Stability of Perovskite Thin Films under Working Condition: Bias‐Dependent Degradation and Grain Boundary Effects

Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs)...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 36
Main Authors Hui, Yong, Tan, Yan‐Yan, Chen, Liang, Nan, Zi‐Ang, Zhou, Jian‐Zhang, Yan, Jia‐Wei, Mao, Bing‐Wei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs. Bias‐dependent stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite and double‐edged roles of grain boundaries in carrier transport and degradation of solar cells under working condition are systematically investigated. Photocurrent atomic force microscopy results show that grain boundaries enhance carrier transport at larger bias, but serve as breakthrough sites at smaller bias of 0.1 V or below when irreversible decomposition of perovskite occurs.
AbstractList Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs.
Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs. Bias‐dependent stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite and double‐edged roles of grain boundaries in carrier transport and degradation of solar cells under working condition are systematically investigated. Photocurrent atomic force microscopy results show that grain boundaries enhance carrier transport at larger bias, but serve as breakthrough sites at smaller bias of 0.1 V or below when irreversible decomposition of perovskite occurs.
Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs.
Author Chen, Liang
Yan, Jia‐Wei
Hui, Yong
Zhou, Jian‐Zhang
Mao, Bing‐Wei
Tan, Yan‐Yan
Nan, Zi‐Ang
Author_xml – sequence: 1
  givenname: Yong
  surname: Hui
  fullname: Hui, Yong
– sequence: 2
  givenname: Yan‐Yan
  surname: Tan
  fullname: Tan, Yan‐Yan
– sequence: 3
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  email: lchen@xmu.edu.cn
– sequence: 4
  givenname: Zi‐Ang
  surname: Nan
  fullname: Nan, Zi‐Ang
– sequence: 5
  givenname: Jian‐Zhang
  surname: Zhou
  fullname: Zhou, Jian‐Zhang
  email: jzzhou@xmu.edu.cn
– sequence: 6
  givenname: Jia‐Wei
  surname: Yan
  fullname: Yan, Jia‐Wei
– sequence: 7
  givenname: Bing‐Wei
  orcidid: 0000-0002-9015-0162
  surname: Mao
  fullname: Mao, Bing‐Wei
  email: bwmao@xmu.edu.cn
BookMark eNqFkM1KAzEUhYNUsK1uXQdcT00y_-76r1BRsKK7IZPc1LTTpCZTpTsfwWf0SZxS0aWre-F-59zD6aCWsQYQOqekRwlhl1yqdY8RRkmY5dERatOEJkFIWNb63enzCep4vySEpmkYtZF_qHmpK13vsFX4Hpx98ytdA56_aIMnulp7vDUSHH6ybqXNAg-tkbrW1lzhgeb-6-NzBBtoEFPjESwcl3x_xdxIPHW8cRnYxoG7HR4rBaL2p-hY8crD2c_sosfJeD68DmZ305thfxaIkKZRUMZS5aVQJIU0ByVkBjTPhYxpAlKmPAIWl2UOgtOUAJMiI2FMpWR5pJJMsLCLLg6-G2dft-DrYmm3zjQvCxYnWRTFWZg0VO9ACWe9d6CKjdPrJm5BSbEvttgXW_wW2wjyg-BdV7D7hy76o8ntn_YbnPyBjA
CitedBy_id crossref_primary_10_1021_acs_jpclett_1c04142
crossref_primary_10_1016_j_cej_2023_144056
crossref_primary_10_1021_acsmaterialsau_1c00045
crossref_primary_10_1002_adfm_202402222
crossref_primary_10_1021_acsami_1c15477
crossref_primary_10_1021_acsenergylett_4c01359
crossref_primary_10_1038_s41566_023_01207_y
crossref_primary_10_1016_j_materresbull_2022_111987
crossref_primary_10_1002_aenm_202203596
crossref_primary_10_1002_solr_202200559
crossref_primary_10_1016_j_cej_2022_135647
crossref_primary_10_1016_j_jechem_2022_05_015
crossref_primary_10_1021_acsaem_3c00676
crossref_primary_10_1016_j_nanoen_2024_109543
crossref_primary_10_1002_adma_202304855
crossref_primary_10_1021_acsmaterialslett_1c00474
crossref_primary_10_1016_j_surfin_2023_103670
crossref_primary_10_1002_adma_202302552
crossref_primary_10_1021_acs_jpcc_1c05841
crossref_primary_10_1002_eem2_12696
crossref_primary_10_1002_smll_202402159
crossref_primary_10_1016_j_optmat_2023_114796
crossref_primary_10_1039_D3TA04458K
crossref_primary_10_1021_acsami_2c05956
crossref_primary_10_1002_smll_202207092
crossref_primary_10_1016_j_chphi_2022_100116
crossref_primary_10_1039_D3TC03666A
crossref_primary_10_1002_ente_202100952
crossref_primary_10_1016_j_nantod_2023_101970
crossref_primary_10_1038_s41560_021_00949_9
crossref_primary_10_1016_j_jallcom_2023_172042
crossref_primary_10_3390_en16093793
crossref_primary_10_1021_acs_cgd_2c00789
Cites_doi 10.1038/s41560-019-0529-5
10.1038/nenergy.2016.93
10.1021/acsami.5b09797
10.1063/5.0042663
10.1002/smll.202005495
10.1126/science.aaa5760
10.1021/acs.jpclett.5b00380
10.1002/adfm.201808843
10.1021/jacs.6b12432
10.1039/C6EE00413J
10.1016/j.nanoen.2017.12.047
10.1021/jz4020162
10.1002/aenm.201901489
10.1038/s41560-017-0060-5
10.1002/adfm.201504451
10.1021/acsami.5b09801
10.1002/adma.201305172
10.1002/adfm.201705363
10.1021/acs.jpcc.6b09412
10.1002/aenm.201903161
10.1021/ja809598r
10.1016/j.mtener.2017.07.014
10.1021/acs.jpcc.6b11984
10.1021/jacs.7b10430
10.1002/admi.201901521
10.1038/ncomms11574
10.1002/adma.201306281
10.1126/science.aan2301
10.1002/aenm.201700912
10.1021/jacs.6b00645
10.1002/aenm.201600330
10.1021/acsami.8b01033
10.1063/5.0014187
10.1038/nenergy.2016.81
10.1126/science.1243982
10.1021/acs.chemmater.5b01909
10.1038/ncomms8497
10.1126/science.aaa5333
10.1002/aenm.201500477
10.1039/C8EE03475C
10.1038/nature25989
10.1038/nnano.2014.181
10.1039/C6EE00409A
10.1021/acs.chemmater.5b00660
10.1002/adma.201902413
10.1063/1.4864778
10.1021/acsami.7b06816
10.1021/nl502612m
10.1038/ncomms14547
10.1002/aenm.201500962
10.1021/acs.jpclett.5b00182
10.1021/jz500059v
10.1038/s41598-017-04690-w
10.1039/C6TC03206K
10.1021/nl404454h
10.1039/C6EE02941H
10.1021/jacs.5b03144
10.1021/ja511132a
10.1007/978-3-319-35114-8_6
10.1039/C7SE00545H
10.1021/acsami.7b17938
10.1021/acsenergylett.8b00270
10.1021/acs.nanolett.7b00847
10.1021/acs.jpclett.6b01176
10.1021/nl404252e
10.1002/aenm.201500721
10.1039/C6EE01889K
10.1016/j.nanoen.2017.12.040
10.1038/s41467-017-02331-4
10.1002/adfm.201701924
10.1039/C7TC02652H
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202103894
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202103894
ADFM202103894
Genre article
GrantInformation_xml – fundername: MOST
  funderid: 2016YFA0200703; 218YFC1602805
– fundername: NSF
  funderid: 21473147
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMNL
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3174-b5df9bcf07e79efcd8e199cd516edd7a4e25bb9eca170e2dc80351dd294f68c23
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Oct 10 18:57:18 EDT 2024
Fri Dec 06 04:21:09 EST 2024
Sat Aug 24 01:02:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-b5df9bcf07e79efcd8e199cd516edd7a4e25bb9eca170e2dc80351dd294f68c23
ORCID 0000-0002-9015-0162
PQID 2568445836
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2568445836
crossref_primary_10_1002_adfm_202103894
wiley_primary_10_1002_adfm_202103894_ADFM202103894
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2016; 6 9
2016 2017 2017 2018; 7 5 9 10
2017; 8
2015 2014 2015 2014; 6 14 5 104
2015; 6
2016 2019; 7 31
2019 2018; 12 45
2017; 27
2017 2017; 356 17
2014 2014 2016; 14 5 120
2009; 131
2015; 348
2018; 45
2015; 7
2016 2017; 1 8
2016 2017 2018 2018; 1 121 140 555
2014 2013 2015 2014 2014 2017 2013; 9 342 347 26 26 139 4
2015; 27
2016 2016; 9 26
2015; 137
2015 2015 2019 2021 2020; 6 7 10 118 7
2017 2016 2021 2018; 7 3
2019 2018; 9 7
2017 2018; 10 28
2016 2018 2015; 4 2 5
2020; 117
2014; 14
2016; 138
2015 2015 2015 2017; 27 137 5 7
2018; 10
2018 2020 2019; 3 5 29
2016; 9
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_28_4
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_3_1
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_3_7
e_1_2_8_9_1
e_1_2_8_3_6
e_1_2_8_5_4
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_15_3
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_30_3
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_21_4
e_1_2_8_21_5
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_21_3
e_1_2_8_23_1
e_1_2_8_14_4
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_18_3
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_16_1
e_1_2_8_18_4
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_31_4
e_1_2_8_33_2
e_1_2_8_12_1
e_1_2_8_31_3
e_1_2_8_33_1
References_xml – volume: 1 8
  year: 2016 2017
  publication-title: Nat. Energy Nat. Commun.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 27 137 5 7
  start-page: 3397 1530 4645
  year: 2015 2015 2015 2017
  publication-title: Chem. Mater. J. Am. Chem. Soc. Adv. Energy Mater. Sci. Rep.
– volume: 8
  start-page: 2230
  year: 2017
  publication-title: Nat. Commun.
– volume: 27
  start-page: 4405
  year: 2015
  publication-title: Chem. Mater.
– volume: 10 28
  start-page: 516
  year: 2017 2018
  publication-title: Energy Environ. Sci. Adv. Funct. Mater.
– volume: 9 26
  start-page: 3642 3048
  year: 2016 2016
  publication-title: Energy Environ. Sci. Adv. Funct. Mater.
– volume: 14 5 120
  start-page: 888 680
  year: 2014 2014 2016
  publication-title: Nano Lett. J. Phys. Chem. Lett. J. Phys. Chem. C
– volume: 3 5 29
  start-page: 61 35
  year: 2018 2020 2019
  publication-title: Nat. Energy Nat. Energy Adv. Funct. Mater.
– volume: 7 31
  year: 2016 2019
  publication-title: Nat. Commun. Adv. Mater.
– volume: 14
  start-page: 1000
  year: 2014
  publication-title: Nano Lett.
– volume: 138
  start-page: 3884
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7 5 9 10
  start-page: 3091 7799
  year: 2016 2017 2017 2018
  publication-title: J. Phys. Chem. Lett. J. Mater. Chem. C ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces
– volume: 6 14 5 104
  start-page: 7497 6281
  year: 2015 2014 2015 2014
  publication-title: Nat. Commun. Nano Lett. Adv. Energy Mater. Appl. Phys. Lett.
– volume: 7 3
  start-page: 137 970
  year: 2017 2016 2021 2018
  publication-title: Adv. Energy Mater. Small ACS Energy Lett.
– volume: 356 17
  start-page: 1376 3231
  year: 2017 2017
  publication-title: Science Nano Lett.
– volume: 6 7 10 118 7
  start-page: 875
  year: 2015 2015 2019 2021 2020
  publication-title: J. Phys. Chem. Lett. ACS Appl. Mater. Interfaces Adv. Energy Mater. Appl. Phys. Lett. Adv. Mater. Interfaces
– volume: 45
  start-page: 184
  year: 2018
  publication-title: Nano Energy
– volume: 1 121 140 555
  start-page: 3143 1358 497
  year: 2016 2017 2018 2018
  publication-title: Nat. Energy J. Phys. Chem. C J. Am. Chem. Soc. Nature
– volume: 12 45
  start-page: 550 94
  year: 2019 2018
  publication-title: Energy Environ. Sci. Nano Energy
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 9 7
  start-page: 149
  year: 2019 2018
  publication-title: Adv. Energy Mater. Mater. Today Energy
– volume: 137
  start-page: 9210
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 4 2 5
  start-page: 9060 905
  year: 2016 2018 2015
  publication-title: J. Mater. Chem. C Sustainable Energy Fuels Adv. Energy Mater.
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1655
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1249
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 348
  start-page: 683
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 7974
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9 342 347 26 26 139 4
  start-page: 927 341 967 4653 1584 3320 3623
  year: 2014 2013 2015 2014 2014 2017 2013
  publication-title: Nat. Nanotechnol. Science Science Adv. Mater. Adv. Mater. J. Am. Chem. Soc. J. Phys. Chem. Lett.
– volume: 6 9
  start-page: 1752
  year: 2016 2016
  publication-title: Adv. Energy Mater. Energy Environ. Sci.
– ident: e_1_2_8_4_2
  doi: 10.1038/s41560-019-0529-5
– ident: e_1_2_8_26_1
  doi: 10.1038/nenergy.2016.93
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.5b09797
– ident: e_1_2_8_21_4
  doi: 10.1063/5.0042663
– ident: e_1_2_8_5_3
  doi: 10.1002/smll.202005495
– ident: e_1_2_8_3_3
  doi: 10.1126/science.aaa5760
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.jpclett.5b00380
– ident: e_1_2_8_4_3
  doi: 10.1002/adfm.201808843
– ident: e_1_2_8_3_6
  doi: 10.1021/jacs.6b12432
– ident: e_1_2_8_12_2
  doi: 10.1039/C6EE00413J
– ident: e_1_2_8_27_1
  doi: 10.1016/j.nanoen.2017.12.047
– ident: e_1_2_8_3_7
  doi: 10.1021/jz4020162
– ident: e_1_2_8_6_1
  doi: 10.1002/aenm.201901489
– ident: e_1_2_8_4_1
  doi: 10.1038/s41560-017-0060-5
– ident: e_1_2_8_22_2
  doi: 10.1002/adfm.201504451
– ident: e_1_2_8_21_2
  doi: 10.1021/acsami.5b09801
– ident: e_1_2_8_3_5
  doi: 10.1002/adma.201305172
– ident: e_1_2_8_19_2
  doi: 10.1002/adfm.201705363
– ident: e_1_2_8_30_3
  doi: 10.1021/acs.jpcc.6b09412
– ident: e_1_2_8_21_3
  doi: 10.1002/aenm.201903161
– ident: e_1_2_8_1_1
  doi: 10.1021/ja809598r
– ident: e_1_2_8_6_2
  doi: 10.1016/j.mtener.2017.07.014
– ident: e_1_2_8_28_2
  doi: 10.1021/acs.jpcc.6b11984
– ident: e_1_2_8_28_3
  doi: 10.1021/jacs.7b10430
– ident: e_1_2_8_21_5
  doi: 10.1002/admi.201901521
– ident: e_1_2_8_13_1
  doi: 10.1038/ncomms11574
– ident: e_1_2_8_3_4
  doi: 10.1002/adma.201306281
– ident: e_1_2_8_33_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_8_5_1
  doi: 10.1002/aenm.201700912
– ident: e_1_2_8_7_1
  doi: 10.1021/jacs.6b00645
– ident: e_1_2_8_12_1
  doi: 10.1002/aenm.201600330
– ident: e_1_2_8_14_4
  doi: 10.1021/acsami.8b01033
– ident: e_1_2_8_20_1
  doi: 10.1063/5.0014187
– ident: e_1_2_8_28_1
  doi: 10.1038/nenergy.2016.81
– ident: e_1_2_8_3_2
  doi: 10.1126/science.1243982
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.chemmater.5b01909
– ident: e_1_2_8_31_1
  doi: 10.1038/ncomms8497
– ident: e_1_2_8_10_1
  doi: 10.1126/science.aaa5333
– ident: e_1_2_8_18_3
  doi: 10.1002/aenm.201500477
– ident: e_1_2_8_17_1
  doi: 10.1039/C8EE03475C
– ident: e_1_2_8_28_4
  doi: 10.1038/nature25989
– ident: e_1_2_8_3_1
  doi: 10.1038/nnano.2014.181
– ident: e_1_2_8_16_1
  doi: 10.1039/C6EE00409A
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.chemmater.5b00660
– ident: e_1_2_8_13_2
  doi: 10.1002/adma.201902413
– ident: e_1_2_8_31_4
  doi: 10.1063/1.4864778
– ident: e_1_2_8_14_3
  doi: 10.1021/acsami.7b06816
– ident: e_1_2_8_31_2
  doi: 10.1021/nl502612m
– ident: e_1_2_8_26_2
  doi: 10.1038/ncomms14547
– ident: e_1_2_8_15_3
  doi: 10.1002/aenm.201500962
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.jpclett.5b00182
– ident: e_1_2_8_30_2
  doi: 10.1021/jz500059v
– ident: e_1_2_8_18_4
  doi: 10.1038/s41598-017-04690-w
– ident: e_1_2_8_15_1
  doi: 10.1039/C6TC03206K
– ident: e_1_2_8_25_1
  doi: 10.1021/nl404454h
– ident: e_1_2_8_19_1
  doi: 10.1039/C6EE02941H
– ident: e_1_2_8_8_1
  doi: 10.1021/jacs.5b03144
– ident: e_1_2_8_2_1
– ident: e_1_2_8_18_2
  doi: 10.1021/ja511132a
– ident: e_1_2_8_5_2
  doi: 10.1007/978-3-319-35114-8_6
– ident: e_1_2_8_15_2
  doi: 10.1039/C7SE00545H
– ident: e_1_2_8_11_1
  doi: 10.1021/acsami.7b17938
– ident: e_1_2_8_5_4
  doi: 10.1021/acsenergylett.8b00270
– ident: e_1_2_8_33_2
  doi: 10.1021/acs.nanolett.7b00847
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.jpclett.6b01176
– ident: e_1_2_8_30_1
  doi: 10.1021/nl404252e
– ident: e_1_2_8_31_3
  doi: 10.1002/aenm.201500721
– ident: e_1_2_8_22_1
  doi: 10.1039/C6EE01889K
– ident: e_1_2_8_17_2
  doi: 10.1016/j.nanoen.2017.12.040
– ident: e_1_2_8_9_1
  doi: 10.1038/s41467-017-02331-4
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.201701924
– ident: e_1_2_8_14_2
  doi: 10.1039/C7TC02652H
SSID ssj0017734
Score 2.5685165
Snippet Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Atomic force microscopy
Bias
bias‐dependent degradation
Carrier transport
Charge transport
Decomposition
Degradation
Energy conversion efficiency
Grain boundaries
Ion migration
Light
Materials science
Microscopy
Morphology
perovskite solar cells
Perovskites
photocurrent atomic force microscopy
Photoelectric effect
Photoelectric emission
Photovoltaic cells
Potassium iodides
Solar cells
Stability
Thin films
working conditions
Title Stability of Perovskite Thin Films under Working Condition: Bias‐Dependent Degradation and Grain Boundary Effects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202103894
https://www.proquest.com/docview/2568445836
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--xfVFDoKnatNtm8abuq4iKCIKeytJZgKi7sp2V9CTP8Hf6C-x03TX1Yugt_aQ0mYynY95fB9jO1JaKAOnDkKMbRAnqAJljA6UDEMA0wSJNOB8cZme3cbnnaQzMcXv-SHGCTfyjOp_TQ6uTbH_RRqqwdEkeUQM34oIQUXpK4SKrsf8UUJKX1ZOBTV4ic6ItTGM9r8v_x6VvqDmJGCtIk57nunRu_pGk_u94cDs2dcfNI7_-ZgFNlfDUX7oz88im8LuEpudIClcZkWJR6sO2hfec_wK-73nglK-nCQ_efvu4bHgNInW53XinR_3qA5eGvyAH93p4uPtvVVL7Q54i8gpvI4T113gpyRRwY8qcaf-C_dkysUKu22f3ByfBbVUQ2BLABIHJgGnjHWhRKnQWchQKGUhESkCSB1jlBij0GohQ4zAZlTBBIhU7NLMRs1VNt3tdXGNcUgSBJcRNnGxxabOQKFwwoSgSzijG2x3ZKr8yTNy5J57OcppG_PxNjbY5siSee2ZRV5CvCymYnHaYFFlkl-ekh-22hfju_W_LNpgM3TtW9M22fSgP8StEssMzHZ1Xj8BWi3vbw
link.rule.ids 315,781,785,1376,27929,27930,46299,46723
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1ROLQ9lH6qW6D1oVJPgSTrxHFvwLLdtiyqKpC4RbZnLKHCbrVZKsGJn9DfyC8hEycL9FKpPSaSrcTjiV_m4z2A90o5rA9OE8UkXSQz0pG21kRaxTGi7aMibnAeH-SjI_nlOOuqCbkXJvBDLAJu7BnN95odnAPSW7esoQY9t5KnTPGt5QNYqX0-_FV9XzBIJUqFxHKecIlXctzxNsbp1v3x98-lW7B5F7I2Z85wFWz3tKHU5Mfm-dxuuss_iBz_63WewpMWkYrtsIWewRJNnsPjOzyFL6CqIWlTRHshpl58o9n0V8VRX8Gqn2J4cnpWCW5Gm4k29i52p5wKr23-UeycmOr66vegVdudiwHzUwQpJ2EmKD6xSoXYafSdZhci8ClXL-FouHe4O4patYbI1RhERjZDr63zsSKlyTssKNHaYZbkhKiMpDSzVpMziYopRVdwEhMx1dLnhUv7r2B5Mp3QaxCYZYS-YHjipaO-KVBT4hMbo6kRjenBh85W5c9AylEG-uW05GUsF8vYg_XOlGXrnFVZo7xCcr4470Ha2OQvs5Tbg-F4cfXmXwa9g4ejw_F-uf_54OsaPOL7oVJtHZbns3PaqKHN3L5tNu8NUbjziw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21VKraQ2lLUbdA60OlngJJ1oljbsA2pR8gVBVpb5HtGUsI2EWbpRI98RP4jf0lzcTZZekFqT0mkq3E4_E8eWbeA3ivlMMmcJooJukimZGOtLUm0iqOEW0fFXGD88Fhvn8svwyz4UIXf-CHmF-4sWe05zU7-AX6rVvSUIOeO8lTZvjW8iE8knlztDIs-j4nkEqUCnnlPOEKr2Q4o22M06274--GpVusuYhY25BTLoOZfWyoNDndvJzaTffrLx7H__mb5_Csw6NiJ2ygF_CARi_h6QJL4QrUDSBtS2ivxNiLI5qMf9Z85ytY81OUJ2fnteBWtInobt7F3pgT4Y3Ft8Xuial_X98MOq3dqRgwO0UQchJmhOITa1SI3VbdaXIlApty_QqOy48_9vajTqshcg0CkZHN0GvrfKxIafIOC0q0dpglOSEqIynNrNXkTKJiStEVnMJETLX0eeHS_iosjcYjeg0Cs4zQFwxOvHTUNwVqSnxiYzQNnjE9-DAzVXURKDmqQL6cVryM1XwZe7A-s2TVuWZdNRivkJwtznuQtia5Z5ZqZ1AezJ_e_Mugd_D4aFBW3z4ffl2DJ_w6lKmtw9J0ckkbDa6Z2rft1v0Dn8fyQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+Perovskite+Thin+Films+under+Working+Condition%3A+Bias%E2%80%90Dependent+Degradation+and+Grain+Boundary+Effects&rft.jtitle=Advanced+functional+materials&rft.au=Hui%2C+Yong&rft.au=Tan%2C+Yan%E2%80%90Yan&rft.au=Chen%2C+Liang&rft.au=Nan%2C+Zi%E2%80%90Ang&rft.date=2021-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=36&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202103894&rft.externalDBID=10.1002%252Fadfm.202103894&rft.externalDocID=ADFM202103894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon