Tripartite Quantum Entanglement with Squeezed Optomechanics
The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement...
Saved in:
Published in | Laser & photonics reviews Vol. 18; no. 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1863-8880 1863-8899 |
DOI | 10.1002/lpor.202301154 |
Cover
Loading…
Abstract | The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system, which consists of a Fabry–Pérot cavity with two movable mirrors, an optical parametric amplifier (OPA), and an injected squeezed vacuum reservoir is proposed. It is shown that the advantages of this system are twofold: 1) one can effectively regulate the light‐mirror interactions by introducing a squeezed intracavity mode via the OPA; 2) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely. These peculiar features of this system allow the generation and manipulation of quantum entanglement in a coherent and controllable way. More importantly, it is also found that such controllable entanglement, under some specific squeezing parameters, can be considerably enhanced in comparison with those of the conventional optomechanical system. The work, providing a promising method to regulate and tailor the light‐mirror interaction, is poised to serve as a useful tool for engineering various quantum effects which are based on cavity optomechanics.
Quantum entanglement, providing an appealing resource for a variety of nascent quantum technologies, is fragile to thermal noises induced by system‐bath interaction. Here, the study presents that a squeezed optomechanical system, which can enhance the light‐motion interaction while suppressing the system‐bath interaction simultaneously, provides a promising platform to achieve highly entangled states in a coherent and tunable way, as well as protect the states from thermal noises. |
---|---|
AbstractList | The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system, which consists of a Fabry–Pérot cavity with two movable mirrors, an optical parametric amplifier (OPA), and an injected squeezed vacuum reservoir is proposed. It is shown that the advantages of this system are twofold: 1) one can effectively regulate the light‐mirror interactions by introducing a squeezed intracavity mode via the OPA; 2) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely. These peculiar features of this system allow the generation and manipulation of quantum entanglement in a coherent and controllable way. More importantly, it is also found that such controllable entanglement, under some specific squeezing parameters, can be considerably enhanced in comparison with those of the conventional optomechanical system. The work, providing a promising method to regulate and tailor the light‐mirror interaction, is poised to serve as a useful tool for engineering various quantum effects which are based on cavity optomechanics. The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system, which consists of a Fabry–Pérot cavity with two movable mirrors, an optical parametric amplifier (OPA), and an injected squeezed vacuum reservoir is proposed. It is shown that the advantages of this system are twofold: 1) one can effectively regulate the light‐mirror interactions by introducing a squeezed intracavity mode via the OPA; 2) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely. These peculiar features of this system allow the generation and manipulation of quantum entanglement in a coherent and controllable way. More importantly, it is also found that such controllable entanglement, under some specific squeezing parameters, can be considerably enhanced in comparison with those of the conventional optomechanical system. The work, providing a promising method to regulate and tailor the light‐mirror interaction, is poised to serve as a useful tool for engineering various quantum effects which are based on cavity optomechanics. Quantum entanglement, providing an appealing resource for a variety of nascent quantum technologies, is fragile to thermal noises induced by system‐bath interaction. Here, the study presents that a squeezed optomechanical system, which can enhance the light‐motion interaction while suppressing the system‐bath interaction simultaneously, provides a promising platform to achieve highly entangled states in a coherent and tunable way, as well as protect the states from thermal noises. The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system, which consists of a Fabry–Pérot cavity with two movable mirrors, an optical parametric amplifier (OPA), and an injected squeezed vacuum reservoir is proposed. It is shown that the advantages of this system are twofold: 1) one can effectively regulate the light‐mirror interactions by introducing a squeezed intracavity mode via the OPA; 2) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely. These peculiar features of this system allow the generation and manipulation of quantum entanglement in a coherent and controllable way. More importantly, it is also found that such controllable entanglement, under some specific squeezing parameters, can be considerably enhanced in comparison with those of the conventional optomechanical system. The work, providing a promising method to regulate and tailor the light‐mirror interaction, is poised to serve as a useful tool for engineering various quantum effects which are based on cavity optomechanics. |
Author | Lu, Wangjun Kuang, Le‐Man Jiao, Ya‐Feng Zuo, Yun‐Lan Liao, Jie‐Qiao Wang, Yan Jing, Hui |
Author_xml | – sequence: 1 givenname: Ya‐Feng orcidid: 0000-0002-1187-0779 surname: Jiao fullname: Jiao, Ya‐Feng organization: Zhengzhou University of Light Industry – sequence: 2 givenname: Yun‐Lan surname: Zuo fullname: Zuo, Yun‐Lan organization: Hunan Normal University – sequence: 3 givenname: Yan surname: Wang fullname: Wang, Yan organization: Zhengzhou University of Light Industry – sequence: 4 givenname: Wangjun orcidid: 0000-0003-3728-4783 surname: Lu fullname: Lu, Wangjun organization: Hunan Institute of Engineering – sequence: 5 givenname: Jie‐Qiao orcidid: 0000-0002-9830-9000 surname: Liao fullname: Liao, Jie‐Qiao organization: Hunan Normal University – sequence: 6 givenname: Le‐Man orcidid: 0000-0003-4948-0183 surname: Kuang fullname: Kuang, Le‐Man email: lmkuang@hunnu.edu.cn organization: Hunan Normal University – sequence: 7 givenname: Hui orcidid: 0000-0001-5091-2057 surname: Jing fullname: Jing, Hui email: jinghui@hunnu.edu.cn organization: Hunan Normal University |
BookMark | eNqFkMtLAzEQxoNUsFavnhc8b53sI7vBk5T6gEJ99B7SdGJTdrNrkqXUv94tlQqCOJeZw_eb-eY7JwPbWCTkisKYAiQ3Vdu4cQJJCpTm2QkZ0pKlcVlyPjjOJZyRc-83AHlfbEhuF8600gUTMHrppA1dHU1tkPa9whptiLYmrKO3jw7xE1fRvA1NjWotrVH-gpxqWXm8_O4jsrifLiaP8Wz-8DS5m8UqpUUWy2Wa570LphQtCuQMygwBKSuk1JwD15ixldZIOSz1UvMEC1lqmisJGjAdkevD2tY1vQ8fxKbpnO0vipRmSf9ZXrBelR1UyjXeO9RCmSCDaWxw0lSCgtinJPYpiWNKPTb-hbXO1NLt_gb4AdiaCnf_qMXsef76w34BHQR9yg |
CitedBy_id | crossref_primary_10_1364_OE_534446 crossref_primary_10_1103_PhysRevA_111_013709 crossref_primary_10_1103_PhysRevApplied_22_064001 crossref_primary_10_1063_5_0228364 crossref_primary_10_1103_PhysRevA_110_033505 crossref_primary_10_1117_1_OE_64_1_015103 |
Cites_doi | 10.1103/PhysRevLett.98.030405 10.1103/PhysRevLett.90.167903 10.1103/PhysRevA.94.053807 10.1103/PhysRevA.106.013526 10.1103/PhysRevLett.129.063602 10.1038/nature04279 10.1103/RevModPhys.86.1391 10.1103/PhysRevLett.84.2726 10.1038/s41467-023-40771-3 10.1103/PhysRevA.84.024301 10.1364/OPTICA.6.001361 10.1126/science.abb0328 10.1007/s11433-015-5648-9 10.1103/PhysRevLett.129.050503 10.1007/s12200-023-00073-4 10.1038/ncomms11338 10.1103/PhysRevLett.121.220404 10.1103/PhysRevA.95.043819 10.1038/s41586-019-1320-2 10.1103/PhysRevApplied.18.064008 10.1088/1674-1056/ac6499 10.1007/s11433-022-2043-3 10.1103/PhysRevLett.120.200501 10.1103/PhysRevLett.117.210502 10.1038/nature11120 10.1103/PhysRevA.92.062311 10.1103/PhysRevA.70.022318 10.1007/s11433-019-9451-3 10.1126/science.abf5389 10.1103/PhysRevLett.125.153602 10.1038/s42254-018-0003-5 10.1038/ncomms15645 10.1103/PhysRevLett.129.123602 10.1103/PhysRevA.100.043824 10.1103/PhysRevLett.130.073602 10.1103/PhysRevA.98.023860 10.1103/PhysRevA.98.063843 10.1126/science.abf2998 10.1103/RevModPhys.81.865 10.1103/PhysRevApplied.9.064006 10.1038/s41586-018-0036-z 10.1007/s11433-023-2180-x 10.1038/nature16536 10.1038/nature07127 10.1103/PhysRevResearch.4.033112 10.1103/PhysRevA.108.013516 10.1103/RevModPhys.92.025002 10.1126/science.1244563 10.1093/nsr/nwy153 10.1103/PhysRevLett.101.200503 10.1103/RevModPhys.89.035002 10.1038/ncomms2033 10.1103/PhysRevLett.112.080503 10.1103/PhysRevLett.121.203601 10.1103/PhysRevLett.124.053604 10.1364/PRJ.423506 10.1103/PhysRevA.106.063506 10.1103/PhysRevLett.128.083604 10.1038/ncomms6905 10.1103/PhysRevA.108.012432 10.1103/PhysRevApplied.17.024009 10.1038/s41567-021-01402-0 10.1103/PhysRevA.89.014302 10.1103/PhysRevLett.121.023602 10.1038/nature08967 10.1103/PhysRevA.77.050307 10.1364/OE.493208 10.1364/OE.24.012336 10.1038/nphoton.2011.354 10.1088/1367-2630/17/10/103037 10.1103/PhysRevLett.125.143605 10.1038/nphys3705 10.1038/s41467-020-14768-1 10.1103/PhysRevA.108.023716 10.1364/OL.459917 10.1103/PhysRevLett.109.013603 10.1103/PhysRevLett.126.023602 10.1103/PhysRevA.100.023825 10.1103/PhysRevLett.114.093602 10.1103/PhysRevLett.127.093602 10.1038/s41586-018-0038-x 10.1016/j.fmre.2022.07.001 10.1103/PhysRevLett.120.093601 10.1103/PhysRevA.104.053517 10.1103/PhysRevLett.110.253601 10.1038/s41586-018-0195-y |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202301154 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202301154 LPOR202301154 |
Genre | article |
GrantInformation_xml | – fundername: Henan Provincial Science and Technology Research Project funderid: 232102221001 – fundername: Hunan Provincial Major Sci‐Tech Program funderid: 2023ZJ1010 – fundername: National Key R&D Program of China funderid: 2024YFE0102400 – fundername: National Natural Science Foundation of China funderid: 11935006; 12175061; 12247105; 12147156; 12205256; 12205092; 12175060 – fundername: Natural Science Foundation of Hunan Province funderid: 2023JJ40208 – fundername: Science and Technology Innovation Program of Hunan Province funderid: 2020RC4047 – fundername: Henan Science and Technology Major Project funderid: 241100210400 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3174-ab3558996cc177e96084e0e167aaf9909fe46dffe190bfbf92e7a8f15ca0f0e3 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Jul 25 12:29:30 EDT 2025 Tue Jul 01 04:32:47 EDT 2025 Thu Apr 24 22:55:26 EDT 2025 Wed Jan 22 17:12:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-ab3558996cc177e96084e0e167aaf9909fe46dffe190bfbf92e7a8f15ca0f0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4948-0183 0000-0001-5091-2057 0000-0002-9830-9000 0000-0002-1187-0779 0000-0003-3728-4783 |
PQID | 3142186576 |
PQPubID | 1016358 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3142186576 crossref_citationtrail_10_1002_lpor_202301154 crossref_primary_10_1002_lpor_202301154 wiley_primary_10_1002_lpor_202301154_LPOR202301154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2023; 31 2018; 121 2017; 8 2012; 485 2009; 81 2020; 63 2021; 126 2021; 127 2010; 464 2017; 89 2020; 369 2008; 77 2020; 11 2023; 108 2020; 124 2020; 125 2023; 3 2008; 101 2018; 6 2018; 9 2018; 8 2003; 90 2023; 66 2004; 70 2023; 130 2020; 92 2016; 117 2022; 31 2013; 110 2022; 128 2022; 129 2021; 9 2015; 58 2015; 6 2015; 17 2023; 14 2019; 6 2015; 92 2021; 104 2019; 1 2023; 16 2011; 84 2005; 438 2013; 342 2022; 47 2016; 94 2007; 98 2014; 89 2019; 100 2016; 12 2014; 112 2012; 109 2014; 86 2017; 95 2016; 7 2012; 3 2018; 556 2022; 4 2018; 558 2015; 114 2016; 530 2000; 84 2021; 372 2008; 453 2012; 6 2019; 570 2018; 98 2022; 106 2022; 17 2016; 24 2022; 18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Kuzyk M. C. (e_1_2_8_5_1) 2018; 8 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 84 year: 2011 publication-title: Phys. Rev. A – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 128 year: 2022 publication-title: Phys. Rev. Lett. – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 558 start-page: 264 year: 2018 publication-title: Nature (London) – volume: 372 start-page: 622 year: 2021 publication-title: Science – volume: 453 start-page: 1023 year: 2008 publication-title: Nature (London) – volume: 530 start-page: 313 year: 2016 publication-title: Nature (London) – volume: 6 start-page: 5905 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 2152 year: 2021 publication-title: Photon. Res. – volume: 6 start-page: 225 year: 2012 publication-title: Nat. Photonics – volume: 100 year: 2019 publication-title: Phys. Rev. A – volume: 3 start-page: 15 year: 2023 publication-title: Fundam. Res. – volume: 18 start-page: 15 year: 2022 publication-title: Nat. Phys. – volume: 63 year: 2020 publication-title: Sci. China Phys. Mech. Astron. – volume: 77 year: 2008 publication-title: Phys. Rev. A – volume: 4 year: 2022 publication-title: Phys. Rev. Res. – volume: 58 start-page: 1 year: 2015 publication-title: Sci. China Phys. Mech. Astron. – volume: 92 year: 2015 publication-title: Phys. Rev. A – volume: 18 year: 2022 publication-title: Phys. Rev. Applied – volume: 104 year: 2021 publication-title: Phys. Rev. A – volume: 12 start-page: 783 year: 2016 publication-title: Nat. Phys. – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 17 year: 2022 publication-title: Phys. Rev. Applied – volume: 369 start-page: 174 year: 2020 publication-title: Science – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 31 year: 2023 publication-title: Opt. Express – volume: 89 year: 2014 publication-title: Phys. Rev. A – volume: 106 year: 2022 publication-title: Phys. Rev. A – volume: 14 start-page: 5037 year: 2023 publication-title: Nat. Commun. – volume: 81 start-page: 865 year: 2009 publication-title: Rev. Mod. Phys. – volume: 6 start-page: 32 year: 2018 publication-title: Natl. Sci. Rev. – volume: 372 start-page: 625 year: 2021 publication-title: Science – volume: 90 year: 2003 publication-title: Phys. Rev. Lett. – volume: 47 start-page: 3311 year: 2022 publication-title: Opt. Lett. – volume: 556 start-page: 473 year: 2018 publication-title: Nature (London) – volume: 86 start-page: 1391 year: 2014 publication-title: Rev. Mod. Phys. – volume: 342 start-page: 710 year: 2013 publication-title: Science – volume: 95 year: 2017 publication-title: Phys. Rev. A – volume: 98 year: 2018 publication-title: Phys. Rev. A – volume: 6 start-page: 1361 year: 2019 publication-title: Optica – volume: 16 start-page: 18 year: 2023 publication-title: Front. Optoelectron. – volume: 570 start-page: 480 year: 2019 publication-title: Nature (London) – volume: 8 year: 2018 publication-title: Phys. Rev. X – volume: 70 year: 2004 publication-title: Phys. Rev. A – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 126 year: 2021 publication-title: Phys. Rev. Lett. – volume: 108 year: 2023 publication-title: Phys. Rev. A – volume: 84 start-page: 2726 year: 2000 publication-title: Phys. Rev. Lett. – volume: 66 year: 2023 publication-title: Sci. China Phys. Mech. Astron. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 24 year: 2016 publication-title: Opt. Express – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 31 year: 2022 publication-title: Chinese Phys. B – volume: 130 year: 2023 publication-title: Phys. Rev. Lett. – volume: 438 start-page: 643 year: 2005 publication-title: Nature (London) – volume: 89 year: 2017 publication-title: Rev. Mod. Phys. – volume: 129 year: 2022 publication-title: Phys. Rev. Lett. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 464 start-page: 697 year: 2010 publication-title: Nature (London) – volume: 9 year: 2018 publication-title: Phys. Rev. Applied – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 127 year: 2021 publication-title: Phys. Rev. Lett. – volume: 556 start-page: 478 year: 2018 publication-title: Nature (London) – volume: 92 year: 2020 publication-title: Rev. Mod. Phys. – volume: 3 start-page: 1026 year: 2012 publication-title: Nat. Commun. – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 72 year: 2019 publication-title: Nat. Rev. Phys. – volume: 11 start-page: 943 year: 2020 publication-title: Nat. Commun. – volume: 17 year: 2015 publication-title: New J. Phys. – volume: 485 start-page: 482 year: 2012 publication-title: Nature (London) – volume: 94 year: 2016 publication-title: Phys. Rev. A – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevLett.98.030405 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevLett.90.167903 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevA.94.053807 – ident: e_1_2_8_21_1 doi: 10.1103/PhysRevA.106.013526 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevLett.129.063602 – ident: e_1_2_8_12_1 doi: 10.1038/nature04279 – ident: e_1_2_8_22_1 doi: 10.1103/RevModPhys.86.1391 – ident: e_1_2_8_83_1 doi: 10.1103/PhysRevLett.84.2726 – ident: e_1_2_8_80_1 doi: 10.1038/s41467-023-40771-3 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevA.84.024301 – ident: e_1_2_8_84_1 doi: 10.1364/OPTICA.6.001361 – ident: e_1_2_8_15_1 doi: 10.1126/science.abb0328 – ident: e_1_2_8_23_1 doi: 10.1007/s11433-015-5648-9 – ident: e_1_2_8_16_1 doi: 10.1103/PhysRevLett.129.050503 – ident: e_1_2_8_85_1 doi: 10.1007/s12200-023-00073-4 – ident: e_1_2_8_69_1 doi: 10.1038/ncomms11338 – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevLett.121.220404 – ident: e_1_2_8_52_1 doi: 10.1103/PhysRevA.95.043819 – ident: e_1_2_8_31_1 doi: 10.1038/s41586-019-1320-2 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevApplied.18.064008 – ident: e_1_2_8_59_1 doi: 10.1088/1674-1056/ac6499 – ident: e_1_2_8_46_1 doi: 10.1007/s11433-022-2043-3 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.120.200501 – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevLett.117.210502 – ident: e_1_2_8_13_1 doi: 10.1038/nature11120 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevA.92.062311 – ident: e_1_2_8_82_1 doi: 10.1103/PhysRevA.70.022318 – ident: e_1_2_8_8_1 doi: 10.1007/s11433-019-9451-3 – ident: e_1_2_8_39_1 doi: 10.1126/science.abf5389 – ident: e_1_2_8_70_1 doi: 10.1103/PhysRevLett.125.153602 – ident: e_1_2_8_9_1 doi: 10.1038/s42254-018-0003-5 – ident: e_1_2_8_41_1 doi: 10.1038/ncomms15645 – ident: e_1_2_8_64_1 doi: 10.1103/PhysRevLett.129.123602 – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevA.100.043824 – ident: e_1_2_8_71_1 doi: 10.1103/PhysRevLett.130.073602 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevA.98.023860 – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevA.98.063843 – ident: e_1_2_8_38_1 doi: 10.1126/science.abf2998 – ident: e_1_2_8_1_1 doi: 10.1103/RevModPhys.81.865 – ident: e_1_2_8_72_1 doi: 10.1103/PhysRevApplied.9.064006 – ident: e_1_2_8_37_1 doi: 10.1038/s41586-018-0036-z – ident: e_1_2_8_76_1 doi: 10.1007/s11433-023-2180-x – ident: e_1_2_8_28_1 doi: 10.1038/nature16536 – ident: e_1_2_8_4_1 doi: 10.1038/nature07127 – ident: e_1_2_8_50_1 doi: 10.1103/PhysRevResearch.4.033112 – ident: e_1_2_8_86_1 doi: 10.1103/PhysRevA.108.013516 – ident: e_1_2_8_3_1 doi: 10.1103/RevModPhys.92.025002 – ident: e_1_2_8_26_1 doi: 10.1126/science.1244563 – ident: e_1_2_8_2_1 doi: 10.1093/nsr/nwy153 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevLett.101.200503 – ident: e_1_2_8_6_1 doi: 10.1103/RevModPhys.89.035002 – ident: e_1_2_8_40_1 doi: 10.1038/ncomms2033 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevLett.112.080503 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevLett.121.203601 – ident: e_1_2_8_78_1 doi: 10.1103/PhysRevLett.124.053604 – ident: e_1_2_8_79_1 doi: 10.1364/PRJ.423506 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevA.106.063506 – volume: 8 year: 2018 ident: e_1_2_8_5_1 publication-title: Phys. Rev. X – ident: e_1_2_8_65_1 doi: 10.1103/PhysRevLett.128.083604 – ident: e_1_2_8_7_1 doi: 10.1038/ncomms6905 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevA.108.012432 – ident: e_1_2_8_75_1 doi: 10.1103/PhysRevApplied.17.024009 – ident: e_1_2_8_24_1 doi: 10.1038/s41567-021-01402-0 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevA.89.014302 – ident: e_1_2_8_53_1 doi: 10.1103/PhysRevLett.121.023602 – ident: e_1_2_8_19_1 doi: 10.1038/nature08967 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevA.77.050307 – ident: e_1_2_8_66_1 doi: 10.1364/OE.493208 – ident: e_1_2_8_77_1 doi: 10.1364/OE.24.012336 – ident: e_1_2_8_10_1 doi: 10.1038/nphoton.2011.354 – ident: e_1_2_8_35_1 doi: 10.1088/1367-2630/17/10/103037 – ident: e_1_2_8_57_1 doi: 10.1103/PhysRevLett.125.143605 – ident: e_1_2_8_14_1 doi: 10.1038/nphys3705 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-020-14768-1 – ident: e_1_2_8_67_1 doi: 10.1103/PhysRevA.108.023716 – ident: e_1_2_8_68_1 doi: 10.1364/OL.459917 – ident: e_1_2_8_81_1 doi: 10.1103/PhysRevLett.109.013603 – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevLett.126.023602 – ident: e_1_2_8_73_1 doi: 10.1103/PhysRevA.100.023825 – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevLett.114.093602 – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevLett.127.093602 – ident: e_1_2_8_36_1 doi: 10.1038/s41586-018-0038-x – ident: e_1_2_8_87_1 doi: 10.1016/j.fmre.2022.07.001 – ident: e_1_2_8_61_1 doi: 10.1103/PhysRevLett.120.093601 – ident: e_1_2_8_74_1 doi: 10.1103/PhysRevA.104.053517 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevLett.110.253601 – ident: e_1_2_8_18_1 doi: 10.1038/s41586-018-0195-y |
SSID | ssj0055556 |
Score | 2.4580417 |
Snippet | The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | cavity optomechanics Compressing Controllability Data processing Entangled states Fabry-Perot interferometers Opto-mechanics optomechanical entanglement Parameters Parametric amplifiers quantum engineering Quantum entanglement Quantum phenomena quantum squeezing Reservoirs |
Title | Tripartite Quantum Entanglement with Squeezed Optomechanics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202301154 https://www.proquest.com/docview/3142186576 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ1-cV5yb0gfBp2y9JL3gk8jGEHU6J-ytJGki4tYN277s13vS2zZBBC0UWmhKm5yT833h5DsIXTquGyg4MVdUYCICBwdBRDFTEKtcSQSP9Drkw6M7fCV3Uzrd2MVf6EPUC27aM_L5Wjs440lvLRo6A3za1cW_c0UZmIR1wpZGReNaP4rCkW8v8l0HA9UzK9VG0-5tN9-OSmuouQlY84gzaCJWfWuRaPLRzVLeFatvMo7_-Zl9tFfCUeOmsJ8DtCPjQ9QsoalROn5yhK4nMLloK0ul8ZzBaGRzox8DsHwr0s8NvZ5rvGhavIKGo2W6mEu9qfhdJMdoMuhPboe4rLuABaAJghnXmutAhISwPE8Cx_GJNKXleowpiF6BksSNlJIAJrjiKrClx3xlUcFMZUrnBDXiRSxPkUFoZAsKMZIEijgSqIkAm_AjK4oUBRrfQrjq9lCUmuS6NMYsLNSU7VB3TFh3TAtd1c8vCzWOH5_sVKMYll6ZhI5FdAkuoFgtZOfD8ctbwvun0bi-O_tLozbahWtSZMB0UCP9zOQ54JiUX-S2-gXzTusV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HvRifWK1ag6Cp615bNIET6ItVfvQGsFbSDa7IrZpscmlv97ZvGoFETSQQ8Ju2OzO7HwzzH4DcGZYliPwJoEwGaHMMYjjhCbxBdoqi1MWhDIO2etbnWd692IW2YTyLEzGD1EG3KRmpPu1VHAZkL5YsIaOEKA2ZPXvlFJmFdZkWW9ZxOBmWDJImXilB4xsyyDo7KkFb6OqXyz3X7ZLC7D5FbKmNqddhaAYbZZq8t5I4qDB5t-IHP_1O1uwmSNS5SoToW1Y4dEOVHN0quS6P9uFSxf3FyloMVceE1yQZKy0IsSWr1kGuiJDusqT9Izn2HEwjSdjLs8Vv7HZHrjtlnvdIXnpBcIQUFDiB5J2HX0hxrRmk6ObY1Oucs1q-r5AA-YITq1QCI54IhCBcHTe9G2hmcxXhcqNfahEk4gfgELNUGcmmknqCGpw9E4YioUdamEoTPTka0CKefdYTksuq2OMvIxQWffkxHjlxNTgvGw_zQg5fmxZL5bRyxVz5hkalVW40MuqgZ6uxy9f8boPg2H5dPiXTqew3nF7Xa97278_gg18T7OEmDpU4o-EHyOsiYOTVHA_Aatj7y8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBPHFecXp1D4IPmXrJW1XfBLd8DK3OSfsrbRpIuLWDde-7Nd70ts2QQQt9KElKWlyTs73heQ7ABeGZTkCb-ILkxHKHIM4TmAST2CssjhlfiDXIZ861t0rfRiaw6VT_Kk-RLHgJj0jma-lg08DUV-Iho4Qn9Zk8u9EUWYdNqiFHiNhUb8QkDLxSs4XNSyDINdTc9lGVa-v1l8NSwusuYxYk5DTKoOXNzbdafJRiyO_xubfdBz_8zc7sJ3hUeU6NaBdWOPhHpQzbKpknj_bh6sBzi7SzCKuPMc4HPFYaYaILN_S_eeKXNBVXiQvnmPF7jSajLk8VfzOZgcwaDUHN3ckS7xAGMIJSjxfiq4jE2JMs22OJKdBuco1y_Y8geHLEZxagRAc0YQvfOHo3PYaQjOZpwqVG4dQCichPwKFmoHOTAyS1BHU4MhNGBpFI9CCQJjI4ytA8m53WSZKLnNjjNxUTll3Zce4RcdU4LIoP03lOH4sWc1H0c3ccuYaGpU5uJBjVUBPhuOXr7jtXrdfPB3_pdI5bPZuW277vvN4Alv4mqa7YapQij5jfoqYJvLPErP9AgJK7ec |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tripartite+Quantum+Entanglement+with+Squeezed+Optomechanics&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Ya%E2%80%90Feng+Jiao&rft.au=Yun%E2%80%90Lan+Zuo&rft.au=Wang%2C+Yan&rft.au=Lu%2C+Wangjun&rft.date=2024-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=18&rft.issue=12&rft_id=info:doi/10.1002%2Flpor.202301154&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |