Revisit to Grain Boundary Effect in Pt Nanocrystals toward the Oxygen Electroreduction Reaction

The effect of catalytic surface defects in the oxygen reduction reaction (ORR) has been extensively studied to enhance the performance of proton‐exchange‐membrane fuel cells. Platinum (Pt)‐based nanocatalysts have been used to overcome the poor performance of ORR, and Sabatier‐type activity plots ha...

Full description

Saved in:
Bibliographic Details
Published inChemCatChem Vol. 15; no. 12
Main Authors Kabiraz, Mrinal Kanti, Choi, Sang‐Il
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 22.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effect of catalytic surface defects in the oxygen reduction reaction (ORR) has been extensively studied to enhance the performance of proton‐exchange‐membrane fuel cells. Platinum (Pt)‐based nanocatalysts have been used to overcome the poor performance of ORR, and Sabatier‐type activity plots have been used to identify the optimal adsorption properties for ORR intermediates on the catalytic surface. Grain boundaries (GBs) within the nanostructures have been identified as the optimal active sites for ORR due to their reasonable coordination number and high oxygen residence time. However, oxidation of Pt atoms exposed at GB sites and leaching of non‐noble metals from bimetallic Pt alloys have been identified as the “Achilles Heel” of GB‐containing nanocatalysts. In this concept, we revisit the effect of GBs on nanocatalysts, summarize the mechanism of GBs towards ORR, and suggest outlooks for improving ORR for future design of nanocatalysts. This concept review provides a broad overview of the function of grain boundaries (GBs) toward oxygen reduction reaction (ORR). Like, duality symbol of Yin and Yang, presence of GBs on platinum (Pt)‐based nanocatalysts toward ORR has been found to be both beneficial and detrimental.
AbstractList The effect of catalytic surface defects in the oxygen reduction reaction (ORR) has been extensively studied to enhance the performance of proton‐exchange‐membrane fuel cells. Platinum (Pt)‐based nanocatalysts have been used to overcome the poor performance of ORR, and Sabatier‐type activity plots have been used to identify the optimal adsorption properties for ORR intermediates on the catalytic surface. Grain boundaries (GBs) within the nanostructures have been identified as the optimal active sites for ORR due to their reasonable coordination number and high oxygen residence time. However, oxidation of Pt atoms exposed at GB sites and leaching of non‐noble metals from bimetallic Pt alloys have been identified as the “Achilles Heel” of GB‐containing nanocatalysts. In this concept, we revisit the effect of GBs on nanocatalysts, summarize the mechanism of GBs towards ORR, and suggest outlooks for improving ORR for future design of nanocatalysts.
The effect of catalytic surface defects in the oxygen reduction reaction (ORR) has been extensively studied to enhance the performance of proton‐exchange‐membrane fuel cells. Platinum (Pt)‐based nanocatalysts have been used to overcome the poor performance of ORR, and Sabatier‐type activity plots have been used to identify the optimal adsorption properties for ORR intermediates on the catalytic surface. Grain boundaries (GBs) within the nanostructures have been identified as the optimal active sites for ORR due to their reasonable coordination number and high oxygen residence time. However, oxidation of Pt atoms exposed at GB sites and leaching of non‐noble metals from bimetallic Pt alloys have been identified as the “Achilles Heel” of GB‐containing nanocatalysts. In this concept, we revisit the effect of GBs on nanocatalysts, summarize the mechanism of GBs towards ORR, and suggest outlooks for improving ORR for future design of nanocatalysts. This concept review provides a broad overview of the function of grain boundaries (GBs) toward oxygen reduction reaction (ORR). Like, duality symbol of Yin and Yang, presence of GBs on platinum (Pt)‐based nanocatalysts toward ORR has been found to be both beneficial and detrimental.
Abstract The effect of catalytic surface defects in the oxygen reduction reaction (ORR) has been extensively studied to enhance the performance of proton‐exchange‐membrane fuel cells. Platinum (Pt)‐based nanocatalysts have been used to overcome the poor performance of ORR, and Sabatier‐type activity plots have been used to identify the optimal adsorption properties for ORR intermediates on the catalytic surface. Grain boundaries (GBs) within the nanostructures have been identified as the optimal active sites for ORR due to their reasonable coordination number and high oxygen residence time. However, oxidation of Pt atoms exposed at GB sites and leaching of non‐noble metals from bimetallic Pt alloys have been identified as the “Achilles Heel” of GB‐containing nanocatalysts. In this concept, we revisit the effect of GBs on nanocatalysts, summarize the mechanism of GBs towards ORR, and suggest outlooks for improving ORR for future design of nanocatalysts.
Author Kabiraz, Mrinal Kanti
Choi, Sang‐Il
Author_xml – sequence: 1
  givenname: Mrinal Kanti
  orcidid: 0000-0002-3603-7329
  surname: Kabiraz
  fullname: Kabiraz, Mrinal Kanti
  organization: Kyungpook National University
– sequence: 2
  givenname: Sang‐Il
  orcidid: 0000-0002-8280-3100
  surname: Choi
  fullname: Choi, Sang‐Il
  email: sichoi@knu.ac.kr
  organization: Kyungpook National University
BookMark eNqFkE1LAzEQhoMo2FavngOeW_O1m92jLrUKxUqp55DNJrqlJjXJWvffm1qpR08zDM8zw7xDcGqd1QBcYTTBCJEbpaKaEEQoQixjJ2CAi5yPaVGWp8e-QOdgGMIaobykPBsAsdSfbWgjjA7OvGwtvHOdbaTv4dQYrSJMo-cIn6R1yvchyk1I7E76BsY3DRdf_au2cLpJqHdeN52KrbNwqeVPcwHOTFL05W8dgZf76ap6GM8Xs8fqdj5WFHM2lkRmtCZa6ZpnTHKjTYNzg3LZ8BI3WpK6wBmvVZ2xmmGZK1NTxaQkDKkMIzoC14e9W-8-Oh2iWLvO23RSkIJmuOQ5yRM1OVDKuxC8NmLr2_f0rMBI7EMU-xDFMcQklAdh1250_w8tqmpV_bnfVNN5Zg
CitedBy_id crossref_primary_10_1016_j_mtnano_2023_100377
crossref_primary_10_1002_celc_202400154
crossref_primary_10_1002_EXP_20220174
Cites_doi 10.1021/acscatal.5b02920
10.1016/j.cclet.2019.08.008
10.1016/j.jcat.2012.07.019
10.1002/bkcs.12588
10.1039/c2ee03590a
10.1126/science.aaa8765
10.1021/nl100718k
10.1016/j.jelechem.2017.09.047
10.1021/acscatal.6b00997
10.2320/matertrans.M2013416
10.1021/nl401881z
10.1021/ja207016u
10.1039/C6SC04788B
10.1021/jp051735z
10.1016/S1359-6462(97)00018-3
10.1021/acsnano.7b04097
10.1038/s41563-018-0133-2
10.1021/acs.nanolett.8b00270
10.1021/jp047349j
10.1021/acs.chemrev.7b00488
10.1038/nchem.1093
10.1016/j.jelechem.2020.114194
10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9
10.1126/sciadv.abb1435
10.1126/science.aab3501
10.1002/adma.201704123
10.1021/acs.chemrev.5b00462
10.1002/celc.202000579
10.1039/C9SC01078E
10.1007/s12274-020-3007-2
10.1038/nature11115
10.1002/cphc.201900866
10.1016/j.matt.2020.09.015
10.1002/anie.201402958
10.1021/acscatal.1c05766
10.1016/S0167-5729(01)00022-X
10.1039/C8TA04087G
10.1038/nchem.367
10.1002/anie.201504830
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cctc.202300454
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage n/a
ExternalDocumentID 10_1002_cctc_202300454
CCTC202300454
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2021R1A2C4001411; 2022K2A9A2A06018606
GroupedDBID 05W
0R~
1OC
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3174-a2a53b2eceb754a7fefd16f06ad791dea2b8157bcb54b41a6cfb3c4aa240c5103
ISSN 1867-3880
IngestDate Fri Sep 13 04:39:38 EDT 2024
Fri Aug 23 03:42:54 EDT 2024
Sat Aug 24 00:57:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3174-a2a53b2eceb754a7fefd16f06ad791dea2b8157bcb54b41a6cfb3c4aa240c5103
ORCID 0000-0002-3603-7329
0000-0002-8280-3100
PQID 2835197626
PQPubID 986343
PageCount 6
ParticipantIDs proquest_journals_2835197626
crossref_primary_10_1002_cctc_202300454
wiley_primary_10_1002_cctc_202300454_CCTC202300454
PublicationCentury 2000
PublicationDate June 22, 2023
PublicationDateYYYYMMDD 2023-06-22
PublicationDate_xml – month: 06
  year: 2023
  text: June 22, 2023
  day: 22
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2017; 8
2012; 486
2019; 10
2023; 7
2020; 13
2022; 43
2015; 348
2004; 108
2011; 3
2011; 133
2016; 55
2015; 350
2020; 7
2018; 6
2016; 6
2018; 18
2012; 295
2018; 17
2020; 3
2020; 31
2019; 20
2013; 13
2018; 118
2017; 11
2002; 45
1997; 36
2022; 12
2005; 109
2018; 819
2018; 30
2016; 116
2020; 870
2001; 1
1981
2009; 1
2012; 5
2014; 55
2014; 53
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Somorjai G. A. (e_1_2_7_20_1) 1981
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 45
  start-page: 117
  year: 2002
  publication-title: Surf. Sci. Rep.
– volume: 350
  start-page: 185
  year: 2015
  publication-title: Science
– year: 1981
– volume: 3
  start-page: 2108
  year: 2020
  publication-title: Matter
– volume: 6
  start-page: 2536
  year: 2016
  publication-title: ACS Catal.
– volume: 3
  start-page: 647
  year: 2011
  publication-title: Nat. Chem.
– volume: 31
  start-page: 626
  year: 2020
  publication-title: Chin. Chem. Lett.
– volume: 18
  start-page: 2930
  year: 2018
  publication-title: Nano Lett.
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 6
  start-page: 5378
  year: 2016
  publication-title: ACS Catal.
– volume: 7
  year: 2023
  publication-title: Sci. Adv.
– volume: 12
  start-page: 3516
  year: 2022
  publication-title: ACS Catal.
– volume: 17
  start-page: 827
  year: 2018
  publication-title: Nat. Mater.
– volume: 55
  start-page: 2650
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 295
  start-page: 59
  year: 2012
  publication-title: J. Catal.
– volume: 1
  start-page: 552
  year: 2009
  publication-title: Nat. Chem.
– volume: 6
  start-page: 13735
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 819
  start-page: 123
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 486
  start-page: 43
  year: 2012
  publication-title: Nature
– volume: 13
  start-page: 3420
  year: 2013
  publication-title: Nano Lett.
– volume: 53
  start-page: 8316
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 6744
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 20
  start-page: 2997
  year: 2019
  publication-title: ChemPhysChem
– volume: 348
  start-page: 1230
  year: 2015
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 10844
  year: 2017
  publication-title: ACS Nano
– volume: 10
  start-page: 5589
  year: 2019
  publication-title: Chem. Sci.
– volume: 55
  start-page: 735
  year: 2014
  publication-title: Mater. Trans.
– volume: 10
  start-page: 2806
  year: 2010
  publication-title: Nano Lett.
– volume: 133
  start-page: 17428
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 2302
  year: 2018
  publication-title: Chem. Rev.
– volume: 36
  start-page: 1211
  year: 1997
  publication-title: Scr. Mater.
– volume: 870
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 108
  start-page: 17886
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 2643
  year: 2020
  publication-title: ChemElectroChem
– volume: 109
  start-page: 14433
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 2283
  year: 2017
  publication-title: Chem. Sci.
– volume: 13
  start-page: 3310
  year: 2020
  publication-title: Nano Res.
– volume: 1
  start-page: 105
  year: 2001
  publication-title: Fuel Cells
– volume: 43
  start-page: 1093
  year: 2022
  publication-title: Bull. Korean Chem. Soc.
– ident: e_1_2_7_22_1
  doi: 10.1021/acscatal.5b02920
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cclet.2019.08.008
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jcat.2012.07.019
– ident: e_1_2_7_6_1
  doi: 10.1002/bkcs.12588
– ident: e_1_2_7_15_1
  doi: 10.1039/c2ee03590a
– ident: e_1_2_7_13_1
  doi: 10.1126/science.aaa8765
– ident: e_1_2_7_8_1
  doi: 10.1021/nl100718k
– volume-title: Chemistry in Two Dimensions: Surfaces
  year: 1981
  ident: e_1_2_7_20_1
  contributor:
    fullname: Somorjai G. A.
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jelechem.2017.09.047
– ident: e_1_2_7_2_1
  doi: 10.1021/acscatal.6b00997
– ident: e_1_2_7_41_1
  doi: 10.2320/matertrans.M2013416
– ident: e_1_2_7_12_1
  doi: 10.1021/nl401881z
– ident: e_1_2_7_24_1
  doi: 10.1021/ja207016u
– ident: e_1_2_7_26_1
  doi: 10.1039/C6SC04788B
– ident: e_1_2_7_25_1
  doi: 10.1021/jp051735z
– ident: e_1_2_7_30_1
  doi: 10.1016/S1359-6462(97)00018-3
– ident: e_1_2_7_5_1
  doi: 10.1021/acsnano.7b04097
– ident: e_1_2_7_28_1
  doi: 10.1038/s41563-018-0133-2
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.nanolett.8b00270
– ident: e_1_2_7_7_1
  doi: 10.1021/jp047349j
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.chemrev.7b00488
– ident: e_1_2_7_17_1
  doi: 10.1038/nchem.1093
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jelechem.2020.114194
– ident: e_1_2_7_9_1
  doi: 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9
– ident: e_1_2_7_27_1
  doi: 10.1126/sciadv.abb1435
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aab3501
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201704123
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_7_14_1
  doi: 10.1002/celc.202000579
– ident: e_1_2_7_21_1
  doi: 10.1039/C9SC01078E
– ident: e_1_2_7_29_1
  doi: 10.1007/s12274-020-3007-2
– ident: e_1_2_7_4_1
  doi: 10.1038/nature11115
– ident: e_1_2_7_40_1
  doi: 10.1002/cphc.201900866
– ident: e_1_2_7_31_1
  doi: 10.1016/j.matt.2020.09.015
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.201402958
– ident: e_1_2_7_34_1
  doi: 10.1021/acscatal.1c05766
– ident: e_1_2_7_35_1
– ident: e_1_2_7_10_1
  doi: 10.1016/S0167-5729(01)00022-X
– ident: e_1_2_7_32_1
  doi: 10.1039/C8TA04087G
– ident: e_1_2_7_16_1
  doi: 10.1038/nchem.367
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201504830
SSID ssj0069375
Score 2.42157
Snippet The effect of catalytic surface defects in the oxygen reduction reaction (ORR) has been extensively studied to enhance the performance of...
Abstract The effect of catalytic surface defects in the oxygen reduction reaction (ORR) has been extensively studied to enhance the performance of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Atomic properties
Bimetals
Chemical reduction
Coordination numbers
Crystal defects
electrocatalysis
Fuel cells
Grain boundaries
grain boundary
Leaching
Nanocrystals
Noble metals
Oxidation
oxygen reduction reaction
Oxygen reduction reactions
Platinum
Platinum base alloys
reaction mechanism
Surface defects
Title Revisit to Grain Boundary Effect in Pt Nanocrystals toward the Oxygen Electroreduction Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202300454
https://www.proquest.com/docview/2835197626/abstract/
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgO8AF8SnKBvIBiUMVSFw7Xo9raBmwL02p1Jvlr2iVphaFTKL89TzbcZqhCRiXpHmHp8rvl-efHb_fQ-itqTTXyqSJNoYn1BKduBY5CTGMqNTqETXui-7JaX40p18WbLHtNuqrSxr1Xv-8ta7kf6IKNoirq5K9Q2Q7p2CA3xBfuEKE4fpPMb7wpeGN44-fXKuH4cQ3Sao3w1aUGEznjcuga11vgAdeOT0Hd07W882zHxtwPZyGTji1E3H1aLiwodqhT1ydsEAhG3frcrRUy1r6DeiT2jfX-gphWnZ7Nm4nOh6l-Hw1LC7Xy_4eA3H9HhJC7pDJehn0ADKvU5gJE0zfFjohdWmX9eFFbk3nQR5Way82SUZeL3A7ccWP9adnYjY_PhbldFHeR7uEjxksw3cPJx8nszgr50DD3HHW7u9FAc-UfLjp_yZB2a46-msXTz7Kx-hRu2rAhwECT9A9u3qKHhSxWd8zJFoo4GaNPRRwhAIOUMBgOm9wHwo4QAEDFHCAAv4dCjhC4Tmaz6ZlcZS0vTMSDYyQJpJINlLEaqs4o5JXtjJZXqW5NHycGSuJOsgYV1oxqmgmc12pkaZSAsPTTmXxBdpZrVf2JcJcjglTUuqcW8qJlEDaq1QrCUt5W-XpAL2LAya-BYkUEcSwiXBDK7qhHaD9OJ6ifY2-Cyf4lwEpJvkAET_Gf_EiiqIsuqdXf_a5hx5uAb2Pdpr62r4GGtmoNy1CfgH_8HTU
link.rule.ids 315,786,790,27957,27958
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisit+to+Grain+Boundary+Effect+in+Pt+Nanocrystals+toward+the+Oxygen+Electroreduction+Reaction&rft.jtitle=ChemCatChem&rft.au=Kabiraz%2C+Mrinal+Kanti&rft.au=Sang%E2%80%90Il+Choi&rft.date=2023-06-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=15&rft.issue=12&rft_id=info:doi/10.1002%2Fcctc.202300454&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon