3D Ordered Porous Hybrid of ZnSe/N‐doped Carbon with Anomalously High Na+ Mobility and Ultrathin Solid Electrolyte Interphase for Sodium‐Ion Batteries
Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 50 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is revealed that ZnSe possesses better Na+‐diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li+ and K+, as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe‐based anode, including nitrogen‐doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na+ reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g−1 in sodium‐ion batteries (SIBs) at 10 A g−1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na2CO3/NaF in organic components and boosted Na2Se adsorption as sodiation. Moreover, the Na‐storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high‐performance electrode materials for SIBs.
A 3D ordered hierarchical porous ZnSe@N‐doped carbon hybrid with higher Na+ diffusion kinetics than Li+ and K+ is fabricated. Originating from architectural advantages and optimization of electrolytes, the hybrid delivers a low diffusion barrier and activation energy of Na+, accompanied by the formation of ultrathin solid electrolyte interphase to yield a long cycle life even at 10 A g−1 for sodium‐ion batteries. |
---|---|
AbstractList | Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is revealed that ZnSe possesses better Na+‐diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li+ and K+, as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe‐based anode, including nitrogen‐doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na+ reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g−1 in sodium‐ion batteries (SIBs) at 10 A g−1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na2CO3/NaF in organic components and boosted Na2Se adsorption as sodiation. Moreover, the Na‐storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high‐performance electrode materials for SIBs. Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is revealed that ZnSe possesses better Na+‐diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li+ and K+, as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe‐based anode, including nitrogen‐doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na+ reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g−1 in sodium‐ion batteries (SIBs) at 10 A g−1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na2CO3/NaF in organic components and boosted Na2Se adsorption as sodiation. Moreover, the Na‐storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high‐performance electrode materials for SIBs. A 3D ordered hierarchical porous ZnSe@N‐doped carbon hybrid with higher Na+ diffusion kinetics than Li+ and K+ is fabricated. Originating from architectural advantages and optimization of electrolytes, the hybrid delivers a low diffusion barrier and activation energy of Na+, accompanied by the formation of ultrathin solid electrolyte interphase to yield a long cycle life even at 10 A g−1 for sodium‐ion batteries. Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is revealed that ZnSe possesses better Na + ‐diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li + and K + , as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe‐based anode, including nitrogen‐doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na + reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g −1 in sodium‐ion batteries (SIBs) at 10 A g −1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na 2 CO 3 /NaF in organic components and boosted Na 2 Se adsorption as sodiation. Moreover, the Na‐storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high‐performance electrode materials for SIBs. |
Author | Li, Xueying Li, Qiang Liu, Bing Xu, Jie Li, Shandong Han, Zhiyuan Zhao, Haiguang Li, Hongliang Wang, Xia Yang, Wenhua Wu, Xing‐Long Li, Hongsen |
Author_xml | – sequence: 1 givenname: Xueying surname: Li fullname: Li, Xueying organization: Qingdao University – sequence: 2 givenname: Zhiyuan surname: Han fullname: Han, Zhiyuan organization: Qingdao University – sequence: 3 givenname: Wenhua surname: Yang fullname: Yang, Wenhua organization: Qingdao University – sequence: 4 givenname: Qiang surname: Li fullname: Li, Qiang organization: Qingdao University – sequence: 5 givenname: Hongsen surname: Li fullname: Li, Hongsen organization: Qingdao University – sequence: 6 givenname: Jie surname: Xu fullname: Xu, Jie organization: Qingdao University – sequence: 7 givenname: Hongliang surname: Li fullname: Li, Hongliang organization: Qingdao University – sequence: 8 givenname: Bing surname: Liu fullname: Liu, Bing organization: Qingdao University – sequence: 9 givenname: Haiguang surname: Zhao fullname: Zhao, Haiguang organization: Qingdao University – sequence: 10 givenname: Shandong surname: Li fullname: Li, Shandong email: lishd@qdu.edu.cn organization: Qingdao University – sequence: 11 givenname: Xia surname: Wang fullname: Wang, Xia email: wangxiakuaile@qdu.edu.cn organization: Qingdao University – sequence: 12 givenname: Xing‐Long orcidid: 0000-0003-1069-9145 surname: Wu fullname: Wu, Xing‐Long email: xinglong@nenu.edu.cn organization: Northeast Normal University |
BookMark | eNqFkctKAzEUhoMoqNWt64BLaU0m02RmWeulhXoBFcTNkOZiI2lSkxSZnY_g2sfzSYxUFARxlZDzff8h_Ntg3XmnANjDqIcRKg651PNegQqMKK7LNbCFKaZdgopq_fuO7zbBdoyPCGHGSLkF3sgxvAxSBSXhlQ9-GeGonQYjodfw3l2rw4v3l1fpF3k-5GHqHXw2aQYHzs-5zbht4cg8zOAFP4DnfmqsSS3kTsJbmwJPM-Pgtbc578QqkYK3bVJw7JIKixmPCmofMiDNcp73jHP8EU95aFTcARua26h2v84OuD09uRmOupPLs_FwMOkKglnZpVzQipFCYsH6ZVVRUXGmKiSnZa1QhTHShCitOcUSE8Gquqhp3Rf5XfeJrkkH7K9yF8E_LVVMzaNfBpdXNgVFrF8jxEimyhUlgo8xKN0Ik3gy3uVvGttg1Hy20Hy20Hy3kLXeL20RzJyH9m-hXgnPxqr2H7oZHJ-e_7gfxKqfSw |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_3c02529 crossref_primary_10_1002_adfm_202205880 crossref_primary_10_1016_j_est_2022_104970 crossref_primary_10_1016_j_cej_2023_143766 crossref_primary_10_1002_smll_202403736 crossref_primary_10_1016_j_apsusc_2023_159023 crossref_primary_10_1039_D1TA09039A crossref_primary_10_1002_smll_202203964 crossref_primary_10_1016_j_cej_2022_137366 crossref_primary_10_1021_acsanm_3c05996 crossref_primary_10_1016_j_cej_2022_135185 crossref_primary_10_1016_j_jechem_2022_08_022 crossref_primary_10_1016_j_mtchem_2022_100849 crossref_primary_10_1002_adfm_202413198 crossref_primary_10_3389_fchem_2024_1459324 crossref_primary_10_1002_adfm_202305606 crossref_primary_10_1002_smll_202206194 crossref_primary_10_1002_smll_202202582 crossref_primary_10_1016_j_cej_2024_149436 crossref_primary_10_1016_j_apsusc_2024_159334 crossref_primary_10_1002_smll_202305021 crossref_primary_10_1021_acsanm_3c04735 crossref_primary_10_1002_adfm_202210042 crossref_primary_10_1002_smll_202107370 crossref_primary_10_1021_acsami_1c15483 crossref_primary_10_1002_smll_202207716 crossref_primary_10_3390_coatings13091588 crossref_primary_10_1021_acsami_3c11057 crossref_primary_10_1016_j_apcatb_2022_121680 crossref_primary_10_1016_j_cej_2024_154936 crossref_primary_10_1016_j_jcis_2024_03_086 crossref_primary_10_1021_acsami_1c21271 crossref_primary_10_1039_D1TA10439J crossref_primary_10_1002_jctb_7482 crossref_primary_10_1039_D2TA03219H crossref_primary_10_1002_slct_202404105 crossref_primary_10_1007_s12209_022_00338_7 crossref_primary_10_1016_j_cej_2022_138430 crossref_primary_10_1021_acsami_1c21934 crossref_primary_10_1016_j_cej_2021_134195 crossref_primary_10_1039_D2QI02291E crossref_primary_10_1021_acsanm_2c03737 crossref_primary_10_1002_smll_202200437 crossref_primary_10_1039_D2QM00174H crossref_primary_10_1039_D2DT03123J crossref_primary_10_1002_sstr_202200159 crossref_primary_10_1039_D4QI02198C crossref_primary_10_1016_j_jelechem_2022_117013 crossref_primary_10_1007_s10876_022_02376_6 crossref_primary_10_1021_acs_energyfuels_3c01470 crossref_primary_10_1088_1361_6463_ac4cf5 crossref_primary_10_1016_j_cej_2024_148598 crossref_primary_10_3390_cryst12010115 crossref_primary_10_1002_adfm_202206388 crossref_primary_10_1021_acsami_1c24058 crossref_primary_10_1002_adfm_202403166 crossref_primary_10_1016_j_ccr_2022_214984 crossref_primary_10_1016_j_cej_2024_148927 crossref_primary_10_3390_polym16111452 crossref_primary_10_1002_cssc_202300876 crossref_primary_10_1016_j_jallcom_2022_167100 crossref_primary_10_1007_s11664_024_11652_2 crossref_primary_10_1039_D2NR02366K crossref_primary_10_1039_D2QI00010E crossref_primary_10_1016_j_ijhydene_2023_09_217 crossref_primary_10_1039_D2TA09445B crossref_primary_10_1016_j_jcis_2024_07_169 crossref_primary_10_1002_adma_202408923 crossref_primary_10_1007_s10853_022_06979_2 crossref_primary_10_1016_j_jelechem_2023_117467 crossref_primary_10_3390_batteries9090467 crossref_primary_10_1016_j_cej_2022_135819 crossref_primary_10_1016_j_mtchem_2022_100976 |
Cites_doi | 10.1021/jp803562a 10.1002/adma.202008810 10.1016/j.ensm.2019.10.013 10.1038/s41565-021-00947-8 10.1021/acsami.8b10111 10.1007/s12274-017-1709-x 10.1016/j.mattod.2019.11.008 10.1016/j.ensm.2021.05.029 10.1039/D0EE02235G 10.1021/acsami.8b02819 10.1039/C9TA01999E 10.1016/j.electacta.2018.12.180 10.1002/adma.201703185 10.1039/D0NR02966A 10.1021/acsnano.0c00020 10.1021/jp204798y 10.1039/C8TA09247H 10.1002/adma.201908007 10.1039/C8EE02679C 10.1021/jacs.0c00909 10.1016/j.apsusc.2018.09.122 10.1016/j.ensm.2019.05.039 10.1126/science.abd4527 10.1016/j.ensm.2019.05.008 10.1002/inf2.12176 10.1016/j.nanoen.2017.04.042 10.1039/C9TA10088A 10.1038/s41565-019-0618-4 10.1016/j.nanoen.2019.03.008 10.1002/adma.201606860 10.1038/s41560-019-0413-3 10.1038/s41467-021-23368-6 10.1021/acsnano.0c01452 10.1021/acsenergylett.0c00413 10.1016/j.cej.2019.01.191 10.1016/j.nanoen.2018.06.025 10.1016/j.ensm.2019.09.019 10.1021/acsami.0c20721 10.1016/j.jmst.2020.10.047 10.1016/j.jechem.2020.03.043 10.1039/C9EE02759A 10.1038/ncomms9259 10.1002/adfm.201902262 10.1002/aenm.202002298 10.1039/C8EE03632B 10.1016/j.nanoen.2016.09.020 10.1002/inf2.12023 10.1016/j.materresbull.2018.08.019 10.1007/s40820-018-0200-x 10.1002/aenm.201802386 10.1039/D0EE01052A 10.1002/adfm.201606422 10.1021/acsami.8b11479 10.1039/C6EE03367A 10.1016/j.jpowsour.2013.11.033 10.1016/j.pmatsci.2020.100716 10.1002/smll.202004580 10.1021/acsnano.1c02727 10.1021/acs.accounts.5b00482 10.1016/j.electacta.2021.137790 10.1039/C5TA02169C 10.1039/D0EE01638A |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202106194 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202106194 ADFM202106194 |
Genre | article |
GrantInformation_xml | – fundername: Program of Science and Technology in Qingdao City funderid: 18‐2‐2‐7‐jch – fundername: National Nature Science Foundation of China funderid: 51871127; 11674187; 11604172 – fundername: Shandong Natural Science Foundation funderid: ZR2018BEM012 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3174-6ac68732d1c754886c8a7e80db49e08110f33effa61d13c78929695c10ff53f93 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 07:38:05 EDT 2025 Tue Jul 01 04:12:36 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 Wed Jan 22 16:28:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-6ac68732d1c754886c8a7e80db49e08110f33effa61d13c78929695c10ff53f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1069-9145 |
PQID | 2607590073 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2607590073 crossref_citationtrail_10_1002_adfm_202106194 crossref_primary_10_1002_adfm_202106194 wiley_primary_10_1002_adfm_202106194_ADFM202106194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2019; 12 2019; 59 2020; 369 2020; 16 2020; 15 2016; 30 2020; 14 2020; 13 2020; 12 2020; 10 2014; 251 2019; 364 2020; 8 2018; 6 2021; 37 2020; 5 2018; 8 2021; 78 2017; 36 2020; 50 2021; 116 2019; 23 2019; 29 2008; 112 2016; 49 2021; 40 2019; 7 2015; 6 2019; 4 2021; 3 2015; 3 2020; 142 2019; 1 2017; 27 2018; 107 2020; 35 2017; 29 2020; 32 2021; 1 2019; 464 2021; 14 2021; 13 2021; 15 2021; 12 2021 2017; 11 2017; 10 2020; 25 2021; 370 2018; 50 2018; 10 2019; 299 e_1_2_7_5_1 e_1_2_7_3_1 Heng Y. (e_1_2_7_25_1) 2021; 37 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Lou Y. (e_1_2_7_43_1) 2021; 1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 46 year: 2018 publication-title: Nano‐Micro Lett. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 15 start-page: 224 year: 2020 publication-title: Nat. Nanotechnol. – volume: 78 start-page: 176 year: 2021 publication-title: J. Mater. Sci. Technol. – volume: 116 year: 2021 publication-title: Prog. Mater. Sci. – volume: 10 start-page: 370 year: 2017 publication-title: Energy Environ. Sci. – volume: 14 start-page: 396 year: 2021 publication-title: Energy Environ. Sci. – volume: 40 start-page: 337 year: 2021 publication-title: Energy Storage Mater. – volume: 35 start-page: 131 year: 2020 publication-title: Mater. Today – volume: 12 start-page: 727 year: 2019 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1653 year: 2020 publication-title: ACS Energy Lett. – volume: 13 start-page: 6265 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 210 year: 2020 publication-title: Energy Storage Mater. – volume: 12 start-page: 3066 year: 2021 publication-title: Nat. Commun. – volume: 37 year: 2021 publication-title: Acta Phys.–Chim. Sin. – volume: 25 start-page: 679 year: 2020 publication-title: Energy Storage Mater. – volume: 49 start-page: 231 year: 2016 publication-title: Acc. Chem. Res. – volume: 6 start-page: 8259 year: 2015 publication-title: Nat. Commun. – volume: 107 start-page: 468 year: 2018 publication-title: Mater. Res. Bull. – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 966 year: 2017 publication-title: Nano Res. – volume: 14 start-page: 3610 year: 2020 publication-title: ACS Nano – volume: 13 start-page: 4583 year: 2020 publication-title: Energy Environ. Sci. – volume: 23 start-page: 233 year: 2019 publication-title: Energy Storage Mater. – volume: 36 start-page: 322 year: 2017 publication-title: Nano Energy – volume: 299 start-page: 62 year: 2019 publication-title: Electrochim. Acta – volume: 369 start-page: 509 year: 2020 publication-title: Science – year: 2021 publication-title: Adv. Mater. – volume: 12 start-page: 1550 year: 2019 publication-title: Energy Environ. Sci. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – year: 2021 publication-title: Nat. Nanotechnol. – volume: 112 year: 2008 publication-title: J. Phys. Chem. C – volume: 115 year: 2011 publication-title: J. Phys. Chem. C – volume: 1 start-page: 29 year: 2021 publication-title: Nano Select – volume: 12 start-page: 3575 year: 2019 publication-title: Energy Environ. Sci. – volume: 14 start-page: 9744 year: 2020 publication-title: ACS Nano – volume: 12 year: 2020 publication-title: Nanoscale – volume: 23 start-page: 35 year: 2019 publication-title: Energy Storage Mater. – volume: 370 year: 2021 publication-title: Electrochim. Acta – volume: 30 start-page: 771 year: 2016 publication-title: Nano Energy – volume: 13 start-page: 2124 year: 2020 publication-title: Energy Environ. Sci. – volume: 1 start-page: 376 year: 2019 publication-title: InfoMat – volume: 15 start-page: 9167 year: 2021 publication-title: ACS Nano – volume: 364 start-page: 503 year: 2019 publication-title: Chem. Eng. J. – volume: 464 start-page: 597 year: 2019 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 779 year: 2020 publication-title: J. Mater. Chem. A – volume: 50 start-page: 756 year: 2018 publication-title: Nano Energy – volume: 50 start-page: 416 year: 2020 publication-title: J. Energy Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 251 start-page: 319 year: 2014 publication-title: J. Power Sources – volume: 142 start-page: 6737 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 421 year: 2021 publication-title: InfoMat – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 762 year: 2019 publication-title: Nano Energy – volume: 4 start-page: 664 year: 2019 publication-title: Nat. Energy – ident: e_1_2_7_32_1 doi: 10.1021/jp803562a – ident: e_1_2_7_61_1 doi: 10.1002/adma.202008810 – ident: e_1_2_7_63_1 doi: 10.1016/j.ensm.2019.10.013 – ident: e_1_2_7_30_1 doi: 10.1038/s41565-021-00947-8 – ident: e_1_2_7_37_1 doi: 10.1021/acsami.8b10111 – ident: e_1_2_7_52_1 doi: 10.1007/s12274-017-1709-x – ident: e_1_2_7_4_1 doi: 10.1016/j.mattod.2019.11.008 – ident: e_1_2_7_60_1 doi: 10.1016/j.ensm.2021.05.029 – ident: e_1_2_7_40_1 doi: 10.1039/D0EE02235G – ident: e_1_2_7_49_1 doi: 10.1021/acsami.8b02819 – ident: e_1_2_7_48_1 doi: 10.1039/C9TA01999E – ident: e_1_2_7_9_1 doi: 10.1016/j.electacta.2018.12.180 – volume: 37 year: 2021 ident: e_1_2_7_25_1 publication-title: Acta Phys.–Chim. Sin. – ident: e_1_2_7_45_1 doi: 10.1002/adma.201703185 – ident: e_1_2_7_22_1 doi: 10.1039/D0NR02966A – ident: e_1_2_7_24_1 doi: 10.1021/acsnano.0c00020 – ident: e_1_2_7_7_1 doi: 10.1021/jp204798y – ident: e_1_2_7_39_1 doi: 10.1039/C8TA09247H – ident: e_1_2_7_29_1 doi: 10.1002/adma.201908007 – ident: e_1_2_7_10_1 doi: 10.1039/C8EE02679C – ident: e_1_2_7_21_1 doi: 10.1021/jacs.0c00909 – ident: e_1_2_7_35_1 doi: 10.1016/j.apsusc.2018.09.122 – ident: e_1_2_7_50_1 doi: 10.1016/j.ensm.2019.05.039 – ident: e_1_2_7_1_1 doi: 10.1126/science.abd4527 – ident: e_1_2_7_12_1 doi: 10.1016/j.ensm.2019.05.008 – ident: e_1_2_7_28_1 doi: 10.1002/inf2.12176 – ident: e_1_2_7_31_1 doi: 10.1016/j.nanoen.2017.04.042 – ident: e_1_2_7_58_1 doi: 10.1039/C9TA10088A – ident: e_1_2_7_19_1 doi: 10.1038/s41565-019-0618-4 – ident: e_1_2_7_55_1 doi: 10.1016/j.nanoen.2019.03.008 – ident: e_1_2_7_62_1 doi: 10.1002/adma.201606860 – ident: e_1_2_7_17_1 doi: 10.1038/s41560-019-0413-3 – ident: e_1_2_7_13_1 doi: 10.1038/s41467-021-23368-6 – ident: e_1_2_7_51_1 doi: 10.1021/acsnano.0c01452 – ident: e_1_2_7_26_1 doi: 10.1021/acsenergylett.0c00413 – ident: e_1_2_7_38_1 doi: 10.1016/j.cej.2019.01.191 – ident: e_1_2_7_44_1 doi: 10.1016/j.nanoen.2018.06.025 – ident: e_1_2_7_5_1 doi: 10.1016/j.ensm.2019.09.019 – ident: e_1_2_7_46_1 doi: 10.1021/acsami.0c20721 – ident: e_1_2_7_47_1 doi: 10.1016/j.jmst.2020.10.047 – ident: e_1_2_7_14_1 doi: 10.1016/j.jechem.2020.03.043 – ident: e_1_2_7_41_1 doi: 10.1039/C9EE02759A – ident: e_1_2_7_6_1 doi: 10.1038/ncomms9259 – ident: e_1_2_7_34_1 doi: 10.1002/adfm.201902262 – volume: 1 start-page: 29 year: 2021 ident: e_1_2_7_43_1 publication-title: Nano Select – ident: e_1_2_7_54_1 doi: 10.1002/aenm.202002298 – ident: e_1_2_7_20_1 doi: 10.1039/C8EE03632B – ident: e_1_2_7_56_1 doi: 10.1016/j.nanoen.2016.09.020 – ident: e_1_2_7_15_1 doi: 10.1002/inf2.12023 – ident: e_1_2_7_36_1 doi: 10.1016/j.materresbull.2018.08.019 – ident: e_1_2_7_33_1 doi: 10.1007/s40820-018-0200-x – ident: e_1_2_7_42_1 doi: 10.1002/aenm.201802386 – ident: e_1_2_7_3_1 doi: 10.1039/D0EE01052A – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201606422 – ident: e_1_2_7_11_1 doi: 10.1021/acsami.8b11479 – ident: e_1_2_7_18_1 doi: 10.1039/C6EE03367A – ident: e_1_2_7_53_1 doi: 10.1016/j.jpowsour.2013.11.033 – ident: e_1_2_7_2_1 doi: 10.1016/j.pmatsci.2020.100716 – ident: e_1_2_7_57_1 doi: 10.1002/smll.202004580 – ident: e_1_2_7_64_1 doi: 10.1021/acsnano.1c02727 – ident: e_1_2_7_16_1 doi: 10.1021/acs.accounts.5b00482 – ident: e_1_2_7_8_1 doi: 10.1016/j.electacta.2021.137790 – ident: e_1_2_7_23_1 doi: 10.1039/C5TA02169C – ident: e_1_2_7_59_1 doi: 10.1039/D0EE01638A |
SSID | ssj0017734 |
Score | 2.6400893 |
Snippet | Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | activation energy Carbon Cycles Diffusion barriers Electrical resistivity Electrode materials Electrolytes Ion diffusion Lithium Materials science Na‐ion batteries Nitrogen Reaction kinetics Rechargeable batteries Selenides Sodium carbonate Sodium-ion batteries solid electrolyte interphases Solid electrolytes Structural stability Transition metals Zinc selenide |
Title | 3D Ordered Porous Hybrid of ZnSe/N‐doped Carbon with Anomalously High Na+ Mobility and Ultrathin Solid Electrolyte Interphase for Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202106194 https://www.proquest.com/docview/2607590073 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQucABWh6iUCofkDigbbJex_Yeo6ZRikhAhEgRl5WfatXtusrjEE79CZz78_pLGK-TbYqEkOC2j7G9a3t2vvGOv0HoHSMAQ4wmCeVGJ9SJdiI6ziZSG8EdM4zIsDQwHLHBhH6cdqZbu_gjP0Sz4BY0o_5eBwWXat66Iw2VxoWd5CT4NHkgBA0BWwEVfW34o1LO429lloYAr3S6YW1sk9b94vet0h3U3AastcXpP0Vy86wx0OTiaLlQR_rHbzSO__Myu-jJGo7ibpw_e-iBrZ6hx1skhc_RTdbDn2d1Tk_8xc_8co4Hq7DPC3uHv1dj2xrdXv80_gruH8uZ8hUOi7u4W_lLWYJ4ucIhmgSP5Ac89HUw7grLyuBJGahxz84rPPYl1HcSU_KUq4XFMRjyDGwsBlgNAuZ8eQntnEL1kRMUXPwXaNI_-XY8SNYZHRINOIUmTGomeEZMqjm4SoJpIbmFyaJobgGcpG2XZdY5yVKTZpoLAG8s72i47jqZy7OXaKfylX2FMBFCpVJLZaiguWor7Zjm1Epwi2VOs32UbEa00Gu685B1oywiUTMpQp8XTZ_vo_eN_FUk-vij5MFmghRrhZ8X4BbykICVQ8OkHum_1FJ0e_1hc_b6Xwq9QY_CcQyuOUA7i9nSvgWItFCH6GG3N_w0PqzV4RdLxQx0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLdgHIAD_yfGBviAxAFlbRzXdo7VuqqDtSC2ShOXyH-1iSyeuvZQTvsInPl4-yR7jptsQ0JIcIzzbCe2X_x7L8-_h9A7RgCGGE0Syo1OqBPdRPScTaQ2gjtmGJHBNTCesNGUfjzqNdGE4SxM5IdoHW5BM-rvdVDw4JDuXLOGSuPCUXISjJqc3kX3QlrvQJ8_-NoySKWcxx_LLA0hXulRw9vYJZ3b9W_vS9dg8yZkrfec4WOkmqeNoSbftxdzta1__Ebk-F-v8wQ9WiFS3I9L6Cm6Y6tn6OENnsLn6Fc2wJ9ndVpP_MXP_OIcj5bhqBf2Dn-rDmxncnnx0_gzuL8jZ8pXOPh3cb_yp7IE8XKJQ0AJnsgPeOzreNwllpXB0zKw4x6fVPjAl9DebszKUy7nFsd4yGPYZjEgaxAwJ4tT6GcPmo-0oGDlv0DT4e7hzihZJXVINEAVmjCpmeAZManmYC0JpoXkFtaLorkFfJJ2XZZZ5yRLTZppLgC_sbynodz1Mpdn62it8pV9iTARQqVSS2WooLnqKu2Y5tRKsIxlTrMNlDRTWugV43lIvFEWkauZFGHMi3bMN9D7Vv4scn38UXKrWSHFSufPC7AMecjByqFjUk_1X1op-oPhuL169S-V3qL7o8PxfrG_N_m0iR6E8hhrs4XW5rOFfQ2Iaa7e1DpxBZS1Dvw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLfGkBAcGOOPGBvgwyQOKGviuLZzrNZV3aBlYlSquESO_2gTWVx17aGc-Ag78_H4JHuO26xDQkhwjPNsJ7Zf_Hsvz7-H0D4jAEO0IhHlWkXUijgSbWsiqbTglmlGpHcNDIasP6In4_Z47RR_4IdoHG5eM-rvtVfwibatW9JQqa0_SU68TZPRe-g-ZXHmkzd0PzcEUgnn4b8yS3yEVzJe0TbGpHW3_t1t6RZrriPWesvpbSG5etgQafLtYD4rDtT333gc_-dtnqDHSzyKO2EBbaMNUz1Fj9ZYCp-hn2kXf5rWST3xqZu6-RXuL_xBL-ws_lqdmdbw149r7SZw_1BOC1dh793FncpdyhLEywX24SR4KN_jgaujcRdYVhqPSs-Ne35R4TNXQntHISdPuZgZHKIhz2GTxYCrQUBfzC-hn2NoPpCCgo3_HI16R18O-9EypUOkAKjQiEnFBE-JThQHW0kwJSQ3sFoKmhlAJ0ls09RYK1mik1RxAeiNZW0F5bad2ix9gTYrV5mXCBMhikQqWWgqaFbEhbJMcWok2MUyo-kOilYzmqsl37lPu1HmgamZ5H7M82bMd9C7Rn4SmD7-KLm3WiD5UuOvcrALuc_AyqFjUs_0X1rJO93eoLl69S-V3qIHp91e_vF4-GEXPfTFIdBmD23OpnPzGuDSrHhTa8QNXAgNqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Ordered+Porous+Hybrid+of+ZnSe%2FN%E2%80%90doped+Carbon+with+Anomalously+High+Na%2B+Mobility+and+Ultrathin+Solid+Electrolyte+Interphase+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Xueying&rft.au=Han%2C+Zhiyuan&rft.au=Yang%2C+Wenhua&rft.au=Li%2C+Qiang&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202106194&rft.externalDBID=10.1002%252Fadfm.202106194&rft.externalDocID=ADFM202106194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |