Addressing Responsivity‐Noise Trade‐Off by Van der Waals Multilayer Two‐Phase Heterojunction for Large LDR Organic Photodetectors
One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)...
Saved in:
Published in | Laser & photonics reviews Vol. 19; no. 2 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)/planar‐heterojunction (PHJ) (B‐PHJ) framework, is constructed making certain the high‐quality interface and novel two‐phase energy band alignment between the active and barrier layer with noise suppression and photovoltaic complement simultaneously. The prepared OPD exhibits the combined advantages of ultralow dark current (0.2 nA cm−2 at −1 V) and high responsivity (0.49 A W−1 at 850 nm). As a result, these superimposed effects enable the device to feature a superior liner dynamic range (LDR) of 210 dB and a specific detectivity of 1014 Jones to address the conventional responsivity‐noise trade‐off. The results reveal that the balance dynamics of charge transfer and charge blocking in van der Waals hybrid two‐phase framework OPD, may inspire the development of next OPDs. Finally, its diverse practical application potential is demonstrated through long‐distance misaligned photoplethysmography (PPG) measurement.
Here, a van der Waals multilayer organic photodetector based on water transfer printing method is demonstrated. The traditional responsivity‐noise trade‐off is overcome to achieve high sensitivity characteristics from visible to near‐infrared. Remote unaligned PPG measurement is possible, which provide the potential for the development of diverse human health monitoring applications. |
---|---|
AbstractList | One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)/planar‐heterojunction (PHJ) (B‐PHJ) framework, is constructed making certain the high‐quality interface and novel two‐phase energy band alignment between the active and barrier layer with noise suppression and photovoltaic complement simultaneously. The prepared OPD exhibits the combined advantages of ultralow dark current (0.2 nA cm −2 at −1 V) and high responsivity (0.49 A W −1 at 850 nm). As a result, these superimposed effects enable the device to feature a superior liner dynamic range (LDR) of 210 dB and a specific detectivity of 10 14 Jones to address the conventional responsivity‐noise trade‐off. The results reveal that the balance dynamics of charge transfer and charge blocking in van der Waals hybrid two‐phase framework OPD, may inspire the development of next OPDs. Finally, its diverse practical application potential is demonstrated through long‐distance misaligned photoplethysmography (PPG) measurement. One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)/planar‐heterojunction (PHJ) (B‐PHJ) framework, is constructed making certain the high‐quality interface and novel two‐phase energy band alignment between the active and barrier layer with noise suppression and photovoltaic complement simultaneously. The prepared OPD exhibits the combined advantages of ultralow dark current (0.2 nA cm−2 at −1 V) and high responsivity (0.49 A W−1 at 850 nm). As a result, these superimposed effects enable the device to feature a superior liner dynamic range (LDR) of 210 dB and a specific detectivity of 1014 Jones to address the conventional responsivity‐noise trade‐off. The results reveal that the balance dynamics of charge transfer and charge blocking in van der Waals hybrid two‐phase framework OPD, may inspire the development of next OPDs. Finally, its diverse practical application potential is demonstrated through long‐distance misaligned photoplethysmography (PPG) measurement. One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)/planar‐heterojunction (PHJ) (B‐PHJ) framework, is constructed making certain the high‐quality interface and novel two‐phase energy band alignment between the active and barrier layer with noise suppression and photovoltaic complement simultaneously. The prepared OPD exhibits the combined advantages of ultralow dark current (0.2 nA cm−2 at −1 V) and high responsivity (0.49 A W−1 at 850 nm). As a result, these superimposed effects enable the device to feature a superior liner dynamic range (LDR) of 210 dB and a specific detectivity of 1014 Jones to address the conventional responsivity‐noise trade‐off. The results reveal that the balance dynamics of charge transfer and charge blocking in van der Waals hybrid two‐phase framework OPD, may inspire the development of next OPDs. Finally, its diverse practical application potential is demonstrated through long‐distance misaligned photoplethysmography (PPG) measurement. Here, a van der Waals multilayer organic photodetector based on water transfer printing method is demonstrated. The traditional responsivity‐noise trade‐off is overcome to achieve high sensitivity characteristics from visible to near‐infrared. Remote unaligned PPG measurement is possible, which provide the potential for the development of diverse human health monitoring applications. |
Author | Luo, Hanwen He, Meiyu Li, Chunyu Han, Jiayue Du, Xiaoyang Yu, He Han, Chao Gou, Jun Wu, Zhiming Wang, Jun Han, Xingwei |
Author_xml | – sequence: 1 givenname: Meiyu surname: He fullname: He, Meiyu organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Jiayue surname: Han fullname: Han, Jiayue email: hanjiayue@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Chunyu surname: Li fullname: Li, Chunyu organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Chao surname: Han fullname: Han, Chao organization: University of Electronic Science and Technology of China – sequence: 5 givenname: Xingwei surname: Han fullname: Han, Xingwei organization: University of Electronic Science and Technology of China – sequence: 6 givenname: Xiaoyang surname: Du fullname: Du, Xiaoyang organization: University of Electronic Science and Technology of China – sequence: 7 givenname: Hanwen surname: Luo fullname: Luo, Hanwen organization: University of Electronic Science and Technology of China – sequence: 8 givenname: He surname: Yu fullname: Yu, He organization: University of Electronic Science and Technology of China – sequence: 9 givenname: Jun surname: Gou fullname: Gou, Jun organization: Key Laboratory of Science and Technology on Infrared Detector – sequence: 10 givenname: Zhiming surname: Wu fullname: Wu, Zhiming email: zmwu@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 11 givenname: Jun orcidid: 0000-0003-2370-2964 surname: Wang fullname: Wang, Jun email: wjun@uestc.edu.cn organization: University of Electronic Science and Technology of China |
BookMark | eNqFkM1qGzEUhUVJIL_brAVd25FGo7FmGdI2CUxrY9xmOVxr7tgyU8mV5ITZZZdtnrFPUhkHBwohK_3wfedyzwk5sM4iIRecDTlj2WW3dn6YsSxnTMr8EznmqhADpcryYH9X7IichLDaIlIWx-T5qmk8hmDsgk4xrJ0N5sHE_u_Tyw9nAtKZhwbTa9y2dN7TX2Bpg57eA3SBft900XTQp4_Zo0vUZAnJucWI3q02VkfjLG2dpxX4BdLqy5SO_QKs0XSydNE1idTR-XBGDtuUiOev5yn5-e3r7Pp2UI1v7q6vqoEWfJQPJJdSNUpAw0Wb5XmhZD6aC6UEU0UBGTZ6jgWUoEFAKzm2XOhSFKVCnTEpxCn5vMtde_dngyHWK7fxNo2sBZejkeIFzxKV7yjtXQge21qbCNtlogfT1ZzV28rrbeX1vvKkDf_T1t78Bt-_L5Q74dF02H9A19VkPH1z_wGbI5s5 |
CitedBy_id | crossref_primary_10_1021_acsphotonics_4c02233 |
Cites_doi | 10.1002/adfm.202102361 10.1002/adfm.202106326 10.1126/science.aah4496 10.1002/adma.202003818 10.1126/science.aba2624 10.1109/TED.2017.2696478 10.1126/sciadv.abq0187 10.1002/adfm.202108026 10.1038/s41467-021-22558-6 10.1038/ncomms12374 10.1002/adma.202107304 10.1126/sciadv.adh2694 10.1002/adma.202201827 10.1038/s41528-021-00127-7 10.1002/adom.202101837 10.1002/adom.202201104 10.1038/s41928-019-0354-7 10.1002/adfm.201800391 10.1002/adma.202201600 10.1126/sciadv.abm3622 10.1038/s41528-020-0069-x 10.1002/elt2.7 10.1038/nmat4626 10.1016/j.nanoen.2023.108673 10.1002/adfm.202209680 10.1038/s41586-018-0129-8 10.1002/anie.202106753 10.1038/s41467-022-29803-6 10.1002/adma.201505149 10.1126/sciadv.adf6152 10.1002/adfm.202301167 10.1126/sciadv.1501856 10.1002/adma.202202608 10.1002/adom.201400385 10.1038/s41467-020-16675-x 10.1002/adma.201906027 10.1002/adfm.202208001 10.1002/lpor.201400081 10.1002/adfm.201808948 10.1002/adom.201500224 10.1002/adfm.202001402 10.1021/acsami.0c00191 10.1021/acsami.6b16788 10.1038/s41566-018-0288-z 10.1021/acsami.1c02080 10.1002/adma.201505405 10.1126/sciadv.adf9861 10.1002/adfm.201805570 10.1126/sciadv.abj6565 10.1038/s41467-020-20856-z 10.1038/natrevmats.2016.100 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202400554 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202400554 LPOR202400554 |
Genre | article |
GrantInformation_xml | – fundername: Aeronautical Science Foundation of China funderid: 20230024080001 – fundername: Natural Science Foundation of Sichuan Province funderid: 24NSFSC1465; 2024NSFSC0475 – fundername: The China Postdoctoral Science Foundation funderid: 2023M740509 – fundername: National Key Research and Development Program of China funderid: 2023YFB3611400 – fundername: National Natural Science Foundation of China (NSFC) funderid: 62471095; 62175026; 62305047; 62171094; 62104026 – fundername: The China National Postdoctoral Program for Innovative Talents funderid: BX20230059 |
GroupedDBID | 05W 0R~ 1OC 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 LW6 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3174-51558d83ad13f24468547b38830866a2edcbe6a9aca3af51ef13c93698ec20533 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Jul 25 12:21:01 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Tue Jul 01 05:13:04 EDT 2025 Wed Jan 22 09:30:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-51558d83ad13f24468547b38830866a2edcbe6a9aca3af51ef13c93698ec20533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2370-2964 |
PQID | 3157781612 |
PQPubID | 1016358 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3157781612 crossref_citationtrail_10_1002_lpor_202400554 crossref_primary_10_1002_lpor_202400554 wiley_primary_10_1002_lpor_202400554_LPOR202400554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 7 2017; 64 2018; 28 2021; 5 2017; 2 2023; 33 2015; 3 2019; 32 2019; 13 2023; 9 2023; 1 2020; 12 2020; 11 2020; 32 2017; 355 2016; 15 2017; 9 2021; 13 2016; 7 2021; 10 2020; 4 2021; 32 2020; 3 2021; 31 2016; 2 2021; 12 2014; 3 2018; 557 2020; 30 2022; 8 2020; 370 2022; 34 2022; 13 2019; 29 2023; 114 2022; 32 2022; 10 2016; 28 2021; 60 2014; 8 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 31 year: 2021 publication-title: Npj Flexible Electron. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 114 year: 2023 publication-title: Nano Energy – volume: 8 start-page: 924 year: 2014 publication-title: Laser Photonics Rev. – volume: 12 start-page: 551 year: 2021 publication-title: Nat. Commun. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 3078 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 6 year: 2020 publication-title: Npj Flexible Electron. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 50 year: 2014 publication-title: Adv. Opt. Mater. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 10 year: 2021 publication-title: Adv. Opt. Mater. – volume: 64 start-page: 2649 year: 2017 publication-title: IEEE Trans. Electron Devices – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 year: 2022 publication-title: Sci Adv – volume: 370 start-page: 698 year: 2020 publication-title: Science – volume: 3 start-page: 113 year: 2020 publication-title: Nat. Electron. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 13 start-page: 2369 year: 2022 publication-title: Nat. Commun. – volume: 28 start-page: 4766 year: 2016 publication-title: Adv. Mater. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 13 start-page: 1 year: 2019 publication-title: Nat. Photonics – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1570 year: 2015 publication-title: Adv. Opt. Mater. – volume: 557 start-page: 696 year: 2018 publication-title: Nature – volume: 1 year: 2023 publication-title: Electron – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 9176 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 2234 year: 2021 publication-title: Nat. Commun. – volume: 15 start-page: 628 year: 2016 publication-title: Nat. Mater. – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 11 start-page: 2871 year: 2020 publication-title: Nat. Commun. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2019 publication-title: Adv. Mater. – volume: 355 start-page: 59 year: 2017 publication-title: Science – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_44_1 doi: 10.1002/adfm.202102361 – ident: e_1_2_9_21_1 doi: 10.1002/adfm.202106326 – ident: e_1_2_9_39_1 doi: 10.1126/science.aah4496 – ident: e_1_2_9_13_1 doi: 10.1002/adma.202003818 – ident: e_1_2_9_16_1 doi: 10.1126/science.aba2624 – ident: e_1_2_9_33_1 doi: 10.1109/TED.2017.2696478 – ident: e_1_2_9_50_1 doi: 10.1126/sciadv.abq0187 – ident: e_1_2_9_48_1 doi: 10.1002/adfm.202108026 – ident: e_1_2_9_11_1 doi: 10.1038/s41467-021-22558-6 – ident: e_1_2_9_35_1 doi: 10.1038/ncomms12374 – ident: e_1_2_9_38_1 doi: 10.1002/adma.202107304 – ident: e_1_2_9_10_1 doi: 10.1126/sciadv.adh2694 – ident: e_1_2_9_29_1 doi: 10.1002/adma.202201827 – ident: e_1_2_9_2_1 doi: 10.1038/s41528-021-00127-7 – ident: e_1_2_9_24_1 doi: 10.1002/adom.202101837 – ident: e_1_2_9_41_1 doi: 10.1002/adom.202201104 – ident: e_1_2_9_6_1 doi: 10.1038/s41928-019-0354-7 – ident: e_1_2_9_17_1 doi: 10.1002/adfm.201800391 – ident: e_1_2_9_18_1 doi: 10.1002/adma.202201600 – ident: e_1_2_9_8_1 doi: 10.1126/sciadv.abm3622 – ident: e_1_2_9_31_1 doi: 10.1038/s41528-020-0069-x – ident: e_1_2_9_37_1 doi: 10.1002/elt2.7 – ident: e_1_2_9_32_1 doi: 10.1038/nmat4626 – ident: e_1_2_9_42_1 doi: 10.1016/j.nanoen.2023.108673 – ident: e_1_2_9_51_1 doi: 10.1002/adfm.202209680 – ident: e_1_2_9_36_1 doi: 10.1038/s41586-018-0129-8 – ident: e_1_2_9_43_1 doi: 10.1002/anie.202106753 – ident: e_1_2_9_19_1 doi: 10.1038/s41467-022-29803-6 – ident: e_1_2_9_4_1 doi: 10.1002/adma.201505149 – ident: e_1_2_9_7_1 doi: 10.1126/sciadv.adf6152 – ident: e_1_2_9_30_1 doi: 10.1002/adfm.202301167 – ident: e_1_2_9_1_1 doi: 10.1126/sciadv.1501856 – ident: e_1_2_9_20_1 doi: 10.1002/adma.202202608 – ident: e_1_2_9_26_1 doi: 10.1002/adom.201400385 – ident: e_1_2_9_22_1 doi: 10.1038/s41467-020-16675-x – ident: e_1_2_9_12_1 doi: 10.1002/adma.201906027 – ident: e_1_2_9_23_1 doi: 10.1002/adfm.202208001 – ident: e_1_2_9_46_1 doi: 10.1002/lpor.201400081 – ident: e_1_2_9_25_1 doi: 10.1002/adfm.201808948 – ident: e_1_2_9_27_1 doi: 10.1002/adom.201500224 – ident: e_1_2_9_47_1 doi: 10.1002/adfm.202001402 – ident: e_1_2_9_49_1 doi: 10.1021/acsami.0c00191 – ident: e_1_2_9_14_1 doi: 10.1021/acsami.6b16788 – ident: e_1_2_9_45_1 doi: 10.1038/s41566-018-0288-z – ident: e_1_2_9_40_1 doi: 10.1021/acsami.1c02080 – ident: e_1_2_9_5_1 doi: 10.1002/adma.201505405 – ident: e_1_2_9_9_1 doi: 10.1126/sciadv.adf9861 – ident: e_1_2_9_15_1 doi: 10.1002/adfm.201805570 – ident: e_1_2_9_3_1 doi: 10.1126/sciadv.abj6565 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-020-20856-z – ident: e_1_2_9_34_1 doi: 10.1038/natrevmats.2016.100 |
SSID | ssj0055556 |
Score | 2.4554384 |
Snippet | One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Barrier layers Charge transfer Dark current Energy bands Heterojunctions long‐distance misaligned PPG Multilayers Noise levels Noise reduction organic photodetectors Photodiodes superior LDR Transfer printing Van der Waals Water transfer |
Title | Addressing Responsivity‐Noise Trade‐Off by Van der Waals Multilayer Two‐Phase Heterojunction for Large LDR Organic Photodetectors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202400554 https://www.proquest.com/docview/3157781612 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqTr2UForYdkFzQOIUyMZ5eI8IilZogdWK1y3ys5SukooEVeXEjWt_Y38JM042PKSqUsnNkh059oy_b5x5MLaBHCBNrQ2DRGkexDLUeA46GSA6OJORIaQowPnwKB2dxgcXycWTKP4mP0R34Uaa4c9rUnCpqu3HpKEz5Kdo35EPJEIiHsLksEWsaNrlj0rw8eFFIuUBmnrhPGtjGG0_H_4clR6p5lPC6hFnf5HJ-VwbR5PvWze12tK3L9I4vuZj3rN3LR2FnUZ-PrA3tlhiiy01hVbxq2V2v2OM95gtvsK0daulqhN_7n4fld8qC4h5xmLr2DlQv-BMFmDsNZxLFG_wUb4zieweTn6W2GtyieAJI3LFKa8QWUk6AOkzjMkxHcZ7U2iCRDVMLsu6NLb2fxeqj-x0_8vJ7ihoazgEGplJHFAFGWEEl2bAHVKJVCRxprgQHG2pVEbWaGVTOZRacumSgXUDrqnIoLA6ojjhFbZQlIVdZRBJPkhciibB0MVZaIbCZQrRVeJZP-Q867Fgvoe5bhOcU52NWd6kZo5yWuW8W-Ue2-z6_2hSe_y1Z38uEnmr4lWOk8kygYQ56rHI7-0_3pKPJ8fTrvXpfwZ9Zm8jqj_sr4D6bKG-vrFrSIpqte4F_wHErAdk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOcCFlpdYaIsPlTilzcZ5eI8VpdpCul2ttsAt8rMFVgnqpkL01BtXfiO_hBnn0RYJIUFuluzIsWc83zgz3wBsIQZIU2vDIFGaB7EMNZ6DTgZoHZzJyBFSlOB8OEnHx_GbD0kXTUi5MA0_RH_hRprhz2tScLqQ3rliDV0gQEUHj4Ig0SbehjtU1pvo8_dmPYNUgo9PMBIpD9DZCzvexjDauTn-pl26ApvXIau3OfuroLrZNqEmn7fPa7WtL34jcvyvz1mD-y0iZbuNCD2AW7Z8CKstOmWt7i8fwfddY3zQbHnCZm1kLRWe-Hn5Y1J9XFqGZs9YbB05x9Q39k6WzNgz9l6ihDOf6LuQCPDZ_GuFvaanaD_ZmKJxqk9oXElAGCJollNsOsv3ZqzJE9VselrVlbG1_8GwfAzH-6_nr8ZBW8Yh0AhO4oCKyAgjuDRD7hBNpCKJM8WF4OhOpTKyRiubypHUkkuXDK0bck11BoXVEaUKP4GVsirtU2CR5MPEpegVjFychWYkXKbQwEo87kecZwMIuk0sdMtxTqU2FkXDzhwVtMpFv8oDeNn3_9Kwe_yx53onE0Wr5csCJ5NlAjFzNIDIb-5f3lLk06NZ33r2L4NewN3x_DAv8oPJ2-dwL6JyxP5GaB1W6rNzu4EYqVabXgt-ATD0C4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAXylNdKDAHJE5ps3HiOMeKZbXQZbtatdBb5PjR1yqpuqkQnLj12t_IL2HsZNOHhJAgN0t25Ngz_r5x5gHwljgA58aEQVIoFsQyVHQOWhkQOlidOkOocAHOnyd8tBd_2k_2r0XxN_khugs3pxn-vHYKfqrt5lXS0DnxU7LvnA8kQeJduBfzMHPFGwazLoFUQo-PLxKcBWTrhcu0jWG0eXP8TVi64prXGauHnOEqyOVkG0-Tk43zuthQP27lcfyfr3kED1s-iluNAD2GO6Z8AqstN8VW8xdP4WJLa-8yWx7grPWrdWUnfv28nFRHC4MEetpQa8daLL7jF1miNmf4VZJ8ow_znUui97j7raJe00NCTxw5X5zqmKDViQcSf8ax80zH8WCGTZSowulhVVfa1P73wuIZ7A0_7L4fBW0Rh0ARNYkDV0JGaMGk7jNLXIKLJE4LJgQjY4rLyGhVGC4zqSSTNukb22fKVRkURkUuUPg5rJRVadYAI8n6ieVkE2Q2TkOdCZsWBK-SDvuMsbQHwXIPc9VmOHeFNuZ5k5s5yt0q590q9-Bd1_-0ye3xx57rS5HIWx1f5DSZNBXEmKMeRH5v__KWfDzdmXWtF_8y6A3cnw6G-fjjZPslPIhcLWJ_HbQOK_XZuXlFBKkuXnsd-A0Jfwov |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+Responsivity%E2%80%90Noise+Trade%E2%80%90Off+by+Van+der+Waals+Multilayer+Two%E2%80%90Phase+Heterojunction+for+Large+LDR+Organic+Photodetectors&rft.jtitle=Laser+%26+photonics+reviews&rft.au=He%2C+Meiyu&rft.au=Han%2C+Jiayue&rft.au=Li%2C+Chunyu&rft.au=Han%2C+Chao&rft.date=2025-01-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=2&rft_id=info:doi/10.1002%2Flpor.202400554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202400554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |