Tripartite Quantum Entanglement with Squeezed Optomechanics

The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 18; no. 12
Main Authors Jiao, Ya‐Feng, Zuo, Yun‐Lan, Wang, Yan, Lu, Wangjun, Liao, Jie‐Qiao, Kuang, Le‐Man, Jing, Hui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN1863-8880
1863-8899
DOI10.1002/lpor.202301154

Cover

Loading…
Abstract The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system, which consists of a Fabry–Pérot cavity with two movable mirrors, an optical parametric amplifier (OPA), and an injected squeezed vacuum reservoir is proposed. It is shown that the advantages of this system are twofold: 1) one can effectively regulate the light‐mirror interactions by introducing a squeezed intracavity mode via the OPA; 2) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely. These peculiar features of this system allow the generation and manipulation of quantum entanglement in a coherent and controllable way. More importantly, it is also found that such controllable entanglement, under some specific squeezing parameters, can be considerably enhanced in comparison with those of the conventional optomechanical system. The work, providing a promising method to regulate and tailor the light‐mirror interaction, is poised to serve as a useful tool for engineering various quantum effects which are based on cavity optomechanics. Quantum entanglement, providing an appealing resource for a variety of nascent quantum technologies, is fragile to thermal noises induced by system‐bath interaction. Here, the study presents that a squeezed optomechanical system, which can enhance the light‐motion interaction while suppressing the system‐bath interaction simultaneously, provides a promising platform to achieve highly entangled states in a coherent and tunable way, as well as protect the states from thermal noises.
AbstractList The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system, which consists of a Fabry–Pérot cavity with two movable mirrors, an optical parametric amplifier (OPA), and an injected squeezed vacuum reservoir is proposed. It is shown that the advantages of this system are twofold: 1) one can effectively regulate the light‐mirror interactions by introducing a squeezed intracavity mode via the OPA; 2) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely. These peculiar features of this system allow the generation and manipulation of quantum entanglement in a coherent and controllable way. More importantly, it is also found that such controllable entanglement, under some specific squeezing parameters, can be considerably enhanced in comparison with those of the conventional optomechanical system. The work, providing a promising method to regulate and tailor the light‐mirror interaction, is poised to serve as a useful tool for engineering various quantum effects which are based on cavity optomechanics.
The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system, which consists of a Fabry–Pérot cavity with two movable mirrors, an optical parametric amplifier (OPA), and an injected squeezed vacuum reservoir is proposed. It is shown that the advantages of this system are twofold: 1) one can effectively regulate the light‐mirror interactions by introducing a squeezed intracavity mode via the OPA; 2) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely. These peculiar features of this system allow the generation and manipulation of quantum entanglement in a coherent and controllable way. More importantly, it is also found that such controllable entanglement, under some specific squeezing parameters, can be considerably enhanced in comparison with those of the conventional optomechanical system. The work, providing a promising method to regulate and tailor the light‐mirror interaction, is poised to serve as a useful tool for engineering various quantum effects which are based on cavity optomechanics. Quantum entanglement, providing an appealing resource for a variety of nascent quantum technologies, is fragile to thermal noises induced by system‐bath interaction. Here, the study presents that a squeezed optomechanical system, which can enhance the light‐motion interaction while suppressing the system‐bath interaction simultaneously, provides a promising platform to achieve highly entangled states in a coherent and tunable way, as well as protect the states from thermal noises.
The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies, ranging from quantum information processing to quantum sensing. Here how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system, which consists of a Fabry–Pérot cavity with two movable mirrors, an optical parametric amplifier (OPA), and an injected squeezed vacuum reservoir is proposed. It is shown that the advantages of this system are twofold: 1) one can effectively regulate the light‐mirror interactions by introducing a squeezed intracavity mode via the OPA; 2) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely. These peculiar features of this system allow the generation and manipulation of quantum entanglement in a coherent and controllable way. More importantly, it is also found that such controllable entanglement, under some specific squeezing parameters, can be considerably enhanced in comparison with those of the conventional optomechanical system. The work, providing a promising method to regulate and tailor the light‐mirror interaction, is poised to serve as a useful tool for engineering various quantum effects which are based on cavity optomechanics.
Author Lu, Wangjun
Kuang, Le‐Man
Jiao, Ya‐Feng
Zuo, Yun‐Lan
Liao, Jie‐Qiao
Wang, Yan
Jing, Hui
Author_xml – sequence: 1
  givenname: Ya‐Feng
  orcidid: 0000-0002-1187-0779
  surname: Jiao
  fullname: Jiao, Ya‐Feng
  organization: Zhengzhou University of Light Industry
– sequence: 2
  givenname: Yun‐Lan
  surname: Zuo
  fullname: Zuo, Yun‐Lan
  organization: Hunan Normal University
– sequence: 3
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Zhengzhou University of Light Industry
– sequence: 4
  givenname: Wangjun
  orcidid: 0000-0003-3728-4783
  surname: Lu
  fullname: Lu, Wangjun
  organization: Hunan Institute of Engineering
– sequence: 5
  givenname: Jie‐Qiao
  orcidid: 0000-0002-9830-9000
  surname: Liao
  fullname: Liao, Jie‐Qiao
  organization: Hunan Normal University
– sequence: 6
  givenname: Le‐Man
  orcidid: 0000-0003-4948-0183
  surname: Kuang
  fullname: Kuang, Le‐Man
  email: lmkuang@hunnu.edu.cn
  organization: Hunan Normal University
– sequence: 7
  givenname: Hui
  orcidid: 0000-0001-5091-2057
  surname: Jing
  fullname: Jing, Hui
  email: jinghui@hunnu.edu.cn
  organization: Hunan Normal University
BookMark eNqFkMtLAzEQxoNUsFavnhc8b53sI7vBk5T6gEJ99B7SdGJTdrNrkqXUv94tlQqCOJeZw_eb-eY7JwPbWCTkisKYAiQ3Vdu4cQJJCpTm2QkZ0pKlcVlyPjjOJZyRc-83AHlfbEhuF8600gUTMHrppA1dHU1tkPa9whptiLYmrKO3jw7xE1fRvA1NjWotrVH-gpxqWXm8_O4jsrifLiaP8Wz-8DS5m8UqpUUWy2Wa570LphQtCuQMygwBKSuk1JwD15ixldZIOSz1UvMEC1lqmisJGjAdkevD2tY1vQ8fxKbpnO0vipRmSf9ZXrBelR1UyjXeO9RCmSCDaWxw0lSCgtinJPYpiWNKPTb-hbXO1NLt_gb4AdiaCnf_qMXsef76w34BHQR9yg
CitedBy_id crossref_primary_10_1364_OE_534446
crossref_primary_10_1103_PhysRevA_111_013709
crossref_primary_10_1103_PhysRevApplied_22_064001
crossref_primary_10_1063_5_0228364
crossref_primary_10_1103_PhysRevA_110_033505
crossref_primary_10_1117_1_OE_64_1_015103
Cites_doi 10.1103/PhysRevLett.98.030405
10.1103/PhysRevLett.90.167903
10.1103/PhysRevA.94.053807
10.1103/PhysRevA.106.013526
10.1103/PhysRevLett.129.063602
10.1038/nature04279
10.1103/RevModPhys.86.1391
10.1103/PhysRevLett.84.2726
10.1038/s41467-023-40771-3
10.1103/PhysRevA.84.024301
10.1364/OPTICA.6.001361
10.1126/science.abb0328
10.1007/s11433-015-5648-9
10.1103/PhysRevLett.129.050503
10.1007/s12200-023-00073-4
10.1038/ncomms11338
10.1103/PhysRevLett.121.220404
10.1103/PhysRevA.95.043819
10.1038/s41586-019-1320-2
10.1103/PhysRevApplied.18.064008
10.1088/1674-1056/ac6499
10.1007/s11433-022-2043-3
10.1103/PhysRevLett.120.200501
10.1103/PhysRevLett.117.210502
10.1038/nature11120
10.1103/PhysRevA.92.062311
10.1103/PhysRevA.70.022318
10.1007/s11433-019-9451-3
10.1126/science.abf5389
10.1103/PhysRevLett.125.153602
10.1038/s42254-018-0003-5
10.1038/ncomms15645
10.1103/PhysRevLett.129.123602
10.1103/PhysRevA.100.043824
10.1103/PhysRevLett.130.073602
10.1103/PhysRevA.98.023860
10.1103/PhysRevA.98.063843
10.1126/science.abf2998
10.1103/RevModPhys.81.865
10.1103/PhysRevApplied.9.064006
10.1038/s41586-018-0036-z
10.1007/s11433-023-2180-x
10.1038/nature16536
10.1038/nature07127
10.1103/PhysRevResearch.4.033112
10.1103/PhysRevA.108.013516
10.1103/RevModPhys.92.025002
10.1126/science.1244563
10.1093/nsr/nwy153
10.1103/PhysRevLett.101.200503
10.1103/RevModPhys.89.035002
10.1038/ncomms2033
10.1103/PhysRevLett.112.080503
10.1103/PhysRevLett.121.203601
10.1103/PhysRevLett.124.053604
10.1364/PRJ.423506
10.1103/PhysRevA.106.063506
10.1103/PhysRevLett.128.083604
10.1038/ncomms6905
10.1103/PhysRevA.108.012432
10.1103/PhysRevApplied.17.024009
10.1038/s41567-021-01402-0
10.1103/PhysRevA.89.014302
10.1103/PhysRevLett.121.023602
10.1038/nature08967
10.1103/PhysRevA.77.050307
10.1364/OE.493208
10.1364/OE.24.012336
10.1038/nphoton.2011.354
10.1088/1367-2630/17/10/103037
10.1103/PhysRevLett.125.143605
10.1038/nphys3705
10.1038/s41467-020-14768-1
10.1103/PhysRevA.108.023716
10.1364/OL.459917
10.1103/PhysRevLett.109.013603
10.1103/PhysRevLett.126.023602
10.1103/PhysRevA.100.023825
10.1103/PhysRevLett.114.093602
10.1103/PhysRevLett.127.093602
10.1038/s41586-018-0038-x
10.1016/j.fmre.2022.07.001
10.1103/PhysRevLett.120.093601
10.1103/PhysRevA.104.053517
10.1103/PhysRevLett.110.253601
10.1038/s41586-018-0195-y
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202301154
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202301154
LPOR202301154
Genre article
GrantInformation_xml – fundername: Henan Provincial Science and Technology Research Project
  funderid: 232102221001
– fundername: Hunan Provincial Major Sci‐Tech Program
  funderid: 2023ZJ1010
– fundername: National Key R&D Program of China
  funderid: 2024YFE0102400
– fundername: National Natural Science Foundation of China
  funderid: 11935006; 12175061; 12247105; 12147156; 12205256; 12205092; 12175060
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2023JJ40208
– fundername: Science and Technology Innovation Program of Hunan Province
  funderid: 2020RC4047
– fundername: Henan Science and Technology Major Project
  funderid: 241100210400
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3174-ab3558996cc177e96084e0e167aaf9909fe46dffe190bfbf92e7a8f15ca0f0e3
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 12:29:30 EDT 2025
Tue Jul 01 04:32:47 EDT 2025
Thu Apr 24 22:55:26 EDT 2025
Wed Jan 22 17:12:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-ab3558996cc177e96084e0e167aaf9909fe46dffe190bfbf92e7a8f15ca0f0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4948-0183
0000-0001-5091-2057
0000-0002-9830-9000
0000-0002-1187-0779
0000-0003-3728-4783
PQID 3142186576
PQPubID 1016358
PageCount 11
ParticipantIDs proquest_journals_3142186576
crossref_citationtrail_10_1002_lpor_202301154
crossref_primary_10_1002_lpor_202301154
wiley_primary_10_1002_lpor_202301154_LPOR202301154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2023; 31
2018; 121
2017; 8
2012; 485
2009; 81
2020; 63
2021; 126
2021; 127
2010; 464
2017; 89
2020; 369
2008; 77
2020; 11
2023; 108
2020; 124
2020; 125
2023; 3
2008; 101
2018; 6
2018; 9
2018; 8
2003; 90
2023; 66
2004; 70
2023; 130
2020; 92
2016; 117
2022; 31
2013; 110
2022; 128
2022; 129
2021; 9
2015; 58
2015; 6
2015; 17
2023; 14
2019; 6
2015; 92
2021; 104
2019; 1
2023; 16
2011; 84
2005; 438
2013; 342
2022; 47
2016; 94
2007; 98
2014; 89
2019; 100
2016; 12
2014; 112
2012; 109
2014; 86
2017; 95
2016; 7
2012; 3
2018; 556
2022; 4
2018; 558
2015; 114
2016; 530
2000; 84
2021; 372
2008; 453
2012; 6
2019; 570
2018; 98
2022; 106
2022; 17
2016; 24
2022; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Kuzyk M. C. (e_1_2_8_5_1) 2018; 8
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 84
  year: 2011
  publication-title: Phys. Rev. A
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 128
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 558
  start-page: 264
  year: 2018
  publication-title: Nature (London)
– volume: 372
  start-page: 622
  year: 2021
  publication-title: Science
– volume: 453
  start-page: 1023
  year: 2008
  publication-title: Nature (London)
– volume: 530
  start-page: 313
  year: 2016
  publication-title: Nature (London)
– volume: 6
  start-page: 5905
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2152
  year: 2021
  publication-title: Photon. Res.
– volume: 6
  start-page: 225
  year: 2012
  publication-title: Nat. Photonics
– volume: 100
  year: 2019
  publication-title: Phys. Rev. A
– volume: 3
  start-page: 15
  year: 2023
  publication-title: Fundam. Res.
– volume: 18
  start-page: 15
  year: 2022
  publication-title: Nat. Phys.
– volume: 63
  year: 2020
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 77
  year: 2008
  publication-title: Phys. Rev. A
– volume: 4
  year: 2022
  publication-title: Phys. Rev. Res.
– volume: 58
  start-page: 1
  year: 2015
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. A
– volume: 18
  year: 2022
  publication-title: Phys. Rev. Applied
– volume: 104
  year: 2021
  publication-title: Phys. Rev. A
– volume: 12
  start-page: 783
  year: 2016
  publication-title: Nat. Phys.
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 17
  year: 2022
  publication-title: Phys. Rev. Applied
– volume: 369
  start-page: 174
  year: 2020
  publication-title: Science
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 31
  year: 2023
  publication-title: Opt. Express
– volume: 89
  year: 2014
  publication-title: Phys. Rev. A
– volume: 106
  year: 2022
  publication-title: Phys. Rev. A
– volume: 14
  start-page: 5037
  year: 2023
  publication-title: Nat. Commun.
– volume: 81
  start-page: 865
  year: 2009
  publication-title: Rev. Mod. Phys.
– volume: 6
  start-page: 32
  year: 2018
  publication-title: Natl. Sci. Rev.
– volume: 372
  start-page: 625
  year: 2021
  publication-title: Science
– volume: 90
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 47
  start-page: 3311
  year: 2022
  publication-title: Opt. Lett.
– volume: 556
  start-page: 473
  year: 2018
  publication-title: Nature (London)
– volume: 86
  start-page: 1391
  year: 2014
  publication-title: Rev. Mod. Phys.
– volume: 342
  start-page: 710
  year: 2013
  publication-title: Science
– volume: 95
  year: 2017
  publication-title: Phys. Rev. A
– volume: 98
  year: 2018
  publication-title: Phys. Rev. A
– volume: 6
  start-page: 1361
  year: 2019
  publication-title: Optica
– volume: 16
  start-page: 18
  year: 2023
  publication-title: Front. Optoelectron.
– volume: 570
  start-page: 480
  year: 2019
  publication-title: Nature (London)
– volume: 8
  year: 2018
  publication-title: Phys. Rev. X
– volume: 70
  year: 2004
  publication-title: Phys. Rev. A
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 126
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 108
  year: 2023
  publication-title: Phys. Rev. A
– volume: 84
  start-page: 2726
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 66
  year: 2023
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 24
  year: 2016
  publication-title: Opt. Express
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 31
  year: 2022
  publication-title: Chinese Phys. B
– volume: 130
  year: 2023
  publication-title: Phys. Rev. Lett.
– volume: 438
  start-page: 643
  year: 2005
  publication-title: Nature (London)
– volume: 89
  year: 2017
  publication-title: Rev. Mod. Phys.
– volume: 129
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 464
  start-page: 697
  year: 2010
  publication-title: Nature (London)
– volume: 9
  year: 2018
  publication-title: Phys. Rev. Applied
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 127
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 556
  start-page: 478
  year: 2018
  publication-title: Nature (London)
– volume: 92
  year: 2020
  publication-title: Rev. Mod. Phys.
– volume: 3
  start-page: 1026
  year: 2012
  publication-title: Nat. Commun.
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 72
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 11
  start-page: 943
  year: 2020
  publication-title: Nat. Commun.
– volume: 17
  year: 2015
  publication-title: New J. Phys.
– volume: 485
  start-page: 482
  year: 2012
  publication-title: Nature (London)
– volume: 94
  year: 2016
  publication-title: Phys. Rev. A
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevLett.98.030405
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevLett.90.167903
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevA.94.053807
– ident: e_1_2_8_21_1
  doi: 10.1103/PhysRevA.106.013526
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevLett.129.063602
– ident: e_1_2_8_12_1
  doi: 10.1038/nature04279
– ident: e_1_2_8_22_1
  doi: 10.1103/RevModPhys.86.1391
– ident: e_1_2_8_83_1
  doi: 10.1103/PhysRevLett.84.2726
– ident: e_1_2_8_80_1
  doi: 10.1038/s41467-023-40771-3
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevA.84.024301
– ident: e_1_2_8_84_1
  doi: 10.1364/OPTICA.6.001361
– ident: e_1_2_8_15_1
  doi: 10.1126/science.abb0328
– ident: e_1_2_8_23_1
  doi: 10.1007/s11433-015-5648-9
– ident: e_1_2_8_16_1
  doi: 10.1103/PhysRevLett.129.050503
– ident: e_1_2_8_85_1
  doi: 10.1007/s12200-023-00073-4
– ident: e_1_2_8_69_1
  doi: 10.1038/ncomms11338
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevLett.121.220404
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevA.95.043819
– ident: e_1_2_8_31_1
  doi: 10.1038/s41586-019-1320-2
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevApplied.18.064008
– ident: e_1_2_8_59_1
  doi: 10.1088/1674-1056/ac6499
– ident: e_1_2_8_46_1
  doi: 10.1007/s11433-022-2043-3
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.120.200501
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevLett.117.210502
– ident: e_1_2_8_13_1
  doi: 10.1038/nature11120
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevA.92.062311
– ident: e_1_2_8_82_1
  doi: 10.1103/PhysRevA.70.022318
– ident: e_1_2_8_8_1
  doi: 10.1007/s11433-019-9451-3
– ident: e_1_2_8_39_1
  doi: 10.1126/science.abf5389
– ident: e_1_2_8_70_1
  doi: 10.1103/PhysRevLett.125.153602
– ident: e_1_2_8_9_1
  doi: 10.1038/s42254-018-0003-5
– ident: e_1_2_8_41_1
  doi: 10.1038/ncomms15645
– ident: e_1_2_8_64_1
  doi: 10.1103/PhysRevLett.129.123602
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevA.100.043824
– ident: e_1_2_8_71_1
  doi: 10.1103/PhysRevLett.130.073602
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevA.98.023860
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevA.98.063843
– ident: e_1_2_8_38_1
  doi: 10.1126/science.abf2998
– ident: e_1_2_8_1_1
  doi: 10.1103/RevModPhys.81.865
– ident: e_1_2_8_72_1
  doi: 10.1103/PhysRevApplied.9.064006
– ident: e_1_2_8_37_1
  doi: 10.1038/s41586-018-0036-z
– ident: e_1_2_8_76_1
  doi: 10.1007/s11433-023-2180-x
– ident: e_1_2_8_28_1
  doi: 10.1038/nature16536
– ident: e_1_2_8_4_1
  doi: 10.1038/nature07127
– ident: e_1_2_8_50_1
  doi: 10.1103/PhysRevResearch.4.033112
– ident: e_1_2_8_86_1
  doi: 10.1103/PhysRevA.108.013516
– ident: e_1_2_8_3_1
  doi: 10.1103/RevModPhys.92.025002
– ident: e_1_2_8_26_1
  doi: 10.1126/science.1244563
– ident: e_1_2_8_2_1
  doi: 10.1093/nsr/nwy153
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevLett.101.200503
– ident: e_1_2_8_6_1
  doi: 10.1103/RevModPhys.89.035002
– ident: e_1_2_8_40_1
  doi: 10.1038/ncomms2033
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevLett.112.080503
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevLett.121.203601
– ident: e_1_2_8_78_1
  doi: 10.1103/PhysRevLett.124.053604
– ident: e_1_2_8_79_1
  doi: 10.1364/PRJ.423506
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevA.106.063506
– volume: 8
  year: 2018
  ident: e_1_2_8_5_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_65_1
  doi: 10.1103/PhysRevLett.128.083604
– ident: e_1_2_8_7_1
  doi: 10.1038/ncomms6905
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevA.108.012432
– ident: e_1_2_8_75_1
  doi: 10.1103/PhysRevApplied.17.024009
– ident: e_1_2_8_24_1
  doi: 10.1038/s41567-021-01402-0
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevA.89.014302
– ident: e_1_2_8_53_1
  doi: 10.1103/PhysRevLett.121.023602
– ident: e_1_2_8_19_1
  doi: 10.1038/nature08967
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevA.77.050307
– ident: e_1_2_8_66_1
  doi: 10.1364/OE.493208
– ident: e_1_2_8_77_1
  doi: 10.1364/OE.24.012336
– ident: e_1_2_8_10_1
  doi: 10.1038/nphoton.2011.354
– ident: e_1_2_8_35_1
  doi: 10.1088/1367-2630/17/10/103037
– ident: e_1_2_8_57_1
  doi: 10.1103/PhysRevLett.125.143605
– ident: e_1_2_8_14_1
  doi: 10.1038/nphys3705
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-020-14768-1
– ident: e_1_2_8_67_1
  doi: 10.1103/PhysRevA.108.023716
– ident: e_1_2_8_68_1
  doi: 10.1364/OL.459917
– ident: e_1_2_8_81_1
  doi: 10.1103/PhysRevLett.109.013603
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevLett.126.023602
– ident: e_1_2_8_73_1
  doi: 10.1103/PhysRevA.100.023825
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevLett.114.093602
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevLett.127.093602
– ident: e_1_2_8_36_1
  doi: 10.1038/s41586-018-0038-x
– ident: e_1_2_8_87_1
  doi: 10.1016/j.fmre.2022.07.001
– ident: e_1_2_8_61_1
  doi: 10.1103/PhysRevLett.120.093601
– ident: e_1_2_8_74_1
  doi: 10.1103/PhysRevA.104.053517
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevLett.110.253601
– ident: e_1_2_8_18_1
  doi: 10.1038/s41586-018-0195-y
SSID ssj0055556
Score 2.4580417
Snippet The ability to engineer entangled states that involve macroscopic objects is of particular importance for a wide variety of quantum‐enabled technologies,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms cavity optomechanics
Compressing
Controllability
Data processing
Entangled states
Fabry-Perot interferometers
Opto-mechanics
optomechanical entanglement
Parameters
Parametric amplifiers
quantum engineering
Quantum entanglement
Quantum phenomena
quantum squeezing
Reservoirs
Title Tripartite Quantum Entanglement with Squeezed Optomechanics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202301154
https://www.proquest.com/docview/3142186576
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ1-cV5yb0gfBp2y9JL3gk8jGEHU6J-ytJGki4tYN277s13vS2zZBBC0UWmhKm5yT833h5DsIXTquGyg4MVdUYCICBwdBRDFTEKtcSQSP9Drkw6M7fCV3Uzrd2MVf6EPUC27aM_L5Wjs440lvLRo6A3za1cW_c0UZmIR1wpZGReNaP4rCkW8v8l0HA9UzK9VG0-5tN9-OSmuouQlY84gzaCJWfWuRaPLRzVLeFatvMo7_-Zl9tFfCUeOmsJ8DtCPjQ9QsoalROn5yhK4nMLloK0ul8ZzBaGRzox8DsHwr0s8NvZ5rvGhavIKGo2W6mEu9qfhdJMdoMuhPboe4rLuABaAJghnXmutAhISwPE8Cx_GJNKXleowpiF6BksSNlJIAJrjiKrClx3xlUcFMZUrnBDXiRSxPkUFoZAsKMZIEijgSqIkAm_AjK4oUBRrfQrjq9lCUmuS6NMYsLNSU7VB3TFh3TAtd1c8vCzWOH5_sVKMYll6ZhI5FdAkuoFgtZOfD8ctbwvun0bi-O_tLozbahWtSZMB0UCP9zOQ54JiUX-S2-gXzTusV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HvRifWK1ag6Cp615bNIET6ItVfvQGsFbSDa7IrZpscmlv97ZvGoFETSQQ8Ju2OzO7HwzzH4DcGZYliPwJoEwGaHMMYjjhCbxBdoqi1MWhDIO2etbnWd692IW2YTyLEzGD1EG3KRmpPu1VHAZkL5YsIaOEKA2ZPXvlFJmFdZkWW9ZxOBmWDJImXilB4xsyyDo7KkFb6OqXyz3X7ZLC7D5FbKmNqddhaAYbZZq8t5I4qDB5t-IHP_1O1uwmSNS5SoToW1Y4dEOVHN0quS6P9uFSxf3FyloMVceE1yQZKy0IsSWr1kGuiJDusqT9Izn2HEwjSdjLs8Vv7HZHrjtlnvdIXnpBcIQUFDiB5J2HX0hxrRmk6ObY1Oucs1q-r5AA-YITq1QCI54IhCBcHTe9G2hmcxXhcqNfahEk4gfgELNUGcmmknqCGpw9E4YioUdamEoTPTka0CKefdYTksuq2OMvIxQWffkxHjlxNTgvGw_zQg5fmxZL5bRyxVz5hkalVW40MuqgZ6uxy9f8boPg2H5dPiXTqew3nF7Xa97278_gg18T7OEmDpU4o-EHyOsiYOTVHA_Aatj7y8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBPHFecXp1D4IPmXrJW1XfBLd8DK3OSfsrbRpIuLWDde-7Nd70ts2QQQt9KElKWlyTs73heQ7ABeGZTkCb-ILkxHKHIM4TmAST2CssjhlfiDXIZ861t0rfRiaw6VT_Kk-RLHgJj0jma-lg08DUV-Iho4Qn9Zk8u9EUWYdNqiFHiNhUb8QkDLxSs4XNSyDINdTc9lGVa-v1l8NSwusuYxYk5DTKoOXNzbdafJRiyO_xubfdBz_8zc7sJ3hUeU6NaBdWOPhHpQzbKpknj_bh6sBzi7SzCKuPMc4HPFYaYaILN_S_eeKXNBVXiQvnmPF7jSajLk8VfzOZgcwaDUHN3ckS7xAGMIJSjxfiq4jE2JMs22OJKdBuco1y_Y8geHLEZxagRAc0YQvfOHo3PYaQjOZpwqVG4dQCichPwKFmoHOTAyS1BHU4MhNGBpFI9CCQJjI4ytA8m53WSZKLnNjjNxUTll3Zce4RcdU4LIoP03lOH4sWc1H0c3ccuYaGpU5uJBjVUBPhuOXr7jtXrdfPB3_pdI5bPZuW277vvN4Alv4mqa7YapQij5jfoqYJvLPErP9AgJK7ec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tripartite+Quantum+Entanglement+with+Squeezed+Optomechanics&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Ya%E2%80%90Feng+Jiao&rft.au=Yun%E2%80%90Lan+Zuo&rft.au=Wang%2C+Yan&rft.au=Lu%2C+Wangjun&rft.date=2024-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=18&rft.issue=12&rft_id=info:doi/10.1002%2Flpor.202301154&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon