Metal‐Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies
Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic performance. However, this compositional variability results in a complicated crystallization process during MHP film fabrication, leading to...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic performance. However, this compositional variability results in a complicated crystallization process during MHP film fabrication, leading to reduced MHP film crystallinity and decreased performance of devices containing such films. The crystallization kinetics of MHPs have therefore been extensively explored in efforts to determine the effect of crystallization properties on MHP film properties and figure out the corresponding modulating strategies. Here, the first comprehensive review of reported studies on the crystallization properties of 3D MHPs is presented. The experimental and theoretical research on 3D MHP crystallization kinetics is systematically surveyed, and the methods that are used for modulating MHP crystallization are summarized, namely, solution engineering, compositional engineering, interfacial engineering, and additive passivation. Meanwhile, the prospects and current challenges in revealing perovskite crystallization kinetics are suggested.
The vast literature on experimental and theoretical research on the nucleation and growth of metal‐halide perovskite films, as well as the relationships between film properties and crystallization modulating methods including solution engineering, composition engineering, interface engineering, and additive passivation are systematically reviewed. This work consolidates the research on metal‐halide perovskite crystallization kinetics, and highlights new and promising areas of study. |
---|---|
AbstractList | Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic performance. However, this compositional variability results in a complicated crystallization process during MHP film fabrication, leading to reduced MHP film crystallinity and decreased performance of devices containing such films. The crystallization kinetics of MHPs have therefore been extensively explored in efforts to determine the effect of crystallization properties on MHP film properties and figure out the corresponding modulating strategies. Here, the first comprehensive review of reported studies on the crystallization properties of 3D MHPs is presented. The experimental and theoretical research on 3D MHP crystallization kinetics is systematically surveyed, and the methods that are used for modulating MHP crystallization are summarized, namely, solution engineering, compositional engineering, interfacial engineering, and additive passivation. Meanwhile, the prospects and current challenges in revealing perovskite crystallization kinetics are suggested. Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic performance. However, this compositional variability results in a complicated crystallization process during MHP film fabrication, leading to reduced MHP film crystallinity and decreased performance of devices containing such films. The crystallization kinetics of MHPs have therefore been extensively explored in efforts to determine the effect of crystallization properties on MHP film properties and figure out the corresponding modulating strategies. Here, the first comprehensive review of reported studies on the crystallization properties of 3D MHPs is presented. The experimental and theoretical research on 3D MHP crystallization kinetics is systematically surveyed, and the methods that are used for modulating MHP crystallization are summarized, namely, solution engineering, compositional engineering, interfacial engineering, and additive passivation. Meanwhile, the prospects and current challenges in revealing perovskite crystallization kinetics are suggested. The vast literature on experimental and theoretical research on the nucleation and growth of metal‐halide perovskite films, as well as the relationships between film properties and crystallization modulating methods including solution engineering, composition engineering, interface engineering, and additive passivation are systematically reviewed. This work consolidates the research on metal‐halide perovskite crystallization kinetics, and highlights new and promising areas of study. |
Author | Yip, Hin‐Lap Xie, Yue‐Min Xue, Qifan |
Author_xml | – sequence: 1 givenname: Yue‐Min surname: Xie fullname: Xie, Yue‐Min organization: South China University of Technology – sequence: 2 givenname: Qifan surname: Xue fullname: Xue, Qifan email: qfxue@scut.edu.cn organization: South China Institute of Collaborative Innovation – sequence: 3 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: City University of Hong Kong |
BookMark | eNqFkMFOAjEQhhuDiYhcPTfxvNjddrfFGyEoRlCjeN50d6exuOxiW0A8-Qg-o09iEYOJiXEuM5P5v5nMf4gaVV0BQsch6YSERKcSqlknIpFvuGB7qBkmIQsSwUhjV9PoALWtnRIfrBsSSpuoGIOT5cfb-1CWugB8C6Ze2iftAPfN2vpZqV-l03WFr3QFTuf2DPfwHSw1rHCt8OBlDkbPoPJSLKsCTx6hNhuh7-_dotBgj9C-kqWF9nduoYfzwaQ_DEY3F5f93ijIachZkPFCkJgySoBTDkQWglFViJxGXCneTfKIcYizREEulEykIl0Ri8xDQLMwoi10st07N_XzAqxLp_XCVP5kGsWMUcG4395CbKvKTW2tAZXm2n296IzUZRqSdGNpurE03Vnqsc4vbO7_lmb9N9DdAitdwvofddobXI9_2E-c840C |
CitedBy_id | crossref_primary_10_1016_j_orgel_2023_106763 crossref_primary_10_1016_j_powtec_2024_119715 crossref_primary_10_1039_D4RA02191F crossref_primary_10_1002_aenm_202201605 crossref_primary_10_1021_acsami_1c12283 crossref_primary_10_1557_s43577_024_00826_2 crossref_primary_10_1016_j_pmatsci_2023_101223 crossref_primary_10_1007_s40820_024_01538_7 crossref_primary_10_1002_adfm_202203898 crossref_primary_10_1002_adma_202205217 crossref_primary_10_1016_j_solener_2024_113205 crossref_primary_10_1002_solr_202301025 crossref_primary_10_1021_acsaem_3c00971 crossref_primary_10_1002_adfm_202112126 crossref_primary_10_1002_smtd_202201255 crossref_primary_10_1002_idm2_12023 crossref_primary_10_1039_D3TC03183G crossref_primary_10_1002_anie_202407665 crossref_primary_10_1038_s41586_023_06208_z crossref_primary_10_1038_s41598_023_32697_z crossref_primary_10_1016_j_ijleo_2022_168932 crossref_primary_10_1002_ange_202407665 crossref_primary_10_1038_s43246_024_00566_5 crossref_primary_10_1016_j_jechem_2022_03_019 crossref_primary_10_1002_aesr_202300263 crossref_primary_10_1016_j_matt_2024_09_010 crossref_primary_10_1002_cssc_202202109 crossref_primary_10_1016_j_matt_2022_05_030 crossref_primary_10_1002_adfm_202212599 crossref_primary_10_1002_adfm_202209186 crossref_primary_10_1002_adom_202200089 crossref_primary_10_20517_microstructures_2024_10 crossref_primary_10_1002_smll_202406824 crossref_primary_10_1016_j_mtadv_2024_100541 crossref_primary_10_1002_solr_202301001 crossref_primary_10_1002_adma_202204098 crossref_primary_10_1002_aenm_202204347 crossref_primary_10_1016_j_jallcom_2023_172459 crossref_primary_10_1021_acsmaterialslett_4c01743 crossref_primary_10_1155_2023_2925434 crossref_primary_10_1039_D3TA01749D crossref_primary_10_1039_D4CC05131A crossref_primary_10_1039_D4TA07975B crossref_primary_10_1021_acsami_4c16316 crossref_primary_10_1039_D2TA02574D crossref_primary_10_1039_D3CC02090H crossref_primary_10_3390_mi15020192 crossref_primary_10_1021_acsaem_2c03408 crossref_primary_10_3390_coatings13061130 crossref_primary_10_1016_j_nanoen_2024_109612 crossref_primary_10_1002_solr_202400612 crossref_primary_10_3390_ma15124300 |
Cites_doi | 10.1021/acs.accounts.5b00229 10.1039/C4SC03141E 10.1016/j.nanoen.2019.104313 10.1039/C4TA05373G 10.1021/acsaem.8b00350 10.1039/C8SE00465J 10.1002/aenm.201903587 10.1021/acsenergylett.6b00405 10.1016/j.mattod.2014.07.007 10.1002/aenm.201502458 10.1016/j.joule.2020.06.006 10.1002/aenm.201501534 10.1021/acs.chemmater.9b04239 10.1039/C8EE00154E 10.1016/j.orgel.2018.09.011 10.1002/ente.201901042 10.1039/C6CE00842A 10.1021/ja5033259 10.1021/acsami.5b00052 10.1016/j.joule.2018.10.011 10.1002/aenm.201902584 10.1016/j.joule.2019.06.014 10.1038/s41560-018-0192-2 10.1002/adma.201501489 10.1021/cm402919x 10.1126/science.aav8680 10.1002/adfm.201707444 10.1039/C4EE01076K 10.1016/j.chempr.2017.05.020 10.1002/asia.201501379 10.1039/b809332f 10.1126/science.aav7911 10.1002/adma.201401137 10.1021/acsami.7b11901 10.1126/science.abb8985 10.1016/j.joule.2018.10.008 10.1002/adma.201705393 10.1016/j.apsusc.2016.02.207 10.1021/acs.jpcc.6b05255 10.1002/adma.201804835 10.1002/adfm.201701804 10.1002/adma.201604758 10.1021/acsenergylett.8b01920 10.1039/C4TA06230B 10.1039/C6EE03014A 10.1039/C5NR02866C 10.1016/j.nanoen.2019.104227 10.1016/j.electacta.2017.07.040 10.1039/C6TA06851K 10.1002/adfm.201908613 10.1002/adfm.201804603 10.1002/advs.201500301 10.1002/ente.201700484 10.1038/ncomms8081 10.1039/C9TA10899H 10.1002/adfm.201705763 10.1038/ncomms7142 10.1016/j.solmat.2018.07.031 10.1038/nenergy.2017.18 10.1002/adfm.202001752 10.1016/j.nanoen.2016.05.052 10.1021/acs.nanolett.7b03179 10.1016/j.jpcs.2008.05.007 10.1126/science.1254050 10.1038/s41467-018-05531-8 10.1002/adma.201806823 10.1021/acsami.9b06315 10.1021/jz501869f 10.1002/aenm.201501310 10.1039/C5TA00358J 10.1002/adma.202000865 10.1016/j.trechm.2020.01.010 10.1002/aenm.201500543 10.1021/acs.nanolett.6b04015 10.1002/adma.201603021 10.1039/C9EE03736E 10.1002/aenm.202000566 10.1039/C6EE00709K 10.1021/jz5017312 10.1002/solr.201900265 10.1021/acs.jpcc.8b08075 10.1016/j.nanoen.2019.103867 10.1016/j.mtener.2017.10.001 10.1002/adma.201702157 10.1039/C9SE00306A 10.1246/cl.171214 10.1002/solr.201800083 10.1021/cm5037869 10.1002/aenm.201502206 10.1039/C5EE03255E 10.1002/adma.201701073 10.1021/ja504632z 10.1039/C4TA06198E 10.1039/C8TA05444D 10.1021/jacs.5b04930 10.1016/j.nanoen.2020.104803 10.1039/C6EE00030D 10.1002/solr.201800164 10.1038/s41560-017-0060-5 10.1039/C9TA08130E 10.1039/C5CC03615A 10.1002/adfm.201803130 10.1038/s41467-019-09093-1 10.1002/adfm.201703546 10.1063/1.4748888 10.1039/C7EE02272G 10.1002/adfm.202001764 10.1002/adma.201604545 10.1016/j.nanoen.2017.07.046 10.1016/j.nanoen.2015.11.008 10.1002/adma.201901284 10.1021/acsenergylett.9b02080 10.1002/cssc.201903216 10.1126/science.aba0893 10.1002/aenm.201902579 10.1021/acsenergylett.8b02207 10.1021/acs.nanolett.8b00505 10.1021/acs.jpca.8b07495 10.1002/smll.201907226 10.1002/advs.201901241 10.1002/adma.201500048 10.1126/sciadv.1700106 10.1038/ncomms14075 10.1021/cm503828b 10.1021/acs.jpcc.7b06268 10.1016/j.chempr.2019.02.025 10.1039/c0dt01601b 10.1021/acs.jpclett.5b00968 10.1021/acsami.9b13648 10.1021/ja809598r 10.1038/ncomms8747 10.1021/acs.jpcc.7b06278 10.1021/acsnano.7b02867 10.1038/s41598-019-41328-5 10.1021/acsenergylett.7b00282 10.1038/ncomms8348 10.1021/ja512518r 10.1039/C8TA01049H 10.1002/solr.201900140 10.1039/C7TA01798G 10.1038/s41467-019-13909-5 10.1038/s41586-019-1357-2 10.1038/nenergy.2017.102 10.1038/ncomms10228 10.1021/acsaem.9b01652 10.1039/C5RA08102E 10.1002/pip.2632 10.1021/acs.chemmater.5b04107 10.1039/C6CP03969C 10.1038/s41586-020-2184-1 10.1039/C6TC04944C 10.1021/jacs.7b07223 10.1039/C5EE03874J 10.1021/nl501838y 10.1002/adfm.201809194 10.1038/nmat4014 10.1126/science.aap9282 10.1002/solr.201800305 10.1016/j.nanoen.2017.03.048 10.1021/acs.jpclett.6b00433 10.1016/j.ces.2008.08.003 10.1039/C8EE03051K 10.1038/s41467-020-15078-2 10.1039/C9CP03656C 10.1021/acsenergylett.9b02338 10.1039/C8TA01642A 10.1002/aenm.201801050 10.1021/acsenergylett.8b01201 10.1002/anie.201704188 10.1021/acsenergylett.6b00158 10.1039/C6TA00679E 10.1038/s41563-019-0602-2 10.1021/acsenergylett.0c01130 10.1038/s41467-019-09011-5 10.1016/j.cej.2011.02.064 10.1002/aenm.201803572 10.1021/acsenergylett.9b02604 10.1002/adma.201801418 10.1021/acs.chemmater.5b02378 10.1002/aenm.201803587 10.1038/nenergy.2016.142 10.1002/adma.202006087 10.1002/adma.201800710 10.1021/acsenergylett.7b01255 10.1002/aenm.201904050 10.1002/adma.201400231 10.1126/science.aah5557 10.1002/adfm.201808855 10.1002/adma.201702140 10.1016/j.isci.2019.04.024 10.1039/C7TA00042A 10.1016/j.nanoen.2015.08.023 10.1002/ange.201405334 10.1039/C7TA00973A 10.1038/nature12340 10.1021/acs.chemmater.5b03169 10.1002/adma.201805660 10.1016/j.chempr.2020.04.013 10.1039/c3ee43822h 10.1021/acsami.8b20933 10.1002/anie.201907331 10.1016/j.jpowsour.2017.06.013 10.1016/j.nanoen.2019.104241 10.1039/C5TA08744A 10.1002/aenm.202002558 10.1038/nphoton.2014.134 10.1002/adma.201401685 10.1039/C5TA07829F 10.1002/adma.201908011 10.1021/ja411509g 10.1002/adma.201602696 10.1038/s41467-019-08455-z 10.1002/adfm.201808801 10.1002/adfm.201503559 10.1002/advs.201700131 10.1038/srep35685 10.1021/acsenergylett.7b01151 10.1126/science.1228604 10.1039/C8TC04750B 10.1038/nature14133 10.1002/adma.201802509 10.1002/anie.201309361 10.1021/ja5071398 10.1038/nphoton.2014.82 10.1126/science.aaa9272 10.1039/D0TA00123F 10.1039/C5EE02555A 10.1039/C9TA01319A 10.1039/C5DT03481G 10.1002/aenm.201702116 10.1039/C7EE01675A 10.1038/ncomms14555 10.1002/aenm.201601297 10.1039/C6TA02999J 10.1016/j.jpowsour.2018.07.093 10.1002/aenm.201601193 10.1021/acs.chemmater.9b02248 10.1021/nl400349b 10.1021/acsnano.8b00267 10.1002/anie.201910800 10.1039/C9TA04366G 10.1002/adfm.201703061 10.1002/solr.201700048 10.1002/adma.201901519 10.1021/jz402706q 10.1039/C4NR02425G 10.1126/science.abc4417 10.1002/adma.202001243 10.1021/acsenergylett.7b01197 10.1016/j.matt.2020.10.023 10.1016/j.nanoen.2017.12.047 10.1007/s12274-019-2336-5 10.1002/advs.201903540 10.1002/adma.201706576 10.1002/aenm.201800525 10.1002/adma.201805214 10.1039/C8SC05284K 10.1002/adma.202004630 10.1021/acsenergylett.7b00278 10.1021/jacs.8b11210 10.1002/aenm.201502202 10.1021/acs.jpcc.8b00980 10.1016/j.mattod.2017.12.002 10.1021/acs.accounts.5b00440 10.1021/acsaem.8b01075 10.1557/mrs.2015.167 10.1016/j.scib.2019.04.013 10.1038/nenergy.2017.9 10.1021/acsenergylett.7b00357 10.1126/science.aax3294 10.1016/j.nantod.2015.04.009 10.1039/C6TA00577B |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202100784 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202100784 AENM202100784 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar funderid: 2021B1515020028 – fundername: State Key Lab of Luminescent Materials and Devices – fundername: Fellowship of China Postdoctoral Science Foundation funderid: 2020M682703 – fundername: Science and Technology Program of Guangdong Province, China funderid: 2018A030313045 – fundername: South China University of Technology – fundername: Ministry of Science and Technology funderid: 2017YFA0206600; 2019YFA0705900 – fundername: Natural Science Foundation of China funderid: 51973063; 91733302; 51803060 – fundername: Science and Technology Program of Guangzhou funderid: 201904010147 – fundername: Guangdong Major Project of Basic and Applied Basic Research funderid: 2019B030302007 – fundername: Natural Science Foundation of China funderid: 51903095 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3174-b7d8053430e737e0ad843fd8c327ff796c247e5b6fec8fa6af09858b805e3b123 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:12:40 EDT 2025 Tue Jul 01 01:43:39 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 16:30:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3174-b7d8053430e737e0ad843fd8c327ff796c247e5b6fec8fa6af09858b805e3b123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5750-9751 |
PQID | 2544384734 |
PQPubID | 886389 |
PageCount | 34 |
ParticipantIDs | proquest_journals_2544384734 crossref_citationtrail_10_1002_aenm_202100784 crossref_primary_10_1002_aenm_202100784 wiley_primary_10_1002_aenm_202100784_AENM202100784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 11 2019; 10 2019; 12 2019; 15 2020; 16 2014; 26 2020; 13 2020; 11 2020; 10 2018; 45 2014; 136 2020; 19 2018; 47 2018; 7 2018; 6 2009; 11 2018; 9 2018; 8 2018; 3 2018; 2 2018; 5 2015; 137 2018; 1 2019; 21 2014; 14 2019; 29 2014; 13 2018; 30 2016; 49 2014; 126 2016; 45 2019; 7 2018; 188 2019; 9 2018; 28 2019; 4 2019; 3 2012; 101 2019; 6 2016; 19 2019; 5 2019; 31 2015; 51 2020; 32 2016; 18 2018; 21 2017; 139 2016; 11 2016; 4 2016; 6 2018; 18 2016; 7 2016; 1 2016; 3 2020; 30 2017; 56 2015; 517 2018; 12 2018; 11 2016; 28 2016; 26 2016; 9 2019; 571 2017; 5 2018; 122 2017; 7 2017; 8 2017; 1 2017; 2 2013; 25 2018; 360 2017; 3 2019; 58 2020; 367 2015; 348 2019; 364 2017; 9 2019; 365 2020; 8 2020; 7 2020; 6 2015; 48 2011; 169 2020; 5 2014; 5 2020; 4 2020; 3 2020; 2 2021; 33 2019; 64 2019; 63 2015; 40 2017; 39 2013; 13 2017; 35 2020; 370 2008; 69 2016; 354 2017; 360 2008; 63 2017; 121 2014; 8 2014; 7 2014; 6 2012; 338 2017; 247 2014; 53 2015; 6 2015; 17 2021; 4 2015; 5 2015; 3 2015; 18 2020; 580 2017; 27 2011; 40 2015; 10 2018; 63 2017; 29 2009; 131 2019; 141 2015; 8 2015; 7 2016; 120 2015; 23 2015; 25 2015; 27 2021 2020; 73 2017; 17 2020 2018; 399 2017; 11 2017; 10 2013; 499 2020; 68 2020; 67 2014; 345 2016; 371 e_1_2_8_241_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_270_1 Teuscher J. (e_1_2_8_161_1) 2015; 8 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 Li Z. (e_1_2_8_59_1) 2021 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_273_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 Lei Y. (e_1_2_8_58_1) 2021 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_35_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 40 start-page: 5563 year: 2011 publication-title: Dalton Trans. – volume: 13 start-page: 956 year: 2020 publication-title: ChemSusChem – volume: 15 start-page: 165 year: 2019 publication-title: iScience – volume: 3 start-page: 61 year: 2018 publication-title: Nat. Energy – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 12 start-page: 3477 year: 2018 publication-title: ACS Nano – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 9081 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 188 start-page: 140 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 169 start-page: 358 year: 2011 publication-title: Chem. Eng. J. – volume: 1 year: 2017 publication-title: Sol. RRL – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 6 start-page: 9935 year: 2014 publication-title: Nanoscale – volume: 137 start-page: 8696 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1880 year: 2017 publication-title: Energy Technol. – volume: 26 start-page: 3748 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 2452 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 35 start-page: 223 year: 2017 publication-title: Nano Energy – volume: 26 start-page: 7145 year: 2014 publication-title: Chem. Mater. – volume: 137 start-page: 2674 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 290 year: 2020 publication-title: ACS Energy Lett. – volume: 1 start-page: 290 year: 2016 publication-title: ACS Energy Lett. – volume: 7 start-page: 8078 year: 2019 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1507 year: 2017 publication-title: ACS Energy Lett. – volume: 3 start-page: 191 year: 2019 publication-title: Joule – volume: 63 start-page: 159 year: 2018 publication-title: Org. Electron. – volume: 27 start-page: 4918 year: 2015 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 360 start-page: 157 year: 2017 publication-title: J. Power Sources – volume: 3 start-page: 8139 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1904 year: 2019 publication-title: Chem. Sci. – volume: 10 start-page: 1112 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 1033 year: 2019 publication-title: Nano Res. – volume: 2 start-page: 1416 year: 2017 publication-title: ACS Energy Lett. – volume: 1 start-page: 1870 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 11 start-page: 6126 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 88 year: 2016 publication-title: Nano Energy – volume: 69 start-page: 2520 year: 2008 publication-title: J. Phys. Chem. Solids – volume: 10 start-page: 355 year: 2015 publication-title: Nano Today – volume: 3 start-page: 204 year: 2018 publication-title: ACS Energy Lett. – volume: 53 start-page: 3151 year: 2014 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 367 start-page: 1352 year: 2020 publication-title: Science – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 19 start-page: 412 year: 2020 publication-title: Nat. Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 126 year: 2014 publication-title: Angew. Chem. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 3 start-page: 648 year: 2018 publication-title: Nat. Energy – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 5 start-page: 842 year: 2017 publication-title: J. Mater. Chem. C – volume: 28 start-page: 284 year: 2016 publication-title: Chem. Mater. – volume: 12 start-page: 1341 year: 2019 publication-title: Energy Environ. Sci. – volume: 1 start-page: 6018 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 840 year: 2020 publication-title: Energy Environ. Sci. – volume: 31 start-page: 6231 year: 2019 publication-title: Chem. Mater. – volume: 8 start-page: 3847 year: 2015 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 360 start-page: 1442 year: 2018 publication-title: Science – volume: 6 start-page: 6142 year: 2015 publication-title: Nat. Commun. – volume: 26 start-page: 620 year: 2016 publication-title: Nano Energy – volume: 3 start-page: 9194 year: 2015 publication-title: J. Mater. Chem. A – volume: 25 start-page: 4613 year: 2013 publication-title: Chem. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 7943 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3308 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 247 start-page: 460 year: 2017 publication-title: Electrochim. Acta – volume: 5 start-page: 995 year: 2019 publication-title: Chem – volume: 580 start-page: 360 year: 2020 publication-title: Nature – volume: 4 start-page: 9430 year: 2016 publication-title: J. Mater. Chem. A – volume: 11 start-page: 1688 year: 2018 publication-title: Energy Environ. Sci. – volume: 40 start-page: 681 year: 2015 publication-title: MRS Bull. – volume: 4 start-page: 1594 year: 2020 publication-title: Joule – volume: 2 start-page: 2754 year: 2018 publication-title: Sustainable Energy Fuels – volume: 4 start-page: 6091 year: 2016 publication-title: J. Mater. Chem. A – volume: 49 start-page: 311 year: 2016 publication-title: Acc. Chem. Res. – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 17 start-page: 269 year: 2017 publication-title: Nano Lett. – volume: 141 start-page: 3515 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1942 year: 2017 publication-title: Energy Environ. Sci. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 17 start-page: 6863 year: 2017 publication-title: Nano Lett. – year: 2020 – volume: 5 start-page: 2535 year: 2020 publication-title: ACS Energy Lett. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 23 start-page: 1901 year: 2015 publication-title: Prog. Photovoltaics – volume: 7 start-page: 1368 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 963 year: 2015 publication-title: J. Mater. Chem. A – volume: 3 start-page: 9208 year: 2015 publication-title: J. Mater. Chem. A – volume: 27 start-page: 7149 year: 2015 publication-title: Chem. Mater. – volume: 399 start-page: 144 year: 2018 publication-title: J. Power Sources – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 282 year: 2020 publication-title: Trends Chem. – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 63 start-page: 5457 year: 2008 publication-title: Chem. Eng. Sci. – volume: 136 start-page: 622 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2173 year: 2018 publication-title: ACS Energy Lett. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 3 start-page: 205 year: 2019 publication-title: Joule – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 9 start-page: 4803 year: 2019 publication-title: Sci. Rep. – volume: 5 start-page: 429 year: 2014 publication-title: J. Phys. Chem. Lett. – year: 2021 publication-title: Mater. Today – volume: 8 start-page: 506 year: 2014 publication-title: Nat. Photonics – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 4 start-page: 1208 year: 2016 publication-title: J. Mater. Chem. A – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 47 start-page: 528 year: 2018 publication-title: Chem. Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 122 start-page: 9115 year: 2018 publication-title: J. Phys. Chem. A – volume: 27 start-page: 5570 year: 2015 publication-title: Chem. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 365 start-page: 473 year: 2019 publication-title: Science – volume: 3 start-page: 2287 year: 2019 publication-title: Sustainable Energy Fuels – volume: 18 start-page: 2172 year: 2018 publication-title: Nano Lett. – volume: 14 start-page: 4158 year: 2014 publication-title: Nano Lett. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 26 start-page: 4991 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 5629 year: 2020 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3532 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 9862 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 2179 year: 2019 publication-title: Joule – volume: 370 year: 2020 publication-title: Science – volume: 63 year: 2019 publication-title: Nano Energy – volume: 3 start-page: 401 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 17 start-page: 269 year: 2015 publication-title: Nano Energy – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 3 start-page: 290 year: 2017 publication-title: Chem – volume: 4 start-page: 313 year: 2021 publication-title: Matter – volume: 5 start-page: 271 year: 2020 publication-title: ACS Energy Lett. – volume: 8 start-page: 489 year: 2014 publication-title: Nat. Photonics – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 year: 2018 publication-title: Sol. RRL – volume: 9 start-page: 1989 year: 2016 publication-title: Energy Environ. Sci. – volume: 364 start-page: 475 year: 2019 publication-title: Science – volume: 39 start-page: 616 year: 2017 publication-title: Nano Energy – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 7081 year: 2015 publication-title: Nat. Commun. – volume: 45 start-page: 184 year: 2018 publication-title: Nano Energy – volume: 371 start-page: 112 year: 2016 publication-title: Appl. Surf. Sci. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 8 year: 2020 publication-title: Energy Technol. – volume: 10 start-page: 1027 year: 2019 publication-title: Nat. Commun. – volume: 571 start-page: 245 year: 2019 publication-title: Nature – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 6 start-page: 613 year: 2015 publication-title: Chem. Sci. – volume: 56 start-page: 7674 year: 2017 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 4 start-page: 3011 year: 2019 publication-title: ACS Energy Lett. – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 10 start-page: 520 year: 2019 publication-title: Nat. Commun. – volume: 9 start-page: 656 year: 2016 publication-title: Energy Environ. Sci. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 10 start-page: 2365 year: 2017 publication-title: Energy Environ. Sci. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3424 year: 2015 publication-title: Adv. Mater. – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 11 start-page: 177 year: 2020 publication-title: Nat. Commun. – volume: 6 start-page: 7731 year: 2018 publication-title: J. Mater. Chem. A – volume: 11 start-page: 949 year: 2009 publication-title: CrystEngComm – volume: 11 start-page: 1245 year: 2020 publication-title: Nat. Commun. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 7 start-page: 4955 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 54 year: 2019 publication-title: ACS Energy Lett. – volume: 2 start-page: 1177 year: 2017 publication-title: ACS Energy Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 32 start-page: 3346 year: 2020 publication-title: Chem. Mater. – volume: 5 start-page: 7423 year: 2017 publication-title: J. Mater. Chem. A – volume: 13 start-page: 1764 year: 2013 publication-title: Nano Lett. – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 64 start-page: 507 year: 2019 publication-title: Sci. Bull. – volume: 370 start-page: 108 year: 2020 publication-title: Science – volume: 45 start-page: 4224 year: 2016 publication-title: Dalton Trans. – volume: 18 start-page: 65 year: 2015 publication-title: Mater. Today – volume: 8 start-page: 3550 year: 2015 publication-title: Energy Environ. Sci. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 26 start-page: 7158 year: 2014 publication-title: Chem. Mater. – volume: 21 start-page: 483 year: 2018 publication-title: Mater. Today – volume: 48 start-page: 2791 year: 2015 publication-title: Acc. Chem. Res. – volume: 9 start-page: 3100 year: 2018 publication-title: Nat. Commun. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 6503 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 1199 year: 2016 publication-title: Chem. ‐ Asian J. – volume: 3 start-page: 428 year: 2018 publication-title: ACS Energy Lett. – volume: 11 start-page: 8804 year: 2017 publication-title: ACS Nano – volume: 7 start-page: 232 year: 2018 publication-title: Mater. Today Energy – volume: 9 start-page: 2326 year: 2016 publication-title: Energy Environ. Sci. – volume: 365 start-page: 591 year: 2019 publication-title: Science – volume: 9 start-page: 1706 year: 2016 publication-title: Energy Environ. Sci. – volume: 25 start-page: 6671 year: 2015 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1 year: 2019 publication-title: ACS Energy Lett. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1254 year: 2020 publication-title: Chem – volume: 73 year: 2020 publication-title: Nano Energy – volume: 21 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – year: 2021 publication-title: Small – volume: 6 start-page: 7348 year: 2015 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 18 start-page: 6090 year: 2016 publication-title: CrystEngComm – volume: 3 start-page: 286 year: 2018 publication-title: ACS Energy Lett. – volume: 1 start-page: 863 year: 2016 publication-title: ACS Energy Lett. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 10 start-page: 361 year: 2017 publication-title: Energy Environ. Sci. – ident: e_1_2_8_91_1 doi: 10.1021/acs.accounts.5b00229 – ident: e_1_2_8_151_1 doi: 10.1039/C4SC03141E – ident: e_1_2_8_275_1 doi: 10.1016/j.nanoen.2019.104313 – ident: e_1_2_8_191_1 doi: 10.1039/C4TA05373G – ident: e_1_2_8_243_1 doi: 10.1021/acsaem.8b00350 – ident: e_1_2_8_138_1 doi: 10.1039/C8SE00465J – ident: e_1_2_8_45_1 doi: 10.1002/aenm.201903587 – ident: e_1_2_8_140_1 doi: 10.1021/acsenergylett.6b00405 – ident: e_1_2_8_185_1 doi: 10.1016/j.mattod.2014.07.007 – ident: e_1_2_8_87_1 doi: 10.1002/aenm.201502458 – ident: e_1_2_8_141_1 doi: 10.1016/j.joule.2020.06.006 – ident: e_1_2_8_258_1 doi: 10.1002/aenm.201501534 – ident: e_1_2_8_136_1 doi: 10.1021/acs.chemmater.9b04239 – ident: e_1_2_8_3_1 doi: 10.1039/C8EE00154E – ident: e_1_2_8_57_1 doi: 10.1016/j.orgel.2018.09.011 – ident: e_1_2_8_262_1 doi: 10.1002/ente.201901042 – ident: e_1_2_8_224_1 doi: 10.1039/C6CE00842A – ident: e_1_2_8_116_1 doi: 10.1021/ja5033259 – ident: e_1_2_8_230_1 doi: 10.1021/acsami.5b00052 – ident: e_1_2_8_75_1 doi: 10.1016/j.joule.2018.10.011 – ident: e_1_2_8_52_1 doi: 10.1002/aenm.201902584 – ident: e_1_2_8_125_1 doi: 10.1016/j.joule.2019.06.014 – ident: e_1_2_8_27_1 doi: 10.1038/s41560-018-0192-2 – ident: e_1_2_8_197_1 doi: 10.1002/adma.201501489 – ident: e_1_2_8_192_1 doi: 10.1021/cm402919x – ident: e_1_2_8_6_1 doi: 10.1126/science.aav8680 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.201707444 – ident: e_1_2_8_109_1 doi: 10.1039/C4EE01076K – ident: e_1_2_8_171_1 doi: 10.1016/j.chempr.2017.05.020 – ident: e_1_2_8_127_1 doi: 10.1002/asia.201501379 – ident: e_1_2_8_173_1 doi: 10.1039/b809332f – ident: e_1_2_8_117_1 doi: 10.1126/science.aav7911 – ident: e_1_2_8_98_1 doi: 10.1002/adma.201401137 – ident: e_1_2_8_267_1 doi: 10.1021/acsami.7b11901 – ident: e_1_2_8_227_1 doi: 10.1126/science.abb8985 – ident: e_1_2_8_79_1 doi: 10.1016/j.joule.2018.10.008 – ident: e_1_2_8_124_1 doi: 10.1002/adma.201705393 – ident: e_1_2_8_143_1 doi: 10.1016/j.apsusc.2016.02.207 – ident: e_1_2_8_254_1 doi: 10.1021/acs.jpcc.6b05255 – ident: e_1_2_8_106_1 doi: 10.1002/adma.201804835 – ident: e_1_2_8_195_1 doi: 10.1002/adfm.201701804 – ident: e_1_2_8_228_1 doi: 10.1002/adma.201604758 – ident: e_1_2_8_16_1 doi: 10.1021/acsenergylett.8b01920 – ident: e_1_2_8_104_1 doi: 10.1039/C4TA06230B – ident: e_1_2_8_193_1 doi: 10.1039/C6EE03014A – ident: e_1_2_8_168_1 doi: 10.1039/C5NR02866C – ident: e_1_2_8_269_1 doi: 10.1016/j.nanoen.2019.104227 – ident: e_1_2_8_263_1 doi: 10.1016/j.electacta.2017.07.040 – ident: e_1_2_8_198_1 doi: 10.1039/C6TA06851K – ident: e_1_2_8_71_1 doi: 10.1002/adfm.201908613 – ident: e_1_2_8_112_1 doi: 10.1002/adfm.201804603 – ident: e_1_2_8_119_1 doi: 10.1002/advs.201500301 – ident: e_1_2_8_188_1 doi: 10.1002/ente.201700484 – ident: e_1_2_8_241_1 doi: 10.1038/ncomms8081 – ident: e_1_2_8_85_1 doi: 10.1039/C9TA10899H – ident: e_1_2_8_217_1 doi: 10.1002/adfm.201705763 – ident: e_1_2_8_133_1 doi: 10.1038/ncomms7142 – ident: e_1_2_8_244_1 doi: 10.1016/j.solmat.2018.07.031 – ident: e_1_2_8_26_1 doi: 10.1038/nenergy.2017.18 – ident: e_1_2_8_65_1 doi: 10.1002/adfm.202001752 – ident: e_1_2_8_219_1 doi: 10.1016/j.nanoen.2016.05.052 – ident: e_1_2_8_120_1 doi: 10.1021/acs.nanolett.7b03179 – year: 2021 ident: e_1_2_8_58_1 publication-title: Small – ident: e_1_2_8_90_1 doi: 10.1016/j.jpcs.2008.05.007 – ident: e_1_2_8_255_1 doi: 10.1126/science.1254050 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-018-05531-8 – ident: e_1_2_8_179_1 doi: 10.1002/adma.201806823 – ident: e_1_2_8_225_1 doi: 10.1021/acsami.9b06315 – ident: e_1_2_8_129_1 doi: 10.1021/jz501869f – ident: e_1_2_8_102_1 doi: 10.1002/aenm.201501310 – ident: e_1_2_8_63_1 doi: 10.1039/C5TA00358J – ident: e_1_2_8_211_1 doi: 10.1002/adma.202000865 – ident: e_1_2_8_149_1 doi: 10.1016/j.trechm.2020.01.010 – ident: e_1_2_8_260_1 doi: 10.1002/aenm.201500543 – ident: e_1_2_8_264_1 doi: 10.1021/acs.nanolett.6b04015 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201603021 – ident: e_1_2_8_8_1 doi: 10.1039/C9EE03736E – ident: e_1_2_8_118_1 doi: 10.1002/aenm.202000566 – ident: e_1_2_8_246_1 doi: 10.1039/C6EE00709K – ident: e_1_2_8_62_1 doi: 10.1021/jz5017312 – ident: e_1_2_8_2_1 doi: 10.1002/solr.201900265 – ident: e_1_2_8_208_1 doi: 10.1021/acs.jpcc.8b08075 – ident: e_1_2_8_186_1 doi: 10.1016/j.nanoen.2019.103867 – ident: e_1_2_8_196_1 doi: 10.1016/j.mtener.2017.10.001 – ident: e_1_2_8_233_1 doi: 10.1002/adma.201702157 – ident: e_1_2_8_66_1 doi: 10.1039/C9SE00306A – ident: e_1_2_8_207_1 doi: 10.1246/cl.171214 – ident: e_1_2_8_122_1 doi: 10.1002/solr.201800083 – ident: e_1_2_8_214_1 doi: 10.1021/cm5037869 – ident: e_1_2_8_189_1 doi: 10.1002/aenm.201502206 – ident: e_1_2_8_103_1 doi: 10.1039/C5EE03255E – ident: e_1_2_8_170_1 doi: 10.1002/adma.201701073 – ident: e_1_2_8_190_1 doi: 10.1021/ja504632z – ident: e_1_2_8_220_1 doi: 10.1039/C4TA06198E – ident: e_1_2_8_107_1 doi: 10.1039/C8TA05444D – ident: e_1_2_8_165_1 doi: 10.1021/jacs.5b04930 – ident: e_1_2_8_92_1 doi: 10.1016/j.nanoen.2020.104803 – ident: e_1_2_8_41_1 doi: 10.1039/C6EE00030D – ident: e_1_2_8_203_1 doi: 10.1002/solr.201800164 – ident: e_1_2_8_55_1 doi: 10.1038/s41560-017-0060-5 – ident: e_1_2_8_199_1 doi: 10.1039/C9TA08130E – ident: e_1_2_8_222_1 doi: 10.1039/C5CC03615A – ident: e_1_2_8_182_1 doi: 10.1002/adfm.201803130 – ident: e_1_2_8_51_1 doi: 10.1038/s41467-019-09093-1 – ident: e_1_2_8_242_1 doi: 10.1002/adfm.201703546 – ident: e_1_2_8_43_1 doi: 10.1063/1.4748888 – ident: e_1_2_8_223_1 doi: 10.1039/C7EE02272G – ident: e_1_2_8_213_1 doi: 10.1002/adfm.202001764 – ident: e_1_2_8_276_1 doi: 10.1002/adma.201604545 – ident: e_1_2_8_70_1 doi: 10.1016/j.nanoen.2017.07.046 – ident: e_1_2_8_162_1 doi: 10.1016/j.nanoen.2015.11.008 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201901284 – ident: e_1_2_8_212_1 doi: 10.1021/acsenergylett.9b02080 – ident: e_1_2_8_100_1 doi: 10.1002/cssc.201903216 – ident: e_1_2_8_28_1 doi: 10.1126/science.aba0893 – ident: e_1_2_8_232_1 doi: 10.1002/aenm.201902579 – ident: e_1_2_8_144_1 doi: 10.1021/acsenergylett.8b02207 – ident: e_1_2_8_146_1 doi: 10.1021/acs.nanolett.8b00505 – ident: e_1_2_8_64_1 doi: 10.1021/acs.jpca.8b07495 – ident: e_1_2_8_32_1 doi: 10.1002/smll.201907226 – ident: e_1_2_8_236_1 doi: 10.1002/advs.201901241 – ident: e_1_2_8_234_1 doi: 10.1002/adma.201500048 – ident: e_1_2_8_247_1 doi: 10.1126/sciadv.1700106 – ident: e_1_2_8_61_1 doi: 10.1038/ncomms14075 – ident: e_1_2_8_132_1 doi: 10.1021/cm503828b – ident: e_1_2_8_89_1 doi: 10.1021/acs.jpcc.7b06268 – ident: e_1_2_8_167_1 doi: 10.1016/j.chempr.2019.02.025 – ident: e_1_2_8_111_1 doi: 10.1039/c0dt01601b – ident: e_1_2_8_78_1 doi: 10.1021/acs.jpclett.5b00968 – ident: e_1_2_8_206_1 doi: 10.1021/acsami.9b13648 – ident: e_1_2_8_95_1 doi: 10.1021/ja809598r – ident: e_1_2_8_261_1 doi: 10.1038/ncomms8747 – ident: e_1_2_8_113_1 doi: 10.1021/acs.jpcc.7b06278 – ident: e_1_2_8_194_1 doi: 10.1021/acsnano.7b02867 – ident: e_1_2_8_128_1 doi: 10.1038/s41598-019-41328-5 – ident: e_1_2_8_152_1 doi: 10.1021/acsenergylett.7b00282 – ident: e_1_2_8_257_1 doi: 10.1038/ncomms8348 – year: 2021 ident: e_1_2_8_59_1 publication-title: Mater. Today – ident: e_1_2_8_266_1 doi: 10.1021/ja512518r – ident: e_1_2_8_18_1 doi: 10.1039/C8TA01049H – ident: e_1_2_8_56_1 doi: 10.1002/solr.201900140 – ident: e_1_2_8_235_1 doi: 10.1039/C7TA01798G – ident: e_1_2_8_49_1 doi: 10.1038/s41467-019-13909-5 – ident: e_1_2_8_239_1 doi: 10.1038/s41586-019-1357-2 – ident: e_1_2_8_272_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_8_250_1 doi: 10.1038/ncomms10228 – ident: e_1_2_8_204_1 doi: 10.1021/acsaem.9b01652 – ident: e_1_2_8_238_1 doi: 10.1039/C5RA08102E – ident: e_1_2_8_155_1 doi: 10.1002/pip.2632 – ident: e_1_2_8_21_1 doi: 10.1021/acs.chemmater.5b04107 – ident: e_1_2_8_48_1 doi: 10.1039/C6CP03969C – ident: e_1_2_8_29_1 doi: 10.1038/s41586-020-2184-1 – ident: e_1_2_8_169_1 doi: 10.1039/C6TC04944C – ident: e_1_2_8_153_1 doi: 10.1021/jacs.7b07223 – ident: e_1_2_8_24_1 doi: 10.1039/C5EE03874J – ident: e_1_2_8_205_1 doi: 10.1021/nl501838y – ident: e_1_2_8_252_1 doi: 10.1002/adfm.201809194 – ident: e_1_2_8_164_1 doi: 10.1038/nmat4014 – ident: e_1_2_8_5_1 doi: 10.1126/science.aap9282 – ident: e_1_2_8_67_1 doi: 10.1002/solr.201800305 – ident: e_1_2_8_187_1 doi: 10.1016/j.nanoen.2017.03.048 – ident: e_1_2_8_34_1 doi: 10.1021/acs.jpclett.6b00433 – ident: e_1_2_8_166_1 doi: 10.1016/j.ces.2008.08.003 – ident: e_1_2_8_9_1 – ident: e_1_2_8_72_1 doi: 10.1039/C8EE03051K – ident: e_1_2_8_105_1 doi: 10.1038/s41467-020-15078-2 – ident: e_1_2_8_46_1 doi: 10.1039/C9CP03656C – ident: e_1_2_8_76_1 doi: 10.1021/acsenergylett.9b02338 – ident: e_1_2_8_17_1 doi: 10.1039/C8TA01642A – ident: e_1_2_8_80_1 doi: 10.1002/aenm.201801050 – ident: e_1_2_8_139_1 doi: 10.1021/acsenergylett.8b01201 – ident: e_1_2_8_154_1 doi: 10.1002/anie.201704188 – ident: e_1_2_8_36_1 doi: 10.1021/acsenergylett.6b00158 – ident: e_1_2_8_210_1 doi: 10.1039/C6TA00679E – ident: e_1_2_8_73_1 doi: 10.1038/s41563-019-0602-2 – ident: e_1_2_8_174_1 doi: 10.1021/acsenergylett.0c01130 – ident: e_1_2_8_7_1 doi: 10.1038/s41467-019-09011-5 – ident: e_1_2_8_172_1 doi: 10.1016/j.cej.2011.02.064 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201803572 – ident: e_1_2_8_88_1 doi: 10.1021/acsenergylett.9b02604 – ident: e_1_2_8_159_1 doi: 10.1002/adma.201801418 – ident: e_1_2_8_134_1 doi: 10.1021/acs.chemmater.5b02378 – ident: e_1_2_8_121_1 doi: 10.1002/aenm.201803587 – ident: e_1_2_8_249_1 doi: 10.1038/nenergy.2016.142 – ident: e_1_2_8_278_1 doi: 10.1002/adma.202006087 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201800710 – volume: 8 start-page: 3847 year: 2015 ident: e_1_2_8_161_1 publication-title: Adv. Mater. – ident: e_1_2_8_180_1 doi: 10.1021/acsenergylett.7b01255 – ident: e_1_2_8_53_1 doi: 10.1002/aenm.201904050 – ident: e_1_2_8_158_1 doi: 10.1002/adma.201400231 – ident: e_1_2_8_200_1 doi: 10.1126/science.aah5557 – ident: e_1_2_8_251_1 doi: 10.1002/adfm.201808855 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201702140 – ident: e_1_2_8_183_1 doi: 10.1016/j.isci.2019.04.024 – ident: e_1_2_8_184_1 doi: 10.1039/C7TA00042A – ident: e_1_2_8_175_1 doi: 10.1016/j.nanoen.2015.08.023 – ident: e_1_2_8_176_1 doi: 10.1002/ange.201405334 – ident: e_1_2_8_130_1 doi: 10.1039/C7TA00973A – ident: e_1_2_8_268_1 doi: 10.1038/nature12340 – ident: e_1_2_8_215_1 doi: 10.1021/acs.chemmater.5b03169 – ident: e_1_2_8_271_1 doi: 10.1002/adma.201805660 – ident: e_1_2_8_13_1 doi: 10.1016/j.chempr.2020.04.013 – ident: e_1_2_8_39_1 doi: 10.1039/c3ee43822h – ident: e_1_2_8_1_1 doi: 10.1021/acsami.8b20933 – ident: e_1_2_8_14_1 doi: 10.1002/anie.201907331 – ident: e_1_2_8_256_1 doi: 10.1016/j.jpowsour.2017.06.013 – ident: e_1_2_8_77_1 doi: 10.1016/j.nanoen.2019.104241 – ident: e_1_2_8_137_1 doi: 10.1039/C5TA08744A – ident: e_1_2_8_60_1 doi: 10.1002/aenm.202002558 – ident: e_1_2_8_97_1 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_8_177_1 doi: 10.1002/adma.201401685 – ident: e_1_2_8_157_1 doi: 10.1039/C5TA07829F – ident: e_1_2_8_265_1 doi: 10.1002/adma.201908011 – ident: e_1_2_8_178_1 doi: 10.1021/ja411509g – ident: e_1_2_8_115_1 doi: 10.1002/adma.201602696 – ident: e_1_2_8_248_1 doi: 10.1038/s41467-019-08455-z – ident: e_1_2_8_114_1 doi: 10.1002/adfm.201808801 – ident: e_1_2_8_35_1 doi: 10.1039/C5EE03255E – ident: e_1_2_8_229_1 doi: 10.1002/adfm.201503559 – ident: e_1_2_8_202_1 doi: 10.1002/advs.201700131 – ident: e_1_2_8_96_1 doi: 10.1038/srep35685 – ident: e_1_2_8_123_1 doi: 10.1021/acsenergylett.7b01151 – ident: e_1_2_8_131_1 doi: 10.1126/science.1228604 – ident: e_1_2_8_47_1 doi: 10.1039/C8TC04750B – ident: e_1_2_8_40_1 doi: 10.1038/nature14133 – ident: e_1_2_8_86_1 doi: 10.1002/adma.201802509 – ident: e_1_2_8_101_1 doi: 10.1002/anie.201309361 – ident: e_1_2_8_148_1 doi: 10.1021/ja5071398 – ident: e_1_2_8_108_1 doi: 10.1038/nphoton.2014.82 – ident: e_1_2_8_99_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_8_22_1 doi: 10.1039/C6EE00030D – ident: e_1_2_8_277_1 doi: 10.1039/D0TA00123F – ident: e_1_2_8_209_1 doi: 10.1039/C5EE02555A – ident: e_1_2_8_126_1 doi: 10.1039/C9TA01319A – ident: e_1_2_8_37_1 doi: 10.1039/C5DT03481G – ident: e_1_2_8_74_1 doi: 10.1002/aenm.201702116 – ident: e_1_2_8_94_1 doi: 10.1039/C7EE01675A – ident: e_1_2_8_10_1 doi: 10.1038/ncomms14555 – ident: e_1_2_8_216_1 doi: 10.1002/aenm.201601297 – ident: e_1_2_8_221_1 doi: 10.1039/C6TA02999J – ident: e_1_2_8_160_1 doi: 10.1016/j.jpowsour.2018.07.093 – ident: e_1_2_8_259_1 doi: 10.1002/aenm.201601193 – ident: e_1_2_8_54_1 doi: 10.1021/acs.chemmater.9b02248 – ident: e_1_2_8_142_1 doi: 10.1021/nl400349b – ident: e_1_2_8_42_1 doi: 10.1021/acsnano.8b00267 – ident: e_1_2_8_44_1 doi: 10.1002/anie.201910800 – ident: e_1_2_8_69_1 doi: 10.1039/C9TA04366G – ident: e_1_2_8_253_1 doi: 10.1002/adfm.201703061 – ident: e_1_2_8_83_1 doi: 10.1002/solr.201700048 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201901519 – ident: e_1_2_8_147_1 doi: 10.1021/jz402706q – ident: e_1_2_8_231_1 doi: 10.1039/C4NR02425G – ident: e_1_2_8_237_1 doi: 10.1126/science.abc4417 – ident: e_1_2_8_245_1 doi: 10.1002/adma.202001243 – ident: e_1_2_8_68_1 doi: 10.1021/acsenergylett.7b01197 – ident: e_1_2_8_93_1 doi: 10.1016/j.matt.2020.10.023 – ident: e_1_2_8_201_1 doi: 10.1016/j.nanoen.2017.12.047 – ident: e_1_2_8_150_1 doi: 10.1007/s12274-019-2336-5 – ident: e_1_2_8_110_1 doi: 10.1002/advs.201903540 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201706576 – ident: e_1_2_8_81_1 doi: 10.1002/aenm.201800525 – ident: e_1_2_8_181_1 doi: 10.1002/adma.201805214 – ident: e_1_2_8_240_1 doi: 10.1039/C8SC05284K – ident: e_1_2_8_50_1 doi: 10.1002/adma.202004630 – ident: e_1_2_8_226_1 doi: 10.1021/acsenergylett.7b00278 – ident: e_1_2_8_135_1 doi: 10.1021/jacs.8b11210 – ident: e_1_2_8_156_1 doi: 10.1002/aenm.201502202 – ident: e_1_2_8_84_1 doi: 10.1021/acs.jpcc.8b00980 – ident: e_1_2_8_270_1 doi: 10.1016/j.mattod.2017.12.002 – ident: e_1_2_8_163_1 doi: 10.1021/acs.accounts.5b00440 – ident: e_1_2_8_218_1 doi: 10.1021/acsaem.8b01075 – ident: e_1_2_8_12_1 doi: 10.1557/mrs.2015.167 – ident: e_1_2_8_20_1 doi: 10.1016/j.scib.2019.04.013 – ident: e_1_2_8_25_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_8_145_1 doi: 10.1021/acsenergylett.7b00357 – ident: e_1_2_8_274_1 doi: 10.1126/science.aax3294 – ident: e_1_2_8_82_1 doi: 10.1016/j.nantod.2015.04.009 – ident: e_1_2_8_273_1 doi: 10.1039/C6TA00577B |
SSID | ssj0000491033 |
Score | 2.5397615 |
SecondaryResourceType | review_article |
Snippet | Metal‐halide perovskites (MHPs) are regarded as ideal photovoltaic materials because of their variable crystal material composition and superb optoelectronic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Crystallization crystallization kinetics crystallization modulation crystallization properties Kinetics metal‐halide perovskites Optoelectronics Perovskites |
Title | Metal‐Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202100784 https://www.proquest.com/docview/2544384734 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVge4EHxKcYDOQHJB6mQGI7ictbNYoqWCYBndQ9RbFzI1Wq0mlrkeCJn8Bv5JdwHTuOO4YYvERtEuej98Q5173nmJAXmjPFE51Gykh8hGIyklolkYQ8VgIwJ-kUcsVxNj0R7-fpfCgd6tQla_VKf7tSV_I_UcV1GFejkv2HyPqD4gr8jPHFJUYYl9eKcQFInX25whQpdQ2mpn315cIMyh4cnn9F8rdcOq3lwQeklMaW2crRP3nVyiS0-Tcj6bNA3hhWGvZ2tX3hAFjlILJee7t9-Ob2X4_TDfirKxYehvNNt_XjohmgebroJsqbLlrf4qg6C8ckWFA75bpRfOlHmXQjlxCus-ZMvu9NAoxZMfVvfbr1iK2gNcYBzFR12Enlts2zL73UfKmhtWVmpWlf-vY3yS7DvAI7xt3x2-Losx-Ww4QpiXkny-jvobf6jNnr7YvYpjJDfhJmOR1Nmd0ld1x-QccWLPfIDWjvk9uB6-QDUnew-fn9hwUMHQBDLwGG9oB5Q8fUwoWuGhrChSJcaAAX6uDykJy8m8wOp5GbbCPSSCFFpPJaYocseAw5zyGuail4U0t8mPOmyUeZZiKHVGUNaNlUWdXEI5lKhY2AK-Q_j8hOu2rhMaFpLmCEeYBSVS24TtWoSpBpZipVWqaQ7ZGo_91K7ZzozYQoy_LqYO2Rl37_M-vB8sc99_swlO45vSiNCR9HEsZxM-tC85ejlOPJceG_Pbn22Z-SW8PDsE921ucbeIaUda2eO5j9AlOHkRU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%90Halide+Perovskite+Crystallization+Kinetics%3A+A+Review+of+Experimental+and+Theoretical+Studies&rft.jtitle=Advanced+energy+materials&rft.au=Xie%2C+Yue%E2%80%90Min&rft.au=Xue%2C+Qifan&rft.au=Yip%2C+Hin%E2%80%90Lap&rft.date=2021-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=24&rft_id=info:doi/10.1002%2Faenm.202100784&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202100784 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |