Stability of Perovskite Thin Films under Working Condition: Bias‐Dependent Degradation and Grain Boundary Effects

Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs)...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 36
Main Authors Hui, Yong, Tan, Yan‐Yan, Chen, Liang, Nan, Zi‐Ang, Zhou, Jian‐Zhang, Yan, Jia‐Wei, Mao, Bing‐Wei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next‐generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias‐dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias‐dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias‐induced degradation of PSCs as well as bias‐dependent double‐edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs. Bias‐dependent stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite and double‐edged roles of grain boundaries in carrier transport and degradation of solar cells under working condition are systematically investigated. Photocurrent atomic force microscopy results show that grain boundaries enhance carrier transport at larger bias, but serve as breakthrough sites at smaller bias of 0.1 V or below when irreversible decomposition of perovskite occurs.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202103894