Regulating the Two‐Stage Accumulation Mechanism of Inactive Lithium for Practical Composite Lithium Metal Anodes
The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 43 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the mechanism of inactive Li accumulation in composite Li metal anodes remains unknown, severely plaguing the stability of composite Li metal anodes. Herein, the two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells by nondestructive 3D X‐ray microscopy. First, inactive Li accumulates in the interior of the host and results in a slowly increased polarization. Second, inactive Li overflows the inside of the host and induces a dramatically increased polarization chiefly responsible for the fast decay of the composite Li metal anodes. The current density and external pressure are identified as key factors to regulate the turning point between the two stages for practical composite Li metal anodes. This work provides original fundamentals for the recognition of inactive Li accumulation in composite Li metal anodes and the design of practical Li metal batteries.
The two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells, which provides rational design principles of composite Li metal anodes for long‐cycling Li metal pouch cells. |
---|---|
AbstractList | The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the mechanism of inactive Li accumulation in composite Li metal anodes remains unknown, severely plaguing the stability of composite Li metal anodes. Herein, the two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells by nondestructive 3D X‐ray microscopy. First, inactive Li accumulates in the interior of the host and results in a slowly increased polarization. Second, inactive Li overflows the inside of the host and induces a dramatically increased polarization chiefly responsible for the fast decay of the composite Li metal anodes. The current density and external pressure are identified as key factors to regulate the turning point between the two stages for practical composite Li metal anodes. This work provides original fundamentals for the recognition of inactive Li accumulation in composite Li metal anodes and the design of practical Li metal batteries. The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries. The construction of composite Li metal anode with hosts emerges as a promising strategy to mitigate and accommodate inactive Li. However, the mechanism of inactive Li accumulation in composite Li metal anodes remains unknown, severely plaguing the stability of composite Li metal anodes. Herein, the two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells by nondestructive 3D X‐ray microscopy. First, inactive Li accumulates in the interior of the host and results in a slowly increased polarization. Second, inactive Li overflows the inside of the host and induces a dramatically increased polarization chiefly responsible for the fast decay of the composite Li metal anodes. The current density and external pressure are identified as key factors to regulate the turning point between the two stages for practical composite Li metal anodes. This work provides original fundamentals for the recognition of inactive Li accumulation in composite Li metal anodes and the design of practical Li metal batteries. The two‐stage accumulation mechanism of inactive Li in composite Li metal anodes and its correlation with the stability of composite Li metal anodes are comprehensively unveiled in pouch cells, which provides rational design principles of composite Li metal anodes for long‐cycling Li metal pouch cells. |
Author | Shi, Peng Huang, Jia‐Qi Xiao, Ye Zhan, Ying‐Xin Jin, Cheng‐Bin Bi, Chen‐Xi Li, Bo‐Quan Zhou, Ming‐Yue Zhang, Xue‐Qiang |
Author_xml | – sequence: 1 givenname: Ying‐Xin surname: Zhan fullname: Zhan, Ying‐Xin organization: Beijing Institute of Technology – sequence: 2 givenname: Peng surname: Shi fullname: Shi, Peng organization: Tsinghua University – sequence: 3 givenname: Cheng‐Bin surname: Jin fullname: Jin, Cheng‐Bin organization: Tsinghua University – sequence: 4 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 5 givenname: Ming‐Yue surname: Zhou fullname: Zhou, Ming‐Yue organization: Tsinghua University – sequence: 6 givenname: Chen‐Xi surname: Bi fullname: Bi, Chen‐Xi organization: Beijing Institute of Technology – sequence: 7 givenname: Bo‐Quan orcidid: 0000-0002-9544-5795 surname: Li fullname: Li, Bo‐Quan organization: Beijing Institute of Technology – sequence: 8 givenname: Xue‐Qiang orcidid: 0000-0003-2856-1881 surname: Zhang fullname: Zhang, Xue‐Qiang email: zhangxq@bit.edu.cn organization: Beijing Institute of Technology – sequence: 9 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNqFkE1LAzEQhoMoqNWr54Dn1nys2Xhc6ie0KFrB25LNTtrI7qYmWYs3f4K_0V_itpUKgnia4Z155mXefbTduAYQOqJkQAlhJ6o09YARxoiQPNlCe1RQ0eeEye1NT5920X4Iz4TQNOXJHvL3MG0rFW0zxXEGeLJwn-8fD1FNAWdat_Vq6Bo8Bj1TjQ01dgbfNEpH-wp4ZOPMtjU2zuM7vxS1qvDQ1XMXbPyZjyF2eta4EsIB2jGqCnD4XXvo8fJiMrzuj26vbobZqK85TZO-KJjUJYVUFOKUJ0nRPVUYw4WQhWQAKi2YICCJIIwQBadcQ2E44UZrWRrOe-h4fXfu3UsLIebPrvVNZ5mzlHUco1J2W4P1lvYuBA8mn3tbK_-WU5Ivc82XueabXDsg-QVoG1cZRa9s9Td2tsYWtoK3f0zy7Pxy_MN-AXMjkYo |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179486 crossref_primary_10_1016_j_ensm_2024_103191 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1007_s40820_023_01205_3 crossref_primary_10_1002_eom2_12354 crossref_primary_10_1021_acsami_2c20616 crossref_primary_10_1007_s10338_024_00553_w crossref_primary_10_1016_j_ensm_2023_01_039 crossref_primary_10_1016_S1872_5805_23_60744_9 crossref_primary_10_34133_energymatadv_0084 crossref_primary_10_1002_adfm_202303427 crossref_primary_10_1016_j_ensm_2024_103746 crossref_primary_10_1016_j_heliyon_2024_e27181 crossref_primary_10_1016_j_cej_2023_148029 crossref_primary_10_1016_S1872_5805_23_60762_0 crossref_primary_10_1002_smll_202308279 crossref_primary_10_1021_acsami_3c03327 crossref_primary_10_1039_D4TA01083C crossref_primary_10_1016_j_jechem_2024_04_030 crossref_primary_10_1039_D2QI02680E crossref_primary_10_1016_S1872_5805_23_60739_5 crossref_primary_10_1016_j_ensm_2023_01_045 crossref_primary_10_1002_smll_202304618 crossref_primary_10_1039_D2SC06620C crossref_primary_10_1016_j_enchem_2024_100117 crossref_primary_10_1002_adfm_202503266 crossref_primary_10_1002_eem2_12688 crossref_primary_10_1021_acsenergylett_3c01357 |
Cites_doi | 10.1002/ente.202000700 10.1021/acs.chemrev.0c01100 10.1002/anie.201811955 10.1021/jacs.7b01763 10.1002/adfm.202009694 10.1002/advs.201600445 10.1002/anie.202201406 10.1002/adfm.202108449 10.1016/j.ensm.2019.06.019 10.1002/advs.202003240 10.1021/acsami.9b09975 10.1002/adfm.202004189 10.1016/j.jpowsour.2019.05.039 10.1002/anie.202110917 10.1021/acsami.9b08438 10.1039/C7TA00371D 10.1016/j.ensm.2020.04.032 10.1039/D1EE00551K 10.1002/adfm.202009605 10.1039/C9CS00883G 10.1039/C9TA05335B 10.1002/advs.202002212 10.1021/jacs.1c08606 10.1002/aenm.202101654 10.1021/acs.nanolett.8b04106 10.1126/sciadv.abg3626 10.1002/adma.201808392 10.1002/smll.201803734 10.1002/aenm.201700530 10.1021/acs.nanolett.0c00352 10.1016/j.ensm.2021.06.015 10.1016/j.ensm.2019.04.003 10.1016/j.jechem.2021.03.048 10.1016/j.ensm.2020.01.025 10.1002/aenm.202003416 10.1038/s41560-021-00917-3 10.1021/acs.chemrev.7b00115 10.1002/aenm.202002297 10.1016/j.ensm.2018.04.006 10.1016/j.joule.2018.03.008 10.1002/smll.202000699 10.1126/sciadv.abl8245 10.1002/adma.201807131 10.1039/C9CS00636B 10.1021/acs.accounts.9b00437 10.1002/adma.202002193 10.1002/aenm.201900193 10.1038/s41563-021-00967-8 10.1002/adfm.202107923 10.1002/adfm.202200474 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202206834 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202206834 ADFM202206834 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2021YFB2400300 – fundername: China Postdoctoral Science Foundation funderid: 2021M700404 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars – fundername: Beijing Natural Science Foundation funderid: JQ20004 – fundername: Scientific and Technological Key Project of Shanxi Province funderid: 20191102003 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3174-6b28cd1e76b65344b834bff3668b82eea7b260e8060200ae53cebf303fcc8df33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:49:38 EDT 2025 Tue Jul 01 00:30:32 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:22:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-6b28cd1e76b65344b834bff3668b82eea7b260e8060200ae53cebf303fcc8df33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9544-5795 0000-0001-7394-9186 0000-0003-2856-1881 |
PQID | 2728062188 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2728062188 crossref_primary_10_1002_adfm_202206834 crossref_citationtrail_10_1002_adfm_202206834 wiley_primary_10_1002_adfm_202206834_ADFM202206834 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021 2021 2021 2022; 60 31 60 61 2020 2019 2022 2021 2021; 10 31 33 8 32 2021; 6 2020 2019 2019 2019 2019 2019 2020 2020; 20 19 11 23 11 7 31 27 2021; 32 2021; 31 2017 2020 2020; 117 49 49 2021; 11 2022 2019; 144 31 2021 2019; 20 433 2017 2018; 139 14 2017 2021; 5 60 2017 2021; 4 11 2020 2021 2017 2020 2020 2019 2019 2021; 32 41 7 7 24 15 58 11 2020 2021 2021 2021 2020; 29 14 60 121 17 2019 2018 2022; 9 2 8 2019 2021; 52 7 2021; 62 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_7_4 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 Li T. (e_1_2_7_5_3) 2021; 60 e_1_2_7_7_5 Zhan Y. X. (e_1_2_7_4_8) 2021; 11 Jin C.‐B. (e_1_2_7_11_2) 2021; 60 Yuan S. (e_1_2_7_5_1) 2021; 60 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_4_7 e_1_2_7_6_5 e_1_2_7_4_6 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_4_5 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_10_8 e_1_2_7_16_2 e_1_2_7_10_7 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_10_6 e_1_2_7_10_5 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 |
References_xml | – volume: 62 start-page: 289 year: 2021 publication-title: J. Energy Chem. – volume: 20 433 start-page: 1121 year: 2021 2019 publication-title: Nat. Mater. J. Power Sources – volume: 4 11 year: 2017 2021 publication-title: Adv. Sci. Adv. Energy Mater. – volume: 9 2 8 start-page: 833 8245 year: 2019 2018 2022 publication-title: Adv. Energy Mater. Joule Sci. Adv. – volume: 32 41 7 7 24 15 58 11 start-page: 448 700 1094 year: 2020 2021 2017 2020 2020 2019 2019 2021 publication-title: Adv. Mater. Energy Storage Mater. Adv. Energy Mater. Adv. Sci. Energy Storage Mater. Small Angew. Chem., Int. Ed. Adv. Energy Mater. – volume: 29 14 60 121 17 start-page: 310 2577 5986 year: 2020 2021 2021 2021 2020 publication-title: Energy Storage Mater. Energy Environ. Sci. Angew Chem., Int. Ed. Chem. Rev. Small – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 6 start-page: 987 year: 2021 publication-title: Nat. Energy – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 9 year: 2021 publication-title: Energy Technol. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 144 31 start-page: 212 year: 2022 2019 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 5 60 year: 2017 2021 publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed. – volume: 52 7 start-page: 3223 3626 year: 2019 2021 publication-title: Acc. Chem. Res. Sci. Adv. – volume: 139 14 start-page: 5916 222 year: 2017 2018 publication-title: J. Am. Chem. Soc. Energy Storage Mater. – volume: 117 49 49 start-page: 2701 5407 year: 2017 2020 2020 publication-title: Chem. Rev. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 60 31 60 61 year: 2021 2021 2021 2022 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 10 31 33 8 32 year: 2020 2019 2022 2021 2021 publication-title: Adv. Energy Mater. Adv. Mater. Adv. Funct. Mater. Adv. Sci. Adv. Funct. Mater. – volume: 20 19 11 23 11 7 31 27 start-page: 2724 1504 547 124 year: 2020 2019 2019 2019 2019 2019 2020 2020 publication-title: Nano Lett. Nano Lett. ACS Appl. Mater. Interfaces Energy Storage Mater. ACS Appl. Mater. Interfaces J. Mater. Chem. A Adv. Funct. Mater. Energy Storage Mater. – ident: e_1_2_7_9_1 doi: 10.1002/ente.202000700 – ident: e_1_2_7_7_4 doi: 10.1021/acs.chemrev.0c01100 – ident: e_1_2_7_4_7 doi: 10.1002/anie.201811955 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.7b01763 – ident: e_1_2_7_5_2 doi: 10.1002/adfm.202009694 – ident: e_1_2_7_8_1 doi: 10.1002/advs.201600445 – ident: e_1_2_7_5_4 doi: 10.1002/anie.202201406 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.202108449 – ident: e_1_2_7_4_5 doi: 10.1016/j.ensm.2019.06.019 – ident: e_1_2_7_6_4 doi: 10.1002/advs.202003240 – ident: e_1_2_7_10_5 doi: 10.1021/acsami.9b09975 – volume: 60 start-page: 10589 year: 2021 ident: e_1_2_7_11_2 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_14_1 doi: 10.1002/adfm.202004189 – ident: e_1_2_7_17_2 doi: 10.1016/j.jpowsour.2019.05.039 – ident: e_1_2_7_7_3 doi: 10.1002/anie.202110917 – ident: e_1_2_7_10_3 doi: 10.1021/acsami.9b08438 – ident: e_1_2_7_11_1 doi: 10.1039/C7TA00371D – ident: e_1_2_7_7_1 doi: 10.1016/j.ensm.2020.04.032 – ident: e_1_2_7_7_2 doi: 10.1039/D1EE00551K – ident: e_1_2_7_10_7 doi: 10.1002/adfm.202009605 – ident: e_1_2_7_1_2 doi: 10.1039/C9CS00883G – ident: e_1_2_7_10_6 doi: 10.1039/C9TA05335B – volume: 60 start-page: 2108397 year: 2021 ident: e_1_2_7_5_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_4_4 doi: 10.1002/advs.202002212 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.1c08606 – ident: e_1_2_7_8_2 doi: 10.1002/aenm.202101654 – ident: e_1_2_7_10_2 doi: 10.1021/acs.nanolett.8b04106 – ident: e_1_2_7_3_2 doi: 10.1126/sciadv.abg3626 – ident: e_1_2_7_6_2 doi: 10.1002/adma.201808392 – ident: e_1_2_7_4_6 doi: 10.1002/smll.201803734 – ident: e_1_2_7_4_3 doi: 10.1002/aenm.201700530 – ident: e_1_2_7_10_1 doi: 10.1021/acs.nanolett.0c00352 – ident: e_1_2_7_4_2 doi: 10.1016/j.ensm.2021.06.015 – ident: e_1_2_7_10_4 doi: 10.1016/j.ensm.2019.04.003 – ident: e_1_2_7_12_1 doi: 10.1016/j.jechem.2021.03.048 – ident: e_1_2_7_10_8 doi: 10.1016/j.ensm.2020.01.025 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.202003416 – ident: e_1_2_7_19_1 doi: 10.1038/s41560-021-00917-3 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.202002297 – ident: e_1_2_7_13_2 doi: 10.1016/j.ensm.2018.04.006 – ident: e_1_2_7_2_2 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_7_7_5 doi: 10.1002/smll.202000699 – ident: e_1_2_7_2_3 doi: 10.1126/sciadv.abl8245 – ident: e_1_2_7_16_2 doi: 10.1002/adma.201807131 – ident: e_1_2_7_1_3 doi: 10.1039/C9CS00636B – ident: e_1_2_7_3_1 doi: 10.1021/acs.accounts.9b00437 – ident: e_1_2_7_4_1 doi: 10.1002/adma.202002193 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201900193 – volume: 11 start-page: 2103291 year: 2021 ident: e_1_2_7_4_8 publication-title: Adv. Energy Mater. – ident: e_1_2_7_17_1 doi: 10.1038/s41563-021-00967-8 – ident: e_1_2_7_6_5 doi: 10.1002/adfm.202107923 – volume: 60 start-page: 07732 year: 2021 ident: e_1_2_7_5_3 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_6_3 doi: 10.1002/adfm.202200474 |
SSID | ssj0017734 |
Score | 2.5439217 |
Snippet | The rapid formation and accumulation of inactive lithium (Li) are principally responsible for the limited lifespan of high‐energy‐density Li metal batteries.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accumulation accumulation mechanisms Anodes composite lithium metal anodes Decay rate Electrode polarization External pressure inactive lithium Lithium Lithium batteries lithium metal batteries Materials science pouch cells Stability |
Title | Regulating the Two‐Stage Accumulation Mechanism of Inactive Lithium for Practical Composite Lithium Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202206834 https://www.proquest.com/docview/2728062188 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8MgFCdmXvTgf-N0LhxMPHVSyigeF-cyzepBXbJbAxR00XXGdTHx5EfwM_pJhNJ108SY6K2kQID3Hvxo3_s9AI6Q5IhzpD2SUOYRzWywMhKeTJJQcnKKde5NGF3Rbp9cDpqDhSh-xw9RfnCzlpHv19bAuZiczElDeaJtJDnGiLLAEoJahy2Liq5L_ig_DN1vZepbBy9_MGNtRPjka_Ovp9Icai4C1vzE6awDPhurczR5aEwz0ZCv32gc_zOZDbBWwFHYcvqzCZZUugVWF0gKt8HztUtXbwrQoEV4-zL-eHs3IPVOwZaU01GRAAxGykYRDycjONbwIuX5Tgp7w-x-OB1BA46hI0cyWgHtNmTdxebvI5XZgaTjRE12QL9zfnvW9YpMDZ40-IN4VGAmE1-FVNBmQIgwkxBaB5QywbBSPBTm3qQYogadIq6agVRCm9NTS8kSHQS7oJKOU7UHIOGUyqbpzyfc9GMu_ihBXBucI32FT2UVeDNJxbKgMbfZNB5jR8CMY7uWcbmWVXBc1n9yBB4_1qzNBB8XhjyJsU3fRQ0OYlWAcwn-0kvcaneisrT_l0YHYMU-O5fBGqhkz1N1aKBPJupgudWOejf1XM0_AdSH_nc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB5V7QE48I9IKeADiNO2XsfxugcOESFKaLaHKpVyW2yvnUaQTdVsVLWnPgKvwqvwCDwJ4_1Li4SQkHrguLu25bXn51vvzDcAb6hRVCnqAp4KGXAnfbIy1YFJ08govs9cEU0YH4rBMf806Uw24HudC1PyQzQHbl4zCnvtFdwfSO-tWUNV6nwqOWNUyDav4ioP7MU5frUt3w97uMVvGet_HH8YBFVhgcCgu-SB0EyaNLSR0KLT5lxjf-1cWwipJbNWRRphvpVUIJiiynbaxmqHxt4ZI1Pnz0DR6m_5MuKerr931DBWhVFU_sgWoQ8pCyc1TyRlezfne9MPrsHtdYhc-Lj-A_hRr04Z2vJld5XrXXP5G3Hkf7V8D-F-hbhJt1SRR7Bhs8dw7xoP4xM4O7LTooxZNiUIiMn4fPHz6hvi8KklXWNW86rGGYmtT5SeLedk4cgwU4WzIKNZfjJbzQnif1LyP6HgE29pfUTc-nlscz-RbJHa5VM4vpWXfgab2SKzz4FwJYTp4HghVziO1YymVDmEcia0bN-0IKhFIzEVU7svGPI1KTmmWeL3Lmn2rgXvmvanJUfJH1vu1JKWVLZqmTBfoUwg1JMtYIXI_GWUpNvrx83V9r90eg13BuN4lIyGhwcv4K6_X0ZI7sBmfrayLxHp5fpVoVsEPt-2NP4ChvNbMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qioRgAeWlBgp4AWI1rcdxPM6CRUSIGtpUqGql7AY_QwSZVM1EFaz4hH5Kf4Vf4Et6Pa-0SAgJqQuWM2NbHvs-znjuPRfgFTWKKkV9xK2QEfcyJCtTHRlrE6N4l_kimnB0IHaP-YdxZ7wGF3UuTMkP0Ry4Bc0o7HVQ8BPrd1akocr6kEnOGBWyzauwyj337Qw_2hZvh33c4deMDd4fvduNqroCkUFvySOhmTQ2donQotPmXGN_7X1bCKklc04lGlG-k1QglqLKddrGaY-23hsjrQ9HoGj0b3FBu6FYRP-wIayKk6T8jy3iEFEWj2uaSMp2rs_3uhtcYdurCLlwcYP78LNenDKy5cv2Mtfb5vtvvJH_0-ptwL0Kb5NeqSAPYM1lD-HuFRbGR3B66CZFEbNsQhAOk6Oz-a8f54jCJ470jFnOqgpnZORCmvR0MSNzT4aZKlwF2Z_mn6fLGUH0T0r2JxR7EuxsiIdbPR-5PEwkm1u3eAzHN_LST2A9m2duEwhXQpgOjhdzheM4zailyiOQM7FjXdOCqJaM1FQ87aFcyNe0ZJhmadi7tNm7Frxp2p-UDCV_bLlVC1paWapFykJ9MoFAT7aAFRLzl1HSXn8waq6e_kunl3D7Y3-Q7g8P9p7BnXC7DI_cgvX8dOmeI8zL9YtCswh8umlhvAT-B1ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Two%E2%80%90Stage+Accumulation+Mechanism+of+Inactive+Lithium+for+Practical+Composite+Lithium+Metal+Anodes&rft.jtitle=Advanced+functional+materials&rft.au=Ying%E2%80%90Xin+Zhan&rft.au=Shi%2C+Peng&rft.au=Cheng%E2%80%90Bin+Jin&rft.au=Ye%2C+Xiao&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202206834&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |