3D Ordered Porous Hybrid of ZnSe/N‐doped Carbon with Anomalously High Na+ Mobility and Ultrathin Solid Electrolyte Interphase for Sodium‐Ion Batteries

Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 50
Main Authors Li, Xueying, Han, Zhiyuan, Yang, Wenhua, Li, Qiang, Li, Hongsen, Xu, Jie, Li, Hongliang, Liu, Bing, Zhao, Haiguang, Li, Shandong, Wang, Xia, Wu, Xing‐Long
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is revealed that ZnSe possesses better Na+‐diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li+ and K+, as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe‐based anode, including nitrogen‐doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na+ reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g−1 in sodium‐ion batteries (SIBs) at 10 A g−1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na2CO3/NaF in organic components and boosted Na2Se adsorption as sodiation. Moreover, the Na‐storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high‐performance electrode materials for SIBs. A 3D ordered hierarchical porous ZnSe@N‐doped carbon hybrid with higher Na+ diffusion kinetics than Li+ and K+ is fabricated. Originating from architectural advantages and optimization of electrolytes, the hybrid delivers a low diffusion barrier and activation energy of Na+, accompanied by the formation of ultrathin solid electrolyte interphase to yield a long cycle life even at 10 A g−1 for sodium‐ion batteries.
AbstractList Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is revealed that ZnSe possesses better Na+‐diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li+ and K+, as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe‐based anode, including nitrogen‐doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na+ reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g−1 in sodium‐ion batteries (SIBs) at 10 A g−1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na2CO3/NaF in organic components and boosted Na2Se adsorption as sodiation. Moreover, the Na‐storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high‐performance electrode materials for SIBs.
Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is revealed that ZnSe possesses better Na+‐diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li+ and K+, as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe‐based anode, including nitrogen‐doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na+ reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g−1 in sodium‐ion batteries (SIBs) at 10 A g−1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na2CO3/NaF in organic components and boosted Na2Se adsorption as sodiation. Moreover, the Na‐storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high‐performance electrode materials for SIBs. A 3D ordered hierarchical porous ZnSe@N‐doped carbon hybrid with higher Na+ diffusion kinetics than Li+ and K+ is fabricated. Originating from architectural advantages and optimization of electrolytes, the hybrid delivers a low diffusion barrier and activation energy of Na+, accompanied by the formation of ultrathin solid electrolyte interphase to yield a long cycle life even at 10 A g−1 for sodium‐ion batteries.
Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K‐storage behaviors. Herein, it is revealed that ZnSe possesses better Na + ‐diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li + and K + , as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe‐based anode, including nitrogen‐doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na + reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g −1 in sodium‐ion batteries (SIBs) at 10 A g −1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na 2 CO 3 /NaF in organic components and boosted Na 2 Se adsorption as sodiation. Moreover, the Na‐storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high‐performance electrode materials for SIBs.
Author Li, Xueying
Li, Qiang
Liu, Bing
Xu, Jie
Li, Shandong
Han, Zhiyuan
Zhao, Haiguang
Li, Hongliang
Wang, Xia
Yang, Wenhua
Wu, Xing‐Long
Li, Hongsen
Author_xml – sequence: 1
  givenname: Xueying
  surname: Li
  fullname: Li, Xueying
  organization: Qingdao University
– sequence: 2
  givenname: Zhiyuan
  surname: Han
  fullname: Han, Zhiyuan
  organization: Qingdao University
– sequence: 3
  givenname: Wenhua
  surname: Yang
  fullname: Yang, Wenhua
  organization: Qingdao University
– sequence: 4
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  organization: Qingdao University
– sequence: 5
  givenname: Hongsen
  surname: Li
  fullname: Li, Hongsen
  organization: Qingdao University
– sequence: 6
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
  organization: Qingdao University
– sequence: 7
  givenname: Hongliang
  surname: Li
  fullname: Li, Hongliang
  organization: Qingdao University
– sequence: 8
  givenname: Bing
  surname: Liu
  fullname: Liu, Bing
  organization: Qingdao University
– sequence: 9
  givenname: Haiguang
  surname: Zhao
  fullname: Zhao, Haiguang
  organization: Qingdao University
– sequence: 10
  givenname: Shandong
  surname: Li
  fullname: Li, Shandong
  email: lishd@qdu.edu.cn
  organization: Qingdao University
– sequence: 11
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
  email: wangxiakuaile@qdu.edu.cn
  organization: Qingdao University
– sequence: 12
  givenname: Xing‐Long
  orcidid: 0000-0003-1069-9145
  surname: Wu
  fullname: Wu, Xing‐Long
  email: xinglong@nenu.edu.cn
  organization: Northeast Normal University
BookMark eNqFkctKAzEUhoMoqNWt64BLaU0m02RmWeulhXoBFcTNkOZiI2lSkxSZnY_g2sfzSYxUFARxlZDzff8h_Ntg3XmnANjDqIcRKg651PNegQqMKK7LNbCFKaZdgopq_fuO7zbBdoyPCGHGSLkF3sgxvAxSBSXhlQ9-GeGonQYjodfw3l2rw4v3l1fpF3k-5GHqHXw2aQYHzs-5zbht4cg8zOAFP4DnfmqsSS3kTsJbmwJPM-Pgtbc578QqkYK3bVJw7JIKixmPCmofMiDNcp73jHP8EU95aFTcARua26h2v84OuD09uRmOupPLs_FwMOkKglnZpVzQipFCYsH6ZVVRUXGmKiSnZa1QhTHShCitOcUSE8Gquqhp3Rf5XfeJrkkH7K9yF8E_LVVMzaNfBpdXNgVFrF8jxEimyhUlgo8xKN0Ik3gy3uVvGttg1Hy20Hy20Hy3kLXeL20RzJyH9m-hXgnPxqr2H7oZHJ-e_7gfxKqfSw
CitedBy_id crossref_primary_10_1021_acs_jpcc_3c02529
crossref_primary_10_1002_adfm_202205880
crossref_primary_10_1016_j_est_2022_104970
crossref_primary_10_1016_j_cej_2023_143766
crossref_primary_10_1002_smll_202403736
crossref_primary_10_1016_j_apsusc_2023_159023
crossref_primary_10_1039_D1TA09039A
crossref_primary_10_1002_smll_202203964
crossref_primary_10_1016_j_cej_2022_137366
crossref_primary_10_1021_acsanm_3c05996
crossref_primary_10_1016_j_cej_2022_135185
crossref_primary_10_1016_j_jechem_2022_08_022
crossref_primary_10_1016_j_mtchem_2022_100849
crossref_primary_10_1002_adfm_202413198
crossref_primary_10_3389_fchem_2024_1459324
crossref_primary_10_1002_adfm_202305606
crossref_primary_10_1002_smll_202206194
crossref_primary_10_1002_smll_202202582
crossref_primary_10_1016_j_cej_2024_149436
crossref_primary_10_1016_j_apsusc_2024_159334
crossref_primary_10_1002_smll_202305021
crossref_primary_10_1021_acsanm_3c04735
crossref_primary_10_1002_adfm_202210042
crossref_primary_10_1002_smll_202107370
crossref_primary_10_1021_acsami_1c15483
crossref_primary_10_1002_smll_202207716
crossref_primary_10_3390_coatings13091588
crossref_primary_10_1021_acsami_3c11057
crossref_primary_10_1016_j_apcatb_2022_121680
crossref_primary_10_1016_j_cej_2024_154936
crossref_primary_10_1016_j_jcis_2024_03_086
crossref_primary_10_1021_acsami_1c21271
crossref_primary_10_1039_D1TA10439J
crossref_primary_10_1002_jctb_7482
crossref_primary_10_1039_D2TA03219H
crossref_primary_10_1002_slct_202404105
crossref_primary_10_1007_s12209_022_00338_7
crossref_primary_10_1016_j_cej_2022_138430
crossref_primary_10_1021_acsami_1c21934
crossref_primary_10_1016_j_cej_2021_134195
crossref_primary_10_1039_D2QI02291E
crossref_primary_10_1021_acsanm_2c03737
crossref_primary_10_1002_smll_202200437
crossref_primary_10_1039_D2QM00174H
crossref_primary_10_1039_D2DT03123J
crossref_primary_10_1002_sstr_202200159
crossref_primary_10_1039_D4QI02198C
crossref_primary_10_1016_j_jelechem_2022_117013
crossref_primary_10_1007_s10876_022_02376_6
crossref_primary_10_1021_acs_energyfuels_3c01470
crossref_primary_10_1088_1361_6463_ac4cf5
crossref_primary_10_1016_j_cej_2024_148598
crossref_primary_10_3390_cryst12010115
crossref_primary_10_1002_adfm_202206388
crossref_primary_10_1021_acsami_1c24058
crossref_primary_10_1002_adfm_202403166
crossref_primary_10_1016_j_ccr_2022_214984
crossref_primary_10_1016_j_cej_2024_148927
crossref_primary_10_3390_polym16111452
crossref_primary_10_1002_cssc_202300876
crossref_primary_10_1016_j_jallcom_2022_167100
crossref_primary_10_1007_s11664_024_11652_2
crossref_primary_10_1039_D2NR02366K
crossref_primary_10_1039_D2QI00010E
crossref_primary_10_1016_j_ijhydene_2023_09_217
crossref_primary_10_1039_D2TA09445B
crossref_primary_10_1016_j_jcis_2024_07_169
crossref_primary_10_1002_adma_202408923
crossref_primary_10_1007_s10853_022_06979_2
crossref_primary_10_1016_j_jelechem_2023_117467
crossref_primary_10_3390_batteries9090467
crossref_primary_10_1016_j_cej_2022_135819
crossref_primary_10_1016_j_mtchem_2022_100976
Cites_doi 10.1021/jp803562a
10.1002/adma.202008810
10.1016/j.ensm.2019.10.013
10.1038/s41565-021-00947-8
10.1021/acsami.8b10111
10.1007/s12274-017-1709-x
10.1016/j.mattod.2019.11.008
10.1016/j.ensm.2021.05.029
10.1039/D0EE02235G
10.1021/acsami.8b02819
10.1039/C9TA01999E
10.1016/j.electacta.2018.12.180
10.1002/adma.201703185
10.1039/D0NR02966A
10.1021/acsnano.0c00020
10.1021/jp204798y
10.1039/C8TA09247H
10.1002/adma.201908007
10.1039/C8EE02679C
10.1021/jacs.0c00909
10.1016/j.apsusc.2018.09.122
10.1016/j.ensm.2019.05.039
10.1126/science.abd4527
10.1016/j.ensm.2019.05.008
10.1002/inf2.12176
10.1016/j.nanoen.2017.04.042
10.1039/C9TA10088A
10.1038/s41565-019-0618-4
10.1016/j.nanoen.2019.03.008
10.1002/adma.201606860
10.1038/s41560-019-0413-3
10.1038/s41467-021-23368-6
10.1021/acsnano.0c01452
10.1021/acsenergylett.0c00413
10.1016/j.cej.2019.01.191
10.1016/j.nanoen.2018.06.025
10.1016/j.ensm.2019.09.019
10.1021/acsami.0c20721
10.1016/j.jmst.2020.10.047
10.1016/j.jechem.2020.03.043
10.1039/C9EE02759A
10.1038/ncomms9259
10.1002/adfm.201902262
10.1002/aenm.202002298
10.1039/C8EE03632B
10.1016/j.nanoen.2016.09.020
10.1002/inf2.12023
10.1016/j.materresbull.2018.08.019
10.1007/s40820-018-0200-x
10.1002/aenm.201802386
10.1039/D0EE01052A
10.1002/adfm.201606422
10.1021/acsami.8b11479
10.1039/C6EE03367A
10.1016/j.jpowsour.2013.11.033
10.1016/j.pmatsci.2020.100716
10.1002/smll.202004580
10.1021/acsnano.1c02727
10.1021/acs.accounts.5b00482
10.1016/j.electacta.2021.137790
10.1039/C5TA02169C
10.1039/D0EE01638A
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202106194
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202106194
ADFM202106194
Genre article
GrantInformation_xml – fundername: Program of Science and Technology in Qingdao City
  funderid: 18‐2‐2‐7‐jch
– fundername: National Nature Science Foundation of China
  funderid: 51871127; 11674187; 11604172
– fundername: Shandong Natural Science Foundation
  funderid: ZR2018BEM012
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3174-6ac68732d1c754886c8a7e80db49e08110f33effa61d13c78929695c10ff53f93
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 07:38:05 EDT 2025
Tue Jul 01 04:12:36 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
Wed Jan 22 16:28:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-6ac68732d1c754886c8a7e80db49e08110f33effa61d13c78929695c10ff53f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1069-9145
PQID 2607590073
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_journals_2607590073
crossref_citationtrail_10_1002_adfm_202106194
crossref_primary_10_1002_adfm_202106194
wiley_primary_10_1002_adfm_202106194_ADFM202106194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2019; 12
2019; 59
2020; 369
2020; 16
2020; 15
2016; 30
2020; 14
2020; 13
2020; 12
2020; 10
2014; 251
2019; 364
2020; 8
2018; 6
2021; 37
2020; 5
2018; 8
2021; 78
2017; 36
2020; 50
2021; 116
2019; 23
2019; 29
2008; 112
2016; 49
2021; 40
2019; 7
2015; 6
2019; 4
2021; 3
2015; 3
2020; 142
2019; 1
2017; 27
2018; 107
2020; 35
2017; 29
2020; 32
2021; 1
2019; 464
2021; 14
2021; 13
2021; 15
2021; 12
2021
2017; 11
2017; 10
2020; 25
2021; 370
2018; 50
2018; 10
2019; 299
e_1_2_7_5_1
e_1_2_7_3_1
Heng Y. (e_1_2_7_25_1) 2021; 37
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Lou Y. (e_1_2_7_43_1) 2021; 1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 46
  year: 2018
  publication-title: Nano‐Micro Lett.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 224
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 78
  start-page: 176
  year: 2021
  publication-title: J. Mater. Sci. Technol.
– volume: 116
  year: 2021
  publication-title: Prog. Mater. Sci.
– volume: 10
  start-page: 370
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 396
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 40
  start-page: 337
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 35
  start-page: 131
  year: 2020
  publication-title: Mater. Today
– volume: 12
  start-page: 727
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1653
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 6265
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 210
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 3066
  year: 2021
  publication-title: Nat. Commun.
– volume: 37
  year: 2021
  publication-title: Acta Phys.–Chim. Sin.
– volume: 25
  start-page: 679
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 49
  start-page: 231
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 8259
  year: 2015
  publication-title: Nat. Commun.
– volume: 107
  start-page: 468
  year: 2018
  publication-title: Mater. Res. Bull.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 966
  year: 2017
  publication-title: Nano Res.
– volume: 14
  start-page: 3610
  year: 2020
  publication-title: ACS Nano
– volume: 13
  start-page: 4583
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 233
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 36
  start-page: 322
  year: 2017
  publication-title: Nano Energy
– volume: 299
  start-page: 62
  year: 2019
  publication-title: Electrochim. Acta
– volume: 369
  start-page: 509
  year: 2020
  publication-title: Science
– year: 2021
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1550
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 115
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 29
  year: 2021
  publication-title: Nano Select
– volume: 12
  start-page: 3575
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 9744
  year: 2020
  publication-title: ACS Nano
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 23
  start-page: 35
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 370
  year: 2021
  publication-title: Electrochim. Acta
– volume: 30
  start-page: 771
  year: 2016
  publication-title: Nano Energy
– volume: 13
  start-page: 2124
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 376
  year: 2019
  publication-title: InfoMat
– volume: 15
  start-page: 9167
  year: 2021
  publication-title: ACS Nano
– volume: 364
  start-page: 503
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 464
  start-page: 597
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 779
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 756
  year: 2018
  publication-title: Nano Energy
– volume: 50
  start-page: 416
  year: 2020
  publication-title: J. Energy Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 251
  start-page: 319
  year: 2014
  publication-title: J. Power Sources
– volume: 142
  start-page: 6737
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 421
  year: 2021
  publication-title: InfoMat
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 762
  year: 2019
  publication-title: Nano Energy
– volume: 4
  start-page: 664
  year: 2019
  publication-title: Nat. Energy
– ident: e_1_2_7_32_1
  doi: 10.1021/jp803562a
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.202008810
– ident: e_1_2_7_63_1
  doi: 10.1016/j.ensm.2019.10.013
– ident: e_1_2_7_30_1
  doi: 10.1038/s41565-021-00947-8
– ident: e_1_2_7_37_1
  doi: 10.1021/acsami.8b10111
– ident: e_1_2_7_52_1
  doi: 10.1007/s12274-017-1709-x
– ident: e_1_2_7_4_1
  doi: 10.1016/j.mattod.2019.11.008
– ident: e_1_2_7_60_1
  doi: 10.1016/j.ensm.2021.05.029
– ident: e_1_2_7_40_1
  doi: 10.1039/D0EE02235G
– ident: e_1_2_7_49_1
  doi: 10.1021/acsami.8b02819
– ident: e_1_2_7_48_1
  doi: 10.1039/C9TA01999E
– ident: e_1_2_7_9_1
  doi: 10.1016/j.electacta.2018.12.180
– volume: 37
  year: 2021
  ident: e_1_2_7_25_1
  publication-title: Acta Phys.–Chim. Sin.
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.201703185
– ident: e_1_2_7_22_1
  doi: 10.1039/D0NR02966A
– ident: e_1_2_7_24_1
  doi: 10.1021/acsnano.0c00020
– ident: e_1_2_7_7_1
  doi: 10.1021/jp204798y
– ident: e_1_2_7_39_1
  doi: 10.1039/C8TA09247H
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201908007
– ident: e_1_2_7_10_1
  doi: 10.1039/C8EE02679C
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.0c00909
– ident: e_1_2_7_35_1
  doi: 10.1016/j.apsusc.2018.09.122
– ident: e_1_2_7_50_1
  doi: 10.1016/j.ensm.2019.05.039
– ident: e_1_2_7_1_1
  doi: 10.1126/science.abd4527
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ensm.2019.05.008
– ident: e_1_2_7_28_1
  doi: 10.1002/inf2.12176
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nanoen.2017.04.042
– ident: e_1_2_7_58_1
  doi: 10.1039/C9TA10088A
– ident: e_1_2_7_19_1
  doi: 10.1038/s41565-019-0618-4
– ident: e_1_2_7_55_1
  doi: 10.1016/j.nanoen.2019.03.008
– ident: e_1_2_7_62_1
  doi: 10.1002/adma.201606860
– ident: e_1_2_7_17_1
  doi: 10.1038/s41560-019-0413-3
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-021-23368-6
– ident: e_1_2_7_51_1
  doi: 10.1021/acsnano.0c01452
– ident: e_1_2_7_26_1
  doi: 10.1021/acsenergylett.0c00413
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cej.2019.01.191
– ident: e_1_2_7_44_1
  doi: 10.1016/j.nanoen.2018.06.025
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ensm.2019.09.019
– ident: e_1_2_7_46_1
  doi: 10.1021/acsami.0c20721
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jmst.2020.10.047
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jechem.2020.03.043
– ident: e_1_2_7_41_1
  doi: 10.1039/C9EE02759A
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms9259
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.201902262
– volume: 1
  start-page: 29
  year: 2021
  ident: e_1_2_7_43_1
  publication-title: Nano Select
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.202002298
– ident: e_1_2_7_20_1
  doi: 10.1039/C8EE03632B
– ident: e_1_2_7_56_1
  doi: 10.1016/j.nanoen.2016.09.020
– ident: e_1_2_7_15_1
  doi: 10.1002/inf2.12023
– ident: e_1_2_7_36_1
  doi: 10.1016/j.materresbull.2018.08.019
– ident: e_1_2_7_33_1
  doi: 10.1007/s40820-018-0200-x
– ident: e_1_2_7_42_1
  doi: 10.1002/aenm.201802386
– ident: e_1_2_7_3_1
  doi: 10.1039/D0EE01052A
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201606422
– ident: e_1_2_7_11_1
  doi: 10.1021/acsami.8b11479
– ident: e_1_2_7_18_1
  doi: 10.1039/C6EE03367A
– ident: e_1_2_7_53_1
  doi: 10.1016/j.jpowsour.2013.11.033
– ident: e_1_2_7_2_1
  doi: 10.1016/j.pmatsci.2020.100716
– ident: e_1_2_7_57_1
  doi: 10.1002/smll.202004580
– ident: e_1_2_7_64_1
  doi: 10.1021/acsnano.1c02727
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.accounts.5b00482
– ident: e_1_2_7_8_1
  doi: 10.1016/j.electacta.2021.137790
– ident: e_1_2_7_23_1
  doi: 10.1039/C5TA02169C
– ident: e_1_2_7_59_1
  doi: 10.1039/D0EE01638A
SSID ssj0017734
Score 2.6400893
Snippet Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms activation energy
Carbon
Cycles
Diffusion barriers
Electrical resistivity
Electrode materials
Electrolytes
Ion diffusion
Lithium
Materials science
Na‐ion batteries
Nitrogen
Reaction kinetics
Rechargeable batteries
Selenides
Sodium carbonate
Sodium-ion batteries
solid electrolyte interphases
Solid electrolytes
Structural stability
Transition metals
Zinc selenide
Title 3D Ordered Porous Hybrid of ZnSe/N‐doped Carbon with Anomalously High Na+ Mobility and Ultrathin Solid Electrolyte Interphase for Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202106194
https://www.proquest.com/docview/2607590073
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQucABWh6iUCofkDigbbJex_Yeo6ZRikhAhEgRl5WfatXtusrjEE79CZz78_pLGK-TbYqEkOC2j7G9a3t2vvGOv0HoHSMAQ4wmCeVGJ9SJdiI6ziZSG8EdM4zIsDQwHLHBhH6cdqZbu_gjP0Sz4BY0o_5eBwWXat66Iw2VxoWd5CT4NHkgBA0BWwEVfW34o1LO429lloYAr3S6YW1sk9b94vet0h3U3AastcXpP0Vy86wx0OTiaLlQR_rHbzSO__Myu-jJGo7ibpw_e-iBrZ6hx1skhc_RTdbDn2d1Tk_8xc_8co4Hq7DPC3uHv1dj2xrdXv80_gruH8uZ8hUOi7u4W_lLWYJ4ucIhmgSP5Ac89HUw7grLyuBJGahxz84rPPYl1HcSU_KUq4XFMRjyDGwsBlgNAuZ8eQntnEL1kRMUXPwXaNI_-XY8SNYZHRINOIUmTGomeEZMqjm4SoJpIbmFyaJobgGcpG2XZdY5yVKTZpoLAG8s72i47jqZy7OXaKfylX2FMBFCpVJLZaiguWor7Zjm1Epwi2VOs32UbEa00Gu685B1oywiUTMpQp8XTZ_vo_eN_FUk-vij5MFmghRrhZ8X4BbykICVQ8OkHum_1FJ0e_1hc_b6Xwq9QY_CcQyuOUA7i9nSvgWItFCH6GG3N_w0PqzV4RdLxQx0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLdgHIAD_yfGBviAxAFlbRzXdo7VuqqDtSC2ShOXyH-1iSyeuvZQTvsInPl4-yR7jptsQ0JIcIzzbCe2X_x7L8-_h9A7RgCGGE0Syo1OqBPdRPScTaQ2gjtmGJHBNTCesNGUfjzqNdGE4SxM5IdoHW5BM-rvdVDw4JDuXLOGSuPCUXISjJqc3kX3QlrvQJ8_-NoySKWcxx_LLA0hXulRw9vYJZ3b9W_vS9dg8yZkrfec4WOkmqeNoSbftxdzta1__Ebk-F-v8wQ9WiFS3I9L6Cm6Y6tn6OENnsLn6Fc2wJ9ndVpP_MXP_OIcj5bhqBf2Dn-rDmxncnnx0_gzuL8jZ8pXOPh3cb_yp7IE8XKJQ0AJnsgPeOzreNwllpXB0zKw4x6fVPjAl9DebszKUy7nFsd4yGPYZjEgaxAwJ4tT6GcPmo-0oGDlv0DT4e7hzihZJXVINEAVmjCpmeAZManmYC0JpoXkFtaLorkFfJJ2XZZZ5yRLTZppLgC_sbynodz1Mpdn62it8pV9iTARQqVSS2WooLnqKu2Y5tRKsIxlTrMNlDRTWugV43lIvFEWkauZFGHMi3bMN9D7Vv4scn38UXKrWSHFSufPC7AMecjByqFjUk_1X1op-oPhuL169S-V3qL7o8PxfrG_N_m0iR6E8hhrs4XW5rOFfQ2Iaa7e1DpxBZS1Dvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLfGkBAcGOOPGBvgwyQOKGviuLZzrNZV3aBlYlSquESO_2gTWVx17aGc-Ag78_H4JHuO26xDQkhwjPNsJ7Zf_Hsvz7-H0D4jAEO0IhHlWkXUijgSbWsiqbTglmlGpHcNDIasP6In4_Z47RR_4IdoHG5eM-rvtVfwibatW9JQqa0_SU68TZPRe-g-ZXHmkzd0PzcEUgnn4b8yS3yEVzJe0TbGpHW3_t1t6RZrriPWesvpbSG5etgQafLtYD4rDtT333gc_-dtnqDHSzyKO2EBbaMNUz1Fj9ZYCp-hn2kXf5rWST3xqZu6-RXuL_xBL-ws_lqdmdbw149r7SZw_1BOC1dh793FncpdyhLEywX24SR4KN_jgaujcRdYVhqPSs-Ne35R4TNXQntHISdPuZgZHKIhz2GTxYCrQUBfzC-hn2NoPpCCgo3_HI16R18O-9EypUOkAKjQiEnFBE-JThQHW0kwJSQ3sFoKmhlAJ0ls09RYK1mik1RxAeiNZW0F5bad2ix9gTYrV5mXCBMhikQqWWgqaFbEhbJMcWok2MUyo-kOilYzmqsl37lPu1HmgamZ5H7M82bMd9C7Rn4SmD7-KLm3WiD5UuOvcrALuc_AyqFjUs_0X1rJO93eoLl69S-V3qIHp91e_vF4-GEXPfTFIdBmD23OpnPzGuDSrHhTa8QNXAgNqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Ordered+Porous+Hybrid+of+ZnSe%2FN%E2%80%90doped+Carbon+with+Anomalously+High+Na%2B+Mobility+and+Ultrathin+Solid+Electrolyte+Interphase+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Xueying&rft.au=Han%2C+Zhiyuan&rft.au=Yang%2C+Wenhua&rft.au=Li%2C+Qiang&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202106194&rft.externalDBID=10.1002%252Fadfm.202106194&rft.externalDocID=ADFM202106194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon