Regulating the Two‐Stage Accumulation Mechanism of Inactive Lithium for Practical Composite Lithium Metal Anodes

The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 43
Main Authors Zhan, Ying‐Xin, Shi, Peng, Jin, Cheng‐Bin, Xiao, Ye, Zhou, Ming‐Yue, Bi, Chen‐Xi, Li, Bo‐Quan, Zhang, Xue‐Qiang, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the mechanism of inactive Li accumulation in composite Li metal anodes remains unknown, severely plaguing the stability of composite Li metal anodes. Herein, the two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells by nondestructive 3D X‐ray microscopy. First, inactive Li accumulates in the interior of the host and results in a slowly increased polarization. Second, inactive Li overflows the inside of the host and induces a dramatically increased polarization chiefly responsible for the fast decay of the composite Li metal anodes. The current density and external pressure are identified as key factors to regulate the turning point between the two stages for practical composite Li metal anodes. This work provides original fundamentals for the recognition of inactive Li accumulation in composite Li metal anodes and the design of practical Li metal batteries. The two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells, which provides rational design principles of composite Li metal anodes for long‐cycling Li metal pouch cells.
AbstractList The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the mechanism of inactive Li accumulation in composite Li metal anodes remains unknown, severely plaguing the stability of composite Li metal anodes. Herein, the two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells by nondestructive 3D X‐ray microscopy. First, inactive Li accumulates in the interior of the host and results in a slowly increased polarization. Second, inactive Li overflows the inside of the host and induces a dramatically increased polarization chiefly responsible for the fast decay of the composite Li metal anodes. The current density and external pressure are identified as key factors to regulate the turning point between the two stages for practical composite Li metal anodes. This work provides original fundamentals for the recognition of inactive Li accumulation in composite Li metal anodes and the design of practical Li metal batteries.
The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the mechanism of inactive Li accumulation in composite Li metal anodes remains unknown, severely plaguing the stability of composite Li metal anodes. Herein, the two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells by nondestructive 3D X‐ray microscopy. First, inactive Li accumulates in the interior of the host and results in a slowly increased polarization. Second, inactive Li overflows the inside of the host and induces a dramatically increased polarization chiefly responsible for the fast decay of the composite Li metal anodes. The current density and external pressure are identified as key factors to regulate the turning point between the two stages for practical composite Li metal anodes. This work provides original fundamentals for the recognition of inactive Li accumulation in composite Li metal anodes and the design of practical Li metal batteries. The two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells, which provides rational design principles of composite Li metal anodes for long‐cycling Li metal pouch cells.
Author Shi, Peng
Huang, Jia‐Qi
Xiao, Ye
Zhan, Ying‐Xin
Jin, Cheng‐Bin
Bi, Chen‐Xi
Li, Bo‐Quan
Zhou, Ming‐Yue
Zhang, Xue‐Qiang
Author_xml – sequence: 1
  givenname: Ying‐Xin
  surname: Zhan
  fullname: Zhan, Ying‐Xin
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Peng
  surname: Shi
  fullname: Shi, Peng
  organization: Tsinghua University
– sequence: 3
  givenname: Cheng‐Bin
  surname: Jin
  fullname: Jin, Cheng‐Bin
  organization: Tsinghua University
– sequence: 4
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Ming‐Yue
  surname: Zhou
  fullname: Zhou, Ming‐Yue
  organization: Tsinghua University
– sequence: 6
  givenname: Chen‐Xi
  surname: Bi
  fullname: Bi, Chen‐Xi
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Bo‐Quan
  orcidid: 0000-0002-9544-5795
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Xue‐Qiang
  orcidid: 0000-0003-2856-1881
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  email: zhangxq@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkE1LAzEQhoMoqNWr54Dn1nys2Xhc6ie0KFrB25LNTtrI7qYmWYs3f4K_0V_itpUKgnia4Z155mXefbTduAYQOqJkQAlhJ6o09YARxoiQPNlCe1RQ0eeEye1NT5920X4Iz4TQNOXJHvL3MG0rFW0zxXEGeLJwn-8fD1FNAWdat_Vq6Bo8Bj1TjQ01dgbfNEpH-wp4ZOPMtjU2zuM7vxS1qvDQ1XMXbPyZjyF2eta4EsIB2jGqCnD4XXvo8fJiMrzuj26vbobZqK85TZO-KJjUJYVUFOKUJ0nRPVUYw4WQhWQAKi2YICCJIIwQBadcQ2E44UZrWRrOe-h4fXfu3UsLIebPrvVNZ5mzlHUco1J2W4P1lvYuBA8mn3tbK_-WU5Ivc82XueabXDsg-QVoG1cZRa9s9Td2tsYWtoK3f0zy7Pxy_MN-AXMjkYo
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179486
crossref_primary_10_1016_j_ensm_2024_103191
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1007_s40820_023_01205_3
crossref_primary_10_1002_eom2_12354
crossref_primary_10_1021_acsami_2c20616
crossref_primary_10_1007_s10338_024_00553_w
crossref_primary_10_1016_j_ensm_2023_01_039
crossref_primary_10_1016_S1872_5805_23_60744_9
crossref_primary_10_34133_energymatadv_0084
crossref_primary_10_1002_adfm_202303427
crossref_primary_10_1016_j_ensm_2024_103746
crossref_primary_10_1016_j_heliyon_2024_e27181
crossref_primary_10_1016_j_cej_2023_148029
crossref_primary_10_1016_S1872_5805_23_60762_0
crossref_primary_10_1002_smll_202308279
crossref_primary_10_1021_acsami_3c03327
crossref_primary_10_1039_D4TA01083C
crossref_primary_10_1016_j_jechem_2024_04_030
crossref_primary_10_1039_D2QI02680E
crossref_primary_10_1016_S1872_5805_23_60739_5
crossref_primary_10_1016_j_ensm_2023_01_045
crossref_primary_10_1002_smll_202304618
crossref_primary_10_1039_D2SC06620C
crossref_primary_10_1016_j_enchem_2024_100117
crossref_primary_10_1002_adfm_202503266
crossref_primary_10_1002_eem2_12688
crossref_primary_10_1021_acsenergylett_3c01357
Cites_doi 10.1002/ente.202000700
10.1021/acs.chemrev.0c01100
10.1002/anie.201811955
10.1021/jacs.7b01763
10.1002/adfm.202009694
10.1002/advs.201600445
10.1002/anie.202201406
10.1002/adfm.202108449
10.1016/j.ensm.2019.06.019
10.1002/advs.202003240
10.1021/acsami.9b09975
10.1002/adfm.202004189
10.1016/j.jpowsour.2019.05.039
10.1002/anie.202110917
10.1021/acsami.9b08438
10.1039/C7TA00371D
10.1016/j.ensm.2020.04.032
10.1039/D1EE00551K
10.1002/adfm.202009605
10.1039/C9CS00883G
10.1039/C9TA05335B
10.1002/advs.202002212
10.1021/jacs.1c08606
10.1002/aenm.202101654
10.1021/acs.nanolett.8b04106
10.1126/sciadv.abg3626
10.1002/adma.201808392
10.1002/smll.201803734
10.1002/aenm.201700530
10.1021/acs.nanolett.0c00352
10.1016/j.ensm.2021.06.015
10.1016/j.ensm.2019.04.003
10.1016/j.jechem.2021.03.048
10.1016/j.ensm.2020.01.025
10.1002/aenm.202003416
10.1038/s41560-021-00917-3
10.1021/acs.chemrev.7b00115
10.1002/aenm.202002297
10.1016/j.ensm.2018.04.006
10.1016/j.joule.2018.03.008
10.1002/smll.202000699
10.1126/sciadv.abl8245
10.1002/adma.201807131
10.1039/C9CS00636B
10.1021/acs.accounts.9b00437
10.1002/adma.202002193
10.1002/aenm.201900193
10.1038/s41563-021-00967-8
10.1002/adfm.202107923
10.1002/adfm.202200474
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202206834
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202206834
ADFM202206834
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2021YFB2400300
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M700404
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
– fundername: Beijing Natural Science Foundation
  funderid: JQ20004
– fundername: Scientific and Technological Key Project of Shanxi Province
  funderid: 20191102003
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3174-6b28cd1e76b65344b834bff3668b82eea7b260e8060200ae53cebf303fcc8df33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:49:38 EDT 2025
Tue Jul 01 00:30:32 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:22:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-6b28cd1e76b65344b834bff3668b82eea7b260e8060200ae53cebf303fcc8df33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9544-5795
0000-0001-7394-9186
0000-0003-2856-1881
PQID 2728062188
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2728062188
crossref_primary_10_1002_adfm_202206834
crossref_citationtrail_10_1002_adfm_202206834
wiley_primary_10_1002_adfm_202206834_ADFM202206834
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021 2021 2021 2022; 60 31 60 61
2020 2019 2022 2021 2021; 10 31 33 8 32
2021; 6
2020 2019 2019 2019 2019 2019 2020 2020; 20 19 11 23 11 7 31 27
2021; 32
2021; 31
2017 2020 2020; 117 49 49
2021; 11
2022 2019; 144 31
2021 2019; 20 433
2017 2018; 139 14
2017 2021; 5 60
2017 2021; 4 11
2020 2021 2017 2020 2020 2019 2019 2021; 32 41 7 7 24 15 58 11
2020 2021 2021 2021 2020; 29 14 60 121 17
2019 2018 2022; 9 2 8
2019 2021; 52 7
2021; 62
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_7_4
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_1
Li T. (e_1_2_7_5_3) 2021; 60
e_1_2_7_7_5
Zhan Y. X. (e_1_2_7_4_8) 2021; 11
Jin C.‐B. (e_1_2_7_11_2) 2021; 60
Yuan S. (e_1_2_7_5_1) 2021; 60
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_4_7
e_1_2_7_6_5
e_1_2_7_4_6
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_4_5
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_10_8
e_1_2_7_16_2
e_1_2_7_10_7
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_10_6
e_1_2_7_10_5
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
References_xml – volume: 62
  start-page: 289
  year: 2021
  publication-title: J. Energy Chem.
– volume: 20 433
  start-page: 1121
  year: 2021 2019
  publication-title: Nat. Mater. J. Power Sources
– volume: 4 11
  year: 2017 2021
  publication-title: Adv. Sci. Adv. Energy Mater.
– volume: 9 2 8
  start-page: 833 8245
  year: 2019 2018 2022
  publication-title: Adv. Energy Mater. Joule Sci. Adv.
– volume: 32 41 7 7 24 15 58 11
  start-page: 448 700 1094
  year: 2020 2021 2017 2020 2020 2019 2019 2021
  publication-title: Adv. Mater. Energy Storage Mater. Adv. Energy Mater. Adv. Sci. Energy Storage Mater. Small Angew. Chem., Int. Ed. Adv. Energy Mater.
– volume: 29 14 60 121 17
  start-page: 310 2577 5986
  year: 2020 2021 2021 2021 2020
  publication-title: Energy Storage Mater. Energy Environ. Sci. Angew Chem., Int. Ed. Chem. Rev. Small
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 987
  year: 2021
  publication-title: Nat. Energy
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2021
  publication-title: Energy Technol.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 144 31
  start-page: 212
  year: 2022 2019
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 5 60
  year: 2017 2021
  publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed.
– volume: 52 7
  start-page: 3223 3626
  year: 2019 2021
  publication-title: Acc. Chem. Res. Sci. Adv.
– volume: 139 14
  start-page: 5916 222
  year: 2017 2018
  publication-title: J. Am. Chem. Soc. Energy Storage Mater.
– volume: 117 49 49
  start-page: 2701 5407
  year: 2017 2020 2020
  publication-title: Chem. Rev. Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 60 31 60 61
  year: 2021 2021 2021 2022
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 10 31 33 8 32
  year: 2020 2019 2022 2021 2021
  publication-title: Adv. Energy Mater. Adv. Mater. Adv. Funct. Mater. Adv. Sci. Adv. Funct. Mater.
– volume: 20 19 11 23 11 7 31 27
  start-page: 2724 1504 547 124
  year: 2020 2019 2019 2019 2019 2019 2020 2020
  publication-title: Nano Lett. Nano Lett. ACS Appl. Mater. Interfaces Energy Storage Mater. ACS Appl. Mater. Interfaces J. Mater. Chem. A Adv. Funct. Mater. Energy Storage Mater.
– ident: e_1_2_7_9_1
  doi: 10.1002/ente.202000700
– ident: e_1_2_7_7_4
  doi: 10.1021/acs.chemrev.0c01100
– ident: e_1_2_7_4_7
  doi: 10.1002/anie.201811955
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.7b01763
– ident: e_1_2_7_5_2
  doi: 10.1002/adfm.202009694
– ident: e_1_2_7_8_1
  doi: 10.1002/advs.201600445
– ident: e_1_2_7_5_4
  doi: 10.1002/anie.202201406
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.202108449
– ident: e_1_2_7_4_5
  doi: 10.1016/j.ensm.2019.06.019
– ident: e_1_2_7_6_4
  doi: 10.1002/advs.202003240
– ident: e_1_2_7_10_5
  doi: 10.1021/acsami.9b09975
– volume: 60
  start-page: 10589
  year: 2021
  ident: e_1_2_7_11_2
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.202004189
– ident: e_1_2_7_17_2
  doi: 10.1016/j.jpowsour.2019.05.039
– ident: e_1_2_7_7_3
  doi: 10.1002/anie.202110917
– ident: e_1_2_7_10_3
  doi: 10.1021/acsami.9b08438
– ident: e_1_2_7_11_1
  doi: 10.1039/C7TA00371D
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ensm.2020.04.032
– ident: e_1_2_7_7_2
  doi: 10.1039/D1EE00551K
– ident: e_1_2_7_10_7
  doi: 10.1002/adfm.202009605
– ident: e_1_2_7_1_2
  doi: 10.1039/C9CS00883G
– ident: e_1_2_7_10_6
  doi: 10.1039/C9TA05335B
– volume: 60
  start-page: 2108397
  year: 2021
  ident: e_1_2_7_5_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_4_4
  doi: 10.1002/advs.202002212
– ident: e_1_2_7_16_1
  doi: 10.1021/jacs.1c08606
– ident: e_1_2_7_8_2
  doi: 10.1002/aenm.202101654
– ident: e_1_2_7_10_2
  doi: 10.1021/acs.nanolett.8b04106
– ident: e_1_2_7_3_2
  doi: 10.1126/sciadv.abg3626
– ident: e_1_2_7_6_2
  doi: 10.1002/adma.201808392
– ident: e_1_2_7_4_6
  doi: 10.1002/smll.201803734
– ident: e_1_2_7_4_3
  doi: 10.1002/aenm.201700530
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.nanolett.0c00352
– ident: e_1_2_7_4_2
  doi: 10.1016/j.ensm.2021.06.015
– ident: e_1_2_7_10_4
  doi: 10.1016/j.ensm.2019.04.003
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jechem.2021.03.048
– ident: e_1_2_7_10_8
  doi: 10.1016/j.ensm.2020.01.025
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.202003416
– ident: e_1_2_7_19_1
  doi: 10.1038/s41560-021-00917-3
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.202002297
– ident: e_1_2_7_13_2
  doi: 10.1016/j.ensm.2018.04.006
– ident: e_1_2_7_2_2
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_7_7_5
  doi: 10.1002/smll.202000699
– ident: e_1_2_7_2_3
  doi: 10.1126/sciadv.abl8245
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.201807131
– ident: e_1_2_7_1_3
  doi: 10.1039/C9CS00636B
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.accounts.9b00437
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.202002193
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201900193
– volume: 11
  start-page: 2103291
  year: 2021
  ident: e_1_2_7_4_8
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_17_1
  doi: 10.1038/s41563-021-00967-8
– ident: e_1_2_7_6_5
  doi: 10.1002/adfm.202107923
– volume: 60
  start-page: 07732
  year: 2021
  ident: e_1_2_7_5_3
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_6_3
  doi: 10.1002/adfm.202200474
SSID ssj0017734
Score 2.5439217
Snippet The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accumulation
accumulation mechanisms
Anodes
composite lithium metal anodes
Decay rate
Electrode polarization
External pressure
inactive lithium
Lithium
Lithium batteries
lithium metal batteries
Materials science
pouch cells
Stability
Title Regulating the Two‐Stage Accumulation Mechanism of Inactive Lithium for Practical Composite Lithium Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202206834
https://www.proquest.com/docview/2728062188
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8MgFCdmXvTgf-N0LhxMPHVSyigeF-cyzepBXbJbAxR00XXGdTHx5EfwM_pJhNJ108SY6K2kQID3Hvxo3_s9AI6Q5IhzpD2SUOYRzWywMhKeTJJQcnKKde5NGF3Rbp9cDpqDhSh-xw9RfnCzlpHv19bAuZiczElDeaJtJDnGiLLAEoJahy2Liq5L_ig_DN1vZepbBy9_MGNtRPjka_Ovp9Icai4C1vzE6awDPhurczR5aEwz0ZCv32gc_zOZDbBWwFHYcvqzCZZUugVWF0gKt8HztUtXbwrQoEV4-zL-eHs3IPVOwZaU01GRAAxGykYRDycjONbwIuX5Tgp7w-x-OB1BA46hI0cyWgHtNmTdxebvI5XZgaTjRE12QL9zfnvW9YpMDZ40-IN4VGAmE1-FVNBmQIgwkxBaB5QywbBSPBTm3qQYogadIq6agVRCm9NTS8kSHQS7oJKOU7UHIOGUyqbpzyfc9GMu_ihBXBucI32FT2UVeDNJxbKgMbfZNB5jR8CMY7uWcbmWVXBc1n9yBB4_1qzNBB8XhjyJsU3fRQ0OYlWAcwn-0kvcaneisrT_l0YHYMU-O5fBGqhkz1N1aKBPJupgudWOejf1XM0_AdSH_nc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB5V7QE48I9IKeADiNO2XsfxugcOESFKaLaHKpVyW2yvnUaQTdVsVLWnPgKvwqvwCDwJ4_1Li4SQkHrguLu25bXn51vvzDcAb6hRVCnqAp4KGXAnfbIy1YFJ08govs9cEU0YH4rBMf806Uw24HudC1PyQzQHbl4zCnvtFdwfSO-tWUNV6nwqOWNUyDav4ioP7MU5frUt3w97uMVvGet_HH8YBFVhgcCgu-SB0EyaNLSR0KLT5lxjf-1cWwipJbNWRRphvpVUIJiiynbaxmqHxt4ZI1Pnz0DR6m_5MuKerr931DBWhVFU_sgWoQ8pCyc1TyRlezfne9MPrsHtdYhc-Lj-A_hRr04Z2vJld5XrXXP5G3Hkf7V8D-F-hbhJt1SRR7Bhs8dw7xoP4xM4O7LTooxZNiUIiMn4fPHz6hvi8KklXWNW86rGGYmtT5SeLedk4cgwU4WzIKNZfjJbzQnif1LyP6HgE29pfUTc-nlscz-RbJHa5VM4vpWXfgab2SKzz4FwJYTp4HghVziO1YymVDmEcia0bN-0IKhFIzEVU7svGPI1KTmmWeL3Lmn2rgXvmvanJUfJH1vu1JKWVLZqmTBfoUwg1JMtYIXI_GWUpNvrx83V9r90eg13BuN4lIyGhwcv4K6_X0ZI7sBmfrayLxHp5fpVoVsEPt-2NP4ChvNbMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qioRgAeWlBgp4AWI1rcdxPM6CRUSIGtpUqGql7AY_QwSZVM1EFaz4hH5Kf4Vf4Et6Pa-0SAgJqQuWM2NbHvs-znjuPRfgFTWKKkV9xK2QEfcyJCtTHRlrE6N4l_kimnB0IHaP-YdxZ7wGF3UuTMkP0Ry4Bc0o7HVQ8BPrd1akocr6kEnOGBWyzauwyj337Qw_2hZvh33c4deMDd4fvduNqroCkUFvySOhmTQ2donQotPmXGN_7X1bCKklc04lGlG-k1QglqLKddrGaY-23hsjrQ9HoGj0b3FBu6FYRP-wIayKk6T8jy3iEFEWj2uaSMp2rs_3uhtcYdurCLlwcYP78LNenDKy5cv2Mtfb5vtvvJH_0-ptwL0Kb5NeqSAPYM1lD-HuFRbGR3B66CZFEbNsQhAOk6Oz-a8f54jCJ470jFnOqgpnZORCmvR0MSNzT4aZKlwF2Z_mn6fLGUH0T0r2JxR7EuxsiIdbPR-5PEwkm1u3eAzHN_LST2A9m2duEwhXQpgOjhdzheM4zailyiOQM7FjXdOCqJaM1FQ87aFcyNe0ZJhmadi7tNm7Frxp2p-UDCV_bLlVC1paWapFykJ9MoFAT7aAFRLzl1HSXn8waq6e_kunl3D7Y3-Q7g8P9p7BnXC7DI_cgvX8dOmeI8zL9YtCswh8umlhvAT-B1ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Two%E2%80%90Stage+Accumulation+Mechanism+of+Inactive+Lithium+for+Practical+Composite+Lithium+Metal+Anodes&rft.jtitle=Advanced+functional+materials&rft.au=Ying%E2%80%90Xin+Zhan&rft.au=Shi%2C+Peng&rft.au=Cheng%E2%80%90Bin+Jin&rft.au=Ye%2C+Xiao&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202206834&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon