Stability of Perovskite Thin Films under Working Condition: Bias‐Dependent Degradation and Grain Boundary Effects
Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs)...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 36 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs.
Bias‐dependent stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite and double‐edged roles of grain boundaries in carrier transport and degradation of solar cells under working condition are systematically investigated. Photocurrent atomic force microscopy results show that grain boundaries enhance carrier transport at larger bias, but serve as breakthrough sites at smaller bias of 0.1 V or below when irreversible decomposition of perovskite occurs. |
---|---|
AbstractList | Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs. Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs. Bias‐dependent stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite and double‐edged roles of grain boundaries in carrier transport and degradation of solar cells under working condition are systematically investigated. Photocurrent atomic force microscopy results show that grain boundaries enhance carrier transport at larger bias, but serve as breakthrough sites at smaller bias of 0.1 V or below when irreversible decomposition of perovskite occurs. Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs. |
Author | Chen, Liang Yan, Jia‐Wei Hui, Yong Zhou, Jian‐Zhang Mao, Bing‐Wei Tan, Yan‐Yan Nan, Zi‐Ang |
Author_xml | – sequence: 1 givenname: Yong surname: Hui fullname: Hui, Yong – sequence: 2 givenname: Yan‐Yan surname: Tan fullname: Tan, Yan‐Yan – sequence: 3 givenname: Liang surname: Chen fullname: Chen, Liang email: lchen@xmu.edu.cn – sequence: 4 givenname: Zi‐Ang surname: Nan fullname: Nan, Zi‐Ang – sequence: 5 givenname: Jian‐Zhang surname: Zhou fullname: Zhou, Jian‐Zhang email: jzzhou@xmu.edu.cn – sequence: 6 givenname: Jia‐Wei surname: Yan fullname: Yan, Jia‐Wei – sequence: 7 givenname: Bing‐Wei orcidid: 0000-0002-9015-0162 surname: Mao fullname: Mao, Bing‐Wei email: bwmao@xmu.edu.cn |
BookMark | eNqFkM1KAzEUhYNUsK1uXQdcT00y_-76r1BRsKK7IZPc1LTTpCZTpTsfwWf0SZxS0aWre-F-59zD6aCWsQYQOqekRwlhl1yqdY8RRkmY5dERatOEJkFIWNb63enzCep4vySEpmkYtZF_qHmpK13vsFX4Hpx98ytdA56_aIMnulp7vDUSHH6ybqXNAg-tkbrW1lzhgeb-6-NzBBtoEFPjESwcl3x_xdxIPHW8cRnYxoG7HR4rBaL2p-hY8crD2c_sosfJeD68DmZ305thfxaIkKZRUMZS5aVQJIU0ByVkBjTPhYxpAlKmPAIWl2UOgtOUAJMiI2FMpWR5pJJMsLCLLg6-G2dft-DrYmm3zjQvCxYnWRTFWZg0VO9ACWe9d6CKjdPrJm5BSbEvttgXW_wW2wjyg-BdV7D7hy76o8ntn_YbnPyBjA |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_1c04142 crossref_primary_10_1016_j_cej_2023_144056 crossref_primary_10_1021_acsmaterialsau_1c00045 crossref_primary_10_1002_adfm_202402222 crossref_primary_10_1021_acsami_1c15477 crossref_primary_10_1021_acsenergylett_4c01359 crossref_primary_10_1038_s41566_023_01207_y crossref_primary_10_1016_j_materresbull_2022_111987 crossref_primary_10_1002_aenm_202203596 crossref_primary_10_1002_solr_202200559 crossref_primary_10_1016_j_cej_2022_135647 crossref_primary_10_1016_j_jechem_2022_05_015 crossref_primary_10_1021_acsaem_3c00676 crossref_primary_10_1016_j_nanoen_2024_109543 crossref_primary_10_1002_adma_202304855 crossref_primary_10_1021_acsmaterialslett_1c00474 crossref_primary_10_1016_j_surfin_2023_103670 crossref_primary_10_1002_adma_202302552 crossref_primary_10_1021_acs_jpcc_1c05841 crossref_primary_10_1002_eem2_12696 crossref_primary_10_1002_smll_202402159 crossref_primary_10_1016_j_optmat_2023_114796 crossref_primary_10_1039_D3TA04458K crossref_primary_10_1021_acsami_2c05956 crossref_primary_10_1002_smll_202207092 crossref_primary_10_1016_j_chphi_2022_100116 crossref_primary_10_1039_D3TC03666A crossref_primary_10_1002_ente_202100952 crossref_primary_10_1016_j_nantod_2023_101970 crossref_primary_10_1038_s41560_021_00949_9 crossref_primary_10_1016_j_jallcom_2023_172042 crossref_primary_10_3390_en16093793 crossref_primary_10_1021_acs_cgd_2c00789 |
Cites_doi | 10.1038/s41560-019-0529-5 10.1038/nenergy.2016.93 10.1021/acsami.5b09797 10.1063/5.0042663 10.1002/smll.202005495 10.1126/science.aaa5760 10.1021/acs.jpclett.5b00380 10.1002/adfm.201808843 10.1021/jacs.6b12432 10.1039/C6EE00413J 10.1016/j.nanoen.2017.12.047 10.1021/jz4020162 10.1002/aenm.201901489 10.1038/s41560-017-0060-5 10.1002/adfm.201504451 10.1021/acsami.5b09801 10.1002/adma.201305172 10.1002/adfm.201705363 10.1021/acs.jpcc.6b09412 10.1002/aenm.201903161 10.1021/ja809598r 10.1016/j.mtener.2017.07.014 10.1021/acs.jpcc.6b11984 10.1021/jacs.7b10430 10.1002/admi.201901521 10.1038/ncomms11574 10.1002/adma.201306281 10.1126/science.aan2301 10.1002/aenm.201700912 10.1021/jacs.6b00645 10.1002/aenm.201600330 10.1021/acsami.8b01033 10.1063/5.0014187 10.1038/nenergy.2016.81 10.1126/science.1243982 10.1021/acs.chemmater.5b01909 10.1038/ncomms8497 10.1126/science.aaa5333 10.1002/aenm.201500477 10.1039/C8EE03475C 10.1038/nature25989 10.1038/nnano.2014.181 10.1039/C6EE00409A 10.1021/acs.chemmater.5b00660 10.1002/adma.201902413 10.1063/1.4864778 10.1021/acsami.7b06816 10.1021/nl502612m 10.1038/ncomms14547 10.1002/aenm.201500962 10.1021/acs.jpclett.5b00182 10.1021/jz500059v 10.1038/s41598-017-04690-w 10.1039/C6TC03206K 10.1021/nl404454h 10.1039/C6EE02941H 10.1021/jacs.5b03144 10.1021/ja511132a 10.1007/978-3-319-35114-8_6 10.1039/C7SE00545H 10.1021/acsami.7b17938 10.1021/acsenergylett.8b00270 10.1021/acs.nanolett.7b00847 10.1021/acs.jpclett.6b01176 10.1021/nl404252e 10.1002/aenm.201500721 10.1039/C6EE01889K 10.1016/j.nanoen.2017.12.040 10.1038/s41467-017-02331-4 10.1002/adfm.201701924 10.1039/C7TC02652H |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202103894 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202103894 ADFM202103894 |
Genre | article |
GrantInformation_xml | – fundername: MOST funderid: 2016YFA0200703; 218YFC1602805 – fundername: NSF funderid: 21473147 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMNL AASGY AAYXX ACBWZ ACRPL ACYXJ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3174-b5df9bcf07e79efcd8e199cd516edd7a4e25bb9eca170e2dc80351dd294f68c23 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 18:57:18 EDT 2024 Fri Dec 06 04:21:09 EST 2024 Sat Aug 24 01:02:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-b5df9bcf07e79efcd8e199cd516edd7a4e25bb9eca170e2dc80351dd294f68c23 |
ORCID | 0000-0002-9015-0162 |
PQID | 2568445836 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2568445836 crossref_primary_10_1002_adfm_202103894 wiley_primary_10_1002_adfm_202103894_ADFM202103894 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2016; 6 9 2016 2017 2017 2018; 7 5 9 10 2017; 8 2015 2014 2015 2014; 6 14 5 104 2015; 6 2016 2019; 7 31 2019 2018; 12 45 2017; 27 2017 2017; 356 17 2014 2014 2016; 14 5 120 2009; 131 2015; 348 2018; 45 2015; 7 2016 2017; 1 8 2016 2017 2018 2018; 1 121 140 555 2014 2013 2015 2014 2014 2017 2013; 9 342 347 26 26 139 4 2015; 27 2016 2016; 9 26 2015; 137 2015 2015 2019 2021 2020; 6 7 10 118 7 2017 2016 2021 2018; 7 3 2019 2018; 9 7 2017 2018; 10 28 2016 2018 2015; 4 2 5 2020; 117 2014; 14 2016; 138 2015 2015 2015 2017; 27 137 5 7 2018; 10 2018 2020 2019; 3 5 29 2016; 9 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_28_4 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_3_1 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_3_7 e_1_2_8_9_1 e_1_2_8_3_6 e_1_2_8_5_4 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_15_3 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_30_3 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_21_4 e_1_2_8_21_5 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_21_3 e_1_2_8_23_1 e_1_2_8_14_4 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_16_1 e_1_2_8_18_4 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_31_4 e_1_2_8_33_2 e_1_2_8_12_1 e_1_2_8_31_3 e_1_2_8_33_1 |
References_xml | – volume: 1 8 year: 2016 2017 publication-title: Nat. Energy Nat. Commun. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 27 137 5 7 start-page: 3397 1530 4645 year: 2015 2015 2015 2017 publication-title: Chem. Mater. J. Am. Chem. Soc. Adv. Energy Mater. Sci. Rep. – volume: 8 start-page: 2230 year: 2017 publication-title: Nat. Commun. – volume: 27 start-page: 4405 year: 2015 publication-title: Chem. Mater. – volume: 10 28 start-page: 516 year: 2017 2018 publication-title: Energy Environ. Sci. Adv. Funct. Mater. – volume: 9 26 start-page: 3642 3048 year: 2016 2016 publication-title: Energy Environ. Sci. Adv. Funct. Mater. – volume: 14 5 120 start-page: 888 680 year: 2014 2014 2016 publication-title: Nano Lett. J. Phys. Chem. Lett. J. Phys. Chem. C – volume: 3 5 29 start-page: 61 35 year: 2018 2020 2019 publication-title: Nat. Energy Nat. Energy Adv. Funct. Mater. – volume: 7 31 year: 2016 2019 publication-title: Nat. Commun. Adv. Mater. – volume: 14 start-page: 1000 year: 2014 publication-title: Nano Lett. – volume: 138 start-page: 3884 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 5 9 10 start-page: 3091 7799 year: 2016 2017 2017 2018 publication-title: J. Phys. Chem. Lett. J. Mater. Chem. C ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 6 14 5 104 start-page: 7497 6281 year: 2015 2014 2015 2014 publication-title: Nat. Commun. Nano Lett. Adv. Energy Mater. Appl. Phys. Lett. – volume: 7 3 start-page: 137 970 year: 2017 2016 2021 2018 publication-title: Adv. Energy Mater. Small ACS Energy Lett. – volume: 356 17 start-page: 1376 3231 year: 2017 2017 publication-title: Science Nano Lett. – volume: 6 7 10 118 7 start-page: 875 year: 2015 2015 2019 2021 2020 publication-title: J. Phys. Chem. Lett. ACS Appl. Mater. Interfaces Adv. Energy Mater. Appl. Phys. Lett. Adv. Mater. Interfaces – volume: 45 start-page: 184 year: 2018 publication-title: Nano Energy – volume: 1 121 140 555 start-page: 3143 1358 497 year: 2016 2017 2018 2018 publication-title: Nat. Energy J. Phys. Chem. C J. Am. Chem. Soc. Nature – volume: 12 45 start-page: 550 94 year: 2019 2018 publication-title: Energy Environ. Sci. Nano Energy – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 9 7 start-page: 149 year: 2019 2018 publication-title: Adv. Energy Mater. Mater. Today Energy – volume: 137 start-page: 9210 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 4 2 5 start-page: 9060 905 year: 2016 2018 2015 publication-title: J. Mater. Chem. C Sustainable Energy Fuels Adv. Energy Mater. – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 1655 year: 2016 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1249 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 348 start-page: 683 year: 2015 publication-title: Science – volume: 10 start-page: 7974 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 342 347 26 26 139 4 start-page: 927 341 967 4653 1584 3320 3623 year: 2014 2013 2015 2014 2014 2017 2013 publication-title: Nat. Nanotechnol. Science Science Adv. Mater. Adv. Mater. J. Am. Chem. Soc. J. Phys. Chem. Lett. – volume: 6 9 start-page: 1752 year: 2016 2016 publication-title: Adv. Energy Mater. Energy Environ. Sci. – ident: e_1_2_8_4_2 doi: 10.1038/s41560-019-0529-5 – ident: e_1_2_8_26_1 doi: 10.1038/nenergy.2016.93 – ident: e_1_2_8_24_1 doi: 10.1021/acsami.5b09797 – ident: e_1_2_8_21_4 doi: 10.1063/5.0042663 – ident: e_1_2_8_5_3 doi: 10.1002/smll.202005495 – ident: e_1_2_8_3_3 doi: 10.1126/science.aaa5760 – ident: e_1_2_8_32_1 doi: 10.1021/acs.jpclett.5b00380 – ident: e_1_2_8_4_3 doi: 10.1002/adfm.201808843 – ident: e_1_2_8_3_6 doi: 10.1021/jacs.6b12432 – ident: e_1_2_8_12_2 doi: 10.1039/C6EE00413J – ident: e_1_2_8_27_1 doi: 10.1016/j.nanoen.2017.12.047 – ident: e_1_2_8_3_7 doi: 10.1021/jz4020162 – ident: e_1_2_8_6_1 doi: 10.1002/aenm.201901489 – ident: e_1_2_8_4_1 doi: 10.1038/s41560-017-0060-5 – ident: e_1_2_8_22_2 doi: 10.1002/adfm.201504451 – ident: e_1_2_8_21_2 doi: 10.1021/acsami.5b09801 – ident: e_1_2_8_3_5 doi: 10.1002/adma.201305172 – ident: e_1_2_8_19_2 doi: 10.1002/adfm.201705363 – ident: e_1_2_8_30_3 doi: 10.1021/acs.jpcc.6b09412 – ident: e_1_2_8_21_3 doi: 10.1002/aenm.201903161 – ident: e_1_2_8_1_1 doi: 10.1021/ja809598r – ident: e_1_2_8_6_2 doi: 10.1016/j.mtener.2017.07.014 – ident: e_1_2_8_28_2 doi: 10.1021/acs.jpcc.6b11984 – ident: e_1_2_8_28_3 doi: 10.1021/jacs.7b10430 – ident: e_1_2_8_21_5 doi: 10.1002/admi.201901521 – ident: e_1_2_8_13_1 doi: 10.1038/ncomms11574 – ident: e_1_2_8_3_4 doi: 10.1002/adma.201306281 – ident: e_1_2_8_33_1 doi: 10.1126/science.aan2301 – ident: e_1_2_8_5_1 doi: 10.1002/aenm.201700912 – ident: e_1_2_8_7_1 doi: 10.1021/jacs.6b00645 – ident: e_1_2_8_12_1 doi: 10.1002/aenm.201600330 – ident: e_1_2_8_14_4 doi: 10.1021/acsami.8b01033 – ident: e_1_2_8_20_1 doi: 10.1063/5.0014187 – ident: e_1_2_8_28_1 doi: 10.1038/nenergy.2016.81 – ident: e_1_2_8_3_2 doi: 10.1126/science.1243982 – ident: e_1_2_8_29_1 doi: 10.1021/acs.chemmater.5b01909 – ident: e_1_2_8_31_1 doi: 10.1038/ncomms8497 – ident: e_1_2_8_10_1 doi: 10.1126/science.aaa5333 – ident: e_1_2_8_18_3 doi: 10.1002/aenm.201500477 – ident: e_1_2_8_17_1 doi: 10.1039/C8EE03475C – ident: e_1_2_8_28_4 doi: 10.1038/nature25989 – ident: e_1_2_8_3_1 doi: 10.1038/nnano.2014.181 – ident: e_1_2_8_16_1 doi: 10.1039/C6EE00409A – ident: e_1_2_8_18_1 doi: 10.1021/acs.chemmater.5b00660 – ident: e_1_2_8_13_2 doi: 10.1002/adma.201902413 – ident: e_1_2_8_31_4 doi: 10.1063/1.4864778 – ident: e_1_2_8_14_3 doi: 10.1021/acsami.7b06816 – ident: e_1_2_8_31_2 doi: 10.1021/nl502612m – ident: e_1_2_8_26_2 doi: 10.1038/ncomms14547 – ident: e_1_2_8_15_3 doi: 10.1002/aenm.201500962 – ident: e_1_2_8_21_1 doi: 10.1021/acs.jpclett.5b00182 – ident: e_1_2_8_30_2 doi: 10.1021/jz500059v – ident: e_1_2_8_18_4 doi: 10.1038/s41598-017-04690-w – ident: e_1_2_8_15_1 doi: 10.1039/C6TC03206K – ident: e_1_2_8_25_1 doi: 10.1021/nl404454h – ident: e_1_2_8_19_1 doi: 10.1039/C6EE02941H – ident: e_1_2_8_8_1 doi: 10.1021/jacs.5b03144 – ident: e_1_2_8_2_1 – ident: e_1_2_8_18_2 doi: 10.1021/ja511132a – ident: e_1_2_8_5_2 doi: 10.1007/978-3-319-35114-8_6 – ident: e_1_2_8_15_2 doi: 10.1039/C7SE00545H – ident: e_1_2_8_11_1 doi: 10.1021/acsami.7b17938 – ident: e_1_2_8_5_4 doi: 10.1021/acsenergylett.8b00270 – ident: e_1_2_8_33_2 doi: 10.1021/acs.nanolett.7b00847 – ident: e_1_2_8_14_1 doi: 10.1021/acs.jpclett.6b01176 – ident: e_1_2_8_30_1 doi: 10.1021/nl404252e – ident: e_1_2_8_31_3 doi: 10.1002/aenm.201500721 – ident: e_1_2_8_22_1 doi: 10.1039/C6EE01889K – ident: e_1_2_8_17_2 doi: 10.1016/j.nanoen.2017.12.040 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-017-02331-4 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201701924 – ident: e_1_2_8_14_2 doi: 10.1039/C7TC02652H |
SSID | ssj0017734 |
Score | 2.5685165 |
Snippet | Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Atomic force microscopy Bias bias‐dependent degradation Carrier transport Charge transport Decomposition Degradation Energy conversion efficiency Grain boundaries Ion migration Light Materials science Microscopy Morphology perovskite solar cells Perovskites photocurrent atomic force microscopy Photoelectric effect Photoelectric emission Photovoltaic cells Potassium iodides Solar cells Stability Thin films working conditions |
Title | Stability of Perovskite Thin Films under Working Condition: Bias‐Dependent Degradation and Grain Boundary Effects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202103894 https://www.proquest.com/docview/2568445836 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--xfVFDoKnatNtm8abuq4iKCIKeytJZgKi7sp2V9CTP8Hf6C-x03TX1Yugt_aQ0mYynY95fB9jO1JaKAOnDkKMbRAnqAJljA6UDEMA0wSJNOB8cZme3cbnnaQzMcXv-SHGCTfyjOp_TQ6uTbH_RRqqwdEkeUQM34oIQUXpK4SKrsf8UUJKX1ZOBTV4ic6ItTGM9r8v_x6VvqDmJGCtIk57nunRu_pGk_u94cDs2dcfNI7_-ZgFNlfDUX7oz88im8LuEpudIClcZkWJR6sO2hfec_wK-73nglK-nCQ_efvu4bHgNInW53XinR_3qA5eGvyAH93p4uPtvVVL7Q54i8gpvI4T113gpyRRwY8qcaf-C_dkysUKu22f3ByfBbVUQ2BLABIHJgGnjHWhRKnQWchQKGUhESkCSB1jlBij0GohQ4zAZlTBBIhU7NLMRs1VNt3tdXGNcUgSBJcRNnGxxabOQKFwwoSgSzijG2x3ZKr8yTNy5J57OcppG_PxNjbY5siSee2ZRV5CvCymYnHaYFFlkl-ekh-22hfju_W_LNpgM3TtW9M22fSgP8StEssMzHZ1Xj8BWi3vbw |
link.rule.ids | 315,781,785,1376,27929,27930,46299,46723 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1ROLQ9lH6qW6D1oVJPgSTrxHFvwLLdtiyqKpC4RbZnLKHCbrVZKsGJn9DfyC8hEycL9FKpPSaSrcTjiV_m4z2A90o5rA9OE8UkXSQz0pG21kRaxTGi7aMibnAeH-SjI_nlOOuqCbkXJvBDLAJu7BnN95odnAPSW7esoQY9t5KnTPGt5QNYqX0-_FV9XzBIJUqFxHKecIlXctzxNsbp1v3x98-lW7B5F7I2Z85wFWz3tKHU5Mfm-dxuuss_iBz_63WewpMWkYrtsIWewRJNnsPjOzyFL6CqIWlTRHshpl58o9n0V8VRX8Gqn2J4cnpWCW5Gm4k29i52p5wKr23-UeycmOr66vegVdudiwHzUwQpJ2EmKD6xSoXYafSdZhci8ClXL-FouHe4O4patYbI1RhERjZDr63zsSKlyTssKNHaYZbkhKiMpDSzVpMziYopRVdwEhMx1dLnhUv7r2B5Mp3QaxCYZYS-YHjipaO-KVBT4hMbo6kRjenBh85W5c9AylEG-uW05GUsF8vYg_XOlGXrnFVZo7xCcr4470Ha2OQvs5Tbg-F4cfXmXwa9g4ejw_F-uf_54OsaPOL7oVJtHZbns3PaqKHN3L5tNu8NUbjziw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21VKraQ2lLUbdA60OlngJJ1oljbsA2pR8gVBVpb5HtGUsI2EWbpRI98RP4jf0lzcTZZekFqT0mkq3E4_E8eWbeA3ivlMMmcJooJukimZGOtLUm0iqOEW0fFXGD88Fhvn8svwyz4UIXf-CHmF-4sWe05zU7-AX6rVvSUIOeO8lTZvjW8iE8knlztDIs-j4nkEqUCnnlPOEKr2Q4o22M06274--GpVusuYhY25BTLoOZfWyoNDndvJzaTffrLx7H__mb5_Csw6NiJ2ygF_CARi_h6QJL4QrUDSBtS2ivxNiLI5qMf9Z85ytY81OUJ2fnteBWtInobt7F3pgT4Y3Ft8Xuial_X98MOq3dqRgwO0UQchJmhOITa1SI3VbdaXIlApty_QqOy48_9vajTqshcg0CkZHN0GvrfKxIafIOC0q0dpglOSEqIynNrNXkTKJiStEVnMJETLX0eeHS_iosjcYjeg0Cs4zQFwxOvHTUNwVqSnxiYzQNnjE9-DAzVXURKDmqQL6cVryM1XwZe7A-s2TVuWZdNRivkJwtznuQtia5Z5ZqZ1AezJ_e_Mugd_D4aFBW3z4ffl2DJ_w6lKmtw9J0ckkbDa6Z2rft1v0Dn8fyQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+Perovskite+Thin+Films+under+Working+Condition%3A+Bias%E2%80%90Dependent+Degradation+and+Grain+Boundary+Effects&rft.jtitle=Advanced+functional+materials&rft.au=Hui%2C+Yong&rft.au=Tan%2C+Yan%E2%80%90Yan&rft.au=Chen%2C+Liang&rft.au=Nan%2C+Zi%E2%80%90Ang&rft.date=2021-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=36&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202103894&rft.externalDBID=10.1002%252Fadfm.202103894&rft.externalDocID=ADFM202103894 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |