Metal‐Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies

Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic performance. However, this compositional variability results in a complicated crystallization process during MHP film fabrication, leading to...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 24
Main Authors Xie, Yue‐Min, Xue, Qifan, Yip, Hin‐Lap
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic performance. However, this compositional variability results in a complicated crystallization process during MHP film fabrication, leading to reduced MHP film crystallinity and decreased performance of devices containing such films. The crystallization kinetics of MHPs have therefore been extensively explored in efforts to determine the effect of crystallization properties on MHP film properties and figure out the corresponding modulating strategies. Here, the first comprehensive review of reported studies on the crystallization properties of 3D MHPs is presented. The experimental and theoretical research on 3D MHP crystallization kinetics is systematically surveyed, and the methods that are used for modulating MHP crystallization are summarized, namely, solution engineering, compositional engineering, interfacial engineering, and additive passivation. Meanwhile, the prospects and current challenges in revealing perovskite crystallization kinetics are suggested. The vast literature on experimental and theoretical research on the nucleation and growth of metal‐halide perovskite films, as well as the relationships between film properties and crystallization modulating methods including solution engineering, composition engineering, interface engineering, and additive passivation are systematically reviewed. This work consolidates the research on metal‐halide perovskite crystallization kinetics, and highlights new and promising areas of study.
AbstractList Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic performance. However, this compositional variability results in a complicated crystallization process during MHP film fabrication, leading to reduced MHP film crystallinity and decreased performance of devices containing such films. The crystallization kinetics of MHPs have therefore been extensively explored in efforts to determine the effect of crystallization properties on MHP film properties and figure out the corresponding modulating strategies. Here, the first comprehensive review of reported studies on the crystallization properties of 3D MHPs is presented. The experimental and theoretical research on 3D MHP crystallization kinetics is systematically surveyed, and the methods that are used for modulating MHP crystallization are summarized, namely, solution engineering, compositional engineering, interfacial engineering, and additive passivation. Meanwhile, the prospects and current challenges in revealing perovskite crystallization kinetics are suggested.
Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic performance. However, this compositional variability results in a complicated crystallization process during MHP film fabrication, leading to reduced MHP film crystallinity and decreased performance of devices containing such films. The crystallization kinetics of MHPs have therefore been extensively explored in efforts to determine the effect of crystallization properties on MHP film properties and figure out the corresponding modulating strategies. Here, the first comprehensive review of reported studies on the crystallization properties of 3D MHPs is presented. The experimental and theoretical research on 3D MHP crystallization kinetics is systematically surveyed, and the methods that are used for modulating MHP crystallization are summarized, namely, solution engineering, compositional engineering, interfacial engineering, and additive passivation. Meanwhile, the prospects and current challenges in revealing perovskite crystallization kinetics are suggested. The vast literature on experimental and theoretical research on the nucleation and growth of metal‐halide perovskite films, as well as the relationships between film properties and crystallization modulating methods including solution engineering, composition engineering, interface engineering, and additive passivation are systematically reviewed. This work consolidates the research on metal‐halide perovskite crystallization kinetics, and highlights new and promising areas of study.
Author Yip, Hin‐Lap
Xie, Yue‐Min
Xue, Qifan
Author_xml – sequence: 1
  givenname: Yue‐Min
  surname: Xie
  fullname: Xie, Yue‐Min
  organization: South China University of Technology
– sequence: 2
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 3
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: City University of Hong Kong
BookMark eNqFkMFOAjEQhhuDiYhcPTfxvNjddrfFGyEoRlCjeN50d6exuOxiW0A8-Qg-o09iEYOJiXEuM5P5v5nMf4gaVV0BQsch6YSERKcSqlknIpFvuGB7qBkmIQsSwUhjV9PoALWtnRIfrBsSSpuoGIOT5cfb-1CWugB8C6Ze2iftAPfN2vpZqV-l03WFr3QFTuf2DPfwHSw1rHCt8OBlDkbPoPJSLKsCTx6hNhuh7-_dotBgj9C-kqWF9nduoYfzwaQ_DEY3F5f93ijIachZkPFCkJgySoBTDkQWglFViJxGXCneTfKIcYizREEulEykIl0Ri8xDQLMwoi10st07N_XzAqxLp_XCVP5kGsWMUcG4395CbKvKTW2tAZXm2n296IzUZRqSdGNpurE03Vnqsc4vbO7_lmb9N9DdAitdwvofddobXI9_2E-c840C
CitedBy_id crossref_primary_10_1016_j_orgel_2023_106763
crossref_primary_10_1016_j_powtec_2024_119715
crossref_primary_10_1039_D4RA02191F
crossref_primary_10_1002_aenm_202201605
crossref_primary_10_1021_acsami_1c12283
crossref_primary_10_1557_s43577_024_00826_2
crossref_primary_10_1016_j_pmatsci_2023_101223
crossref_primary_10_1007_s40820_024_01538_7
crossref_primary_10_1002_adfm_202203898
crossref_primary_10_1002_adma_202205217
crossref_primary_10_1016_j_solener_2024_113205
crossref_primary_10_1002_solr_202301025
crossref_primary_10_1021_acsaem_3c00971
crossref_primary_10_1002_adfm_202112126
crossref_primary_10_1002_smtd_202201255
crossref_primary_10_1002_idm2_12023
crossref_primary_10_1039_D3TC03183G
crossref_primary_10_1002_anie_202407665
crossref_primary_10_1038_s41586_023_06208_z
crossref_primary_10_1038_s41598_023_32697_z
crossref_primary_10_1016_j_ijleo_2022_168932
crossref_primary_10_1002_ange_202407665
crossref_primary_10_1038_s43246_024_00566_5
crossref_primary_10_1016_j_jechem_2022_03_019
crossref_primary_10_1002_aesr_202300263
crossref_primary_10_1016_j_matt_2024_09_010
crossref_primary_10_1002_cssc_202202109
crossref_primary_10_1016_j_matt_2022_05_030
crossref_primary_10_1002_adfm_202212599
crossref_primary_10_1002_adfm_202209186
crossref_primary_10_1002_adom_202200089
crossref_primary_10_20517_microstructures_2024_10
crossref_primary_10_1002_smll_202406824
crossref_primary_10_1016_j_mtadv_2024_100541
crossref_primary_10_1002_solr_202301001
crossref_primary_10_1002_adma_202204098
crossref_primary_10_1002_aenm_202204347
crossref_primary_10_1016_j_jallcom_2023_172459
crossref_primary_10_1021_acsmaterialslett_4c01743
crossref_primary_10_1155_2023_2925434
crossref_primary_10_1039_D3TA01749D
crossref_primary_10_1039_D4CC05131A
crossref_primary_10_1039_D4TA07975B
crossref_primary_10_1021_acsami_4c16316
crossref_primary_10_1039_D2TA02574D
crossref_primary_10_1039_D3CC02090H
crossref_primary_10_3390_mi15020192
crossref_primary_10_1021_acsaem_2c03408
crossref_primary_10_3390_coatings13061130
crossref_primary_10_1016_j_nanoen_2024_109612
crossref_primary_10_1002_solr_202400612
crossref_primary_10_3390_ma15124300
Cites_doi 10.1021/acs.accounts.5b00229
10.1039/C4SC03141E
10.1016/j.nanoen.2019.104313
10.1039/C4TA05373G
10.1021/acsaem.8b00350
10.1039/C8SE00465J
10.1002/aenm.201903587
10.1021/acsenergylett.6b00405
10.1016/j.mattod.2014.07.007
10.1002/aenm.201502458
10.1016/j.joule.2020.06.006
10.1002/aenm.201501534
10.1021/acs.chemmater.9b04239
10.1039/C8EE00154E
10.1016/j.orgel.2018.09.011
10.1002/ente.201901042
10.1039/C6CE00842A
10.1021/ja5033259
10.1021/acsami.5b00052
10.1016/j.joule.2018.10.011
10.1002/aenm.201902584
10.1016/j.joule.2019.06.014
10.1038/s41560-018-0192-2
10.1002/adma.201501489
10.1021/cm402919x
10.1126/science.aav8680
10.1002/adfm.201707444
10.1039/C4EE01076K
10.1016/j.chempr.2017.05.020
10.1002/asia.201501379
10.1039/b809332f
10.1126/science.aav7911
10.1002/adma.201401137
10.1021/acsami.7b11901
10.1126/science.abb8985
10.1016/j.joule.2018.10.008
10.1002/adma.201705393
10.1016/j.apsusc.2016.02.207
10.1021/acs.jpcc.6b05255
10.1002/adma.201804835
10.1002/adfm.201701804
10.1002/adma.201604758
10.1021/acsenergylett.8b01920
10.1039/C4TA06230B
10.1039/C6EE03014A
10.1039/C5NR02866C
10.1016/j.nanoen.2019.104227
10.1016/j.electacta.2017.07.040
10.1039/C6TA06851K
10.1002/adfm.201908613
10.1002/adfm.201804603
10.1002/advs.201500301
10.1002/ente.201700484
10.1038/ncomms8081
10.1039/C9TA10899H
10.1002/adfm.201705763
10.1038/ncomms7142
10.1016/j.solmat.2018.07.031
10.1038/nenergy.2017.18
10.1002/adfm.202001752
10.1016/j.nanoen.2016.05.052
10.1021/acs.nanolett.7b03179
10.1016/j.jpcs.2008.05.007
10.1126/science.1254050
10.1038/s41467-018-05531-8
10.1002/adma.201806823
10.1021/acsami.9b06315
10.1021/jz501869f
10.1002/aenm.201501310
10.1039/C5TA00358J
10.1002/adma.202000865
10.1016/j.trechm.2020.01.010
10.1002/aenm.201500543
10.1021/acs.nanolett.6b04015
10.1002/adma.201603021
10.1039/C9EE03736E
10.1002/aenm.202000566
10.1039/C6EE00709K
10.1021/jz5017312
10.1002/solr.201900265
10.1021/acs.jpcc.8b08075
10.1016/j.nanoen.2019.103867
10.1016/j.mtener.2017.10.001
10.1002/adma.201702157
10.1039/C9SE00306A
10.1246/cl.171214
10.1002/solr.201800083
10.1021/cm5037869
10.1002/aenm.201502206
10.1039/C5EE03255E
10.1002/adma.201701073
10.1021/ja504632z
10.1039/C4TA06198E
10.1039/C8TA05444D
10.1021/jacs.5b04930
10.1016/j.nanoen.2020.104803
10.1039/C6EE00030D
10.1002/solr.201800164
10.1038/s41560-017-0060-5
10.1039/C9TA08130E
10.1039/C5CC03615A
10.1002/adfm.201803130
10.1038/s41467-019-09093-1
10.1002/adfm.201703546
10.1063/1.4748888
10.1039/C7EE02272G
10.1002/adfm.202001764
10.1002/adma.201604545
10.1016/j.nanoen.2017.07.046
10.1016/j.nanoen.2015.11.008
10.1002/adma.201901284
10.1021/acsenergylett.9b02080
10.1002/cssc.201903216
10.1126/science.aba0893
10.1002/aenm.201902579
10.1021/acsenergylett.8b02207
10.1021/acs.nanolett.8b00505
10.1021/acs.jpca.8b07495
10.1002/smll.201907226
10.1002/advs.201901241
10.1002/adma.201500048
10.1126/sciadv.1700106
10.1038/ncomms14075
10.1021/cm503828b
10.1021/acs.jpcc.7b06268
10.1016/j.chempr.2019.02.025
10.1039/c0dt01601b
10.1021/acs.jpclett.5b00968
10.1021/acsami.9b13648
10.1021/ja809598r
10.1038/ncomms8747
10.1021/acs.jpcc.7b06278
10.1021/acsnano.7b02867
10.1038/s41598-019-41328-5
10.1021/acsenergylett.7b00282
10.1038/ncomms8348
10.1021/ja512518r
10.1039/C8TA01049H
10.1002/solr.201900140
10.1039/C7TA01798G
10.1038/s41467-019-13909-5
10.1038/s41586-019-1357-2
10.1038/nenergy.2017.102
10.1038/ncomms10228
10.1021/acsaem.9b01652
10.1039/C5RA08102E
10.1002/pip.2632
10.1021/acs.chemmater.5b04107
10.1039/C6CP03969C
10.1038/s41586-020-2184-1
10.1039/C6TC04944C
10.1021/jacs.7b07223
10.1039/C5EE03874J
10.1021/nl501838y
10.1002/adfm.201809194
10.1038/nmat4014
10.1126/science.aap9282
10.1002/solr.201800305
10.1016/j.nanoen.2017.03.048
10.1021/acs.jpclett.6b00433
10.1016/j.ces.2008.08.003
10.1039/C8EE03051K
10.1038/s41467-020-15078-2
10.1039/C9CP03656C
10.1021/acsenergylett.9b02338
10.1039/C8TA01642A
10.1002/aenm.201801050
10.1021/acsenergylett.8b01201
10.1002/anie.201704188
10.1021/acsenergylett.6b00158
10.1039/C6TA00679E
10.1038/s41563-019-0602-2
10.1021/acsenergylett.0c01130
10.1038/s41467-019-09011-5
10.1016/j.cej.2011.02.064
10.1002/aenm.201803572
10.1021/acsenergylett.9b02604
10.1002/adma.201801418
10.1021/acs.chemmater.5b02378
10.1002/aenm.201803587
10.1038/nenergy.2016.142
10.1002/adma.202006087
10.1002/adma.201800710
10.1021/acsenergylett.7b01255
10.1002/aenm.201904050
10.1002/adma.201400231
10.1126/science.aah5557
10.1002/adfm.201808855
10.1002/adma.201702140
10.1016/j.isci.2019.04.024
10.1039/C7TA00042A
10.1016/j.nanoen.2015.08.023
10.1002/ange.201405334
10.1039/C7TA00973A
10.1038/nature12340
10.1021/acs.chemmater.5b03169
10.1002/adma.201805660
10.1016/j.chempr.2020.04.013
10.1039/c3ee43822h
10.1021/acsami.8b20933
10.1002/anie.201907331
10.1016/j.jpowsour.2017.06.013
10.1016/j.nanoen.2019.104241
10.1039/C5TA08744A
10.1002/aenm.202002558
10.1038/nphoton.2014.134
10.1002/adma.201401685
10.1039/C5TA07829F
10.1002/adma.201908011
10.1021/ja411509g
10.1002/adma.201602696
10.1038/s41467-019-08455-z
10.1002/adfm.201808801
10.1002/adfm.201503559
10.1002/advs.201700131
10.1038/srep35685
10.1021/acsenergylett.7b01151
10.1126/science.1228604
10.1039/C8TC04750B
10.1038/nature14133
10.1002/adma.201802509
10.1002/anie.201309361
10.1021/ja5071398
10.1038/nphoton.2014.82
10.1126/science.aaa9272
10.1039/D0TA00123F
10.1039/C5EE02555A
10.1039/C9TA01319A
10.1039/C5DT03481G
10.1002/aenm.201702116
10.1039/C7EE01675A
10.1038/ncomms14555
10.1002/aenm.201601297
10.1039/C6TA02999J
10.1016/j.jpowsour.2018.07.093
10.1002/aenm.201601193
10.1021/acs.chemmater.9b02248
10.1021/nl400349b
10.1021/acsnano.8b00267
10.1002/anie.201910800
10.1039/C9TA04366G
10.1002/adfm.201703061
10.1002/solr.201700048
10.1002/adma.201901519
10.1021/jz402706q
10.1039/C4NR02425G
10.1126/science.abc4417
10.1002/adma.202001243
10.1021/acsenergylett.7b01197
10.1016/j.matt.2020.10.023
10.1016/j.nanoen.2017.12.047
10.1007/s12274-019-2336-5
10.1002/advs.201903540
10.1002/adma.201706576
10.1002/aenm.201800525
10.1002/adma.201805214
10.1039/C8SC05284K
10.1002/adma.202004630
10.1021/acsenergylett.7b00278
10.1021/jacs.8b11210
10.1002/aenm.201502202
10.1021/acs.jpcc.8b00980
10.1016/j.mattod.2017.12.002
10.1021/acs.accounts.5b00440
10.1021/acsaem.8b01075
10.1557/mrs.2015.167
10.1016/j.scib.2019.04.013
10.1038/nenergy.2017.9
10.1021/acsenergylett.7b00357
10.1126/science.aax3294
10.1016/j.nantod.2015.04.009
10.1039/C6TA00577B
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202100784
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202100784
AENM202100784
Genre reviewArticle
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar
  funderid: 2021B1515020028
– fundername: State Key Lab of Luminescent Materials and Devices
– fundername: Fellowship of China Postdoctoral Science Foundation
  funderid: 2020M682703
– fundername: Science and Technology Program of Guangdong Province, China
  funderid: 2018A030313045
– fundername: South China University of Technology
– fundername: Ministry of Science and Technology
  funderid: 2017YFA0206600; 2019YFA0705900
– fundername: Natural Science Foundation of China
  funderid: 51973063; 91733302; 51803060
– fundername: Science and Technology Program of Guangzhou
  funderid: 201904010147
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2019B030302007
– fundername: Natural Science Foundation of China
  funderid: 51903095
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3174-b7d8053430e737e0ad843fd8c327ff796c247e5b6fec8fa6af09858b805e3b123
ISSN 1614-6832
IngestDate Fri Jul 25 12:12:40 EDT 2025
Tue Jul 01 01:43:39 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 16:30:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3174-b7d8053430e737e0ad843fd8c327ff796c247e5b6fec8fa6af09858b805e3b123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5750-9751
PQID 2544384734
PQPubID 886389
PageCount 34
ParticipantIDs proquest_journals_2544384734
crossref_citationtrail_10_1002_aenm_202100784
crossref_primary_10_1002_aenm_202100784
wiley_primary_10_1002_aenm_202100784_AENM202100784
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 10
2019; 12
2019; 15
2020; 16
2014; 26
2020; 13
2020; 11
2020; 10
2018; 45
2014; 136
2020; 19
2018; 47
2018; 7
2018; 6
2009; 11
2018; 9
2018; 8
2018; 3
2018; 2
2018; 5
2015; 137
2018; 1
2019; 21
2014; 14
2019; 29
2014; 13
2018; 30
2016; 49
2014; 126
2016; 45
2019; 7
2018; 188
2019; 9
2018; 28
2019; 4
2019; 3
2012; 101
2019; 6
2016; 19
2019; 5
2019; 31
2015; 51
2020; 32
2016; 18
2018; 21
2017; 139
2016; 11
2016; 4
2016; 6
2018; 18
2016; 7
2016; 1
2016; 3
2020; 30
2017; 56
2015; 517
2018; 12
2018; 11
2016; 28
2016; 26
2016; 9
2019; 571
2017; 5
2018; 122
2017; 7
2017; 8
2017; 1
2017; 2
2013; 25
2018; 360
2017; 3
2019; 58
2020; 367
2015; 348
2019; 364
2017; 9
2019; 365
2020; 8
2020; 7
2020; 6
2015; 48
2011; 169
2020; 5
2014; 5
2020; 4
2020; 3
2020; 2
2021; 33
2019; 64
2019; 63
2015; 40
2017; 39
2013; 13
2017; 35
2020; 370
2008; 69
2016; 354
2017; 360
2008; 63
2017; 121
2014; 8
2014; 7
2014; 6
2012; 338
2017; 247
2014; 53
2015; 6
2015; 17
2021; 4
2015; 5
2015; 3
2015; 18
2020; 580
2017; 27
2011; 40
2015; 10
2018; 63
2017; 29
2009; 131
2019; 141
2015; 8
2015; 7
2016; 120
2015; 23
2015; 25
2015; 27
2021
2020; 73
2017; 17
2020
2018; 399
2017; 11
2017; 10
2013; 499
2020; 68
2020; 67
2014; 345
2016; 371
e_1_2_8_241_1
e_1_2_8_264_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_277_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_270_1
Teuscher J. (e_1_2_8_161_1) 2015; 8
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
Li Z. (e_1_2_8_59_1) 2021
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_273_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
Lei Y. (e_1_2_8_58_1) 2021
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_35_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 40
  start-page: 5563
  year: 2011
  publication-title: Dalton Trans.
– volume: 13
  start-page: 956
  year: 2020
  publication-title: ChemSusChem
– volume: 15
  start-page: 165
  year: 2019
  publication-title: iScience
– volume: 3
  start-page: 61
  year: 2018
  publication-title: Nat. Energy
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 12
  start-page: 3477
  year: 2018
  publication-title: ACS Nano
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 9081
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 188
  start-page: 140
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 169
  start-page: 358
  year: 2011
  publication-title: Chem. Eng. J.
– volume: 1
  year: 2017
  publication-title: Sol. RRL
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 6
  start-page: 9935
  year: 2014
  publication-title: Nanoscale
– volume: 137
  start-page: 8696
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1880
  year: 2017
  publication-title: Energy Technol.
– volume: 26
  start-page: 3748
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2452
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 35
  start-page: 223
  year: 2017
  publication-title: Nano Energy
– volume: 26
  start-page: 7145
  year: 2014
  publication-title: Chem. Mater.
– volume: 137
  start-page: 2674
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 290
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 290
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 8078
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1507
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 191
  year: 2019
  publication-title: Joule
– volume: 63
  start-page: 159
  year: 2018
  publication-title: Org. Electron.
– volume: 27
  start-page: 4918
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 360
  start-page: 157
  year: 2017
  publication-title: J. Power Sources
– volume: 3
  start-page: 8139
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1904
  year: 2019
  publication-title: Chem. Sci.
– volume: 10
  start-page: 1112
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1033
  year: 2019
  publication-title: Nano Res.
– volume: 2
  start-page: 1416
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 1870
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 11
  start-page: 6126
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 88
  year: 2016
  publication-title: Nano Energy
– volume: 69
  start-page: 2520
  year: 2008
  publication-title: J. Phys. Chem. Solids
– volume: 10
  start-page: 355
  year: 2015
  publication-title: Nano Today
– volume: 3
  start-page: 204
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 53
  start-page: 3151
  year: 2014
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 367
  start-page: 1352
  year: 2020
  publication-title: Science
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 19
  start-page: 412
  year: 2020
  publication-title: Nat. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 126
  year: 2014
  publication-title: Angew. Chem.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 3
  start-page: 648
  year: 2018
  publication-title: Nat. Energy
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 5
  start-page: 842
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 28
  start-page: 284
  year: 2016
  publication-title: Chem. Mater.
– volume: 12
  start-page: 1341
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 6018
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 840
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 6231
  year: 2019
  publication-title: Chem. Mater.
– volume: 8
  start-page: 3847
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 360
  start-page: 1442
  year: 2018
  publication-title: Science
– volume: 6
  start-page: 6142
  year: 2015
  publication-title: Nat. Commun.
– volume: 26
  start-page: 620
  year: 2016
  publication-title: Nano Energy
– volume: 3
  start-page: 9194
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 4613
  year: 2013
  publication-title: Chem. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 7943
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3308
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 247
  start-page: 460
  year: 2017
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 995
  year: 2019
  publication-title: Chem
– volume: 580
  start-page: 360
  year: 2020
  publication-title: Nature
– volume: 4
  start-page: 9430
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 1688
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 40
  start-page: 681
  year: 2015
  publication-title: MRS Bull.
– volume: 4
  start-page: 1594
  year: 2020
  publication-title: Joule
– volume: 2
  start-page: 2754
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 4
  start-page: 6091
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 311
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 269
  year: 2017
  publication-title: Nano Lett.
– volume: 141
  start-page: 3515
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 1942
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 6863
  year: 2017
  publication-title: Nano Lett.
– year: 2020
– volume: 5
  start-page: 2535
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 23
  start-page: 1901
  year: 2015
  publication-title: Prog. Photovoltaics
– volume: 7
  start-page: 1368
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 963
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 9208
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 7149
  year: 2015
  publication-title: Chem. Mater.
– volume: 399
  start-page: 144
  year: 2018
  publication-title: J. Power Sources
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 282
  year: 2020
  publication-title: Trends Chem.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 63
  start-page: 5457
  year: 2008
  publication-title: Chem. Eng. Sci.
– volume: 136
  start-page: 622
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2173
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 205
  year: 2019
  publication-title: Joule
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 9
  start-page: 4803
  year: 2019
  publication-title: Sci. Rep.
– volume: 5
  start-page: 429
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– year: 2021
  publication-title: Mater. Today
– volume: 8
  start-page: 506
  year: 2014
  publication-title: Nat. Photonics
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 4
  start-page: 1208
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 47
  start-page: 528
  year: 2018
  publication-title: Chem. Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 122
  start-page: 9115
  year: 2018
  publication-title: J. Phys. Chem. A
– volume: 27
  start-page: 5570
  year: 2015
  publication-title: Chem. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 365
  start-page: 473
  year: 2019
  publication-title: Science
– volume: 3
  start-page: 2287
  year: 2019
  publication-title: Sustainable Energy Fuels
– volume: 18
  start-page: 2172
  year: 2018
  publication-title: Nano Lett.
– volume: 14
  start-page: 4158
  year: 2014
  publication-title: Nano Lett.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 4991
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5629
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3532
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 9862
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2179
  year: 2019
  publication-title: Joule
– volume: 370
  year: 2020
  publication-title: Science
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 3
  start-page: 401
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 17
  start-page: 269
  year: 2015
  publication-title: Nano Energy
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 3
  start-page: 290
  year: 2017
  publication-title: Chem
– volume: 4
  start-page: 313
  year: 2021
  publication-title: Matter
– volume: 5
  start-page: 271
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 489
  year: 2014
  publication-title: Nat. Photonics
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  year: 2018
  publication-title: Sol. RRL
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 364
  start-page: 475
  year: 2019
  publication-title: Science
– volume: 39
  start-page: 616
  year: 2017
  publication-title: Nano Energy
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 7081
  year: 2015
  publication-title: Nat. Commun.
– volume: 45
  start-page: 184
  year: 2018
  publication-title: Nano Energy
– volume: 371
  start-page: 112
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 8990
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  year: 2020
  publication-title: Energy Technol.
– volume: 10
  start-page: 1027
  year: 2019
  publication-title: Nat. Commun.
– volume: 571
  start-page: 245
  year: 2019
  publication-title: Nature
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  start-page: 613
  year: 2015
  publication-title: Chem. Sci.
– volume: 56
  start-page: 7674
  year: 2017
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 4
  start-page: 3011
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 10
  start-page: 520
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  start-page: 656
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 2365
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 3424
  year: 2015
  publication-title: Adv. Mater.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 11
  start-page: 177
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7731
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 949
  year: 2009
  publication-title: CrystEngComm
– volume: 11
  start-page: 1245
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 7
  start-page: 4955
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 54
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 1177
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 3346
  year: 2020
  publication-title: Chem. Mater.
– volume: 5
  start-page: 7423
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 1764
  year: 2013
  publication-title: Nano Lett.
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 64
  start-page: 507
  year: 2019
  publication-title: Sci. Bull.
– volume: 370
  start-page: 108
  year: 2020
  publication-title: Science
– volume: 45
  start-page: 4224
  year: 2016
  publication-title: Dalton Trans.
– volume: 18
  start-page: 65
  year: 2015
  publication-title: Mater. Today
– volume: 8
  start-page: 3550
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 7158
  year: 2014
  publication-title: Chem. Mater.
– volume: 21
  start-page: 483
  year: 2018
  publication-title: Mater. Today
– volume: 48
  start-page: 2791
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 3100
  year: 2018
  publication-title: Nat. Commun.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 6503
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1199
  year: 2016
  publication-title: Chem. ‐ Asian J.
– volume: 3
  start-page: 428
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 8804
  year: 2017
  publication-title: ACS Nano
– volume: 7
  start-page: 232
  year: 2018
  publication-title: Mater. Today Energy
– volume: 9
  start-page: 2326
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 365
  start-page: 591
  year: 2019
  publication-title: Science
– volume: 9
  start-page: 1706
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 6671
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1254
  year: 2020
  publication-title: Chem
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 21
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– year: 2021
  publication-title: Small
– volume: 6
  start-page: 7348
  year: 2015
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 18
  start-page: 6090
  year: 2016
  publication-title: CrystEngComm
– volume: 3
  start-page: 286
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 863
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 10
  start-page: 361
  year: 2017
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_91_1
  doi: 10.1021/acs.accounts.5b00229
– ident: e_1_2_8_151_1
  doi: 10.1039/C4SC03141E
– ident: e_1_2_8_275_1
  doi: 10.1016/j.nanoen.2019.104313
– ident: e_1_2_8_191_1
  doi: 10.1039/C4TA05373G
– ident: e_1_2_8_243_1
  doi: 10.1021/acsaem.8b00350
– ident: e_1_2_8_138_1
  doi: 10.1039/C8SE00465J
– ident: e_1_2_8_45_1
  doi: 10.1002/aenm.201903587
– ident: e_1_2_8_140_1
  doi: 10.1021/acsenergylett.6b00405
– ident: e_1_2_8_185_1
  doi: 10.1016/j.mattod.2014.07.007
– ident: e_1_2_8_87_1
  doi: 10.1002/aenm.201502458
– ident: e_1_2_8_141_1
  doi: 10.1016/j.joule.2020.06.006
– ident: e_1_2_8_258_1
  doi: 10.1002/aenm.201501534
– ident: e_1_2_8_136_1
  doi: 10.1021/acs.chemmater.9b04239
– ident: e_1_2_8_3_1
  doi: 10.1039/C8EE00154E
– ident: e_1_2_8_57_1
  doi: 10.1016/j.orgel.2018.09.011
– ident: e_1_2_8_262_1
  doi: 10.1002/ente.201901042
– ident: e_1_2_8_224_1
  doi: 10.1039/C6CE00842A
– ident: e_1_2_8_116_1
  doi: 10.1021/ja5033259
– ident: e_1_2_8_230_1
  doi: 10.1021/acsami.5b00052
– ident: e_1_2_8_75_1
  doi: 10.1016/j.joule.2018.10.011
– ident: e_1_2_8_52_1
  doi: 10.1002/aenm.201902584
– ident: e_1_2_8_125_1
  doi: 10.1016/j.joule.2019.06.014
– ident: e_1_2_8_27_1
  doi: 10.1038/s41560-018-0192-2
– ident: e_1_2_8_197_1
  doi: 10.1002/adma.201501489
– ident: e_1_2_8_192_1
  doi: 10.1021/cm402919x
– ident: e_1_2_8_6_1
  doi: 10.1126/science.aav8680
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.201707444
– ident: e_1_2_8_109_1
  doi: 10.1039/C4EE01076K
– ident: e_1_2_8_171_1
  doi: 10.1016/j.chempr.2017.05.020
– ident: e_1_2_8_127_1
  doi: 10.1002/asia.201501379
– ident: e_1_2_8_173_1
  doi: 10.1039/b809332f
– ident: e_1_2_8_117_1
  doi: 10.1126/science.aav7911
– ident: e_1_2_8_98_1
  doi: 10.1002/adma.201401137
– ident: e_1_2_8_267_1
  doi: 10.1021/acsami.7b11901
– ident: e_1_2_8_227_1
  doi: 10.1126/science.abb8985
– ident: e_1_2_8_79_1
  doi: 10.1016/j.joule.2018.10.008
– ident: e_1_2_8_124_1
  doi: 10.1002/adma.201705393
– ident: e_1_2_8_143_1
  doi: 10.1016/j.apsusc.2016.02.207
– ident: e_1_2_8_254_1
  doi: 10.1021/acs.jpcc.6b05255
– ident: e_1_2_8_106_1
  doi: 10.1002/adma.201804835
– ident: e_1_2_8_195_1
  doi: 10.1002/adfm.201701804
– ident: e_1_2_8_228_1
  doi: 10.1002/adma.201604758
– ident: e_1_2_8_16_1
  doi: 10.1021/acsenergylett.8b01920
– ident: e_1_2_8_104_1
  doi: 10.1039/C4TA06230B
– ident: e_1_2_8_193_1
  doi: 10.1039/C6EE03014A
– ident: e_1_2_8_168_1
  doi: 10.1039/C5NR02866C
– ident: e_1_2_8_269_1
  doi: 10.1016/j.nanoen.2019.104227
– ident: e_1_2_8_263_1
  doi: 10.1016/j.electacta.2017.07.040
– ident: e_1_2_8_198_1
  doi: 10.1039/C6TA06851K
– ident: e_1_2_8_71_1
  doi: 10.1002/adfm.201908613
– ident: e_1_2_8_112_1
  doi: 10.1002/adfm.201804603
– ident: e_1_2_8_119_1
  doi: 10.1002/advs.201500301
– ident: e_1_2_8_188_1
  doi: 10.1002/ente.201700484
– ident: e_1_2_8_241_1
  doi: 10.1038/ncomms8081
– ident: e_1_2_8_85_1
  doi: 10.1039/C9TA10899H
– ident: e_1_2_8_217_1
  doi: 10.1002/adfm.201705763
– ident: e_1_2_8_133_1
  doi: 10.1038/ncomms7142
– ident: e_1_2_8_244_1
  doi: 10.1016/j.solmat.2018.07.031
– ident: e_1_2_8_26_1
  doi: 10.1038/nenergy.2017.18
– ident: e_1_2_8_65_1
  doi: 10.1002/adfm.202001752
– ident: e_1_2_8_219_1
  doi: 10.1016/j.nanoen.2016.05.052
– ident: e_1_2_8_120_1
  doi: 10.1021/acs.nanolett.7b03179
– year: 2021
  ident: e_1_2_8_58_1
  publication-title: Small
– ident: e_1_2_8_90_1
  doi: 10.1016/j.jpcs.2008.05.007
– ident: e_1_2_8_255_1
  doi: 10.1126/science.1254050
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-018-05531-8
– ident: e_1_2_8_179_1
  doi: 10.1002/adma.201806823
– ident: e_1_2_8_225_1
  doi: 10.1021/acsami.9b06315
– ident: e_1_2_8_129_1
  doi: 10.1021/jz501869f
– ident: e_1_2_8_102_1
  doi: 10.1002/aenm.201501310
– ident: e_1_2_8_63_1
  doi: 10.1039/C5TA00358J
– ident: e_1_2_8_211_1
  doi: 10.1002/adma.202000865
– ident: e_1_2_8_149_1
  doi: 10.1016/j.trechm.2020.01.010
– ident: e_1_2_8_260_1
  doi: 10.1002/aenm.201500543
– ident: e_1_2_8_264_1
  doi: 10.1021/acs.nanolett.6b04015
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201603021
– ident: e_1_2_8_8_1
  doi: 10.1039/C9EE03736E
– ident: e_1_2_8_118_1
  doi: 10.1002/aenm.202000566
– ident: e_1_2_8_246_1
  doi: 10.1039/C6EE00709K
– ident: e_1_2_8_62_1
  doi: 10.1021/jz5017312
– ident: e_1_2_8_2_1
  doi: 10.1002/solr.201900265
– ident: e_1_2_8_208_1
  doi: 10.1021/acs.jpcc.8b08075
– ident: e_1_2_8_186_1
  doi: 10.1016/j.nanoen.2019.103867
– ident: e_1_2_8_196_1
  doi: 10.1016/j.mtener.2017.10.001
– ident: e_1_2_8_233_1
  doi: 10.1002/adma.201702157
– ident: e_1_2_8_66_1
  doi: 10.1039/C9SE00306A
– ident: e_1_2_8_207_1
  doi: 10.1246/cl.171214
– ident: e_1_2_8_122_1
  doi: 10.1002/solr.201800083
– ident: e_1_2_8_214_1
  doi: 10.1021/cm5037869
– ident: e_1_2_8_189_1
  doi: 10.1002/aenm.201502206
– ident: e_1_2_8_103_1
  doi: 10.1039/C5EE03255E
– ident: e_1_2_8_170_1
  doi: 10.1002/adma.201701073
– ident: e_1_2_8_190_1
  doi: 10.1021/ja504632z
– ident: e_1_2_8_220_1
  doi: 10.1039/C4TA06198E
– ident: e_1_2_8_107_1
  doi: 10.1039/C8TA05444D
– ident: e_1_2_8_165_1
  doi: 10.1021/jacs.5b04930
– ident: e_1_2_8_92_1
  doi: 10.1016/j.nanoen.2020.104803
– ident: e_1_2_8_41_1
  doi: 10.1039/C6EE00030D
– ident: e_1_2_8_203_1
  doi: 10.1002/solr.201800164
– ident: e_1_2_8_55_1
  doi: 10.1038/s41560-017-0060-5
– ident: e_1_2_8_199_1
  doi: 10.1039/C9TA08130E
– ident: e_1_2_8_222_1
  doi: 10.1039/C5CC03615A
– ident: e_1_2_8_182_1
  doi: 10.1002/adfm.201803130
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-019-09093-1
– ident: e_1_2_8_242_1
  doi: 10.1002/adfm.201703546
– ident: e_1_2_8_43_1
  doi: 10.1063/1.4748888
– ident: e_1_2_8_223_1
  doi: 10.1039/C7EE02272G
– ident: e_1_2_8_213_1
  doi: 10.1002/adfm.202001764
– ident: e_1_2_8_276_1
  doi: 10.1002/adma.201604545
– ident: e_1_2_8_70_1
  doi: 10.1016/j.nanoen.2017.07.046
– ident: e_1_2_8_162_1
  doi: 10.1016/j.nanoen.2015.11.008
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201901284
– ident: e_1_2_8_212_1
  doi: 10.1021/acsenergylett.9b02080
– ident: e_1_2_8_100_1
  doi: 10.1002/cssc.201903216
– ident: e_1_2_8_28_1
  doi: 10.1126/science.aba0893
– ident: e_1_2_8_232_1
  doi: 10.1002/aenm.201902579
– ident: e_1_2_8_144_1
  doi: 10.1021/acsenergylett.8b02207
– ident: e_1_2_8_146_1
  doi: 10.1021/acs.nanolett.8b00505
– ident: e_1_2_8_64_1
  doi: 10.1021/acs.jpca.8b07495
– ident: e_1_2_8_32_1
  doi: 10.1002/smll.201907226
– ident: e_1_2_8_236_1
  doi: 10.1002/advs.201901241
– ident: e_1_2_8_234_1
  doi: 10.1002/adma.201500048
– ident: e_1_2_8_247_1
  doi: 10.1126/sciadv.1700106
– ident: e_1_2_8_61_1
  doi: 10.1038/ncomms14075
– ident: e_1_2_8_132_1
  doi: 10.1021/cm503828b
– ident: e_1_2_8_89_1
  doi: 10.1021/acs.jpcc.7b06268
– ident: e_1_2_8_167_1
  doi: 10.1016/j.chempr.2019.02.025
– ident: e_1_2_8_111_1
  doi: 10.1039/c0dt01601b
– ident: e_1_2_8_78_1
  doi: 10.1021/acs.jpclett.5b00968
– ident: e_1_2_8_206_1
  doi: 10.1021/acsami.9b13648
– ident: e_1_2_8_95_1
  doi: 10.1021/ja809598r
– ident: e_1_2_8_261_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_8_113_1
  doi: 10.1021/acs.jpcc.7b06278
– ident: e_1_2_8_194_1
  doi: 10.1021/acsnano.7b02867
– ident: e_1_2_8_128_1
  doi: 10.1038/s41598-019-41328-5
– ident: e_1_2_8_152_1
  doi: 10.1021/acsenergylett.7b00282
– ident: e_1_2_8_257_1
  doi: 10.1038/ncomms8348
– year: 2021
  ident: e_1_2_8_59_1
  publication-title: Mater. Today
– ident: e_1_2_8_266_1
  doi: 10.1021/ja512518r
– ident: e_1_2_8_18_1
  doi: 10.1039/C8TA01049H
– ident: e_1_2_8_56_1
  doi: 10.1002/solr.201900140
– ident: e_1_2_8_235_1
  doi: 10.1039/C7TA01798G
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-019-13909-5
– ident: e_1_2_8_239_1
  doi: 10.1038/s41586-019-1357-2
– ident: e_1_2_8_272_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_8_250_1
  doi: 10.1038/ncomms10228
– ident: e_1_2_8_204_1
  doi: 10.1021/acsaem.9b01652
– ident: e_1_2_8_238_1
  doi: 10.1039/C5RA08102E
– ident: e_1_2_8_155_1
  doi: 10.1002/pip.2632
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.chemmater.5b04107
– ident: e_1_2_8_48_1
  doi: 10.1039/C6CP03969C
– ident: e_1_2_8_29_1
  doi: 10.1038/s41586-020-2184-1
– ident: e_1_2_8_169_1
  doi: 10.1039/C6TC04944C
– ident: e_1_2_8_153_1
  doi: 10.1021/jacs.7b07223
– ident: e_1_2_8_24_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_8_205_1
  doi: 10.1021/nl501838y
– ident: e_1_2_8_252_1
  doi: 10.1002/adfm.201809194
– ident: e_1_2_8_164_1
  doi: 10.1038/nmat4014
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aap9282
– ident: e_1_2_8_67_1
  doi: 10.1002/solr.201800305
– ident: e_1_2_8_187_1
  doi: 10.1016/j.nanoen.2017.03.048
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.jpclett.6b00433
– ident: e_1_2_8_166_1
  doi: 10.1016/j.ces.2008.08.003
– ident: e_1_2_8_9_1
– ident: e_1_2_8_72_1
  doi: 10.1039/C8EE03051K
– ident: e_1_2_8_105_1
  doi: 10.1038/s41467-020-15078-2
– ident: e_1_2_8_46_1
  doi: 10.1039/C9CP03656C
– ident: e_1_2_8_76_1
  doi: 10.1021/acsenergylett.9b02338
– ident: e_1_2_8_17_1
  doi: 10.1039/C8TA01642A
– ident: e_1_2_8_80_1
  doi: 10.1002/aenm.201801050
– ident: e_1_2_8_139_1
  doi: 10.1021/acsenergylett.8b01201
– ident: e_1_2_8_154_1
  doi: 10.1002/anie.201704188
– ident: e_1_2_8_36_1
  doi: 10.1021/acsenergylett.6b00158
– ident: e_1_2_8_210_1
  doi: 10.1039/C6TA00679E
– ident: e_1_2_8_73_1
  doi: 10.1038/s41563-019-0602-2
– ident: e_1_2_8_174_1
  doi: 10.1021/acsenergylett.0c01130
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-019-09011-5
– ident: e_1_2_8_172_1
  doi: 10.1016/j.cej.2011.02.064
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201803572
– ident: e_1_2_8_88_1
  doi: 10.1021/acsenergylett.9b02604
– ident: e_1_2_8_159_1
  doi: 10.1002/adma.201801418
– ident: e_1_2_8_134_1
  doi: 10.1021/acs.chemmater.5b02378
– ident: e_1_2_8_121_1
  doi: 10.1002/aenm.201803587
– ident: e_1_2_8_249_1
  doi: 10.1038/nenergy.2016.142
– ident: e_1_2_8_278_1
  doi: 10.1002/adma.202006087
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201800710
– volume: 8
  start-page: 3847
  year: 2015
  ident: e_1_2_8_161_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_180_1
  doi: 10.1021/acsenergylett.7b01255
– ident: e_1_2_8_53_1
  doi: 10.1002/aenm.201904050
– ident: e_1_2_8_158_1
  doi: 10.1002/adma.201400231
– ident: e_1_2_8_200_1
  doi: 10.1126/science.aah5557
– ident: e_1_2_8_251_1
  doi: 10.1002/adfm.201808855
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201702140
– ident: e_1_2_8_183_1
  doi: 10.1016/j.isci.2019.04.024
– ident: e_1_2_8_184_1
  doi: 10.1039/C7TA00042A
– ident: e_1_2_8_175_1
  doi: 10.1016/j.nanoen.2015.08.023
– ident: e_1_2_8_176_1
  doi: 10.1002/ange.201405334
– ident: e_1_2_8_130_1
  doi: 10.1039/C7TA00973A
– ident: e_1_2_8_268_1
  doi: 10.1038/nature12340
– ident: e_1_2_8_215_1
  doi: 10.1021/acs.chemmater.5b03169
– ident: e_1_2_8_271_1
  doi: 10.1002/adma.201805660
– ident: e_1_2_8_13_1
  doi: 10.1016/j.chempr.2020.04.013
– ident: e_1_2_8_39_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_8_1_1
  doi: 10.1021/acsami.8b20933
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.201907331
– ident: e_1_2_8_256_1
  doi: 10.1016/j.jpowsour.2017.06.013
– ident: e_1_2_8_77_1
  doi: 10.1016/j.nanoen.2019.104241
– ident: e_1_2_8_137_1
  doi: 10.1039/C5TA08744A
– ident: e_1_2_8_60_1
  doi: 10.1002/aenm.202002558
– ident: e_1_2_8_97_1
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_8_177_1
  doi: 10.1002/adma.201401685
– ident: e_1_2_8_157_1
  doi: 10.1039/C5TA07829F
– ident: e_1_2_8_265_1
  doi: 10.1002/adma.201908011
– ident: e_1_2_8_178_1
  doi: 10.1021/ja411509g
– ident: e_1_2_8_115_1
  doi: 10.1002/adma.201602696
– ident: e_1_2_8_248_1
  doi: 10.1038/s41467-019-08455-z
– ident: e_1_2_8_114_1
  doi: 10.1002/adfm.201808801
– ident: e_1_2_8_35_1
  doi: 10.1039/C5EE03255E
– ident: e_1_2_8_229_1
  doi: 10.1002/adfm.201503559
– ident: e_1_2_8_202_1
  doi: 10.1002/advs.201700131
– ident: e_1_2_8_96_1
  doi: 10.1038/srep35685
– ident: e_1_2_8_123_1
  doi: 10.1021/acsenergylett.7b01151
– ident: e_1_2_8_131_1
  doi: 10.1126/science.1228604
– ident: e_1_2_8_47_1
  doi: 10.1039/C8TC04750B
– ident: e_1_2_8_40_1
  doi: 10.1038/nature14133
– ident: e_1_2_8_86_1
  doi: 10.1002/adma.201802509
– ident: e_1_2_8_101_1
  doi: 10.1002/anie.201309361
– ident: e_1_2_8_148_1
  doi: 10.1021/ja5071398
– ident: e_1_2_8_108_1
  doi: 10.1038/nphoton.2014.82
– ident: e_1_2_8_99_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_8_22_1
  doi: 10.1039/C6EE00030D
– ident: e_1_2_8_277_1
  doi: 10.1039/D0TA00123F
– ident: e_1_2_8_209_1
  doi: 10.1039/C5EE02555A
– ident: e_1_2_8_126_1
  doi: 10.1039/C9TA01319A
– ident: e_1_2_8_37_1
  doi: 10.1039/C5DT03481G
– ident: e_1_2_8_74_1
  doi: 10.1002/aenm.201702116
– ident: e_1_2_8_94_1
  doi: 10.1039/C7EE01675A
– ident: e_1_2_8_10_1
  doi: 10.1038/ncomms14555
– ident: e_1_2_8_216_1
  doi: 10.1002/aenm.201601297
– ident: e_1_2_8_221_1
  doi: 10.1039/C6TA02999J
– ident: e_1_2_8_160_1
  doi: 10.1016/j.jpowsour.2018.07.093
– ident: e_1_2_8_259_1
  doi: 10.1002/aenm.201601193
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.chemmater.9b02248
– ident: e_1_2_8_142_1
  doi: 10.1021/nl400349b
– ident: e_1_2_8_42_1
  doi: 10.1021/acsnano.8b00267
– ident: e_1_2_8_44_1
  doi: 10.1002/anie.201910800
– ident: e_1_2_8_69_1
  doi: 10.1039/C9TA04366G
– ident: e_1_2_8_253_1
  doi: 10.1002/adfm.201703061
– ident: e_1_2_8_83_1
  doi: 10.1002/solr.201700048
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201901519
– ident: e_1_2_8_147_1
  doi: 10.1021/jz402706q
– ident: e_1_2_8_231_1
  doi: 10.1039/C4NR02425G
– ident: e_1_2_8_237_1
  doi: 10.1126/science.abc4417
– ident: e_1_2_8_245_1
  doi: 10.1002/adma.202001243
– ident: e_1_2_8_68_1
  doi: 10.1021/acsenergylett.7b01197
– ident: e_1_2_8_93_1
  doi: 10.1016/j.matt.2020.10.023
– ident: e_1_2_8_201_1
  doi: 10.1016/j.nanoen.2017.12.047
– ident: e_1_2_8_150_1
  doi: 10.1007/s12274-019-2336-5
– ident: e_1_2_8_110_1
  doi: 10.1002/advs.201903540
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201706576
– ident: e_1_2_8_81_1
  doi: 10.1002/aenm.201800525
– ident: e_1_2_8_181_1
  doi: 10.1002/adma.201805214
– ident: e_1_2_8_240_1
  doi: 10.1039/C8SC05284K
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.202004630
– ident: e_1_2_8_226_1
  doi: 10.1021/acsenergylett.7b00278
– ident: e_1_2_8_135_1
  doi: 10.1021/jacs.8b11210
– ident: e_1_2_8_156_1
  doi: 10.1002/aenm.201502202
– ident: e_1_2_8_84_1
  doi: 10.1021/acs.jpcc.8b00980
– ident: e_1_2_8_270_1
  doi: 10.1016/j.mattod.2017.12.002
– ident: e_1_2_8_163_1
  doi: 10.1021/acs.accounts.5b00440
– ident: e_1_2_8_218_1
  doi: 10.1021/acsaem.8b01075
– ident: e_1_2_8_12_1
  doi: 10.1557/mrs.2015.167
– ident: e_1_2_8_20_1
  doi: 10.1016/j.scib.2019.04.013
– ident: e_1_2_8_25_1
  doi: 10.1038/nenergy.2017.9
– ident: e_1_2_8_145_1
  doi: 10.1021/acsenergylett.7b00357
– ident: e_1_2_8_274_1
  doi: 10.1126/science.aax3294
– ident: e_1_2_8_82_1
  doi: 10.1016/j.nantod.2015.04.009
– ident: e_1_2_8_273_1
  doi: 10.1039/C6TA00577B
SSID ssj0000491033
Score 2.5397615
SecondaryResourceType review_article
Snippet Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Crystallization
crystallization kinetics
crystallization modulation
crystallization properties
Kinetics
metal‐halide perovskites
Optoelectronics
Perovskites
Title Metal‐Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202100784
https://www.proquest.com/docview/2544384734
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVge4EHxKcYDOQHJB6mQGI7ictbNYoqWCYBndQ9RbFzI1Wq0mlrkeCJn8Bv5JdwHTuOO4YYvERtEuej98Q5173nmJAXmjPFE51Gykh8hGIyklolkYQ8VgIwJ-kUcsVxNj0R7-fpfCgd6tQla_VKf7tSV_I_UcV1GFejkv2HyPqD4gr8jPHFJUYYl9eKcQFInX25whQpdQ2mpn315cIMyh4cnn9F8rdcOq3lwQeklMaW2crRP3nVyiS0-Tcj6bNA3hhWGvZ2tX3hAFjlILJee7t9-Ob2X4_TDfirKxYehvNNt_XjohmgebroJsqbLlrf4qg6C8ckWFA75bpRfOlHmXQjlxCus-ZMvu9NAoxZMfVvfbr1iK2gNcYBzFR12Enlts2zL73UfKmhtWVmpWlf-vY3yS7DvAI7xt3x2-Losx-Ww4QpiXkny-jvobf6jNnr7YvYpjJDfhJmOR1Nmd0ld1x-QccWLPfIDWjvk9uB6-QDUnew-fn9hwUMHQBDLwGG9oB5Q8fUwoWuGhrChSJcaAAX6uDykJy8m8wOp5GbbCPSSCFFpPJaYocseAw5zyGuail4U0t8mPOmyUeZZiKHVGUNaNlUWdXEI5lKhY2AK-Q_j8hOu2rhMaFpLmCEeYBSVS24TtWoSpBpZipVWqaQ7ZGo_91K7ZzozYQoy_LqYO2Rl37_M-vB8sc99_swlO45vSiNCR9HEsZxM-tC85ejlOPJceG_Pbn22Z-SW8PDsE921ucbeIaUda2eO5j9AlOHkRU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%90Halide+Perovskite+Crystallization+Kinetics%3A+A+Review+of+Experimental+and+Theoretical+Studies&rft.jtitle=Advanced+energy+materials&rft.au=Xie%2C+Yue%E2%80%90Min&rft.au=Xue%2C+Qifan&rft.au=Yip%2C+Hin%E2%80%90Lap&rft.date=2021-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=24&rft_id=info:doi/10.1002%2Faenm.202100784&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202100784
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon