High‐Performance Biomechanical Energy Harvester Enabled by Switching Interfacial Adhesion via Hydrogen Bonding and Phase Separation

Dramatic advances in wearable electronics have triggered tremendous demands for wearable power sources. To mitigate the impact of CO2 emission on the environment caused by energy consumption, biomechanical energy harvesting for self‐powered wearable electronics offers a promising solution. The outpu...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 38
Main Authors Wang, Lingyun, Wang, Yu, Bo, Xiangkun, Wang, Haoyu, Yang, Su, Tao, Xiaoming, Zi, Yunlong, Yu, William W., Li, Wen Jung, Daoud, Walid A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dramatic advances in wearable electronics have triggered tremendous demands for wearable power sources. To mitigate the impact of CO2 emission on the environment caused by energy consumption, biomechanical energy harvesting for self‐powered wearable electronics offers a promising solution. The output power of devices largely relies on the surface charge density, where adhesion interfaces generate a higher amount than nonadhesion counterparts, yet unfavorable for wearable devices due to the large detachment force required. Thus, sustaining high surface charge density in an adhesion‐free interface represents a major challenge. Herein, by leveraging intermolecular interactions and solvent evaporation induced phase separation, a nonadhesion interface is successfully realized, minimizing the interfacial adhesion from 20 to 0 kPa. Importantly, benefiting from the induced nano/microscale topography upon phase separation, comparable surface charges are generated at the interface. Consequently, a high‐performance flexible biomechanical energy harvester featuring a record high peak power density of 20.5 W m‐2 Hz‐1 at low matching impedance of 1 MΩ is achieved under a low biomechanical input force of 5 N. The device can power small electronics by harvesting regular or intermittent biomechanical energy and illuminate light‐emitting diodes wired/wirelessly. This work provides a facile strategy for interfacial engineering toward efficient energy harvesting. A nonadhesion interface is realized by leveraging intermolecular interactions and phase separation. The resulting surface topography and chemistry switch interfacial adhesion from 20 to 0 kPa while sustaining the high surface charge density. The blend film‐based flexible power source shows a record high output of 520 V, 109 mA m–2 Hz–1, and 20.5 W m–2 Hz–1 via harvesting biomechanical energy.
AbstractList Dramatic advances in wearable electronics have triggered tremendous demands for wearable power sources. To mitigate the impact of CO2 emission on the environment caused by energy consumption, biomechanical energy harvesting for self‐powered wearable electronics offers a promising solution. The output power of devices largely relies on the surface charge density, where adhesion interfaces generate a higher amount than nonadhesion counterparts, yet unfavorable for wearable devices due to the large detachment force required. Thus, sustaining high surface charge density in an adhesion‐free interface represents a major challenge. Herein, by leveraging intermolecular interactions and solvent evaporation induced phase separation, a nonadhesion interface is successfully realized, minimizing the interfacial adhesion from 20 to 0 kPa. Importantly, benefiting from the induced nano/microscale topography upon phase separation, comparable surface charges are generated at the interface. Consequently, a high‐performance flexible biomechanical energy harvester featuring a record high peak power density of 20.5 W m‐2 Hz‐1 at low matching impedance of 1 MΩ is achieved under a low biomechanical input force of 5 N. The device can power small electronics by harvesting regular or intermittent biomechanical energy and illuminate light‐emitting diodes wired/wirelessly. This work provides a facile strategy for interfacial engineering toward efficient energy harvesting. A nonadhesion interface is realized by leveraging intermolecular interactions and phase separation. The resulting surface topography and chemistry switch interfacial adhesion from 20 to 0 kPa while sustaining the high surface charge density. The blend film‐based flexible power source shows a record high output of 520 V, 109 mA m–2 Hz–1, and 20.5 W m–2 Hz–1 via harvesting biomechanical energy.
Dramatic advances in wearable electronics have triggered tremendous demands for wearable power sources. To mitigate the impact of CO2 emission on the environment caused by energy consumption, biomechanical energy harvesting for self‐powered wearable electronics offers a promising solution. The output power of devices largely relies on the surface charge density, where adhesion interfaces generate a higher amount than nonadhesion counterparts, yet unfavorable for wearable devices due to the large detachment force required. Thus, sustaining high surface charge density in an adhesion‐free interface represents a major challenge. Herein, by leveraging intermolecular interactions and solvent evaporation induced phase separation, a nonadhesion interface is successfully realized, minimizing the interfacial adhesion from 20 to 0 kPa. Importantly, benefiting from the induced nano/microscale topography upon phase separation, comparable surface charges are generated at the interface. Consequently, a high‐performance flexible biomechanical energy harvester featuring a record high peak power density of 20.5 W m‐2 Hz‐1 at low matching impedance of 1 MΩ is achieved under a low biomechanical input force of 5 N. The device can power small electronics by harvesting regular or intermittent biomechanical energy and illuminate light‐emitting diodes wired/wirelessly. This work provides a facile strategy for interfacial engineering toward efficient energy harvesting.
Abstract Dramatic advances in wearable electronics have triggered tremendous demands for wearable power sources. To mitigate the impact of CO 2 emission on the environment caused by energy consumption, biomechanical energy harvesting for self‐powered wearable electronics offers a promising solution. The output power of devices largely relies on the surface charge density, where adhesion interfaces generate a higher amount than nonadhesion counterparts, yet unfavorable for wearable devices due to the large detachment force required. Thus, sustaining high surface charge density in an adhesion‐free interface represents a major challenge. Herein, by leveraging intermolecular interactions and solvent evaporation induced phase separation, a nonadhesion interface is successfully realized, minimizing the interfacial adhesion from 20 to 0 kPa. Importantly, benefiting from the induced nano/microscale topography upon phase separation, comparable surface charges are generated at the interface. Consequently, a high‐performance flexible biomechanical energy harvester featuring a record high peak power density of 20.5 W m ‐2 Hz ‐1 at low matching impedance of 1 MΩ is achieved under a low biomechanical input force of 5 N. The device can power small electronics by harvesting regular or intermittent biomechanical energy and illuminate light‐emitting diodes wired/wirelessly. This work provides a facile strategy for interfacial engineering toward efficient energy harvesting.
Author Bo, Xiangkun
Wang, Lingyun
Wang, Yu
Wang, Haoyu
Tao, Xiaoming
Zi, Yunlong
Li, Wen Jung
Yu, William W.
Yang, Su
Daoud, Walid A.
Author_xml – sequence: 1
  givenname: Lingyun
  surname: Wang
  fullname: Wang, Lingyun
  organization: City University of Hong Kong
– sequence: 2
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: Dalian Polytechnic University
– sequence: 3
  givenname: Xiangkun
  surname: Bo
  fullname: Bo, Xiangkun
  organization: City University of Hong Kong
– sequence: 4
  givenname: Haoyu
  surname: Wang
  fullname: Wang, Haoyu
  organization: The Chinese University of Hong Kong
– sequence: 5
  givenname: Su
  surname: Yang
  fullname: Yang, Su
  organization: The Hong Kong Polytechnic University
– sequence: 6
  givenname: Xiaoming
  surname: Tao
  fullname: Tao, Xiaoming
  organization: The Hong Kong Polytechnic University
– sequence: 7
  givenname: Yunlong
  surname: Zi
  fullname: Zi, Yunlong
  organization: The Chinese University of Hong Kong
– sequence: 8
  givenname: William W.
  surname: Yu
  fullname: Yu, William W.
  email: yuwy@sdu.edu.cn
  organization: Shandong University
– sequence: 9
  givenname: Wen Jung
  surname: Li
  fullname: Li, Wen Jung
  email: wenjli@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 10
  givenname: Walid A.
  orcidid: 0000-0002-5807-5043
  surname: Daoud
  fullname: Daoud, Walid A.
  email: wdaoud@cityu.edu.hk
  organization: City University of Hong Kong
BookMark eNqFkE9PAjEQxRuDiX-vnpt4Btvtli5HUBATjSRo4m0z286yNdBiFzB78-Ldz-gnsQSDR08zmfm9mbx3QlrOOyTkgrMOZyy5AlMuOglLEpYKlh6QY97l3bZgSdba9_zliJzU9StjXCmRHpPPsZ1V3x9fEwylDwtwGunA-gXqCpzVMKdDh2HW0DGEDdYrDHEAxRwNLRo6fbcrXVk3o3curkrQNir6psLaekc3Fui4McHP0NGBd2ZLgjN0UkGNdIpLCLCK5Bk5LGFe4_lvPSXPo-HT9bh9_3h7d92_b2vBVdrWWfRmMpRMK8MzqRAK1FJlmjOpBfYKI7ErlebAQGEhmJZJCRLSNAGheuKUXO7uLoN_W0c7-atfBxdf5oniUmSZEiJSnR2lg6_rgGW-DHYBock5y7dR59uo833UUdDbCd7tHJt_6Lx_M3r40_4A_PuHJA
CitedBy_id crossref_primary_10_1088_2631_7990_ace66a
crossref_primary_10_1007_s42558_022_00045_2
crossref_primary_10_3390_molecules28041627
crossref_primary_10_1039_D3MH01812A
crossref_primary_10_1088_2631_7990_ad5bc6
Cites_doi 10.1002/admt.202000303
10.1098/rsif.2014.0371
10.1016/j.nanoen.2018.10.030
10.1002/adma.202105416
10.1016/j.nanoen.2022.107236
10.1002/adfm.202104365
10.1002/aenm.201700289
10.1039/C4FD00159A
10.1038/s41467-020-17891-1
10.1016/j.nanoen.2018.06.026
10.1016/j.nanoen.2019.103960
10.1002/admt.202100702
10.1002/advs.201600190
10.1039/c2jm31716h
10.1038/s41467-020-19059-3
10.1016/j.nanoen.2019.02.052
10.1039/C9EE01078E
10.3390/polym6041057
10.1002/aenm.201803183
10.1126/science.aan3997
10.1002/admt.201900193
10.1016/j.nanoen.2020.104884
10.1016/j.nanoen.2018.05.011
10.1016/j.nanoen.2019.04.081
10.1002/app.20436
10.1002/aenm.202100038
10.1021/acs.macromol.0c02520
10.1016/j.nanoen.2021.106611
10.1039/D0NR06341J
10.1016/j.nanoen.2019.104272
10.1016/j.nanoen.2021.106616
10.1002/aenm.202002832
10.1038/s41586-020-1985-6
10.1002/adfm.202105380
10.1073/pnas.1504919112
10.1016/j.nanoen.2019.02.035
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2020.105439
10.1038/s41467-019-13469-8
10.1126/science.abf2155
10.1038/s41467-017-00131-4
10.1002/admt.202000985
10.1021/acsnano.0c03986
10.1002/smll.201800937
10.1016/j.mattod.2019.05.016
10.1021/acsanm.9b01726
10.1002/mame.201900638
10.1002/adfm.200801776
10.1002/mren.201300146
10.1016/j.nanoen.2021.105819
10.1002/adma.201907948
10.1038/nchem.684
10.3390/nanoenergyadv1010004
10.1038/s41467-020-15368-9
10.1021/acs.jpcc.8b04357
10.1038/s41378-020-0154-2
10.1002/adma.202002878
10.1063/1.4895789
10.1021/jacs.1c05213
10.1038/s41467-019-09464-8
10.1002/1099-1395(200006)13:6<347::AID-POC251>3.0.CO;2-E
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202204304
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202204304
ADFM202204304
Genre article
GrantInformation_xml – fundername: City University of Hong Kong
  funderid: 9667191
– fundername: National Natural Science Foundation of China
  funderid: 22072125
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AASGY
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3174-c8204d8e50c7d1857eabec578c105c3e9bd5e657c1a0a7eb30c52fa5a442a3793
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Sep 13 04:04:40 EDT 2024
Fri Aug 23 02:46:33 EDT 2024
Sat Aug 24 00:52:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-c8204d8e50c7d1857eabec578c105c3e9bd5e657c1a0a7eb30c52fa5a442a3793
ORCID 0000-0002-5807-5043
PQID 2715388733
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2715388733
crossref_primary_10_1002_adfm_202204304
wiley_primary_10_1002_adfm_202204304_ADFM202204304
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2017; 7
2017; 8
2017; 4
2019; 55
2019; 10
2019; 12
2019; 59
2020; 14
2020; 12
2020; 11
2014; 176
2013; 7
2018; 49
2019; 365
2021; 79
2020; 6
2020; 5
2021; 31
2019; 61
2019; 64
2000; 13
2020; 578
2022; 34
2021; 83
2009; 19
2010; 2
2014; 6
2012; 22
2014; 11
2019; 9
2021; 6
2019; 4
2019; 30
2019; 2
2022; 91
1953
2020; 305
2020; 32
2021; 143
2021; 1
2021; 90
2021; 54
2012; 1
2021; 11
2004; 93
2020; 75
2022; 7
2015; 112
2020; 68
2021; 373
2018; 51
2022; 98
2014; 141
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
Flory P. J. (e_1_2_8_39_1) 1953
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 59
  start-page: 268
  year: 2019
  publication-title: Nano Energy
– volume: 141
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 2417
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 625
  year: 2018
  publication-title: Nano Energy
– volume: 91
  year: 2022
  publication-title: Nano Energy
– volume: 373
  start-page: 337
  year: 2021
  publication-title: Science
– volume: 14
  year: 2018
  publication-title: Small
– volume: 11
  start-page: 1599
  year: 2020
  publication-title: Nat. Commun.
– volume: 93
  start-page: 122
  year: 2004
  publication-title: J. Appl. Polym. Sci.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 11
  start-page: 4203
  year: 2020
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 6
  start-page: 1057
  year: 2014
  publication-title: Polymers
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 30
  start-page: 34
  year: 2019
  publication-title: Mater. Today
– volume: 7
  start-page: 588
  year: 2013
  publication-title: Macromol. React. Eng.
– volume: 13
  start-page: 347
  year: 2000
  publication-title: J. Phys. Org. Chem.
– volume: 1
  start-page: 58
  year: 2021
  publication-title: Nanoenergy Adv.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 59
  start-page: 154
  year: 2019
  publication-title: Nano Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2014
  publication-title: J. R. Soc., Interface
– volume: 2
  start-page: 7230
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 578
  start-page: 392
  year: 2020
  publication-title: Nature
– volume: 55
  start-page: 433
  year: 2019
  publication-title: Nano Energy
– volume: 98
  year: 2022
  publication-title: Nano Energy
– volume: 365
  start-page: 491
  year: 2019
  publication-title: Science
– volume: 61
  start-page: 505
  year: 2019
  publication-title: Nano Energy
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 2297
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 83
  year: 2021
  publication-title: Nano Energy
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  year: 2012
  publication-title: Nano Energy
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 633
  year: 2010
  publication-title: Nat. Chem.
– volume: 54
  start-page: 1192
  year: 2021
  publication-title: Macromolecules
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 305
  year: 2020
  publication-title: Macromol. Mater. Eng.
– volume: 11
  start-page: 5381
  year: 2020
  publication-title: Nat. Commun.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  start-page: 59
  year: 2020
  publication-title: Microsyst. Nanoeng.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– year: 1953
– volume: 10
  start-page: 5465
  year: 2019
  publication-title: Nat. Commun.
– volume: 176
  start-page: 447
  year: 2014
  publication-title: Faraday Discuss.
– volume: 8
  start-page: 88
  year: 2017
  publication-title: Nat. Commun.
– volume: 51
  start-page: 260
  year: 2018
  publication-title: Nano Energy
– volume: 10
  start-page: 1426
  year: 2019
  publication-title: Nat. Commun.
– ident: e_1_2_8_54_1
  doi: 10.1002/admt.202000303
– ident: e_1_2_8_18_1
  doi: 10.1098/rsif.2014.0371
– ident: e_1_2_8_60_1
  doi: 10.1016/j.nanoen.2018.10.030
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202105416
– ident: e_1_2_8_15_1
  doi: 10.1016/j.nanoen.2022.107236
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.202104365
– ident: e_1_2_8_55_1
  doi: 10.1002/aenm.201700289
– ident: e_1_2_8_3_1
  doi: 10.1039/C4FD00159A
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-020-17891-1
– ident: e_1_2_8_56_1
  doi: 10.1016/j.nanoen.2018.06.026
– ident: e_1_2_8_62_1
  doi: 10.1016/j.nanoen.2019.103960
– ident: e_1_2_8_49_1
  doi: 10.1002/admt.202100702
– ident: e_1_2_8_32_1
  doi: 10.1002/advs.201600190
– volume-title: Principles of Polymer Chemistry
  year: 1953
  ident: e_1_2_8_39_1
  contributor:
    fullname: Flory P. J.
– ident: e_1_2_8_48_1
  doi: 10.1039/c2jm31716h
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-020-19059-3
– ident: e_1_2_8_59_1
  doi: 10.1016/j.nanoen.2019.02.052
– ident: e_1_2_8_25_1
  doi: 10.1039/C9EE01078E
– ident: e_1_2_8_40_1
  doi: 10.3390/polym6041057
– ident: e_1_2_8_35_1
  doi: 10.1002/aenm.201803183
– ident: e_1_2_8_6_1
  doi: 10.1126/science.aan3997
– ident: e_1_2_8_44_1
  doi: 10.1002/admt.201900193
– ident: e_1_2_8_51_1
  doi: 10.1016/j.nanoen.2020.104884
– ident: e_1_2_8_21_1
  doi: 10.1016/j.nanoen.2018.05.011
– ident: e_1_2_8_61_1
  doi: 10.1016/j.nanoen.2019.04.081
– ident: e_1_2_8_38_1
  doi: 10.1002/app.20436
– ident: e_1_2_8_4_1
  doi: 10.1002/aenm.202100038
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.macromol.0c02520
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nanoen.2021.106611
– ident: e_1_2_8_58_1
  doi: 10.1039/D0NR06341J
– ident: e_1_2_8_11_1
  doi: 10.1016/j.nanoen.2019.104272
– ident: e_1_2_8_53_1
  doi: 10.1016/j.nanoen.2021.106616
– ident: e_1_2_8_52_1
  doi: 10.1002/aenm.202002832
– ident: e_1_2_8_2_1
  doi: 10.1038/s41586-020-1985-6
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202105380
– ident: e_1_2_8_45_1
  doi: 10.1073/pnas.1504919112
– ident: e_1_2_8_30_1
  doi: 10.1016/j.nanoen.2019.02.035
– ident: e_1_2_8_1_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_8_13_1
  doi: 10.1016/j.nanoen.2020.105439
– ident: e_1_2_8_43_1
  doi: 10.1038/s41467-019-13469-8
– ident: e_1_2_8_34_1
  doi: 10.1126/science.abf2155
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-017-00131-4
– ident: e_1_2_8_50_1
  doi: 10.1002/admt.202000985
– ident: e_1_2_8_5_1
  doi: 10.1021/acsnano.0c03986
– ident: e_1_2_8_31_1
  doi: 10.1002/smll.201800937
– ident: e_1_2_8_12_1
  doi: 10.1016/j.mattod.2019.05.016
– ident: e_1_2_8_28_1
  doi: 10.1021/acsanm.9b01726
– ident: e_1_2_8_24_1
  doi: 10.1002/mame.201900638
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.200801776
– ident: e_1_2_8_17_1
  doi: 10.1002/mren.201300146
– ident: e_1_2_8_57_1
  doi: 10.1016/j.nanoen.2021.105819
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201907948
– ident: e_1_2_8_47_1
  doi: 10.1038/nchem.684
– ident: e_1_2_8_14_1
  doi: 10.3390/nanoenergyadv1010004
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-020-15368-9
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.jpcc.8b04357
– ident: e_1_2_8_36_1
  doi: 10.1038/s41378-020-0154-2
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202002878
– ident: e_1_2_8_26_1
  doi: 10.1063/1.4895789
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.1c05213
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-019-09464-8
– ident: e_1_2_8_46_1
  doi: 10.1002/1099-1395(200006)13:6<347::AID-POC251>3.0.CO;2-E
SSID ssj0017734
Score 2.4719517
Snippet Dramatic advances in wearable electronics have triggered tremendous demands for wearable power sources. To mitigate the impact of CO2 emission on the...
Abstract Dramatic advances in wearable electronics have triggered tremendous demands for wearable power sources. To mitigate the impact of CO 2 emission on the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Biomechanics
Charge density
Electronics
Energy
Energy consumption
Energy harvesting
Hydrogen bonding
hydrogen bonds
Impedance matching
Interfaces
interfacial engineering
Light emitting diodes
Materials science
Phase separation
Power management
Power sources
Surface charge
surface charges
triboelectric nanogenerators
Wearable technology
Title High‐Performance Biomechanical Energy Harvester Enabled by Switching Interfacial Adhesion via Hydrogen Bonding and Phase Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202204304
https://www.proquest.com/docview/2715388733/abstract/
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i9UqexA8pU128zxWbSlCpVgLvYV9hRYhlTZV6smLd3-jv8SdTZO2XgS9ZUMSkp3Z2W8n832L0KWv57xIUmVpqEwtlyticR5S3QyodhEWRgoIzp17v9137wbeYIXFn-tDlAk3GBkmXsMAZ3xaX4qGMpkAk5wAudMIgoKaHqCih1I_ygmC_Ley70CBlzMoVBttUl-_fX1WWkLNVcBqZpzWLmLFu-aFJk-1WcZr4u2HjON_PmYP7SzgKG7k_rOPNlR6gLZXRAoP0QeUgny9f3aXFAN8DaR94AyDiXHT8AcxbDNkdBf0CSBkScznuPc6yky5Jja5x4RBih435FBBmg6_jBhuz-VkrP0YwxbHcCVLJe4O9fSKeyqXJh-nR6jfaj7etK3F5g2W0JDEtYSGFq4MlWeLQILglGLaXXR8EBrRCaoiLj3le4FwmM0CvaS3hUcS5jHXJYzqqHGMNtNxqk4QVhHl1KeOcPTaLolc7kviJXZE7YiHScgr6KowXvyca3TEuRoziaFj47JjK6ha2DZejNVpTAKI-mFAaQURY6RfnhI3bludsnX6l5vO0BYc58VqVbSZTWbqXKObjF8YD_4GOLDy3g
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYQDMDAjSgU8IDEFEjsnGM5qgItQrRIbJGvCISUIiigMrGw8xv5JbznNC1lQYIxVhwlfqdf3veZkJ0QYl6iuXEgVeaOLw1zpIw5XEYcVETEiUGAc-s8bFz5p9dB2U2IWJiCH2JYcEPLsP4aDRwL0vsj1lChM4SSM0R3IiPoFNh8YHdVl0MGKS-Kih_LoYctXt51ydvosv3x-eNxaZRsfk9ZbcypzxNZvm3RanK399STe-r1B5Hjvz5ngcwNMlJaK1RokUyYfInMfuMpXCbv2A3y-fZxMUIZ0APE7SNsGKVMjy2EkOJJQ5Z6AQYQk6Wp7NP2y23PdmxSW37MBFbpaU3fGKzU0edbQRt9_dAFVaZ4yjHeKXJNL24gwtK2KdjJu_kKuaofdw4bzuD8BkdBVuI7CrILX8cmcFWkkXPKCNAYcBEKkjrFTSJ1YMIgUp5wRQS7elcFLBOB8H0mODiOVTKZd3OzRqhJuOQh95QH27ss8WWoWZC5CXcTGWexrJDdUnrpfUHTkRaEzCzFhU2HC1sh1VK46cBcH1MWoeOPI84rhFkp_fKUtHZUbw2v1v8yaZtMNzqtZto8OT_bIDM4XvSuVclk7-HJbEKy05NbVp2_AHyT9wA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EQfTgW6xW3YPgKW2ym-ex2ob6aCnWQm9hX6FFSEttlXry4t3f6C9xJ-nTi6DHLNmQ7MzOfjuZ71uELly95gWSKkNDZWrYXBGDc5_qS49qF2F-oIDgXKu71ZZ923baCyz-TB9ilnCDmZHGa5jgfRkX56KhTMbAJCdA7gRB0DXbpQT8uvwwE5CyPC_7r-xaUOFltaeyjSYpLvdfXpbmWHMRsaZLTriN2PRls0qTp8JoyAvi7YeO43--ZgdtTfAoLmUOtItWVLKHNhdUCvfRB9SCfL1_NuYcA3wFrH0gDYONcSUlEGI4ZygVXtANwMiSmI9x87U7TOs1cZp8jBnk6HFJdhTk6fBLl-HqWA562pExnHEMd7JE4kZHr6-4qTJt8l5ygFph5fG6akxObzCExiS2ITS2sKWvHFN4EhSnFNP-ogOE0JBOUBVw6SjX8YTFTObpPb0pHBIzh9k2YVSHjUO0mvQSdYSwCiinLrWEpTd3cWBzVxInNgNqBtyPfZ5Dl1PjRf1MpCPK5JhJBAMbzQY2h_JT20aTyfocEQ_Cvu9RmkMkNdIvT4lK5bA2uzr-S6dztN4oh9H9Tf3uBG1Ac1a4lkerw8FInWqkM-RnqTN_A59R9a8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Biomechanical+Energy+Harvester+Enabled+by+Switching+Interfacial+Adhesion+via+Hydrogen+Bonding+and+Phase+Separation&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Lingyun&rft.au=Wang%2C+Yu&rft.au=Bo%2C+Xiangkun&rft.au=Wang%2C+Haoyu&rft.date=2022-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202204304&rft.externalDBID=10.1002%252Fadfm.202204304&rft.externalDocID=ADFM202204304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon