Over 17.4% Efficiency of Layer‐by‐Layer All‐Polymer Solar Cells by Improving Exciton Utilization in Acceptor Layer

Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow ban...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 28
Main Authors Xu, Wenjing, Zhang, Miao, Ma, Xiaoling, Zhu, Xixiang, Jeong, Sang Young, Woo, Han Young, Zhang, Jian, Du, Wenna, Wang, Jian, Liu, Xinfeng, Zhang, Fujun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY‐IT layer to enhance exciton dissociation in PY‐IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all‐PSCs incorporating 10 wt% PM6 into PY‐IT layer, which is much larger than 16.04% PCE of PM6/PY‐IT‐based LbL all‐PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY‐IT layer, which is attributed to the enhanced exciton utilization efficiency in PY‐IT layers near electrode. The enhanced exciton utilization efficiency in PY‐IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY‐IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all‐PSCs by improving exciton utilization efficiency in acceptor layer near electrode. There is a great challenge in improving exciton utilization efficiency on top of acceptor layer in layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) due to the limited exciton diffuse distance and impossible energy transfer from acceptor to donor. The exciton utilization efficiency in PY‐IT layers near electrode can be improved by incorporating appropriate PM6 in PY‐IT layer, resulting in the enhanced power conversion efficiencies from 16.04% to 17.45% in LbL all‐PSCs with 10 wt% PM6 in PY‐IT layer.
AbstractList Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY‐IT layer to enhance exciton dissociation in PY‐IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all‐PSCs incorporating 10 wt% PM6 into PY‐IT layer, which is much larger than 16.04% PCE of PM6/PY‐IT‐based LbL all‐PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY‐IT layer, which is attributed to the enhanced exciton utilization efficiency in PY‐IT layers near electrode. The enhanced exciton utilization efficiency in PY‐IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY‐IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all‐PSCs by improving exciton utilization efficiency in acceptor layer near electrode. There is a great challenge in improving exciton utilization efficiency on top of acceptor layer in layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) due to the limited exciton diffuse distance and impossible energy transfer from acceptor to donor. The exciton utilization efficiency in PY‐IT layers near electrode can be improved by incorporating appropriate PM6 in PY‐IT layer, resulting in the enhanced power conversion efficiencies from 16.04% to 17.45% in LbL all‐PSCs with 10 wt% PM6 in PY‐IT layer.
Abstract Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY‐IT layer to enhance exciton dissociation in PY‐IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all‐PSCs incorporating 10 wt% PM6 into PY‐IT layer, which is much larger than 16.04% PCE of PM6/PY‐IT‐based LbL all‐PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY‐IT layer, which is attributed to the enhanced exciton utilization efficiency in PY‐IT layers near electrode. The enhanced exciton utilization efficiency in PY‐IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY‐IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all‐PSCs by improving exciton utilization efficiency in acceptor layer near electrode.
Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY‐IT layer to enhance exciton dissociation in PY‐IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all‐PSCs incorporating 10 wt% PM6 into PY‐IT layer, which is much larger than 16.04% PCE of PM6/PY‐IT‐based LbL all‐PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY‐IT layer, which is attributed to the enhanced exciton utilization efficiency in PY‐IT layers near electrode. The enhanced exciton utilization efficiency in PY‐IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY‐IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all‐PSCs by improving exciton utilization efficiency in acceptor layer near electrode.
Author Zhang, Miao
Wang, Jian
Ma, Xiaoling
Jeong, Sang Young
Du, Wenna
Woo, Han Young
Zhang, Jian
Xu, Wenjing
Liu, Xinfeng
Zhang, Fujun
Zhu, Xixiang
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Xu
  fullname: Xu, Wenjing
  organization: Beijing Jiaotong University
– sequence: 2
  givenname: Miao
  surname: Zhang
  fullname: Zhang, Miao
  email: bjtumiao.zhang@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Xiaoling
  surname: Ma
  fullname: Ma, Xiaoling
  organization: Beijing Jiaotong University
– sequence: 4
  givenname: Xixiang
  surname: Zhu
  fullname: Zhu, Xixiang
  organization: Beijing Jiaotong University
– sequence: 5
  givenname: Sang Young
  surname: Jeong
  fullname: Jeong, Sang Young
  organization: Korea University
– sequence: 6
  givenname: Han Young
  surname: Woo
  fullname: Woo, Han Young
  organization: Korea University
– sequence: 7
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  email: jianzhang@guet.edu.cn
  organization: Guilin University of Electronic Technology
– sequence: 8
  givenname: Wenna
  surname: Du
  fullname: Du, Wenna
  organization: National Center for Nanoscience and Technology
– sequence: 9
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  email: wangjian@tsu.edu.cn
  organization: Taishan University
– sequence: 10
  givenname: Xinfeng
  surname: Liu
  fullname: Liu, Xinfeng
  organization: National Center for Nanoscience and Technology
– sequence: 11
  givenname: Fujun
  orcidid: 0000-0003-2829-0735
  surname: Zhang
  fullname: Zhang, Fujun
  email: fjzhang@bjtu.edu.cn
  organization: Beijing Jiaotong University
BookMark eNqFUMFOAjEUbAwmAnr13MR4BPva3S17JAhKgsFESbxtut3WlJQtdhdkPfkJfqNfYhGjRy_vzSQz816mg1qlKxVC50D6QAi9EoVe9SmhFGJKoiPUhgSSHiN00PrF8HSCOlW1JAQ4Z1Eb7eZb5THwfnSJx1obaVQpG-w0nolG-c_3j7wJ45vgobUB3zvbrAJ7cFZ4PFLWVjhv8HS19m5rymc83klTuxIvamPNm6hNwKbEQynVunb-kHyKjrWwlTr72V20mIwfR7e92fxmOhrOepIBj3pFFANnoDUwoiUAG6RKQM5iKWMteVJQTvmAxbmigud5lBSCFgxSHrMo1olgXXRxyA3fvWxUVWdLt_FlOJnR4GM8JmkaVP2DSnpXVV7pbO3NSvgmA5Lt28327Wa_7QZDejC8Gquaf9TZ8Hpy9-f9Aunrgjk
CitedBy_id crossref_primary_10_1039_D4EE01717J
crossref_primary_10_1002_solr_202300805
crossref_primary_10_1063_5_0168626
crossref_primary_10_3390_en17112623
crossref_primary_10_1039_D3SE00703K
crossref_primary_10_1002_cjoc_202300404
crossref_primary_10_1039_D3TA07980E
crossref_primary_10_1002_cjoc_202300605
crossref_primary_10_1002_advs_202302460
crossref_primary_10_1002_solr_202300372
crossref_primary_10_1007_s40843_023_2672_7
crossref_primary_10_1002_ange_202315625
crossref_primary_10_1063_5_0170931
crossref_primary_10_1002_cptc_202300348
crossref_primary_10_1002_solr_202300413
crossref_primary_10_1002_solr_202300219
crossref_primary_10_1039_D3TC01527K
crossref_primary_10_1039_D4EE00068D
crossref_primary_10_1021_acs_jpcc_3c04584
crossref_primary_10_1002_adom_202302285
crossref_primary_10_1039_D3TA07228B
crossref_primary_10_1002_smll_202308216
crossref_primary_10_1016_j_cej_2024_152558
crossref_primary_10_3390_molecules28196832
crossref_primary_10_1021_acsenergylett_3c01254
crossref_primary_10_1021_acs_jpcc_3c07570
crossref_primary_10_1039_D4EE01117A
crossref_primary_10_1016_j_cej_2023_146538
crossref_primary_10_1021_acsami_3c18471
crossref_primary_10_3390_en16114494
crossref_primary_10_1016_j_cej_2023_144711
crossref_primary_10_1002_anie_202315625
crossref_primary_10_1007_s10904_024_03064_w
crossref_primary_10_1021_acsapm_3c01639
crossref_primary_10_1021_acsaem_4c00534
crossref_primary_10_1039_D3CP01454A
crossref_primary_10_1002_adma_202308061
crossref_primary_10_3390_photonics10090989
crossref_primary_10_1002_agt2_567
crossref_primary_10_1002_solr_202400066
crossref_primary_10_1021_accountsmr_3c00160
crossref_primary_10_1039_D4TC00984C
crossref_primary_10_1002_solr_202300599
crossref_primary_10_1088_1361_6463_acedb9
crossref_primary_10_1002_smll_202311648
crossref_primary_10_1016_j_dyepig_2023_111737
crossref_primary_10_1016_j_apsusc_2023_159051
crossref_primary_10_1155_2023_6612574
crossref_primary_10_1002_adfm_202313751
crossref_primary_10_1002_adma_202306373
crossref_primary_10_1021_acsmaterialslett_4c00848
crossref_primary_10_1016_j_cej_2023_144186
Cites_doi 10.1039/D0EE03170D
10.1039/D1TC00555C
10.1021/acsami.1c07946
10.1016/j.scib.2022.10.005
10.1016/j.nanoen.2022.107538
10.1021/acsaem.8b00896
10.1002/adma.202108508
10.1002/aenm.202202729
10.1002/adma.202005942
10.1002/adma.202209350
10.1039/C8EE01107A
10.1039/D1CP01263K
10.1002/aenm.202100492
10.1016/j.nanoen.2021.105924
10.1002/adma.202108749
10.1002/aenm.202003390
10.1002/adma.202205009
10.1016/j.joule.2021.02.002
10.1002/solr.202200308
10.1002/adma.202110147
10.1021/acsenergylett.0c00564
10.1016/j.nanoen.2021.106858
10.1039/D2TC00024E
10.1021/acsami.9b23011
10.1021/jacs.0c12527
10.1039/D2EE00595F
10.1038/s41467-022-32964-z
10.1002/adma.202209380
10.1002/adfm.202107934
10.1002/adma.202202608
10.1002/adma.202204718
10.1038/s41467-020-20791-z
10.1039/D2TC02144G
10.1021/ja016969k
10.1021/jacs.6b11991
10.1002/adfm.202108797
10.1021/jacs.0c12441
10.1016/j.scib.2019.09.016
10.1016/j.scib.2020.01.012
10.1002/agt2.58
10.1039/D1EE01336J
10.1039/C8TA10037C
10.1016/j.joule.2021.06.020
10.1002/adma.202110155
10.1002/anie.202110550
10.1002/solr.202200957
10.1002/adma.201604424
10.1016/j.nanoen.2018.11.010
10.1002/smll.202104215
10.1002/adma.202208279
10.1002/adfm.202200478
10.1039/D1EE00496D
10.1039/D1TC00939G
10.1021/acsenergylett.2c02348
10.1021/acsenergylett.8b01416
10.1002/solr.202100007
10.1002/advs.202200578
10.1002/adma.202101733
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202215204
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202215204
ADFM202215204
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2022YJS104
– fundername: National Natural Science Foundation of China
  funderid: 62175011; 62205276; 61975006
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AASGY
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3174-d451731ff130fc11389ea1b35cc5fc76d2727835be2a7bb46da2d31975345f6a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Oct 10 15:56:51 EDT 2024
Fri Aug 23 03:03:50 EDT 2024
Sat Aug 24 00:57:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-d451731ff130fc11389ea1b35cc5fc76d2727835be2a7bb46da2d31975345f6a3
ORCID 0000-0003-2829-0735
PQID 2835375099
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2835375099
crossref_primary_10_1002_adfm_202215204
wiley_primary_10_1002_adfm_202215204_ADFM202215204
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2023; 35
2021; 5
2021; 23
2022; 93
2019; 55
2023; 7
2023; 8
2022; 67
2017; 29
2020; 12
2021; 143
2020; 32
2017; 139
2021; 14
2021; 13
2022; 101
2020; 5
2018; 3
2021; 32
2021; 31
2021; 12
2021; 11
2021; 33
2022; 3
2018; 1
2022; 6
2002; 124
2022; 9
2022; 34
2022; 12
2022; 13
2022; 15
2022; 10
2020; 65
2018; 11
2021; 60
2021; 84
2022; 18
e_1_2_7_5_1
Ma L. (e_1_2_7_2_1) 2022; 34
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Xu W. (e_1_2_7_12_1) 2022; 10
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 6
  year: 2022
  publication-title: Sol. RRL
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 143
  start-page: 4244
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 302
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 424
  year: 2019
  publication-title: Nano Energy
– volume: 10
  start-page: 5489
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 34
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 6357
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 3945
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 468
  year: 2021
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2023
  publication-title: Sol. RRL
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1628
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 3
  year: 2022
  publication-title: Aggregate
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 2408
  year: 2021
  publication-title: Joule
– volume: 14
  start-page: 5919
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 2396
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 93
  year: 2022
  publication-title: Nano Energy
– volume: 23
  year: 2021
  publication-title: Phys. Chem. Chem. Phys.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2134
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 143
  start-page: 2665
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 101
  year: 2022
  publication-title: Nano Energy
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1058
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 139
  start-page: 2387
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 65
  start-page: 131
  year: 2020
  publication-title: Sci. Bull.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 9
  start-page: 5349
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 1
  start-page: 4874
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 15
  start-page: 2537
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 65
  start-page: 538
  year: 2020
  publication-title: Sci. Bull.
– volume: 67
  start-page: 2096
  year: 2022
  publication-title: Sci. Bull.
– volume: 124
  start-page: 7481
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 914
  year: 2021
  publication-title: Joule
– volume: 13
  start-page: 5267
  year: 2022
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2445
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 84
  year: 2021
  publication-title: Nano Energy
– volume: 5
  year: 2021
  publication-title: Sol. RRL
– ident: e_1_2_7_21_1
  doi: 10.1039/D0EE03170D
– ident: e_1_2_7_38_1
  doi: 10.1039/D1TC00555C
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.1c07946
– ident: e_1_2_7_6_1
  doi: 10.1016/j.scib.2022.10.005
– ident: e_1_2_7_59_1
  doi: 10.1016/j.nanoen.2022.107538
– ident: e_1_2_7_33_1
  doi: 10.1021/acsaem.8b00896
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.202108508
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.202202729
– ident: e_1_2_7_55_1
  doi: 10.1002/adma.202005942
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.202209350
– ident: e_1_2_7_47_1
  doi: 10.1039/C8EE01107A
– ident: e_1_2_7_16_1
  doi: 10.1039/D1CP01263K
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.202100492
– ident: e_1_2_7_20_1
  doi: 10.1016/j.nanoen.2021.105924
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.202108749
– ident: e_1_2_7_56_1
  doi: 10.1002/aenm.202003390
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.202205009
– ident: e_1_2_7_23_1
  doi: 10.1016/j.joule.2021.02.002
– ident: e_1_2_7_50_1
  doi: 10.1002/solr.202200308
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.202110147
– ident: e_1_2_7_30_1
  doi: 10.1021/acsenergylett.0c00564
– ident: e_1_2_7_10_1
  doi: 10.1016/j.nanoen.2021.106858
– ident: e_1_2_7_18_1
  doi: 10.1039/D2TC00024E
– ident: e_1_2_7_36_1
  doi: 10.1021/acsami.9b23011
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.0c12527
– ident: e_1_2_7_45_1
  doi: 10.1039/D2EE00595F
– ident: e_1_2_7_1_1
  doi: 10.1038/s41467-022-32964-z
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.202209380
– ident: e_1_2_7_53_1
  doi: 10.1002/adfm.202107934
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.202202608
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.202204718
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-020-20791-z
– ident: e_1_2_7_39_1
  doi: 10.1039/D2TC02144G
– ident: e_1_2_7_17_1
  doi: 10.1021/ja016969k
– ident: e_1_2_7_57_1
  doi: 10.1021/jacs.6b11991
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.202108797
– ident: e_1_2_7_32_1
  doi: 10.1021/jacs.0c12441
– ident: e_1_2_7_34_1
  doi: 10.1016/j.scib.2019.09.016
– ident: e_1_2_7_43_1
  doi: 10.1016/j.scib.2020.01.012
– ident: e_1_2_7_26_1
  doi: 10.1002/agt2.58
– ident: e_1_2_7_35_1
  doi: 10.1039/D1EE01336J
– ident: e_1_2_7_31_1
  doi: 10.1039/C8TA10037C
– ident: e_1_2_7_15_1
  doi: 10.1016/j.joule.2021.06.020
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.202110155
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.202110550
– ident: e_1_2_7_51_1
  doi: 10.1002/solr.202200957
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201604424
– ident: e_1_2_7_44_1
  doi: 10.1016/j.nanoen.2018.11.010
– volume: 34
  year: 2022
  ident: e_1_2_7_2_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Ma L.
– volume: 10
  year: 2022
  ident: e_1_2_7_12_1
  publication-title: J. Mater. Chem. C
  contributor:
    fullname: Xu W.
– ident: e_1_2_7_58_1
  doi: 10.1002/smll.202104215
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.202208279
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.202200478
– ident: e_1_2_7_46_1
  doi: 10.1039/D1EE00496D
– ident: e_1_2_7_41_1
  doi: 10.1039/D1TC00939G
– ident: e_1_2_7_54_1
  doi: 10.1021/acsenergylett.2c02348
– ident: e_1_2_7_19_1
  doi: 10.1021/acsenergylett.8b01416
– ident: e_1_2_7_48_1
  doi: 10.1002/solr.202100007
– ident: e_1_2_7_49_1
  doi: 10.1002/advs.202200578
– ident: e_1_2_7_60_1
  doi: 10.1002/adma.202101733
SSID ssj0017734
Score 2.652019
Snippet Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation...
Abstract Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms all‐PSCs
Charge transport
Efficiency
Electrodes
Energy conversion efficiency
Energy gap
Energy transfer
exciton utilization
Excitons
layer‐by‐layer
Materials science
Photoluminescence
Photovoltaic cells
Polymers
Solar cells
Spin coating
Utilization
Title Over 17.4% Efficiency of Layer‐by‐Layer All‐Polymer Solar Cells by Improving Exciton Utilization in Acceptor Layer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202215204
https://www.proquest.com/docview/2835375099
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCPICY0taOHcNY9SGEeAmo1C3yU0KEBLVFokz8BH4jvwRf0qaFBQmWKB5sJb7z3Wf77juEDsEEakNYoATlATNSBpJbGpjInbITS6OTPEns8io667HzPu_PZfEX_BDlgRusjNxewwKXalifkYZK4yCTnEJh1pwQlIQCYrratyV_FBGiuFaOCAR4kf6UtbFB69-7f_dKM6g5D1hzj9NdRXL6rUWgyWPtZaRq-u0HjeN_fmYNrUzgKG4W-rOOFmy6gZbnSAo30eu113ZMRI0d4U5OOAHZmjhz-EJ6vP75_qHG_pE3cDNJ_PtNloyffOsO9s24ZZNkiNUYlwcYuPOqvSVJcW_0kEwSQfFDipsagmyyQTHyFup1O_ets2BSryHQHoWwwDBOREic837RaQJXoFYSFXKtudMiMlRAXQ-uLJVCKRYZSY03AX7HxLiLZLiNFtMstTsIW20bwHyviPHuU_ltQMS9Inmw6YwRklfQ8VRe8XNByxEXBMw0hrmMy7msoOpUnPFkeQ5jIJkLASudVhDN5fLLKHGz3b0sW7t_6bSHlqBUfRHqW0WLo8GL3feAZqQOcqX9Ambk7qw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQDMDAG1Eo4AHElIIdO6ZjBa0KtICASmyRnxIipAiKRJn4BL6RL8E3acJjQYIligdbiX0fx_a95yK0BSZQG8ICJSgPmJEykNzSwESuzvYtjfazJLHuadTuseNrXkQTQi5Mzg9RHriBZmT2GhQcDqR3P1lDpXGQSk6hMiswgk54nQ-hesPhRckgRYTIL5YjAiFe5Lrgbdyju9_7f_dLn2DzK2TNfE5rFqnia_NQk9va00DV9MsPIsd__c4cmhkhUtzIRWgejdl0AU1_4SlcRM9nXuAxETW2jZsZ5wQkbOK-wx3pIfv765sa-kfWwI0k8e_n_WR451uXsHXGBzZJHrEa4vIMAzeftTcmKe4NbpJRLii-SXFDQ5xN_yEfeQn1Ws2rg3YwKtkQaA9EWGAYJyIkznnX6DSBW1AriQq51txpERkqoLQHV5ZKoRSLjKTGWwG_aWLcRTJcRuNpP7UrCFtt94D8XhHjPajyO4GIe1nyeNMZIySvoJ1iweL7nJkjzjmYaQxzGZdzWUHVYj3jkYY-xsAzFwJcqlcQzRbml1HixmGrW7ZW_9JpE022r7qduHN0erKGpqByfR75W0Xjg4cnu-7xzUBtZBL8AU2u8sQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIHrwLdZnDoqnrSbNQ49FW3wraqG3JU8orluxLVhP_gR_o7_EzG67Vi-CXpbNIWE3M5n5ksx8g9A2mEBjCYu0pDxiVqlIcUcjK_whO3BUHGRJYpdX4qTBzpq8OZLFn_NDFAdusDIyew0L_Mn6vS_SUGU9ZJJTKMwKhKATTAT4C7DotiCQIlLm98qCQIQXaQ5pG_fp3vf-393SF9YcRayZy6nPIjX82DzS5KHc6-qyef3B4_ifv5lDMwM8iqu5As2jMZcuoOkRlsJF9HId1B0TWWY7uJYxTkC6Jm57fKECYP94e9f98MgauJok4f2mnfQfQ-sONs74yCVJB-s-Lk4wcO3FBFOS4ka3lQwyQXErxVUDUTbt53zkJdSo1-6PTqJBwYbIBBjCIss4kRXifXCM3hC4A3WK6Ao3hnsjhaUSCntw7aiSWjNhFbXBBoQtE-NeqMoyGk_bqVtB2Bm3D9T3mtjgP3XYBwgeNCmgTW-tVLyEdofyip9yXo44Z2CmMcxlXMxlCa0PxRkP1mcnBpa5CoClwxKimVx-GSWuHtcvi9bqXzptocmb43p8cXp1voamoGx9Hva7jsa7zz23EcBNV29m-vsJgIfxcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over+17.4%25+Efficiency+of+Layer%E2%80%90by%E2%80%90Layer+All%E2%80%90Polymer+Solar+Cells+by+Improving+Exciton+Utilization+in+Acceptor+Layer&rft.jtitle=Advanced+functional+materials&rft.au=Xu%2C+Wenjing&rft.au=Zhang%2C+Miao&rft.au=Ma%2C+Xiaoling&rft.au=Zhu%2C+Xixiang&rft.date=2023-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202215204&rft.externalDBID=10.1002%252Fadfm.202215204&rft.externalDocID=ADFM202215204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon