Crystallization‐Induced Enhanced Electrochemiluminescence from a New Tris(bipyridine)ruthenium(II) Derivative
Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting devices. Herein, the crystallization‐induced enhanced ECL (CIE‐ECL) of tris(bipyridine)ruthenium(II) derivatives (Ru‐TPE) are reported by decorating Ru‐bpy with inherent aggregation‐induced emission active tetraphenylethene (TPE), which effectively eliminates the detrimental π–π stacking interactions and thus helps Ru‐bpy surmount notorious ACQ effect in the aqueous phase. The Ru‐TPE shows negligible ECL emission in solution but produces a strong ECL emission upon crystallization. Surprisingly, the ECL efficiency of Ru‐TPE crystals is 20 and 3 times higher than that of its solution and Ru‐bpy crystals, respectively. Experimental and structural analysis reveals that such a CIE‐ECL effect originates from the restricted intramolecular rotation and ordered molecular packing. Moreover, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. This work provides a new design strategy for achieving high efficiency in solid‐state ECL imaging and devices.
A new tris(bipyridine)ruthenium(II) derivative (Ru‐TPE) is synthesized and realizes the crystallization‐induced enhanced electrochemiluminescence (CIE‐ECL), which originates from the restricted intramolecular rotation and ordered molecular packing. Besides, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. |
---|---|
AbstractList | Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting devices. Herein, the crystallization‐induced enhanced ECL (CIE‐ECL) of tris(bipyridine)ruthenium(II) derivatives (Ru‐TPE) are reported by decorating Ru‐bpy with inherent aggregation‐induced emission active tetraphenylethene (TPE), which effectively eliminates the detrimental
π–π
stacking interactions and thus helps Ru‐bpy surmount notorious ACQ effect in the aqueous phase. The Ru‐TPE shows negligible ECL emission in solution but produces a strong ECL emission upon crystallization. Surprisingly, the ECL efficiency of Ru‐TPE crystals is 20 and 3 times higher than that of its solution and Ru‐bpy crystals, respectively. Experimental and structural analysis reveals that such a CIE‐ECL effect originates from the restricted intramolecular rotation and ordered molecular packing. Moreover, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. This work provides a new design strategy for achieving high efficiency in solid‐state ECL imaging and devices. Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting devices. Herein, the crystallization‐induced enhanced ECL (CIE‐ECL) of tris(bipyridine)ruthenium(II) derivatives (Ru‐TPE) are reported by decorating Ru‐bpy with inherent aggregation‐induced emission active tetraphenylethene (TPE), which effectively eliminates the detrimental π–π stacking interactions and thus helps Ru‐bpy surmount notorious ACQ effect in the aqueous phase. The Ru‐TPE shows negligible ECL emission in solution but produces a strong ECL emission upon crystallization. Surprisingly, the ECL efficiency of Ru‐TPE crystals is 20 and 3 times higher than that of its solution and Ru‐bpy crystals, respectively. Experimental and structural analysis reveals that such a CIE‐ECL effect originates from the restricted intramolecular rotation and ordered molecular packing. Moreover, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. This work provides a new design strategy for achieving high efficiency in solid‐state ECL imaging and devices. Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused quenching (ACQ) problem, which greatly weakens its ECL efficiency to restrict further applications in solid‐state ECL imaging and light‐emitting devices. Herein, the crystallization‐induced enhanced ECL (CIE‐ECL) of tris(bipyridine)ruthenium(II) derivatives (Ru‐TPE) are reported by decorating Ru‐bpy with inherent aggregation‐induced emission active tetraphenylethene (TPE), which effectively eliminates the detrimental π–π stacking interactions and thus helps Ru‐bpy surmount notorious ACQ effect in the aqueous phase. The Ru‐TPE shows negligible ECL emission in solution but produces a strong ECL emission upon crystallization. Surprisingly, the ECL efficiency of Ru‐TPE crystals is 20 and 3 times higher than that of its solution and Ru‐bpy crystals, respectively. Experimental and structural analysis reveals that such a CIE‐ECL effect originates from the restricted intramolecular rotation and ordered molecular packing. Moreover, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. This work provides a new design strategy for achieving high efficiency in solid‐state ECL imaging and devices. A new tris(bipyridine)ruthenium(II) derivative (Ru‐TPE) is synthesized and realizes the crystallization‐induced enhanced electrochemiluminescence (CIE‐ECL), which originates from the restricted intramolecular rotation and ordered molecular packing. Besides, the high‐resolution ECL imaging of a single Ru‐TPE crystal is successfully demonstrated. |
Author | Zhu, Jun‐Jie Ma, Cheng Cao, Yue Han, Tingting Song, You Wang, Jia Jiao, Jianmin Wang, Leyong Chen, Hong‐Yuan |
Author_xml | – sequence: 1 givenname: Tingting surname: Han fullname: Han, Tingting organization: Nanjing University – sequence: 2 givenname: Yue surname: Cao fullname: Cao, Yue organization: Nanjing University – sequence: 3 givenname: Jia surname: Wang fullname: Wang, Jia organization: Nanjing University – sequence: 4 givenname: Jianmin surname: Jiao fullname: Jiao, Jianmin organization: Nanjing University – sequence: 5 givenname: You surname: Song fullname: Song, You organization: Nanjing University – sequence: 6 givenname: Leyong surname: Wang fullname: Wang, Leyong organization: Nanjing University – sequence: 7 givenname: Cheng surname: Ma fullname: Ma, Cheng email: chengma@nju.edu.cn organization: Yangzhou University – sequence: 8 givenname: Hong‐Yuan surname: Chen fullname: Chen, Hong‐Yuan organization: Nanjing University – sequence: 9 givenname: Jun‐Jie orcidid: 0000-0002-8201-1285 surname: Zhu fullname: Zhu, Jun‐Jie email: jjzhu@nju.edu.cn organization: Nanjing University |
BookMark | eNqFkM9LwzAcxYNMcJtePRe8bIfOJE3T7Tj2QwtTLxO8lTRJWUabzKTdqCf_BP9G_xK7TSYI4un74Ps-78HrgJY2WgJwjeAAQYhvmciKAYYYIxyMyBloI4qoH0A8bJ00erkAHefWEKIoCkgbmImtXcnyXL2xUhn9-f4Ra1FxKbyZXjF9ELnkpTV8JQuVV4XS0nHZfLzMmsJj3qPceUurXC9Vm9oq0Rj6tipXUquq6MVx35tKq7ZN_lZegvOM5U5efd8ueJ7PlpN7f_F0F0_GC58HKCI-j5DAKSIkFAKFWFIqKEtxSnjEZBDBVHASMiQgpDALSIoYDIaCp5hRNiKNpQtujrkba14r6cpkbSqrm8oER8MIhTRAtHENji5ujXNWZsnGqoLZOkEw2Y-a7EdNTqM2APkFcFUehistU_nf2OiI7VQu639KkvF0_vDDfgEO6pGE |
CitedBy_id | crossref_primary_10_1007_s40820_023_01249_5 crossref_primary_10_3390_bios13020200 crossref_primary_10_1002_chem_202301504 crossref_primary_10_1016_j_talanta_2025_127734 crossref_primary_10_1021_acs_langmuir_4c02213 crossref_primary_10_1021_acs_analchem_4c02574 crossref_primary_10_1039_D4AN00412D crossref_primary_10_1002_anie_202312692 crossref_primary_10_1007_s00216_024_05279_9 crossref_primary_10_1021_acsami_4c10899 crossref_primary_10_1021_acs_analchem_4c04027 crossref_primary_10_1038_s41467_024_48011_y crossref_primary_10_1016_j_chemosphere_2024_141671 crossref_primary_10_1016_j_snb_2023_134562 crossref_primary_10_1016_j_talanta_2024_126937 crossref_primary_10_1016_j_talanta_2024_125668 crossref_primary_10_1021_acs_analchem_4c04323 crossref_primary_10_1002_ange_202312692 crossref_primary_10_1021_acsami_4c11835 crossref_primary_10_1002_smll_202306291 crossref_primary_10_1021_acs_analchem_4c03890 crossref_primary_10_1016_j_cej_2024_155342 crossref_primary_10_1007_s41664_023_00269_9 crossref_primary_10_1002_asia_202401282 crossref_primary_10_1021_acs_jpclett_4c00074 crossref_primary_10_1021_acs_analchem_4c00430 crossref_primary_10_1021_acs_analchem_4c03249 crossref_primary_10_1021_acs_analchem_4c04016 crossref_primary_10_1016_j_foodchem_2025_143246 crossref_primary_10_1016_j_snb_2024_135314 |
Cites_doi | 10.1021/cr020373d 10.1002/1099-0682(200011)2000:11<2401::AID-EJIC2401>3.0.CO;2-3 10.1103/PhysRev.46.372 10.1021/cm502491n 10.1021/acs.nanolett.5b02383 10.1039/C5SC00253B 10.1021/acs.analchem.8b05949 10.1002/chem.202002647 10.1021/cr068083a 10.1002/anie.201915053 10.1021/jacs.7b09260 10.1021/acs.analchem.1c01258 10.1002/adma.201505906 10.1021/jacs.7b07710 10.1021/jacs.9b06743 10.1002/anie.202010216 10.1002/advs.202105903 10.1002/ange.201900283 10.1039/B613157C 10.1038/srep29805 10.1039/C4SC00312H 10.1021/ja203920w 10.1016/j.bios.2018.06.006 10.1021/jacs.0c00698 10.1021/acs.analchem.9b02357 10.1002/agt2.170 10.1002/adma.202005456 10.1021/cr400710z 10.1021/acs.analchem.0c00799 10.1016/j.cej.2019.122347 10.1002/ange.202012171 10.1039/C9SC01937E 10.1038/352414a0 10.1002/anie.201911190 10.34133/2021/1742919 10.1002/ange.202117401 10.1002/adma.201503751 10.1002/smll.201901170 10.1002/anie.201800706 10.1002/anie.201916729 10.1107/S2053229614024218 10.1002/adfm.201907936 10.1021/ja5002899 10.1002/ange.201611879 10.1039/C9SC00084D 10.1002/anie.202009544 10.1002/anie.201908121 10.1126/science.1069336 10.1039/C8SC02251H 10.1007/s10904-005-5546-0 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202212394 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202212394 ADFM202212394 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20190279 – fundername: National Natural Science Foundation of China funderid: 21834004; 21904063; 22174061 – fundername: China Postdoctoral Science Foundation funderid: 2021T140306 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3174-c71d2b1445dd152e66d6ab2b4c7ae370bdc45a1d0060f34b1a038dcb2a6a94ae3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:32:47 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Tue Jul 01 00:30:38 EDT 2025 Wed Jan 22 16:13:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-c71d2b1445dd152e66d6ab2b4c7ae370bdc45a1d0060f34b1a038dcb2a6a94ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8201-1285 |
PQID | 2787156316 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2787156316 crossref_primary_10_1002_adfm_202212394 crossref_citationtrail_10_1002_adfm_202212394 wiley_primary_10_1002_adfm_202212394_ADFM202212394 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 352 2018; 9 2017 2018 2019 2020; 129 57 141 59 2020; 3 2021; 33 2002; 296 2018; 117 2019 2019 2020; 10 131 59 2008 2004; 108 104 2014 2019 2020 2021 2022; 136 10 59 133 134 2000; 11 2019 2020; 58 26 2020 2020 2022 2015 2016; 59 142 9 27 28 2014 2016 2020 2020; 26 6 30 379 2020; 59 2005 2007 2015; 15 6 2019 2019 2019 2020; 15 91 91 92 2014 2015 2021; 5 15 2021 2021; 93 2014; 114 2011; 133 2015 1934 2000; 71 46 2017; 139 (e_1_2_8_22_3) 2000 e_1_2_8_24_1 e_1_2_8_7_4 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_15_3 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_15_2 Chen M.‐M. (e_1_2_8_2_5) 2022; 134 e_1_2_8_11_1 e_1_2_8_21_4 e_1_2_8_21_5 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_21_3 e_1_2_8_23_1 e_1_2_8_10_4 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_16_1 Mu X. (e_1_2_8_18_1) 2020; 3 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_10_3 e_1_2_8_12_1 |
References_xml | – volume: 11 start-page: 2401 year: 2000 publication-title: Eur. J. Inorg. Chem. – volume: 296 start-page: 1293 year: 2002 publication-title: Science – volume: 10 131 59 start-page: 4497 3194 year: 2019 2019 2020 publication-title: Chem. Sci. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 352 start-page: 414 year: 1991 publication-title: Nature – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 129 57 141 59 start-page: 4835 4010 year: 2017 2018 2019 2020 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 15 6 start-page: 287 40 4438 year: 2005 2007 2015 publication-title: J. Inorg. Organomet. Polym. Mater. Chem. Commun. Chem. Sci. – volume: 71 46 start-page: 3 372 year: 2015 1934 2000 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. Phys. Rev. – volume: 59 142 9 27 28 start-page: 6285 7093 5064 year: 2020 2020 2022 2015 2016 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Adv. Sci. Adv. Mater. Adv. Mater. – volume: 59 start-page: 9888 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 93 year: 2021 publication-title: Anal. Chem. – volume: 108 104 start-page: 2506 3003 year: 2008 2004 publication-title: Chem. Rev. Chem. Rev. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 58 26 year: 2019 2020 publication-title: Angew. Chem., Int. Ed. Chem. ‐ Eur. J. – volume: 5 15 2021 start-page: 2568 6110 year: 2014 2015 2021 publication-title: Chem. Sci. Nano Lett. Research – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2020 publication-title: Aggregate – volume: 117 start-page: 145 year: 2018 publication-title: Biosens. Bioelectron. – volume: 26 6 30 379 start-page: 5358 year: 2014 2016 2020 2020 publication-title: Chem. Mater. Sci. Rep. Adv. Funct. Mater. Chem. Eng. J. – volume: 15 91 91 92 start-page: 3710 8676 9613 year: 2019 2019 2019 2020 publication-title: Small Anal. Chem. Anal. Chem. Anal. Chem. – volume: 9 start-page: 6167 year: 2018 publication-title: Chem. Sci. – volume: 136 10 59 133 134 start-page: 3705 6295 449 4957 year: 2014 2019 2020 2021 2022 publication-title: J. Am. Chem. Soc. Chem. Sci. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_1_2 doi: 10.1021/cr020373d – ident: e_1_2_8_4_1 doi: 10.1002/1099-0682(200011)2000:11<2401::AID-EJIC2401>3.0.CO;2-3 – ident: e_1_2_8_22_2 doi: 10.1103/PhysRev.46.372 – volume-title: Bruker Analytical Instrumentation year: 2000 ident: e_1_2_8_22_3 – ident: e_1_2_8_7_1 doi: 10.1021/cm502491n – ident: e_1_2_8_5_2 doi: 10.1021/acs.nanolett.5b02383 – ident: e_1_2_8_12_3 doi: 10.1039/C5SC00253B – ident: e_1_2_8_10_2 doi: 10.1021/acs.analchem.8b05949 – ident: e_1_2_8_17_2 doi: 10.1002/chem.202002647 – ident: e_1_2_8_1_1 doi: 10.1021/cr068083a – ident: e_1_2_8_21_1 doi: 10.1002/anie.201915053 – ident: e_1_2_8_6_1 doi: 10.1021/jacs.7b09260 – ident: e_1_2_8_14_1 doi: 10.1021/acs.analchem.1c01258 – ident: e_1_2_8_21_5 doi: 10.1002/adma.201505906 – ident: e_1_2_8_9_1 doi: 10.1021/jacs.7b07710 – ident: e_1_2_8_3_3 doi: 10.1021/jacs.9b06743 – ident: e_1_2_8_15_3 doi: 10.1002/anie.202010216 – ident: e_1_2_8_21_3 doi: 10.1002/advs.202105903 – ident: e_1_2_8_15_2 doi: 10.1002/ange.201900283 – ident: e_1_2_8_12_2 doi: 10.1039/B613157C – ident: e_1_2_8_7_2 doi: 10.1038/srep29805 – ident: e_1_2_8_5_1 doi: 10.1039/C4SC00312H – ident: e_1_2_8_16_1 doi: 10.1021/ja203920w – ident: e_1_2_8_23_1 doi: 10.1016/j.bios.2018.06.006 – ident: e_1_2_8_21_2 doi: 10.1021/jacs.0c00698 – ident: e_1_2_8_10_3 doi: 10.1021/acs.analchem.9b02357 – volume: 3 year: 2020 ident: e_1_2_8_18_1 publication-title: Aggregate doi: 10.1002/agt2.170 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202005456 – ident: e_1_2_8_19_1 doi: 10.1021/cr400710z – ident: e_1_2_8_10_4 doi: 10.1021/acs.analchem.0c00799 – ident: e_1_2_8_7_4 doi: 10.1016/j.cej.2019.122347 – ident: e_1_2_8_2_4 doi: 10.1002/ange.202012171 – ident: e_1_2_8_2_2 doi: 10.1039/C9SC01937E – ident: e_1_2_8_11_1 doi: 10.1038/352414a0 – ident: e_1_2_8_2_3 doi: 10.1002/anie.201911190 – ident: e_1_2_8_5_3 doi: 10.34133/2021/1742919 – volume: 134 year: 2022 ident: e_1_2_8_2_5 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202117401 – ident: e_1_2_8_21_4 doi: 10.1002/adma.201503751 – ident: e_1_2_8_10_1 doi: 10.1002/smll.201901170 – ident: e_1_2_8_3_2 doi: 10.1002/anie.201800706 – ident: e_1_2_8_13_1 doi: 10.1002/anie.201916729 – ident: e_1_2_8_22_1 doi: 10.1107/S2053229614024218 – ident: e_1_2_8_7_3 doi: 10.1002/adfm.201907936 – ident: e_1_2_8_2_1 doi: 10.1021/ja5002899 – ident: e_1_2_8_3_1 doi: 10.1002/ange.201611879 – ident: e_1_2_8_15_1 doi: 10.1039/C9SC00084D – ident: e_1_2_8_3_4 doi: 10.1002/anie.202009544 – ident: e_1_2_8_17_1 doi: 10.1002/anie.201908121 – ident: e_1_2_8_20_1 doi: 10.1126/science.1069336 – ident: e_1_2_8_24_1 doi: 10.1039/C8SC02251H – ident: e_1_2_8_12_1 doi: 10.1007/s10904-005-5546-0 |
SSID | ssj0017734 |
Score | 2.5878007 |
Snippet | Classic tris(bipyridine)ruthenium(II) complex (Ru‐bpy) with high electrochemiluminescence (ECL) efficiency still suffers from a serious aggregation‐caused... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Agglomeration Crystallization crystallization‐induced emissions Efficiency Electrochemiluminescence Emission Imaging Materials science Ruthenium Ruthenium compounds Structural analysis tetraphenylethene tris(bipyridine)ruthenium(II) derivatives |
Title | Crystallization‐Induced Enhanced Electrochemiluminescence from a New Tris(bipyridine)ruthenium(II) Derivative |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202212394 https://www.proquest.com/docview/2787156316 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0Y3ejCtxFFMwsTcVFlpqWPJREIGHGhkrBr5kUkYjEVTHDlJ_iNfon3tqWAiTHRXZvM7bTzOHOmc--5hJwA4BkVOMryhW0sR_nMCqSvLekzT7q2Fio5PW_fuM2Oc9WtdOei-FN9iPyHG86MBK9xggv5cjETDRW6h5HkHLE3QEFQdNhCVnSb60cxz0uPlV2GDl6sO1VtLPOLRfPFVWlGNecJa7LiNDaImL5r6mjyeD4eyXP19k3G8T8fs0nWMzpKq-n42SJLJtoma3MihTtkeBlPgEIOBlnE5uf7B-b7UEbTevSQOBDQeppMR6H6AKAdutIrhAyK0StUUIBSeg9wUpL950nch_XSnMXoWx_1x0-lVuuM1qC210SEfJd0GvX7y6aVpWmwFJAPx1Ie01zCxqyiNbAB47raFZJLR3nC2F5ZauVUBNMo_dKzHclE2fa1kly4InCgyB5ZjoaR2SdU83KgexJ2-xJsPF8KDS0DF0IJxXy3QKxpN4Uq0zDHVBqDMFVf5iE2ZJg3ZIGc5uWfU_WOH0sWp70eZrP4JeSAZrC_tRlUzJPu--UpYbXWaOd3B38xOiSrmNE-dXMrkuVRPDZHwHtG8pisVGvt67vjZIx_AWRJ_2Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgNBEG1cDurBXdztg6AeRtM9nVmOkoVEjQdJwNvQWzAYR4mJoCc_wW_0S6yaLSqIoLcZ6J6ll9evuqteEbIPgGd1KLQTSNc6QgfMCVVgHBUwX3mukTo5PW9deo2OOLsu596EGAuT6kMUG244MxK8xgmOG9InY9VQaboYSs4RfEMxSaYxrXdiVV0VClLM99ODZY-hixe7znUbS_zka_2v69KYbH6mrMmaU18gKv_a1NXk9ng0VMf65ZuQ479-Z5HMZ4yUnqZDaIlM2HiZzH3SKVwh95XBM7DIfj8L2nx_fcOUH9oaWotvEh8CWkvz6WgUIADAQ296jahBMYCFSgpoStuAKIeq9_A86MGSaY8G6F4f90Z3h83mEa3C254SHfJV0qnX2pWGk2VqcDTwD-FonxmuwDYrGwOEwHqe8aTiSmhfWtcvKaNFWTKD6i9dVygmS25gtOLSk6GAImtkKr6P7TqhhpdC01Vg8Cuo4wdKGmgZuJBaahZ4G8TJ-ynSmYw5ZtPoR6kAM4-wIaOiITfIQVH-IRXw-LHkdt7tUTaRHyMOgAYmrsvgxTzpv1-eEp1W663ibvMvlfbITKPduogumpfnW2QWE9ynXm_bZGo4GNkdoEFDtZsM9A9DAgH8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuziveRDUh2qTZmn7OHbBqRsiCnsruQ2Hs465CfrkT_A3-ks8abs6BRH0rYWcps3ly5fmnO8gtA-AZ1TIlBMIzzhMBcQJZaAdGRBfck8LlZyeN1v89IadtUvtiSj-VB8i_-FmZ0aC13aC93Xn5FM0VOiOjSSnFntDNo1mGHcDO66rV7mAFPH99FyZE-vhRdpj2UaXnny1_7osfXLNScaaLDn1RSTGL5t6mtwdj4byWL1803H8z9csoYWMj-JyOoCW0ZSJV9D8hErhKnqoDJ6BQ_Z6Wcjm--ubTfihjMa1-DbxIMC1NJuOsvIDAHfWl15ZzMA2fAULDFiKrwFPDmW3_zzowoJpjgbWuT7uju4PG40jXIXanhIV8jV0U69dV06dLE-Do4B9MEf5RFMJO7OS1kAHDOeaC0klU74wnu9KrVhJEG21Xzoek0S4XqCVpIKLkEGRdVSIH2KzgbCmbqg7Erb7Emz8QAoNLQMXQglFAl5EzribIpWJmNtcGr0olV-mkW3IKG_IIjrIy_dT-Y4fS26Pez3KpvFjRAHOYIPrEaiYJt33y1OicrXezO82_2K0h2Yvq_XootE630JzNrt96vK2jQrDwcjsAAcayt1kmH8AWroAtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallization%E2%80%90Induced+Enhanced+Electrochemiluminescence+from+a+New+Tris%28bipyridine%29ruthenium%28II%29+Derivative&rft.jtitle=Advanced+functional+materials&rft.au=Han%2C+Tingting&rft.au=Cao%2C+Yue&rft.au=Wang%2C+Jia&rft.au=Jiao%2C+Jianmin&rft.date=2023-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=12&rft_id=info:doi/10.1002%2Fadfm.202212394&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |