOSih27mpsSTElJnTdk6uMZP2i23usXO4NjUr5_vHwuwFZ47nZSA48Iti02FZ-B0iUe1yeAMneS6bOD8ew7Q83SyGN978ePdw3gUeymnofBABlngE5FIn-ecQMp9CAJJmYxYB_g-SbOEMyBJlHAqOQ2EhNCHSEuidZLzAbrc_11b87aBxqmV2di6i1TMF0LIUNKoo4Z7KrWmaSzkam2LSttWUaJ2PaldT-rQUyeIX0JaOO0KUzuri_JvLdpr26KE9p8QNbqdzn7cLx2qffQ |
CitedBy_id | crossref_primary_10_1021_acsaem_3c01053 crossref_primary_10_1002_adma_202108400 crossref_primary_10_1002_ange_202417471 crossref_primary_10_1002_eem2_12355 crossref_primary_10_1007_s11706_023_0630_3 crossref_primary_10_1021_acs_langmuir_4c03369 crossref_primary_10_1007_s40820_022_00846_0 crossref_primary_10_1016_j_elecom_2022_107423 crossref_primary_10_1002_ange_202104671 crossref_primary_10_1002_adfm_202303111 crossref_primary_10_1002_adma_202313456 crossref_primary_10_1021_acsami_2c18783 crossref_primary_10_1002_anie_202104671 crossref_primary_10_1007_s12274_022_5363_6 crossref_primary_10_1002_adfm_202410485 crossref_primary_10_1016_j_cej_2021_133522 crossref_primary_10_1002_adfm_202202771 crossref_primary_10_1002_adfm_202301964 crossref_primary_10_1002_anie_202417471 crossref_primary_10_1016_j_cej_2022_135329 crossref_primary_10_1007_s12598_022_02101_2 crossref_primary_10_1039_D3TA00096F crossref_primary_10_1021_acssuschemeng_3c03756 crossref_primary_10_1002_adfm_202110347 |
Cites_doi | 10.1021/acsenergylett.7b00300 10.1149/1.2100331 10.1002/anie.201915440 10.1038/s41467-020-14550-3 10.1021/acs.nanolett.9b03562 10.1126/sciadv.aat3446 10.1038/s41467-019-12952-6 10.1002/aenm.201803372 10.1016/j.ensm.2020.04.043 10.1021/acs.jpclett.7b02946 10.1039/tf9383400698 10.1016/j.nanoen.2019.104128 10.1002/advs.201600400 10.1038/s41560-020-0634-5 10.1002/adma.201904537 10.1002/aenm.201802130 10.1016/j.memsci.2017.10.033 10.1038/nnano.2017.16 10.1039/C9TA05938E 10.1016/j.nanoen.2018.10.002 10.1002/aenm.201900611 10.1039/c0cp00170h 10.1021/jacs.8b08963 10.1080/00202967.1934.11871613 10.1002/anie.202004853 10.1038/s41467-020-14505-8 10.1016/j.cej.2019.122935 10.1016/j.cej.2019.122714 10.1016/j.nanoen.2019.103910 10.1002/ange.201911724 10.1002/aenm.201802720 10.1002/adfm.202002824 10.1021/jacs.7b07584 10.1002/adma.202001741 10.1002/aenm.201901932 10.1002/aenm.201803477 10.1002/aenm.201803422 10.1002/aenm.202003082 10.1039/C9EE02558H 10.1016/j.joule.2018.03.008 10.1016/j.chempr.2018.12.002 10.1016/j.jechem.2019.12.024 10.1002/aenm.201702657 10.1002/eom2.12019 10.1002/aenm.201702744 10.1038/nenergy.2017.12 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202100594 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202100594 ADFM202100594 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20200047 – fundername: National Natural Science Foundation of China funderid: 51871113 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3174-e86d6504b853f30ec35e66812892317550cdb32e0b9b31831648e75e9a80aabf3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 01:13:57 EDT 2025 Tue Jul 01 04:12:29 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Wed Jan 22 16:30:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-e86d6504b853f30ec35e66812892317550cdb32e0b9b31831648e75e9a80aabf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6021-6343 |
PQID | 2544487819 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2544487819 crossref_primary_10_1002_adfm_202100594 crossref_citationtrail_10_1002_adfm_202100594 wiley_primary_10_1002_adfm_202100594_ADFM202100594 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2019; 7 2019; 9 2017; 2 2018; 140 2019; 5 2017; 4 2019; 31 2020; 382 2018; 547 2019; 10 2019; 12 2020; 59 2019; 19 2020; 11 2020; 32 1934; 9 2017; 139 2018; 9 2020; 5 2018; 8 1987; 134 2018; 2 2020; 2 2021; 11 2018; 4 1938; 34 2019; 64 2020; 30 2019; 66 2017; 12 2020; 48 2018; 54 2019; 132 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 12 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 1321 year: 2017 publication-title: ACS Energy Lett. – volume: 134 start-page: 3011 year: 1987 publication-title: J. Electrochem. Soc. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 48 start-page: 145 year: 2020 publication-title: J. Energy Chem. – volume: 5 start-page: 526 year: 2020 publication-title: Nat. Energy – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 64 year: 2019 publication-title: Nano Energy – volume: 19 start-page: 8780 year: 2019 publication-title: Nano Lett. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 59 start-page: 6561 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 144 year: 1934 publication-title: Trans. IMF – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 66 year: 2019 publication-title: Nano Energy – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 3319 year: 2019 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 54 start-page: 375 year: 2018 publication-title: Nano Energy – volume: 10 start-page: 4973 year: 2019 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 9 start-page: 126 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 30 start-page: 27 year: 2020 publication-title: Energy Storage Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 547 start-page: 1 year: 2018 publication-title: J. Membr. Sci. – volume: 132 start-page: 3278 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 2 start-page: 833 year: 2018 publication-title: Joule – volume: 2 year: 2020 publication-title: EcoMat – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 34 start-page: 698 year: 1938 publication-title: Trans. Faraday Soc. – volume: 11 start-page: 1 year: 2020 publication-title: Nat. Commun. – volume: 5 start-page: 74 year: 2019 publication-title: Chem – ident: e_1_2_8_45_1 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_8_46_1 doi: 10.1149/1.2100331 – ident: e_1_2_8_17_1 doi: 10.1002/anie.201915440 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-020-14550-3 – ident: e_1_2_8_30_1 doi: 10.1021/acs.nanolett.9b03562 – ident: e_1_2_8_18_1 doi: 10.1126/sciadv.aat3446 – ident: e_1_2_8_39_1 doi: 10.1038/s41467-019-12952-6 – ident: e_1_2_8_35_1 doi: 10.1002/aenm.201803372 – ident: e_1_2_8_34_1 doi: 10.1016/j.ensm.2020.04.043 – ident: e_1_2_8_28_1 doi: 10.1021/acs.jpclett.7b02946 – ident: e_1_2_8_48_1 doi: 10.1039/tf9383400698 – ident: e_1_2_8_36_1 doi: 10.1016/j.nanoen.2019.104128 – ident: e_1_2_8_37_1 doi: 10.1002/advs.201600400 – ident: e_1_2_8_6_1 doi: 10.1038/s41560-020-0634-5 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201904537 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.201802130 – ident: e_1_2_8_24_1 doi: 10.1016/j.memsci.2017.10.033 – ident: e_1_2_8_1_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_8_43_1 doi: 10.1021/acs.nanolett.9b03562 – ident: e_1_2_8_21_1 doi: 10.1039/C9TA05938E – ident: e_1_2_8_11_1 doi: 10.1016/j.nanoen.2018.10.002 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.201900611 – ident: e_1_2_8_29_1 doi: 10.1039/c0cp00170h – ident: e_1_2_8_40_1 doi: 10.1021/jacs.8b08963 – ident: e_1_2_8_47_1 doi: 10.1080/00202967.1934.11871613 – ident: e_1_2_8_3_1 doi: 10.1002/anie.202004853 – ident: e_1_2_8_27_1 doi: 10.1038/s41467-020-14505-8 – ident: e_1_2_8_22_1 doi: 10.1016/j.cej.2019.122935 – ident: e_1_2_8_25_1 doi: 10.1016/j.cej.2019.122714 – ident: e_1_2_8_10_1 doi: 10.1016/j.nanoen.2019.103910 – ident: e_1_2_8_31_1 doi: 10.1002/ange.201911724 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201802720 – ident: e_1_2_8_4_1 doi: 10.1002/adfm.202002824 – ident: e_1_2_8_12_1 doi: 10.1021/jacs.7b07584 – ident: e_1_2_8_38_1 doi: 10.1002/adma.202001741 – ident: e_1_2_8_5_1 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_8_7_1 doi: 10.1002/aenm.201901932 – ident: e_1_2_8_44_1 doi: 10.1002/aenm.201803477 – ident: e_1_2_8_23_1 doi: 10.1002/aenm.201803422 – ident: e_1_2_8_13_1 doi: 10.1002/aenm.202003082 – ident: e_1_2_8_15_1 doi: 10.1039/C9EE02558H – ident: e_1_2_8_2_1 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_8_19_1 doi: 10.1016/j.chempr.2018.12.002 – ident: e_1_2_8_32_1 doi: 10.1016/j.jechem.2019.12.024 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.201702657 – ident: e_1_2_8_33_1 doi: 10.1002/eom2.12019 – ident: e_1_2_8_41_1 doi: 10.1002/aenm.201702744 – ident: e_1_2_8_42_1 doi: 10.1038/nenergy.2017.12 |
SSID | ssj0017734 |
Score | 2.5113645 |
Snippet | Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Cycles Dendritic structure Electrolytes Electrolytic cells Foils Ion currents Ion diffusion Lithium lithium anode lithium batteries Materials science Molten salt electrolytes Plating Polyoxyethylene pulverization sol electrolyte Solid electrolytes Throwing Throwing power |
Title | Sol Electrolyte: Pathway to Long‐Term Stable Lithium Metal Anode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202100594 https://www.proquest.com/docview/2544487819 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsJAFIYnBje68G5EkczCxFWhdHp1hwIhBowRSNg1c0OJtTVSYnDlI_iMPolnWlrAxJjoqm0y07RzOec_7ZlvEDoT0M864Z7Ghcc0k40cjYEj06hjWFQnFqMsoX3e2O2BeT20hkur-FM-RP7BTc2MxF6rCU7ZpLqAhlIxUivJIWRRyBEwwiphS6miu5wfVXOc9LeyXVMJXrVhRm3Ujepq9VWvtJCay4I18TitbUSzZ00TTR4r05hV-Ns3jON_XmYHbc3lKK6n42cXrclwD20uQQr30WUvCnAz3S0nmMXyAt-CanylMxxHuBOF95_vH32w7xh0Kwsk7ozjh_H0CXdlrO4cRkIeoEGr2b9qa_OdFzQOesLUpGsLkG4mA2c-IrrkxJK2IpW5Sg86ENVwwYghdeYxZRQg5nKlY0mPujqlbEQOUSGMQnmEMAEFSC0hTctyTE9yz-VEF1CaCjhyUkRa1vI-n2PJ1e4YgZ8ClQ1ftY2ft00Rnefln1Mgx48lS1lH-vOJOfEVkQ1iNNBBRWQkPfLLXfx6o9XNr47_UukEbajzNMGshArxy1SegpSJWRmt1xvdTq-cDNsvZQfqjQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSDb7FadQ-Cp7RpNmkSbz5aqrYi2kJvYV_VYk1EU0RP_gR_o7_E2aSJDxBBTyFhd0lmd2a-2cx-A7AjcZ5NKnxDSJ8bNu-7BkdHZjDXcphJHc54wvZ5Vmt27ZOek2UT6rMwKT9EvuGmNSOx11rB9YZ05YM1lMm-PkqOMYvmHJmEKV3WO4mqLnIGqarrpj-Wa1Wd4lXtZbyNplX52v-rX_oAm58ha-JzGvPAs7dNU01uyqOYl8XzNyLHf33OAsyNESnZT5fQIkyocAlmP_EULsPBZTQk9bRgzvApVnvkHIHjI3sicURaUXj19vLaQRNPELryoSKtQXw9GN2Stor1yGEk1Qp0G_XOYdMYF18wBEIK21BeTSJ6szn68z41laCOqmmyMk9DQhcDGyE5tZTJfa7tAoZdnnId5TPPZIz36SoUwihUa0AogkDmSGU7jmv7SvieoKbE1kziVdAiGJnoAzFmJtcFMoZByqlsBVo2QS6bIuzm7e9STo4fW5aymQzGuvkQaFI2DNMQChXBSqbkl1GC_aNGO79b_0unbZhudtqtoHV8droBM_p5mm9WgkJ8P1KbiGxivpWs3Xe6FO0U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4nZoHwadq1_Tq23QbXqaIF9hbya0qzla0Q-aTH8HP6CfxpN26KYigT6UlCW1OkvM_afILwJZEO5tUBIaQATdsHnkGR0dmMM9ymEkdznhG-zxzD6_t47bTHtnFn_Mhigk33TOy8Vp38EcZ7Q6hoUxGeic5hiwaOTIOE7Zr-rpd1y8KgFTV8_L_ym5Vr_CqtgfYRtPa_Zr_q1saas1RxZq5nOYssMHL5itN7ne6Kd8Rr984jv_5mjmY6etRUssb0DyMqXgBpkcohYuwf5l0SCM_LqfTS9UeOUfZ-MJ6JE1IK4lvPt7er3CAJyhceUeR1l16e9d9IKcq1SXHiVRLcN1sXB0cGv2jFwyBgsI2lO9K1G42R28eUVMJ6ihXo8p8LQg9DGuE5NRSJg-4HhUw6PKV56iA-SZjPKLLUIqTWK0AoSgBmSOV7TieHSgR-IKaElMziVdBy2AMaj4UfS65Ph6jE-ZEZSvUdRMWdVOG7SL9Y07k-DFlZWDIsN8zn0ONZMMgDYVQGazMIr-UEtbqzdPibvUvmTZh8rzeDFtHZydrMKUf54vNKlBKn7pqHWVNyjeylvsJEJHrzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sol+Electrolyte%3A+Pathway+to+Long%E2%80%90Term+Stable+Lithium+Metal+Anode&rft.jtitle=Advanced+functional+materials&rft.au=Sun%2C+Chuang&rft.au=Dong%2C+Jing&rft.au=Lu%2C+Xidi&rft.au=Li%2C+Yinwei&rft.date=2021-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202100594&rft.externalDBID=10.1002%252Fadfm.202100594&rft.externalDocID=ADFM202100594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |