Over 17.4% Efficiency of Layer‐by‐Layer All‐Polymer Solar Cells by Improving Exciton Utilization in Acceptor Layer
Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow ban...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 28 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY‐IT layer to enhance exciton dissociation in PY‐IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all‐PSCs incorporating 10 wt% PM6 into PY‐IT layer, which is much larger than 16.04% PCE of PM6/PY‐IT‐based LbL all‐PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY‐IT layer, which is attributed to the enhanced exciton utilization efficiency in PY‐IT layers near electrode. The enhanced exciton utilization efficiency in PY‐IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY‐IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all‐PSCs by improving exciton utilization efficiency in acceptor layer near electrode.
There is a great challenge in improving exciton utilization efficiency on top of acceptor layer in layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) due to the limited exciton diffuse distance and impossible energy transfer from acceptor to donor. The exciton utilization efficiency in PY‐IT layers near electrode can be improved by incorporating appropriate PM6 in PY‐IT layer, resulting in the enhanced power conversion efficiencies from 16.04% to 17.45% in LbL all‐PSCs with 10 wt% PM6 in PY‐IT layer. |
---|---|
AbstractList | Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY‐IT layer to enhance exciton dissociation in PY‐IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all‐PSCs incorporating 10 wt% PM6 into PY‐IT layer, which is much larger than 16.04% PCE of PM6/PY‐IT‐based LbL all‐PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY‐IT layer, which is attributed to the enhanced exciton utilization efficiency in PY‐IT layers near electrode. The enhanced exciton utilization efficiency in PY‐IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY‐IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all‐PSCs by improving exciton utilization efficiency in acceptor layer near electrode.
There is a great challenge in improving exciton utilization efficiency on top of acceptor layer in layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) due to the limited exciton diffuse distance and impossible energy transfer from acceptor to donor. The exciton utilization efficiency in PY‐IT layers near electrode can be improved by incorporating appropriate PM6 in PY‐IT layer, resulting in the enhanced power conversion efficiencies from 16.04% to 17.45% in LbL all‐PSCs with 10 wt% PM6 in PY‐IT layer. Abstract Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY‐IT layer to enhance exciton dissociation in PY‐IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all‐PSCs incorporating 10 wt% PM6 into PY‐IT layer, which is much larger than 16.04% PCE of PM6/PY‐IT‐based LbL all‐PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY‐IT layer, which is attributed to the enhanced exciton utilization efficiency in PY‐IT layers near electrode. The enhanced exciton utilization efficiency in PY‐IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY‐IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all‐PSCs by improving exciton utilization efficiency in acceptor layer near electrode. Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY‐IT layer to enhance exciton dissociation in PY‐IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all‐PSCs incorporating 10 wt% PM6 into PY‐IT layer, which is much larger than 16.04% PCE of PM6/PY‐IT‐based LbL all‐PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY‐IT layer, which is attributed to the enhanced exciton utilization efficiency in PY‐IT layers near electrode. The enhanced exciton utilization efficiency in PY‐IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY‐IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all‐PSCs by improving exciton utilization efficiency in acceptor layer near electrode. |
Author | Zhang, Miao Wang, Jian Ma, Xiaoling Jeong, Sang Young Du, Wenna Woo, Han Young Zhang, Jian Xu, Wenjing Liu, Xinfeng Zhang, Fujun Zhu, Xixiang |
Author_xml | – sequence: 1 givenname: Wenjing surname: Xu fullname: Xu, Wenjing organization: Beijing Jiaotong University – sequence: 2 givenname: Miao surname: Zhang fullname: Zhang, Miao email: bjtumiao.zhang@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Xiaoling surname: Ma fullname: Ma, Xiaoling organization: Beijing Jiaotong University – sequence: 4 givenname: Xixiang surname: Zhu fullname: Zhu, Xixiang organization: Beijing Jiaotong University – sequence: 5 givenname: Sang Young surname: Jeong fullname: Jeong, Sang Young organization: Korea University – sequence: 6 givenname: Han Young surname: Woo fullname: Woo, Han Young organization: Korea University – sequence: 7 givenname: Jian surname: Zhang fullname: Zhang, Jian email: jianzhang@guet.edu.cn organization: Guilin University of Electronic Technology – sequence: 8 givenname: Wenna surname: Du fullname: Du, Wenna organization: National Center for Nanoscience and Technology – sequence: 9 givenname: Jian surname: Wang fullname: Wang, Jian email: wangjian@tsu.edu.cn organization: Taishan University – sequence: 10 givenname: Xinfeng surname: Liu fullname: Liu, Xinfeng organization: National Center for Nanoscience and Technology – sequence: 11 givenname: Fujun orcidid: 0000-0003-2829-0735 surname: Zhang fullname: Zhang, Fujun email: fjzhang@bjtu.edu.cn organization: Beijing Jiaotong University |
BookMark | eNqFUMFOAjEUbAwmAnr13MR4BPva3S17JAhKgsFESbxtut3WlJQtdhdkPfkJfqNfYhGjRy_vzSQz816mg1qlKxVC50D6QAi9EoVe9SmhFGJKoiPUhgSSHiN00PrF8HSCOlW1JAQ4Z1Eb7eZb5THwfnSJx1obaVQpG-w0nolG-c_3j7wJ45vgobUB3zvbrAJ7cFZ4PFLWVjhv8HS19m5rymc83klTuxIvamPNm6hNwKbEQynVunb-kHyKjrWwlTr72V20mIwfR7e92fxmOhrOepIBj3pFFANnoDUwoiUAG6RKQM5iKWMteVJQTvmAxbmigud5lBSCFgxSHrMo1olgXXRxyA3fvWxUVWdLt_FlOJnR4GM8JmkaVP2DSnpXVV7pbO3NSvgmA5Lt28327Wa_7QZDejC8Gquaf9TZ8Hpy9-f9Aunrgjk |
CitedBy_id | crossref_primary_10_1039_D4EE01717J crossref_primary_10_1002_solr_202300805 crossref_primary_10_1063_5_0168626 crossref_primary_10_3390_en17112623 crossref_primary_10_1039_D3SE00703K crossref_primary_10_1002_cjoc_202300404 crossref_primary_10_1039_D3TA07980E crossref_primary_10_1002_cjoc_202300605 crossref_primary_10_1002_advs_202302460 crossref_primary_10_1002_solr_202300372 crossref_primary_10_1007_s40843_023_2672_7 crossref_primary_10_1002_ange_202315625 crossref_primary_10_1063_5_0170931 crossref_primary_10_1002_cptc_202300348 crossref_primary_10_1002_solr_202300413 crossref_primary_10_1002_solr_202300219 crossref_primary_10_1039_D3TC01527K crossref_primary_10_1039_D4EE00068D crossref_primary_10_1021_acs_jpcc_3c04584 crossref_primary_10_1002_adom_202302285 crossref_primary_10_1039_D3TA07228B crossref_primary_10_1002_smll_202308216 crossref_primary_10_1016_j_cej_2024_152558 crossref_primary_10_3390_molecules28196832 crossref_primary_10_1021_acsenergylett_3c01254 crossref_primary_10_1021_acs_jpcc_3c07570 crossref_primary_10_1039_D4EE01117A crossref_primary_10_1016_j_cej_2023_146538 crossref_primary_10_1021_acsami_3c18471 crossref_primary_10_3390_en16114494 crossref_primary_10_1016_j_cej_2023_144711 crossref_primary_10_1002_anie_202315625 crossref_primary_10_1007_s10904_024_03064_w crossref_primary_10_1021_acsapm_3c01639 crossref_primary_10_1021_acsaem_4c00534 crossref_primary_10_1039_D3CP01454A crossref_primary_10_1002_adma_202308061 crossref_primary_10_3390_photonics10090989 crossref_primary_10_1002_agt2_567 crossref_primary_10_1002_solr_202400066 crossref_primary_10_1021_accountsmr_3c00160 crossref_primary_10_1039_D4TC00984C crossref_primary_10_1002_solr_202300599 crossref_primary_10_1088_1361_6463_acedb9 crossref_primary_10_1002_smll_202311648 crossref_primary_10_1016_j_dyepig_2023_111737 crossref_primary_10_1016_j_apsusc_2023_159051 crossref_primary_10_1155_2023_6612574 crossref_primary_10_1002_adfm_202313751 crossref_primary_10_1002_adma_202306373 crossref_primary_10_1021_acsmaterialslett_4c00848 crossref_primary_10_1016_j_cej_2023_144186 |
Cites_doi | 10.1039/D0EE03170D 10.1039/D1TC00555C 10.1021/acsami.1c07946 10.1016/j.scib.2022.10.005 10.1016/j.nanoen.2022.107538 10.1021/acsaem.8b00896 10.1002/adma.202108508 10.1002/aenm.202202729 10.1002/adma.202005942 10.1002/adma.202209350 10.1039/C8EE01107A 10.1039/D1CP01263K 10.1002/aenm.202100492 10.1016/j.nanoen.2021.105924 10.1002/adma.202108749 10.1002/aenm.202003390 10.1002/adma.202205009 10.1016/j.joule.2021.02.002 10.1002/solr.202200308 10.1002/adma.202110147 10.1021/acsenergylett.0c00564 10.1016/j.nanoen.2021.106858 10.1039/D2TC00024E 10.1021/acsami.9b23011 10.1021/jacs.0c12527 10.1039/D2EE00595F 10.1038/s41467-022-32964-z 10.1002/adma.202209380 10.1002/adfm.202107934 10.1002/adma.202202608 10.1002/adma.202204718 10.1038/s41467-020-20791-z 10.1039/D2TC02144G 10.1021/ja016969k 10.1021/jacs.6b11991 10.1002/adfm.202108797 10.1021/jacs.0c12441 10.1016/j.scib.2019.09.016 10.1016/j.scib.2020.01.012 10.1002/agt2.58 10.1039/D1EE01336J 10.1039/C8TA10037C 10.1016/j.joule.2021.06.020 10.1002/adma.202110155 10.1002/anie.202110550 10.1002/solr.202200957 10.1002/adma.201604424 10.1016/j.nanoen.2018.11.010 10.1002/smll.202104215 10.1002/adma.202208279 10.1002/adfm.202200478 10.1039/D1EE00496D 10.1039/D1TC00939G 10.1021/acsenergylett.2c02348 10.1021/acsenergylett.8b01416 10.1002/solr.202100007 10.1002/advs.202200578 10.1002/adma.202101733 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202215204 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202215204 ADFM202215204 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2022YJS104 – fundername: National Natural Science Foundation of China funderid: 62175011; 62205276; 61975006 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AASGY AAYXX ACBWZ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3174-d451731ff130fc11389ea1b35cc5fc76d2727835be2a7bb46da2d31975345f6a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 15:56:51 EDT 2024 Fri Aug 23 03:03:50 EDT 2024 Sat Aug 24 00:57:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-d451731ff130fc11389ea1b35cc5fc76d2727835be2a7bb46da2d31975345f6a3 |
ORCID | 0000-0003-2829-0735 |
PQID | 2835375099 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2835375099 crossref_primary_10_1002_adfm_202215204 wiley_primary_10_1002_adfm_202215204_ADFM202215204 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2023; 35 2021; 5 2021; 23 2022; 93 2019; 55 2023; 7 2023; 8 2022; 67 2017; 29 2020; 12 2021; 143 2020; 32 2017; 139 2021; 14 2021; 13 2022; 101 2020; 5 2018; 3 2021; 32 2021; 31 2021; 12 2021; 11 2021; 33 2022; 3 2018; 1 2022; 6 2002; 124 2022; 9 2022; 34 2022; 12 2022; 13 2022; 15 2022; 10 2020; 65 2018; 11 2021; 60 2021; 84 2022; 18 e_1_2_7_5_1 Ma L. (e_1_2_7_2_1) 2022; 34 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Xu W. (e_1_2_7_12_1) 2022; 10 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 6 year: 2022 publication-title: Sol. RRL – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 143 start-page: 4244 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 302 year: 2021 publication-title: Energy Environ. Sci. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 424 year: 2019 publication-title: Nano Energy – volume: 10 start-page: 5489 year: 2022 publication-title: J. Mater. Chem. C – volume: 34 year: 2022 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 6357 year: 2021 publication-title: J. Mater. Chem. C – volume: 14 start-page: 3945 year: 2021 publication-title: Energy Environ. Sci. – volume: 12 start-page: 468 year: 2021 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2023 publication-title: Sol. RRL – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1628 year: 2020 publication-title: ACS Energy Lett. – volume: 3 year: 2022 publication-title: Aggregate – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 5 start-page: 2408 year: 2021 publication-title: Joule – volume: 14 start-page: 5919 year: 2021 publication-title: Energy Environ. Sci. – volume: 3 start-page: 2396 year: 2018 publication-title: ACS Energy Lett. – volume: 93 year: 2022 publication-title: Nano Energy – volume: 23 year: 2021 publication-title: Phys. Chem. Chem. Phys. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 2134 year: 2018 publication-title: Energy Environ. Sci. – volume: 10 year: 2022 publication-title: J. Mater. Chem. C – volume: 143 start-page: 2665 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 101 year: 2022 publication-title: Nano Energy – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 8 start-page: 1058 year: 2023 publication-title: ACS Energy Lett. – volume: 139 start-page: 2387 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 65 start-page: 131 year: 2020 publication-title: Sci. Bull. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 9 start-page: 5349 year: 2021 publication-title: J. Mater. Chem. C – volume: 1 start-page: 4874 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 15 start-page: 2537 year: 2022 publication-title: Energy Environ. Sci. – volume: 65 start-page: 538 year: 2020 publication-title: Sci. Bull. – volume: 67 start-page: 2096 year: 2022 publication-title: Sci. Bull. – volume: 124 start-page: 7481 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 914 year: 2021 publication-title: Joule – volume: 13 start-page: 5267 year: 2022 publication-title: Nat. Commun. – volume: 7 start-page: 2445 year: 2019 publication-title: J. Mater. Chem. A – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 84 year: 2021 publication-title: Nano Energy – volume: 5 year: 2021 publication-title: Sol. RRL – ident: e_1_2_7_21_1 doi: 10.1039/D0EE03170D – ident: e_1_2_7_38_1 doi: 10.1039/D1TC00555C – ident: e_1_2_7_25_1 doi: 10.1021/acsami.1c07946 – ident: e_1_2_7_6_1 doi: 10.1016/j.scib.2022.10.005 – ident: e_1_2_7_59_1 doi: 10.1016/j.nanoen.2022.107538 – ident: e_1_2_7_33_1 doi: 10.1021/acsaem.8b00896 – ident: e_1_2_7_27_1 doi: 10.1002/adma.202108508 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.202202729 – ident: e_1_2_7_55_1 doi: 10.1002/adma.202005942 – ident: e_1_2_7_11_1 doi: 10.1002/adma.202209350 – ident: e_1_2_7_47_1 doi: 10.1039/C8EE01107A – ident: e_1_2_7_16_1 doi: 10.1039/D1CP01263K – ident: e_1_2_7_24_1 doi: 10.1002/aenm.202100492 – ident: e_1_2_7_20_1 doi: 10.1016/j.nanoen.2021.105924 – ident: e_1_2_7_22_1 doi: 10.1002/adma.202108749 – ident: e_1_2_7_56_1 doi: 10.1002/aenm.202003390 – ident: e_1_2_7_8_1 doi: 10.1002/adma.202205009 – ident: e_1_2_7_23_1 doi: 10.1016/j.joule.2021.02.002 – ident: e_1_2_7_50_1 doi: 10.1002/solr.202200308 – ident: e_1_2_7_42_1 doi: 10.1002/adma.202110147 – ident: e_1_2_7_30_1 doi: 10.1021/acsenergylett.0c00564 – ident: e_1_2_7_10_1 doi: 10.1016/j.nanoen.2021.106858 – ident: e_1_2_7_18_1 doi: 10.1039/D2TC00024E – ident: e_1_2_7_36_1 doi: 10.1021/acsami.9b23011 – ident: e_1_2_7_7_1 doi: 10.1021/jacs.0c12527 – ident: e_1_2_7_45_1 doi: 10.1039/D2EE00595F – ident: e_1_2_7_1_1 doi: 10.1038/s41467-022-32964-z – ident: e_1_2_7_4_1 doi: 10.1002/adma.202209380 – ident: e_1_2_7_53_1 doi: 10.1002/adfm.202107934 – ident: e_1_2_7_5_1 doi: 10.1002/adma.202202608 – ident: e_1_2_7_37_1 doi: 10.1002/adma.202204718 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-020-20791-z – ident: e_1_2_7_39_1 doi: 10.1039/D2TC02144G – ident: e_1_2_7_17_1 doi: 10.1021/ja016969k – ident: e_1_2_7_57_1 doi: 10.1021/jacs.6b11991 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.202108797 – ident: e_1_2_7_32_1 doi: 10.1021/jacs.0c12441 – ident: e_1_2_7_34_1 doi: 10.1016/j.scib.2019.09.016 – ident: e_1_2_7_43_1 doi: 10.1016/j.scib.2020.01.012 – ident: e_1_2_7_26_1 doi: 10.1002/agt2.58 – ident: e_1_2_7_35_1 doi: 10.1039/D1EE01336J – ident: e_1_2_7_31_1 doi: 10.1039/C8TA10037C – ident: e_1_2_7_15_1 doi: 10.1016/j.joule.2021.06.020 – ident: e_1_2_7_3_1 doi: 10.1002/adma.202110155 – ident: e_1_2_7_52_1 doi: 10.1002/anie.202110550 – ident: e_1_2_7_51_1 doi: 10.1002/solr.202200957 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201604424 – ident: e_1_2_7_44_1 doi: 10.1016/j.nanoen.2018.11.010 – volume: 34 year: 2022 ident: e_1_2_7_2_1 publication-title: Adv. Mater. contributor: fullname: Ma L. – volume: 10 year: 2022 ident: e_1_2_7_12_1 publication-title: J. Mater. Chem. C contributor: fullname: Xu W. – ident: e_1_2_7_58_1 doi: 10.1002/smll.202104215 – ident: e_1_2_7_13_1 doi: 10.1002/adma.202208279 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.202200478 – ident: e_1_2_7_46_1 doi: 10.1039/D1EE00496D – ident: e_1_2_7_41_1 doi: 10.1039/D1TC00939G – ident: e_1_2_7_54_1 doi: 10.1021/acsenergylett.2c02348 – ident: e_1_2_7_19_1 doi: 10.1021/acsenergylett.8b01416 – ident: e_1_2_7_48_1 doi: 10.1002/solr.202100007 – ident: e_1_2_7_49_1 doi: 10.1002/advs.202200578 – ident: e_1_2_7_60_1 doi: 10.1002/adma.202101733 |
SSID | ssj0017734 |
Score | 2.652019 |
Snippet | Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton dissociation... Abstract Layer‐by‐layer all‐polymer solar cells (LbL all‐PSCs) are prepared with PM6 and PY‐IT by using sequential spin coating method. The exciton... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | all‐PSCs Charge transport Efficiency Electrodes Energy conversion efficiency Energy gap Energy transfer exciton utilization Excitons layer‐by‐layer Materials science Photoluminescence Photovoltaic cells Polymers Solar cells Spin coating Utilization |
Title | Over 17.4% Efficiency of Layer‐by‐Layer All‐Polymer Solar Cells by Improving Exciton Utilization in Acceptor Layer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202215204 https://www.proquest.com/docview/2835375099 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCPICY0taOHcNY9SGEeAmo1C3yU0KEBLVFokz8BH4jvwRf0qaFBQmWKB5sJb7z3Wf77juEDsEEakNYoATlATNSBpJbGpjInbITS6OTPEns8io667HzPu_PZfEX_BDlgRusjNxewwKXalifkYZK4yCTnEJh1pwQlIQCYrratyV_FBGiuFaOCAR4kf6UtbFB69-7f_dKM6g5D1hzj9NdRXL6rUWgyWPtZaRq-u0HjeN_fmYNrUzgKG4W-rOOFmy6gZbnSAo30eu113ZMRI0d4U5OOAHZmjhz-EJ6vP75_qHG_pE3cDNJ_PtNloyffOsO9s24ZZNkiNUYlwcYuPOqvSVJcW_0kEwSQfFDipsagmyyQTHyFup1O_ets2BSryHQHoWwwDBOREic837RaQJXoFYSFXKtudMiMlRAXQ-uLJVCKRYZSY03AX7HxLiLZLiNFtMstTsIW20bwHyviPHuU_ltQMS9Inmw6YwRklfQ8VRe8XNByxEXBMw0hrmMy7msoOpUnPFkeQ5jIJkLASudVhDN5fLLKHGz3b0sW7t_6bSHlqBUfRHqW0WLo8GL3feAZqQOcqX9Ambk7qw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQDMDAG1Eo4AHElIIdO6ZjBa0KtICASmyRnxIipAiKRJn4BL6RL8E3acJjQYIligdbiX0fx_a95yK0BSZQG8ICJSgPmJEykNzSwESuzvYtjfazJLHuadTuseNrXkQTQi5Mzg9RHriBZmT2GhQcDqR3P1lDpXGQSk6hMiswgk54nQ-hesPhRckgRYTIL5YjAiFe5Lrgbdyju9_7f_dLn2DzK2TNfE5rFqnia_NQk9va00DV9MsPIsd__c4cmhkhUtzIRWgejdl0AU1_4SlcRM9nXuAxETW2jZsZ5wQkbOK-wx3pIfv765sa-kfWwI0k8e_n_WR451uXsHXGBzZJHrEa4vIMAzeftTcmKe4NbpJRLii-SXFDQ5xN_yEfeQn1Ws2rg3YwKtkQaA9EWGAYJyIkznnX6DSBW1AriQq51txpERkqoLQHV5ZKoRSLjKTGWwG_aWLcRTJcRuNpP7UrCFtt94D8XhHjPajyO4GIe1nyeNMZIySvoJ1iweL7nJkjzjmYaQxzGZdzWUHVYj3jkYY-xsAzFwJcqlcQzRbml1HixmGrW7ZW_9JpE022r7qduHN0erKGpqByfR75W0Xjg4cnu-7xzUBtZBL8AU2u8sQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIHrwLdZnDoqnrSbNQ49FW3wraqG3JU8orluxLVhP_gR_o7_EzG67Vi-CXpbNIWE3M5n5ksx8g9A2mEBjCYu0pDxiVqlIcUcjK_whO3BUHGRJYpdX4qTBzpq8OZLFn_NDFAdusDIyew0L_Mn6vS_SUGU9ZJJTKMwKhKATTAT4C7DotiCQIlLm98qCQIQXaQ5pG_fp3vf-393SF9YcRayZy6nPIjX82DzS5KHc6-qyef3B4_ifv5lDMwM8iqu5As2jMZcuoOkRlsJF9HId1B0TWWY7uJYxTkC6Jm57fKECYP94e9f98MgauJok4f2mnfQfQ-sONs74yCVJB-s-Lk4wcO3FBFOS4ka3lQwyQXErxVUDUTbt53zkJdSo1-6PTqJBwYbIBBjCIss4kRXifXCM3hC4A3WK6Ao3hnsjhaUSCntw7aiSWjNhFbXBBoQtE-NeqMoyGk_bqVtB2Bm3D9T3mtjgP3XYBwgeNCmgTW-tVLyEdofyip9yXo44Z2CmMcxlXMxlCa0PxRkP1mcnBpa5CoClwxKimVx-GSWuHtcvi9bqXzptocmb43p8cXp1voamoGx9Hva7jsa7zz23EcBNV29m-vsJgIfxcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over+17.4%25+Efficiency+of+Layer%E2%80%90by%E2%80%90Layer+All%E2%80%90Polymer+Solar+Cells+by+Improving+Exciton+Utilization+in+Acceptor+Layer&rft.jtitle=Advanced+functional+materials&rft.au=Xu%2C+Wenjing&rft.au=Zhang%2C+Miao&rft.au=Ma%2C+Xiaoling&rft.au=Zhu%2C+Xixiang&rft.date=2023-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202215204&rft.externalDBID=10.1002%252Fadfm.202215204&rft.externalDocID=ADFM202215204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |