Crystallization‐Induced Enhanced Electrochemiluminescence from a New Tris(bipyridine)ruthenium(II) Derivative

Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 12
Main Authors Han, Tingting, Cao, Yue, Wang, Jia, Jiao, Jianmin, Song, You, Wang, Leyong, Ma, Cheng, Chen, Hong‐Yuan, Zhu, Jun‐Jie
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting devices. Herein, the crystallization‐induced enhanced ECL (CIE‐ECL) of tris(bipyridine)ruthenium(II) derivatives (Ru‐TPE) are reported by decorating Ru‐bpy with inherent aggregation‐induced emission active tetraphenylethene (TPE), which effectively eliminates the detrimental π–π stacking interactions and thus helps Ru‐bpy surmount notorious ACQ effect in the aqueous phase. The Ru‐TPE shows negligible ECL emission in solution but produces a strong ECL emission upon crystallization. Surprisingly, the ECL efficiency of Ru‐TPE crystals is 20 and 3 times higher than that of its solution and Ru‐bpy crystals, respectively. Experimental and structural analysis reveals that such a CIE‐ECL effect originates from the restricted intramolecular rotation and ordered molecular packing. Moreover, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. This work provides a new design strategy for achieving high efficiency in solid‐state ECL imaging and devices. A new tris(bipyridine)ruthenium(II) derivative (Ru‐TPE) is synthesized and realizes the crystallization‐induced enhanced electrochemiluminescence (CIE‐ECL), which originates from the restricted intramolecular rotation and ordered molecular packing. Besides, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated.
AbstractList Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting devices. Herein, the crystallization‐induced enhanced ECL (CIE‐ECL) of tris(bipyridine)ruthenium(II) derivatives (Ru‐TPE) are reported by decorating Ru‐bpy with inherent aggregation‐induced emission active tetraphenylethene (TPE), which effectively eliminates the detrimental π–π stacking interactions and thus helps Ru‐bpy surmount notorious ACQ effect in the aqueous phase. The Ru‐TPE shows negligible ECL emission in solution but produces a strong ECL emission upon crystallization. Surprisingly, the ECL efficiency of Ru‐TPE crystals is 20 and 3 times higher than that of its solution and Ru‐bpy crystals, respectively. Experimental and structural analysis reveals that such a CIE‐ECL effect originates from the restricted intramolecular rotation and ordered molecular packing. Moreover, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. This work provides a new design strategy for achieving high efficiency in solid‐state ECL imaging and devices.
Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting devices. Herein, the crystallization‐induced enhanced ECL (CIE‐ECL) of tris(bipyridine)ruthenium(II) derivatives (Ru‐TPE) are reported by decorating Ru‐bpy with inherent aggregation‐induced emission active tetraphenylethene (TPE), which effectively eliminates the detrimental π–π stacking interactions and thus helps Ru‐bpy surmount notorious ACQ effect in the aqueous phase. The Ru‐TPE shows negligible ECL emission in solution but produces a strong ECL emission upon crystallization. Surprisingly, the ECL efficiency of Ru‐TPE crystals is 20 and 3 times higher than that of its solution and Ru‐bpy crystals, respectively. Experimental and structural analysis reveals that such a CIE‐ECL effect originates from the restricted intramolecular rotation and ordered molecular packing. Moreover, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. This work provides a new design strategy for achieving high efficiency in solid‐state ECL imaging and devices.
Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting devices. Herein, the crystallization‐induced enhanced ECL (CIE‐ECL) of tris(bipyridine)ruthenium(II) derivatives (Ru‐TPE) are reported by decorating Ru‐bpy with inherent aggregation‐induced emission active tetraphenylethene (TPE), which effectively eliminates the detrimental π–π stacking interactions and thus helps Ru‐bpy surmount notorious ACQ effect in the aqueous phase. The Ru‐TPE shows negligible ECL emission in solution but produces a strong ECL emission upon crystallization. Surprisingly, the ECL efficiency of Ru‐TPE crystals is 20 and 3 times higher than that of its solution and Ru‐bpy crystals, respectively. Experimental and structural analysis reveals that such a CIE‐ECL effect originates from the restricted intramolecular rotation and ordered molecular packing. Moreover, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. This work provides a new design strategy for achieving high efficiency in solid‐state ECL imaging and devices. A new tris(bipyridine)ruthenium(II) derivative (Ru‐TPE) is synthesized and realizes the crystallization‐induced enhanced electrochemiluminescence (CIE‐ECL), which originates from the restricted intramolecular rotation and ordered molecular packing. Besides, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated.
Author Zhu, Jun‐Jie
Ma, Cheng
Cao, Yue
Han, Tingting
Song, You
Wang, Jia
Jiao, Jianmin
Wang, Leyong
Chen, Hong‐Yuan
Author_xml – sequence: 1
  givenname: Tingting
  surname: Han
  fullname: Han, Tingting
  organization: Nanjing University
– sequence: 2
  givenname: Yue
  surname: Cao
  fullname: Cao, Yue
  organization: Nanjing University
– sequence: 3
  givenname: Jia
  surname: Wang
  fullname: Wang, Jia
  organization: Nanjing University
– sequence: 4
  givenname: Jianmin
  surname: Jiao
  fullname: Jiao, Jianmin
  organization: Nanjing University
– sequence: 5
  givenname: You
  surname: Song
  fullname: Song, You
  organization: Nanjing University
– sequence: 6
  givenname: Leyong
  surname: Wang
  fullname: Wang, Leyong
  organization: Nanjing University
– sequence: 7
  givenname: Cheng
  surname: Ma
  fullname: Ma, Cheng
  email: chengma@nju.edu.cn
  organization: Yangzhou University
– sequence: 8
  givenname: Hong‐Yuan
  surname: Chen
  fullname: Chen, Hong‐Yuan
  organization: Nanjing University
– sequence: 9
  givenname: Jun‐Jie
  orcidid: 0000-0002-8201-1285
  surname: Zhu
  fullname: Zhu, Jun‐Jie
  email: jjzhu@nju.edu.cn
  organization: Nanjing University
BookMark eNqFkM9LwzAcxYNMcJtePRe8bIfOJE3T7Tj2QwtTLxO8lTRJWUabzKTdqCf_BP9G_xK7TSYI4un74Ps-78HrgJY2WgJwjeAAQYhvmciKAYYYIxyMyBloI4qoH0A8bJ00erkAHefWEKIoCkgbmImtXcnyXL2xUhn9-f4Ra1FxKbyZXjF9ELnkpTV8JQuVV4XS0nHZfLzMmsJj3qPceUurXC9Vm9oq0Rj6tipXUquq6MVx35tKq7ZN_lZegvOM5U5efd8ueJ7PlpN7f_F0F0_GC58HKCI-j5DAKSIkFAKFWFIqKEtxSnjEZBDBVHASMiQgpDALSIoYDIaCp5hRNiKNpQtujrkba14r6cpkbSqrm8oER8MIhTRAtHENji5ujXNWZsnGqoLZOkEw2Y-a7EdNTqM2APkFcFUehistU_nf2OiI7VQu639KkvF0_vDDfgEO6pGE
CitedBy_id crossref_primary_10_1007_s40820_023_01249_5
crossref_primary_10_3390_bios13020200
crossref_primary_10_1002_chem_202301504
crossref_primary_10_1016_j_talanta_2025_127734
crossref_primary_10_1021_acs_langmuir_4c02213
crossref_primary_10_1021_acs_analchem_4c02574
crossref_primary_10_1039_D4AN00412D
crossref_primary_10_1002_anie_202312692
crossref_primary_10_1007_s00216_024_05279_9
crossref_primary_10_1021_acsami_4c10899
crossref_primary_10_1021_acs_analchem_4c04027
crossref_primary_10_1038_s41467_024_48011_y
crossref_primary_10_1016_j_chemosphere_2024_141671
crossref_primary_10_1016_j_snb_2023_134562
crossref_primary_10_1016_j_talanta_2024_126937
crossref_primary_10_1016_j_talanta_2024_125668
crossref_primary_10_1021_acs_analchem_4c04323
crossref_primary_10_1002_ange_202312692
crossref_primary_10_1021_acsami_4c11835
crossref_primary_10_1002_smll_202306291
crossref_primary_10_1021_acs_analchem_4c03890
crossref_primary_10_1016_j_cej_2024_155342
crossref_primary_10_1007_s41664_023_00269_9
crossref_primary_10_1002_asia_202401282
crossref_primary_10_1021_acs_jpclett_4c00074
crossref_primary_10_1021_acs_analchem_4c00430
crossref_primary_10_1021_acs_analchem_4c03249
crossref_primary_10_1021_acs_analchem_4c04016
crossref_primary_10_1016_j_foodchem_2025_143246
crossref_primary_10_1016_j_snb_2024_135314
Cites_doi 10.1021/cr020373d
10.1002/1099-0682(200011)2000:11<2401::AID-EJIC2401>3.0.CO;2-3
10.1103/PhysRev.46.372
10.1021/cm502491n
10.1021/acs.nanolett.5b02383
10.1039/C5SC00253B
10.1021/acs.analchem.8b05949
10.1002/chem.202002647
10.1021/cr068083a
10.1002/anie.201915053
10.1021/jacs.7b09260
10.1021/acs.analchem.1c01258
10.1002/adma.201505906
10.1021/jacs.7b07710
10.1021/jacs.9b06743
10.1002/anie.202010216
10.1002/advs.202105903
10.1002/ange.201900283
10.1039/B613157C
10.1038/srep29805
10.1039/C4SC00312H
10.1021/ja203920w
10.1016/j.bios.2018.06.006
10.1021/jacs.0c00698
10.1021/acs.analchem.9b02357
10.1002/agt2.170
10.1002/adma.202005456
10.1021/cr400710z
10.1021/acs.analchem.0c00799
10.1016/j.cej.2019.122347
10.1002/ange.202012171
10.1039/C9SC01937E
10.1038/352414a0
10.1002/anie.201911190
10.34133/2021/1742919
10.1002/ange.202117401
10.1002/adma.201503751
10.1002/smll.201901170
10.1002/anie.201800706
10.1002/anie.201916729
10.1107/S2053229614024218
10.1002/adfm.201907936
10.1021/ja5002899
10.1002/ange.201611879
10.1039/C9SC00084D
10.1002/anie.202009544
10.1002/anie.201908121
10.1126/science.1069336
10.1039/C8SC02251H
10.1007/s10904-005-5546-0
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202212394
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202212394
ADFM202212394
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20190279
– fundername: National Natural Science Foundation of China
  funderid: 21834004; 21904063; 22174061
– fundername: China Postdoctoral Science Foundation
  funderid: 2021T140306
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3174-c71d2b1445dd152e66d6ab2b4c7ae370bdc45a1d0060f34b1a038dcb2a6a94ae3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:32:47 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Tue Jul 01 00:30:38 EDT 2025
Wed Jan 22 16:13:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-c71d2b1445dd152e66d6ab2b4c7ae370bdc45a1d0060f34b1a038dcb2a6a94ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8201-1285
PQID 2787156316
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2787156316
crossref_primary_10_1002_adfm_202212394
crossref_citationtrail_10_1002_adfm_202212394
wiley_primary_10_1002_adfm_202212394_ADFM202212394
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 352
2018; 9
2017 2018 2019 2020; 129 57 141 59
2020; 3
2021; 33
2002; 296
2018; 117
2019 2019 2020; 10 131 59
2008 2004; 108 104
2014 2019 2020 2021 2022; 136 10 59 133 134
2000; 11
2019 2020; 58 26
2020 2020 2022 2015 2016; 59 142 9 27 28
2014 2016 2020 2020; 26 6 30 379
2020; 59
2005 2007 2015; 15 6
2019 2019 2019 2020; 15 91 91 92
2014 2015 2021; 5 15 2021
2021; 93
2014; 114
2011; 133
2015 1934 2000; 71 46
2017; 139
(e_1_2_8_22_3) 2000
e_1_2_8_24_1
e_1_2_8_7_4
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_15_3
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_15_2
Chen M.‐M. (e_1_2_8_2_5) 2022; 134
e_1_2_8_11_1
e_1_2_8_21_4
e_1_2_8_21_5
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_21_3
e_1_2_8_23_1
e_1_2_8_10_4
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_16_1
Mu X. (e_1_2_8_18_1) 2020; 3
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_10_3
e_1_2_8_12_1
References_xml – volume: 11
  start-page: 2401
  year: 2000
  publication-title: Eur. J. Inorg. Chem.
– volume: 296
  start-page: 1293
  year: 2002
  publication-title: Science
– volume: 10 131 59
  start-page: 4497 3194
  year: 2019 2019 2020
  publication-title: Chem. Sci. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 352
  start-page: 414
  year: 1991
  publication-title: Nature
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 129 57 141 59
  start-page: 4835 4010
  year: 2017 2018 2019 2020
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 15 6
  start-page: 287 40 4438
  year: 2005 2007 2015
  publication-title: J. Inorg. Organomet. Polym. Mater. Chem. Commun. Chem. Sci.
– volume: 71 46
  start-page: 3 372
  year: 2015 1934 2000
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem. Phys. Rev.
– volume: 59 142 9 27 28
  start-page: 6285 7093 5064
  year: 2020 2020 2022 2015 2016
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Adv. Sci. Adv. Mater. Adv. Mater.
– volume: 59
  start-page: 9888
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 93
  year: 2021
  publication-title: Anal. Chem.
– volume: 108 104
  start-page: 2506 3003
  year: 2008 2004
  publication-title: Chem. Rev. Chem. Rev.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 58 26
  year: 2019 2020
  publication-title: Angew. Chem., Int. Ed. Chem. ‐ Eur. J.
– volume: 5 15 2021
  start-page: 2568 6110
  year: 2014 2015 2021
  publication-title: Chem. Sci. Nano Lett. Research
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2020
  publication-title: Aggregate
– volume: 117
  start-page: 145
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 26 6 30 379
  start-page: 5358
  year: 2014 2016 2020 2020
  publication-title: Chem. Mater. Sci. Rep. Adv. Funct. Mater. Chem. Eng. J.
– volume: 15 91 91 92
  start-page: 3710 8676 9613
  year: 2019 2019 2019 2020
  publication-title: Small Anal. Chem. Anal. Chem. Anal. Chem.
– volume: 9
  start-page: 6167
  year: 2018
  publication-title: Chem. Sci.
– volume: 136 10 59 133 134
  start-page: 3705 6295 449 4957
  year: 2014 2019 2020 2021 2022
  publication-title: J. Am. Chem. Soc. Chem. Sci. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_1_2
  doi: 10.1021/cr020373d
– ident: e_1_2_8_4_1
  doi: 10.1002/1099-0682(200011)2000:11<2401::AID-EJIC2401>3.0.CO;2-3
– ident: e_1_2_8_22_2
  doi: 10.1103/PhysRev.46.372
– volume-title: Bruker Analytical Instrumentation
  year: 2000
  ident: e_1_2_8_22_3
– ident: e_1_2_8_7_1
  doi: 10.1021/cm502491n
– ident: e_1_2_8_5_2
  doi: 10.1021/acs.nanolett.5b02383
– ident: e_1_2_8_12_3
  doi: 10.1039/C5SC00253B
– ident: e_1_2_8_10_2
  doi: 10.1021/acs.analchem.8b05949
– ident: e_1_2_8_17_2
  doi: 10.1002/chem.202002647
– ident: e_1_2_8_1_1
  doi: 10.1021/cr068083a
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201915053
– ident: e_1_2_8_6_1
  doi: 10.1021/jacs.7b09260
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.analchem.1c01258
– ident: e_1_2_8_21_5
  doi: 10.1002/adma.201505906
– ident: e_1_2_8_9_1
  doi: 10.1021/jacs.7b07710
– ident: e_1_2_8_3_3
  doi: 10.1021/jacs.9b06743
– ident: e_1_2_8_15_3
  doi: 10.1002/anie.202010216
– ident: e_1_2_8_21_3
  doi: 10.1002/advs.202105903
– ident: e_1_2_8_15_2
  doi: 10.1002/ange.201900283
– ident: e_1_2_8_12_2
  doi: 10.1039/B613157C
– ident: e_1_2_8_7_2
  doi: 10.1038/srep29805
– ident: e_1_2_8_5_1
  doi: 10.1039/C4SC00312H
– ident: e_1_2_8_16_1
  doi: 10.1021/ja203920w
– ident: e_1_2_8_23_1
  doi: 10.1016/j.bios.2018.06.006
– ident: e_1_2_8_21_2
  doi: 10.1021/jacs.0c00698
– ident: e_1_2_8_10_3
  doi: 10.1021/acs.analchem.9b02357
– volume: 3
  year: 2020
  ident: e_1_2_8_18_1
  publication-title: Aggregate
  doi: 10.1002/agt2.170
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202005456
– ident: e_1_2_8_19_1
  doi: 10.1021/cr400710z
– ident: e_1_2_8_10_4
  doi: 10.1021/acs.analchem.0c00799
– ident: e_1_2_8_7_4
  doi: 10.1016/j.cej.2019.122347
– ident: e_1_2_8_2_4
  doi: 10.1002/ange.202012171
– ident: e_1_2_8_2_2
  doi: 10.1039/C9SC01937E
– ident: e_1_2_8_11_1
  doi: 10.1038/352414a0
– ident: e_1_2_8_2_3
  doi: 10.1002/anie.201911190
– ident: e_1_2_8_5_3
  doi: 10.34133/2021/1742919
– volume: 134
  year: 2022
  ident: e_1_2_8_2_5
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202117401
– ident: e_1_2_8_21_4
  doi: 10.1002/adma.201503751
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.201901170
– ident: e_1_2_8_3_2
  doi: 10.1002/anie.201800706
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201916729
– ident: e_1_2_8_22_1
  doi: 10.1107/S2053229614024218
– ident: e_1_2_8_7_3
  doi: 10.1002/adfm.201907936
– ident: e_1_2_8_2_1
  doi: 10.1021/ja5002899
– ident: e_1_2_8_3_1
  doi: 10.1002/ange.201611879
– ident: e_1_2_8_15_1
  doi: 10.1039/C9SC00084D
– ident: e_1_2_8_3_4
  doi: 10.1002/anie.202009544
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.201908121
– ident: e_1_2_8_20_1
  doi: 10.1126/science.1069336
– ident: e_1_2_8_24_1
  doi: 10.1039/C8SC02251H
– ident: e_1_2_8_12_1
  doi: 10.1007/s10904-005-5546-0
SSID ssj0017734
Score 2.5878007
Snippet Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Agglomeration
Crystallization
crystallization‐induced emissions
Efficiency
Electrochemiluminescence
Emission
Imaging
Materials science
Ruthenium
Ruthenium compounds
Structural analysis
tetraphenylethene
tris(bipyridine)ruthenium(II) derivatives
Title Crystallization‐Induced Enhanced Electrochemiluminescence from a New Tris(bipyridine)ruthenium(II) Derivative
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202212394
https://www.proquest.com/docview/2787156316
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0Y3ejCtxFFMwsTcVFlpqWPJREIGHGhkrBr5kUkYjEVTHDlJ_iNfon3tqWAiTHRXZvM7bTzOHOmc--5hJwA4BkVOMryhW0sR_nMCqSvLekzT7q2Fio5PW_fuM2Oc9WtdOei-FN9iPyHG86MBK9xggv5cjETDRW6h5HkHLE3QEFQdNhCVnSb60cxz0uPlV2GDl6sO1VtLPOLRfPFVWlGNecJa7LiNDaImL5r6mjyeD4eyXP19k3G8T8fs0nWMzpKq-n42SJLJtoma3MihTtkeBlPgEIOBlnE5uf7B-b7UEbTevSQOBDQeppMR6H6AKAdutIrhAyK0StUUIBSeg9wUpL950nch_XSnMXoWx_1x0-lVuuM1qC210SEfJd0GvX7y6aVpWmwFJAPx1Ie01zCxqyiNbAB47raFZJLR3nC2F5ZauVUBNMo_dKzHclE2fa1kly4InCgyB5ZjoaR2SdU83KgexJ2-xJsPF8KDS0DF0IJxXy3QKxpN4Uq0zDHVBqDMFVf5iE2ZJg3ZIGc5uWfU_WOH0sWp70eZrP4JeSAZrC_tRlUzJPu--UpYbXWaOd3B38xOiSrmNE-dXMrkuVRPDZHwHtG8pisVGvt67vjZIx_AWRJ_2Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgNBEG1cDurBXdztg6AeRtM9nVmOkoVEjQdJwNvQWzAYR4mJoCc_wW_0S6yaLSqIoLcZ6J6ll9evuqteEbIPgGd1KLQTSNc6QgfMCVVgHBUwX3mukTo5PW9deo2OOLsu596EGAuT6kMUG244MxK8xgmOG9InY9VQaboYSs4RfEMxSaYxrXdiVV0VClLM99ODZY-hixe7znUbS_zka_2v69KYbH6mrMmaU18gKv_a1NXk9ng0VMf65ZuQ479-Z5HMZ4yUnqZDaIlM2HiZzH3SKVwh95XBM7DIfj8L2nx_fcOUH9oaWotvEh8CWkvz6WgUIADAQ296jahBMYCFSgpoStuAKIeq9_A86MGSaY8G6F4f90Z3h83mEa3C254SHfJV0qnX2pWGk2VqcDTwD-FonxmuwDYrGwOEwHqe8aTiSmhfWtcvKaNFWTKD6i9dVygmS25gtOLSk6GAImtkKr6P7TqhhpdC01Vg8Cuo4wdKGmgZuJBaahZ4G8TJ-ynSmYw5ZtPoR6kAM4-wIaOiITfIQVH-IRXw-LHkdt7tUTaRHyMOgAYmrsvgxTzpv1-eEp1W663ibvMvlfbITKPduogumpfnW2QWE9ynXm_bZGo4GNkdoEFDtZsM9A9DAgH8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuziveRDUh2qTZmn7OHbBqRsiCnsruQ2Hs465CfrkT_A3-ks8abs6BRH0rYWcps3ly5fmnO8gtA-AZ1TIlBMIzzhMBcQJZaAdGRBfck8LlZyeN1v89IadtUvtiSj-VB8i_-FmZ0aC13aC93Xn5FM0VOiOjSSnFntDNo1mGHcDO66rV7mAFPH99FyZE-vhRdpj2UaXnny1_7osfXLNScaaLDn1RSTGL5t6mtwdj4byWL1803H8z9csoYWMj-JyOoCW0ZSJV9D8hErhKnqoDJ6BQ_Z6Wcjm--ubTfihjMa1-DbxIMC1NJuOsvIDAHfWl15ZzMA2fAULDFiKrwFPDmW3_zzowoJpjgbWuT7uju4PG40jXIXanhIV8jV0U69dV06dLE-Do4B9MEf5RFMJO7OS1kAHDOeaC0klU74wnu9KrVhJEG21Xzoek0S4XqCVpIKLkEGRdVSIH2KzgbCmbqg7Erb7Emz8QAoNLQMXQglFAl5EzribIpWJmNtcGr0olV-mkW3IKG_IIjrIy_dT-Y4fS26Pez3KpvFjRAHOYIPrEaiYJt33y1OicrXezO82_2K0h2Yvq_XootE630JzNrt96vK2jQrDwcjsAAcayt1kmH8AWroAtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallization%E2%80%90Induced+Enhanced+Electrochemiluminescence+from+a+New+Tris%28bipyridine%29ruthenium%28II%29+Derivative&rft.jtitle=Advanced+functional+materials&rft.au=Han%2C+Tingting&rft.au=Cao%2C+Yue&rft.au=Wang%2C+Jia&rft.au=Jiao%2C+Jianmin&rft.date=2023-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=12&rft_id=info:doi/10.1002%2Fadfm.202212394&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon