Sol Electrolyte: Pathway to Long‐Term Stable Lithium Metal Anode

Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octa...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 26
Main Authors Sun, Chuang, Dong, Jing, Lu, Xidi, Li, Yinwei, Lai, Chao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octaphenyl polyoxyethylene (OP‐10)‐based sol electrolyte is proposed to alleviate Li anode pulverization. This sol electrolyte possesses better ionic conductivity compared to gel and solid‐state electrolytes and also homogenizes Li ion diffusion throughout the entire electrolyte efficiently. As a result, Li/Li symmetric cells using this sol electrolyte demonstrate long‐term cycling stability for up to 1800 h, with a plating capacity of 3.0 mAh cm−2 without deteriorating the integrity of the thin Li foil. Using a conventional liquid electrolyte, electrode pulverization and battery failure can be observed after just three cycles. More importantly, a parameter of “throwing power” is introduced in a metal Li battery system to characterize the homogenizing ability of Li deposition in different electrolyte systems, which can serve as a guide to the efficient selection of electrolytes for Li metal batteries. A liquid sol electrolyte is proposed as an alternative to a gel or solid‐state electrolyte to significantly alleviate the pulverization of Li anode without changing the production process of existing commercial batteries. Uniform and dense deposition, accompanied by robust solid electrolyte interphase films ensure the long‐term cycling stability of Li anodes even at a high plating capacity of 3 mAh cm−2.
AbstractList Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octaphenyl polyoxyethylene (OP‐10)‐based sol electrolyte is proposed to alleviate Li anode pulverization. This sol electrolyte possesses better ionic conductivity compared to gel and solid‐state electrolytes and also homogenizes Li ion diffusion throughout the entire electrolyte efficiently. As a result, Li/Li symmetric cells using this sol electrolyte demonstrate long‐term cycling stability for up to 1800 h, with a plating capacity of 3.0 mAh cm −2 without deteriorating the integrity of the thin Li foil. Using a conventional liquid electrolyte, electrode pulverization and battery failure can be observed after just three cycles. More importantly, a parameter of “throwing power” is introduced in a metal Li battery system to characterize the homogenizing ability of Li deposition in different electrolyte systems, which can serve as a guide to the efficient selection of electrolytes for Li metal batteries.
Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octaphenyl polyoxyethylene (OP‐10)‐based sol electrolyte is proposed to alleviate Li anode pulverization. This sol electrolyte possesses better ionic conductivity compared to gel and solid‐state electrolytes and also homogenizes Li ion diffusion throughout the entire electrolyte efficiently. As a result, Li/Li symmetric cells using this sol electrolyte demonstrate long‐term cycling stability for up to 1800 h, with a plating capacity of 3.0 mAh cm−2 without deteriorating the integrity of the thin Li foil. Using a conventional liquid electrolyte, electrode pulverization and battery failure can be observed after just three cycles. More importantly, a parameter of “throwing power” is introduced in a metal Li battery system to characterize the homogenizing ability of Li deposition in different electrolyte systems, which can serve as a guide to the efficient selection of electrolytes for Li metal batteries. A liquid sol electrolyte is proposed as an alternative to a gel or solid‐state electrolyte to significantly alleviate the pulverization of Li anode without changing the production process of existing commercial batteries. Uniform and dense deposition, accompanied by robust solid electrolyte interphase films ensure the long‐term cycling stability of Li anodes even at a high plating capacity of 3 mAh cm−2.
Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting pulverization of Li foil during the repeated plating/stripping process seriously diminish their cycling life. Herein, a facile approach using octaphenyl polyoxyethylene (OP‐10)‐based sol electrolyte is proposed to alleviate Li anode pulverization. This sol electrolyte possesses better ionic conductivity compared to gel and solid‐state electrolytes and also homogenizes Li ion diffusion throughout the entire electrolyte efficiently. As a result, Li/Li symmetric cells using this sol electrolyte demonstrate long‐term cycling stability for up to 1800 h, with a plating capacity of 3.0 mAh cm−2 without deteriorating the integrity of the thin Li foil. Using a conventional liquid electrolyte, electrode pulverization and battery failure can be observed after just three cycles. More importantly, a parameter of “throwing power” is introduced in a metal Li battery system to characterize the homogenizing ability of Li deposition in different electrolyte systems, which can serve as a guide to the efficient selection of electrolytes for Li metal batteries.
Author Lai, Chao
Li, Yinwei
Sun, Chuang
Dong, Jing
Lu, Xidi
Author_xml – sequence: 1
  givenname: Chuang
  surname: Sun
  fullname: Sun, Chuang
  organization: Jiangsu Normal University
– sequence: 2
  givenname: Jing
  surname: Dong
  fullname: Dong, Jing
  organization: Jiangsu Normal University
– sequence: 3
  givenname: Xidi
  surname: Lu
  fullname: Lu, Xidi
  organization: Jiangsu Normal University
– sequence: 4
  givenname: Yinwei
  surname: Li
  fullname: Li, Yinwei
  organization: Jiangsu Normal University
– sequence: 5
  givenname: Chao
  orcidid: 0000-0002-6021-6343
  surname: Lai
  fullname: Lai, Chao
  email: laichao@jsnu.edu.cn
  organization: Jiangsu Normal University
BookMark eNqFkM1Kw0AURgdRsK1uXQ-4Tp2_JBN3tbYqpCi0grthktzYlCRTJ1NKdj6Cz-iTmFKpIIirey-ccz_4-ui4NjUgdEHJkBLCrnSWV0NGWHf4kThCPRrQwOOEyePDTl9OUb9pVoTQMOSih27mpsSTElJnTdk6uMZP2i23usXO4NjUr5_vHwuwFZ47nZSA48Iti02FZ-B0iUe1yeAMneS6bOD8ew7Q83SyGN978ePdw3gUeymnofBABlngE5FIn-ecQMp9CAJJmYxYB_g-SbOEMyBJlHAqOQ2EhNCHSEuidZLzAbrc_11b87aBxqmV2di6i1TMF0LIUNKoo4Z7KrWmaSzkam2LSttWUaJ2PaldT-rQUyeIX0JaOO0KUzuri_JvLdpr26KE9p8QNbqdzn7cLx2qffQ
CitedBy_id crossref_primary_10_1021_acsaem_3c01053
crossref_primary_10_1002_adma_202108400
crossref_primary_10_1002_ange_202417471
crossref_primary_10_1002_eem2_12355
crossref_primary_10_1007_s11706_023_0630_3
crossref_primary_10_1021_acs_langmuir_4c03369
crossref_primary_10_1007_s40820_022_00846_0
crossref_primary_10_1016_j_elecom_2022_107423
crossref_primary_10_1002_ange_202104671
crossref_primary_10_1002_adfm_202303111
crossref_primary_10_1002_adma_202313456
crossref_primary_10_1021_acsami_2c18783
crossref_primary_10_1002_anie_202104671
crossref_primary_10_1007_s12274_022_5363_6
crossref_primary_10_1002_adfm_202410485
crossref_primary_10_1016_j_cej_2021_133522
crossref_primary_10_1002_adfm_202202771
crossref_primary_10_1002_adfm_202301964
crossref_primary_10_1002_anie_202417471
crossref_primary_10_1016_j_cej_2022_135329
crossref_primary_10_1007_s12598_022_02101_2
crossref_primary_10_1039_D3TA00096F
crossref_primary_10_1021_acssuschemeng_3c03756
crossref_primary_10_1002_adfm_202110347
Cites_doi 10.1021/acsenergylett.7b00300
10.1149/1.2100331
10.1002/anie.201915440
10.1038/s41467-020-14550-3
10.1021/acs.nanolett.9b03562
10.1126/sciadv.aat3446
10.1038/s41467-019-12952-6
10.1002/aenm.201803372
10.1016/j.ensm.2020.04.043
10.1021/acs.jpclett.7b02946
10.1039/tf9383400698
10.1016/j.nanoen.2019.104128
10.1002/advs.201600400
10.1038/s41560-020-0634-5
10.1002/adma.201904537
10.1002/aenm.201802130
10.1016/j.memsci.2017.10.033
10.1038/nnano.2017.16
10.1039/C9TA05938E
10.1016/j.nanoen.2018.10.002
10.1002/aenm.201900611
10.1039/c0cp00170h
10.1021/jacs.8b08963
10.1080/00202967.1934.11871613
10.1002/anie.202004853
10.1038/s41467-020-14505-8
10.1016/j.cej.2019.122935
10.1016/j.cej.2019.122714
10.1016/j.nanoen.2019.103910
10.1002/ange.201911724
10.1002/aenm.201802720
10.1002/adfm.202002824
10.1021/jacs.7b07584
10.1002/adma.202001741
10.1002/aenm.201901932
10.1002/aenm.201803477
10.1002/aenm.201803422
10.1002/aenm.202003082
10.1039/C9EE02558H
10.1016/j.joule.2018.03.008
10.1016/j.chempr.2018.12.002
10.1016/j.jechem.2019.12.024
10.1002/aenm.201702657
10.1002/eom2.12019
10.1002/aenm.201702744
10.1038/nenergy.2017.12
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202100594
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202100594
ADFM202100594
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20200047
– fundername: National Natural Science Foundation of China
  funderid: 51871113
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3174-e86d6504b853f30ec35e66812892317550cdb32e0b9b31831648e75e9a80aabf3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 01:13:57 EDT 2025
Tue Jul 01 04:12:29 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Wed Jan 22 16:30:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-e86d6504b853f30ec35e66812892317550cdb32e0b9b31831648e75e9a80aabf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6021-6343
PQID 2544487819
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2544487819
crossref_primary_10_1002_adfm_202100594
crossref_citationtrail_10_1002_adfm_202100594
wiley_primary_10_1002_adfm_202100594_ADFM202100594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2019; 7
2019; 9
2017; 2
2018; 140
2019; 5
2017; 4
2019; 31
2020; 382
2018; 547
2019; 10
2019; 12
2020; 59
2019; 19
2020; 11
2020; 32
1934; 9
2017; 139
2018; 9
2020; 5
2018; 8
1987; 134
2018; 2
2020; 2
2021; 11
2018; 4
1938; 34
2019; 64
2020; 30
2019; 66
2017; 12
2020; 48
2018; 54
2019; 132
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 12
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 1321
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 134
  start-page: 3011
  year: 1987
  publication-title: J. Electrochem. Soc.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 48
  start-page: 145
  year: 2020
  publication-title: J. Energy Chem.
– volume: 5
  start-page: 526
  year: 2020
  publication-title: Nat. Energy
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 19
  start-page: 8780
  year: 2019
  publication-title: Nano Lett.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  start-page: 6561
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 144
  year: 1934
  publication-title: Trans. IMF
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 3319
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 375
  year: 2018
  publication-title: Nano Energy
– volume: 10
  start-page: 4973
  year: 2019
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 126
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 30
  start-page: 27
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 547
  start-page: 1
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 132
  start-page: 3278
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 2
  start-page: 833
  year: 2018
  publication-title: Joule
– volume: 2
  year: 2020
  publication-title: EcoMat
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 34
  start-page: 698
  year: 1938
  publication-title: Trans. Faraday Soc.
– volume: 11
  start-page: 1
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  start-page: 74
  year: 2019
  publication-title: Chem
– ident: e_1_2_8_45_1
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_8_46_1
  doi: 10.1149/1.2100331
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.201915440
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-020-14550-3
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.nanolett.9b03562
– ident: e_1_2_8_18_1
  doi: 10.1126/sciadv.aat3446
– ident: e_1_2_8_39_1
  doi: 10.1038/s41467-019-12952-6
– ident: e_1_2_8_35_1
  doi: 10.1002/aenm.201803372
– ident: e_1_2_8_34_1
  doi: 10.1016/j.ensm.2020.04.043
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.jpclett.7b02946
– ident: e_1_2_8_48_1
  doi: 10.1039/tf9383400698
– ident: e_1_2_8_36_1
  doi: 10.1016/j.nanoen.2019.104128
– ident: e_1_2_8_37_1
  doi: 10.1002/advs.201600400
– ident: e_1_2_8_6_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201904537
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.201802130
– ident: e_1_2_8_24_1
  doi: 10.1016/j.memsci.2017.10.033
– ident: e_1_2_8_1_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.nanolett.9b03562
– ident: e_1_2_8_21_1
  doi: 10.1039/C9TA05938E
– ident: e_1_2_8_11_1
  doi: 10.1016/j.nanoen.2018.10.002
– ident: e_1_2_8_26_1
  doi: 10.1002/aenm.201900611
– ident: e_1_2_8_29_1
  doi: 10.1039/c0cp00170h
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.8b08963
– ident: e_1_2_8_47_1
  doi: 10.1080/00202967.1934.11871613
– ident: e_1_2_8_3_1
  doi: 10.1002/anie.202004853
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-020-14505-8
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cej.2019.122935
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cej.2019.122714
– ident: e_1_2_8_10_1
  doi: 10.1016/j.nanoen.2019.103910
– ident: e_1_2_8_31_1
  doi: 10.1002/ange.201911724
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201802720
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.202002824
– ident: e_1_2_8_12_1
  doi: 10.1021/jacs.7b07584
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.202001741
– ident: e_1_2_8_5_1
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_8_7_1
  doi: 10.1002/aenm.201901932
– ident: e_1_2_8_44_1
  doi: 10.1002/aenm.201803477
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.201803422
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.202003082
– ident: e_1_2_8_15_1
  doi: 10.1039/C9EE02558H
– ident: e_1_2_8_2_1
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_8_19_1
  doi: 10.1016/j.chempr.2018.12.002
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jechem.2019.12.024
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.201702657
– ident: e_1_2_8_33_1
  doi: 10.1002/eom2.12019
– ident: e_1_2_8_41_1
  doi: 10.1002/aenm.201702744
– ident: e_1_2_8_42_1
  doi: 10.1038/nenergy.2017.12
SSID ssj0017734
Score 2.5113645
Snippet Lithium (Li) metal batteries are the subject of intense study due to their high energy densities. However, uncontrolled dendrite growth and the resulting...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Cycles
Dendritic structure
Electrolytes
Electrolytic cells
Foils
Ion currents
Ion diffusion
Lithium
lithium anode
lithium batteries
Materials science
Molten salt electrolytes
Plating
Polyoxyethylene
pulverization
sol electrolyte
Solid electrolytes
Throwing
Throwing power
Title Sol Electrolyte: Pathway to Long‐Term Stable Lithium Metal Anode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202100594
https://www.proquest.com/docview/2544487819
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsJAFIYnBje68G5EkczCxFWhdHp1hwIhBowRSNg1c0OJtTVSYnDlI_iMPolnWlrAxJjoqm0y07RzOec_7ZlvEDoT0M864Z7Ghcc0k40cjYEj06hjWFQnFqMsoX3e2O2BeT20hkur-FM-RP7BTc2MxF6rCU7ZpLqAhlIxUivJIWRRyBEwwiphS6miu5wfVXOc9LeyXVMJXrVhRm3Ujepq9VWvtJCay4I18TitbUSzZ00TTR4r05hV-Ns3jON_XmYHbc3lKK6n42cXrclwD20uQQr30WUvCnAz3S0nmMXyAt-CanylMxxHuBOF95_vH32w7xh0Kwsk7ozjh_H0CXdlrO4cRkIeoEGr2b9qa_OdFzQOesLUpGsLkG4mA2c-IrrkxJK2IpW5Sg86ENVwwYghdeYxZRQg5nKlY0mPujqlbEQOUSGMQnmEMAEFSC0hTctyTE9yz-VEF1CaCjhyUkRa1vI-n2PJ1e4YgZ8ClQ1ftY2ft00Rnefln1Mgx48lS1lH-vOJOfEVkQ1iNNBBRWQkPfLLXfx6o9XNr47_UukEbajzNMGshArxy1SegpSJWRmt1xvdTq-cDNsvZQfqjQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSDb7FadQ-Cp7RpNmkSbz5aqrYi2kJvYV_VYk1EU0RP_gR_o7_E2aSJDxBBTyFhd0lmd2a-2cx-A7AjcZ5NKnxDSJ8bNu-7BkdHZjDXcphJHc54wvZ5Vmt27ZOek2UT6rMwKT9EvuGmNSOx11rB9YZ05YM1lMm-PkqOMYvmHJmEKV3WO4mqLnIGqarrpj-Wa1Wd4lXtZbyNplX52v-rX_oAm58ha-JzGvPAs7dNU01uyqOYl8XzNyLHf33OAsyNESnZT5fQIkyocAlmP_EULsPBZTQk9bRgzvApVnvkHIHjI3sicURaUXj19vLaQRNPELryoSKtQXw9GN2Stor1yGEk1Qp0G_XOYdMYF18wBEIK21BeTSJ6szn68z41laCOqmmyMk9DQhcDGyE5tZTJfa7tAoZdnnId5TPPZIz36SoUwihUa0AogkDmSGU7jmv7SvieoKbE1kziVdAiGJnoAzFmJtcFMoZByqlsBVo2QS6bIuzm7e9STo4fW5aymQzGuvkQaFI2DNMQChXBSqbkl1GC_aNGO79b_0unbZhudtqtoHV8droBM_p5mm9WgkJ8P1KbiGxivpWs3Xe6FO0U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4nZoHwadq1_Tq23QbXqaIF9hbya0qzla0Q-aTH8HP6CfxpN26KYigT6UlCW1OkvM_afILwJZEO5tUBIaQATdsHnkGR0dmMM9ymEkdznhG-zxzD6_t47bTHtnFn_Mhigk33TOy8Vp38EcZ7Q6hoUxGeic5hiwaOTIOE7Zr-rpd1y8KgFTV8_L_ym5Vr_CqtgfYRtPa_Zr_q1saas1RxZq5nOYssMHL5itN7ne6Kd8Rr984jv_5mjmY6etRUssb0DyMqXgBpkcohYuwf5l0SCM_LqfTS9UeOUfZ-MJ6JE1IK4lvPt7er3CAJyhceUeR1l16e9d9IKcq1SXHiVRLcN1sXB0cGv2jFwyBgsI2lO9K1G42R28eUVMJ6ihXo8p8LQg9DGuE5NRSJg-4HhUw6PKV56iA-SZjPKLLUIqTWK0AoSgBmSOV7TieHSgR-IKaElMziVdBy2AMaj4UfS65Ph6jE-ZEZSvUdRMWdVOG7SL9Y07k-DFlZWDIsN8zn0ONZMMgDYVQGazMIr-UEtbqzdPibvUvmTZh8rzeDFtHZydrMKUf54vNKlBKn7pqHWVNyjeylvsJEJHrzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sol+Electrolyte%3A+Pathway+to+Long%E2%80%90Term+Stable+Lithium+Metal+Anode&rft.jtitle=Advanced+functional+materials&rft.au=Sun%2C+Chuang&rft.au=Dong%2C+Jing&rft.au=Lu%2C+Xidi&rft.au=Li%2C+Yinwei&rft.date=2021-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202100594&rft.externalDBID=10.1002%252Fadfm.202100594&rft.externalDocID=ADFM202100594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon