Addressing Responsivity‐Noise Trade‐Off by Van der Waals Multilayer Two‐Phase Heterojunction for Large LDR Organic Photodetectors

One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 19; no. 2
Main Authors He, Meiyu, Han, Jiayue, Li, Chunyu, Han, Chao, Han, Xingwei, Du, Xiaoyang, Luo, Hanwen, Yu, He, Gou, Jun, Wu, Zhiming, Wang, Jun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)/planar‐heterojunction (PHJ) (B‐PHJ) framework, is constructed making certain the high‐quality interface and novel two‐phase energy band alignment between the active and barrier layer with noise suppression and photovoltaic complement simultaneously. The prepared OPD exhibits the combined advantages of ultralow dark current (0.2 nA cm−2 at −1 V) and high responsivity (0.49 A W−1 at 850 nm). As a result, these superimposed effects enable the device to feature a superior liner dynamic range (LDR) of 210 dB and a specific detectivity of 1014 Jones to address the conventional responsivity‐noise trade‐off. The results reveal that the balance dynamics of charge transfer and charge blocking in van der Waals hybrid two‐phase framework OPD, may inspire the development of next OPDs. Finally, its diverse practical application potential is demonstrated through long‐distance misaligned photoplethysmography (PPG) measurement. Here, a van der Waals multilayer organic photodetector based on water transfer printing method is demonstrated. The traditional responsivity‐noise trade‐off is overcome to achieve high sensitivity characteristics from visible to near‐infrared. Remote unaligned PPG measurement is possible, which provide the potential for the development of diverse human health monitoring applications.
AbstractList One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)/planar‐heterojunction (PHJ) (B‐PHJ) framework, is constructed making certain the high‐quality interface and novel two‐phase energy band alignment between the active and barrier layer with noise suppression and photovoltaic complement simultaneously. The prepared OPD exhibits the combined advantages of ultralow dark current (0.2 nA cm −2 at −1 V) and high responsivity (0.49 A W −1 at 850 nm). As a result, these superimposed effects enable the device to feature a superior liner dynamic range (LDR) of 210 dB and a specific detectivity of 10 14 Jones to address the conventional responsivity‐noise trade‐off. The results reveal that the balance dynamics of charge transfer and charge blocking in van der Waals hybrid two‐phase framework OPD, may inspire the development of next OPDs. Finally, its diverse practical application potential is demonstrated through long‐distance misaligned photoplethysmography (PPG) measurement.
One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)/planar‐heterojunction (PHJ) (B‐PHJ) framework, is constructed making certain the high‐quality interface and novel two‐phase energy band alignment between the active and barrier layer with noise suppression and photovoltaic complement simultaneously. The prepared OPD exhibits the combined advantages of ultralow dark current (0.2 nA cm−2 at −1 V) and high responsivity (0.49 A W−1 at 850 nm). As a result, these superimposed effects enable the device to feature a superior liner dynamic range (LDR) of 210 dB and a specific detectivity of 1014 Jones to address the conventional responsivity‐noise trade‐off. The results reveal that the balance dynamics of charge transfer and charge blocking in van der Waals hybrid two‐phase framework OPD, may inspire the development of next OPDs. Finally, its diverse practical application potential is demonstrated through long‐distance misaligned photoplethysmography (PPG) measurement.
One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity (R) in existing research. Here, van der Waals multilayer OPD based on water transfer printing method, termed hybrid bulk‐heterojunction (BHJ)/planar‐heterojunction (PHJ) (B‐PHJ) framework, is constructed making certain the high‐quality interface and novel two‐phase energy band alignment between the active and barrier layer with noise suppression and photovoltaic complement simultaneously. The prepared OPD exhibits the combined advantages of ultralow dark current (0.2 nA cm−2 at −1 V) and high responsivity (0.49 A W−1 at 850 nm). As a result, these superimposed effects enable the device to feature a superior liner dynamic range (LDR) of 210 dB and a specific detectivity of 1014 Jones to address the conventional responsivity‐noise trade‐off. The results reveal that the balance dynamics of charge transfer and charge blocking in van der Waals hybrid two‐phase framework OPD, may inspire the development of next OPDs. Finally, its diverse practical application potential is demonstrated through long‐distance misaligned photoplethysmography (PPG) measurement. Here, a van der Waals multilayer organic photodetector based on water transfer printing method is demonstrated. The traditional responsivity‐noise trade‐off is overcome to achieve high sensitivity characteristics from visible to near‐infrared. Remote unaligned PPG measurement is possible, which provide the potential for the development of diverse human health monitoring applications.
Author Luo, Hanwen
He, Meiyu
Li, Chunyu
Han, Jiayue
Du, Xiaoyang
Yu, He
Han, Chao
Gou, Jun
Wu, Zhiming
Wang, Jun
Han, Xingwei
Author_xml – sequence: 1
  givenname: Meiyu
  surname: He
  fullname: He, Meiyu
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Jiayue
  surname: Han
  fullname: Han, Jiayue
  email: hanjiayue@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Chunyu
  surname: Li
  fullname: Li, Chunyu
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Chao
  surname: Han
  fullname: Han, Chao
  organization: University of Electronic Science and Technology of China
– sequence: 5
  givenname: Xingwei
  surname: Han
  fullname: Han, Xingwei
  organization: University of Electronic Science and Technology of China
– sequence: 6
  givenname: Xiaoyang
  surname: Du
  fullname: Du, Xiaoyang
  organization: University of Electronic Science and Technology of China
– sequence: 7
  givenname: Hanwen
  surname: Luo
  fullname: Luo, Hanwen
  organization: University of Electronic Science and Technology of China
– sequence: 8
  givenname: He
  surname: Yu
  fullname: Yu, He
  organization: University of Electronic Science and Technology of China
– sequence: 9
  givenname: Jun
  surname: Gou
  fullname: Gou, Jun
  organization: Key Laboratory of Science and Technology on Infrared Detector
– sequence: 10
  givenname: Zhiming
  surname: Wu
  fullname: Wu, Zhiming
  email: zmwu@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 11
  givenname: Jun
  orcidid: 0000-0003-2370-2964
  surname: Wang
  fullname: Wang, Jun
  email: wjun@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BookMark eNqFkM1qGzEUhUVJIL_brAVd25FGo7FmGdI2CUxrY9xmOVxr7tgyU8mV5ITZZZdtnrFPUhkHBwohK_3wfedyzwk5sM4iIRecDTlj2WW3dn6YsSxnTMr8EznmqhADpcryYH9X7IichLDaIlIWx-T5qmk8hmDsgk4xrJ0N5sHE_u_Tyw9nAtKZhwbTa9y2dN7TX2Bpg57eA3SBft900XTQp4_Zo0vUZAnJucWI3q02VkfjLG2dpxX4BdLqy5SO_QKs0XSydNE1idTR-XBGDtuUiOev5yn5-e3r7Pp2UI1v7q6vqoEWfJQPJJdSNUpAw0Wb5XmhZD6aC6UEU0UBGTZ6jgWUoEFAKzm2XOhSFKVCnTEpxCn5vMtde_dngyHWK7fxNo2sBZejkeIFzxKV7yjtXQge21qbCNtlogfT1ZzV28rrbeX1vvKkDf_T1t78Bt-_L5Q74dF02H9A19VkPH1z_wGbI5s5
CitedBy_id crossref_primary_10_1021_acsphotonics_4c02233
Cites_doi 10.1002/adfm.202102361
10.1002/adfm.202106326
10.1126/science.aah4496
10.1002/adma.202003818
10.1126/science.aba2624
10.1109/TED.2017.2696478
10.1126/sciadv.abq0187
10.1002/adfm.202108026
10.1038/s41467-021-22558-6
10.1038/ncomms12374
10.1002/adma.202107304
10.1126/sciadv.adh2694
10.1002/adma.202201827
10.1038/s41528-021-00127-7
10.1002/adom.202101837
10.1002/adom.202201104
10.1038/s41928-019-0354-7
10.1002/adfm.201800391
10.1002/adma.202201600
10.1126/sciadv.abm3622
10.1038/s41528-020-0069-x
10.1002/elt2.7
10.1038/nmat4626
10.1016/j.nanoen.2023.108673
10.1002/adfm.202209680
10.1038/s41586-018-0129-8
10.1002/anie.202106753
10.1038/s41467-022-29803-6
10.1002/adma.201505149
10.1126/sciadv.adf6152
10.1002/adfm.202301167
10.1126/sciadv.1501856
10.1002/adma.202202608
10.1002/adom.201400385
10.1038/s41467-020-16675-x
10.1002/adma.201906027
10.1002/adfm.202208001
10.1002/lpor.201400081
10.1002/adfm.201808948
10.1002/adom.201500224
10.1002/adfm.202001402
10.1021/acsami.0c00191
10.1021/acsami.6b16788
10.1038/s41566-018-0288-z
10.1021/acsami.1c02080
10.1002/adma.201505405
10.1126/sciadv.adf9861
10.1002/adfm.201805570
10.1126/sciadv.abj6565
10.1038/s41467-020-20856-z
10.1038/natrevmats.2016.100
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202400554
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202400554
LPOR202400554
Genre article
GrantInformation_xml – fundername: Aeronautical Science Foundation of China
  funderid: 20230024080001
– fundername: Natural Science Foundation of Sichuan Province
  funderid: 24NSFSC1465; 2024NSFSC0475
– fundername: The China Postdoctoral Science Foundation
  funderid: 2023M740509
– fundername: National Key Research and Development Program of China
  funderid: 2023YFB3611400
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 62471095; 62175026; 62305047; 62171094; 62104026
– fundername: The China National Postdoctoral Program for Innovative Talents
  funderid: BX20230059
GroupedDBID 05W
0R~
1OC
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
LW6
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3174-51558d83ad13f24468547b38830866a2edcbe6a9aca3af51ef13c93698ec20533
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 12:21:01 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Tue Jul 01 05:13:04 EDT 2025
Wed Jan 22 09:30:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-51558d83ad13f24468547b38830866a2edcbe6a9aca3af51ef13c93698ec20533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2370-2964
PQID 3157781612
PQPubID 1016358
PageCount 10
ParticipantIDs proquest_journals_3157781612
crossref_citationtrail_10_1002_lpor_202400554
crossref_primary_10_1002_lpor_202400554
wiley_primary_10_1002_lpor_202400554_LPOR202400554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 7
2017; 64
2018; 28
2021; 5
2017; 2
2023; 33
2015; 3
2019; 32
2019; 13
2023; 9
2023; 1
2020; 12
2020; 11
2020; 32
2017; 355
2016; 15
2017; 9
2021; 13
2016; 7
2021; 10
2020; 4
2021; 32
2020; 3
2021; 31
2016; 2
2021; 12
2014; 3
2018; 557
2020; 30
2022; 8
2020; 370
2022; 34
2022; 13
2019; 29
2023; 114
2022; 32
2022; 10
2016; 28
2021; 60
2014; 8
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 31
  year: 2021
  publication-title: Npj Flexible Electron.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 114
  year: 2023
  publication-title: Nano Energy
– volume: 8
  start-page: 924
  year: 2014
  publication-title: Laser Photonics Rev.
– volume: 12
  start-page: 551
  year: 2021
  publication-title: Nat. Commun.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 3078
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 6
  year: 2020
  publication-title: Npj Flexible Electron.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 50
  year: 2014
  publication-title: Adv. Opt. Mater.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 10
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 64
  start-page: 2649
  year: 2017
  publication-title: IEEE Trans. Electron Devices
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  year: 2022
  publication-title: Sci Adv
– volume: 370
  start-page: 698
  year: 2020
  publication-title: Science
– volume: 3
  start-page: 113
  year: 2020
  publication-title: Nat. Electron.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 13
  start-page: 2369
  year: 2022
  publication-title: Nat. Commun.
– volume: 28
  start-page: 4766
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 13
  start-page: 1
  year: 2019
  publication-title: Nat. Photonics
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1570
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 557
  start-page: 696
  year: 2018
  publication-title: Nature
– volume: 1
  year: 2023
  publication-title: Electron
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 9176
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2234
  year: 2021
  publication-title: Nat. Commun.
– volume: 15
  start-page: 628
  year: 2016
  publication-title: Nat. Mater.
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 11
  start-page: 2871
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2019
  publication-title: Adv. Mater.
– volume: 355
  start-page: 59
  year: 2017
  publication-title: Science
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_44_1
  doi: 10.1002/adfm.202102361
– ident: e_1_2_9_21_1
  doi: 10.1002/adfm.202106326
– ident: e_1_2_9_39_1
  doi: 10.1126/science.aah4496
– ident: e_1_2_9_13_1
  doi: 10.1002/adma.202003818
– ident: e_1_2_9_16_1
  doi: 10.1126/science.aba2624
– ident: e_1_2_9_33_1
  doi: 10.1109/TED.2017.2696478
– ident: e_1_2_9_50_1
  doi: 10.1126/sciadv.abq0187
– ident: e_1_2_9_48_1
  doi: 10.1002/adfm.202108026
– ident: e_1_2_9_11_1
  doi: 10.1038/s41467-021-22558-6
– ident: e_1_2_9_35_1
  doi: 10.1038/ncomms12374
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.202107304
– ident: e_1_2_9_10_1
  doi: 10.1126/sciadv.adh2694
– ident: e_1_2_9_29_1
  doi: 10.1002/adma.202201827
– ident: e_1_2_9_2_1
  doi: 10.1038/s41528-021-00127-7
– ident: e_1_2_9_24_1
  doi: 10.1002/adom.202101837
– ident: e_1_2_9_41_1
  doi: 10.1002/adom.202201104
– ident: e_1_2_9_6_1
  doi: 10.1038/s41928-019-0354-7
– ident: e_1_2_9_17_1
  doi: 10.1002/adfm.201800391
– ident: e_1_2_9_18_1
  doi: 10.1002/adma.202201600
– ident: e_1_2_9_8_1
  doi: 10.1126/sciadv.abm3622
– ident: e_1_2_9_31_1
  doi: 10.1038/s41528-020-0069-x
– ident: e_1_2_9_37_1
  doi: 10.1002/elt2.7
– ident: e_1_2_9_32_1
  doi: 10.1038/nmat4626
– ident: e_1_2_9_42_1
  doi: 10.1016/j.nanoen.2023.108673
– ident: e_1_2_9_51_1
  doi: 10.1002/adfm.202209680
– ident: e_1_2_9_36_1
  doi: 10.1038/s41586-018-0129-8
– ident: e_1_2_9_43_1
  doi: 10.1002/anie.202106753
– ident: e_1_2_9_19_1
  doi: 10.1038/s41467-022-29803-6
– ident: e_1_2_9_4_1
  doi: 10.1002/adma.201505149
– ident: e_1_2_9_7_1
  doi: 10.1126/sciadv.adf6152
– ident: e_1_2_9_30_1
  doi: 10.1002/adfm.202301167
– ident: e_1_2_9_1_1
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_9_20_1
  doi: 10.1002/adma.202202608
– ident: e_1_2_9_26_1
  doi: 10.1002/adom.201400385
– ident: e_1_2_9_22_1
  doi: 10.1038/s41467-020-16675-x
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.201906027
– ident: e_1_2_9_23_1
  doi: 10.1002/adfm.202208001
– ident: e_1_2_9_46_1
  doi: 10.1002/lpor.201400081
– ident: e_1_2_9_25_1
  doi: 10.1002/adfm.201808948
– ident: e_1_2_9_27_1
  doi: 10.1002/adom.201500224
– ident: e_1_2_9_47_1
  doi: 10.1002/adfm.202001402
– ident: e_1_2_9_49_1
  doi: 10.1021/acsami.0c00191
– ident: e_1_2_9_14_1
  doi: 10.1021/acsami.6b16788
– ident: e_1_2_9_45_1
  doi: 10.1038/s41566-018-0288-z
– ident: e_1_2_9_40_1
  doi: 10.1021/acsami.1c02080
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.201505405
– ident: e_1_2_9_9_1
  doi: 10.1126/sciadv.adf9861
– ident: e_1_2_9_15_1
  doi: 10.1002/adfm.201805570
– ident: e_1_2_9_3_1
  doi: 10.1126/sciadv.abj6565
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-020-20856-z
– ident: e_1_2_9_34_1
  doi: 10.1038/natrevmats.2016.100
SSID ssj0055556
Score 2.4554384
Snippet One of the main challenges most organic photodiodes (OPDs) facing is to overcome the traditional trade‐off between ultralow dark current and high responsivity...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Barrier layers
Charge transfer
Dark current
Energy bands
Heterojunctions
long‐distance misaligned PPG
Multilayers
Noise levels
Noise reduction
organic photodetectors
Photodiodes
superior LDR
Transfer printing
Van der Waals
Water transfer
Title Addressing Responsivity‐Noise Trade‐Off by Van der Waals Multilayer Two‐Phase Heterojunction for Large LDR Organic Photodetectors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202400554
https://www.proquest.com/docview/3157781612
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqTr2UForYdkFzQOIUyMZ5eI8IilZogdWK1y3ys5SukooEVeXEjWt_Y38JM042PKSqUsnNkh059oy_b5x5MLaBHCBNrQ2DRGkexDLUeA46GSA6OJORIaQowPnwKB2dxgcXycWTKP4mP0R34Uaa4c9rUnCpqu3HpKEz5Kdo35EPJEIiHsLksEWsaNrlj0rw8eFFIuUBmnrhPGtjGG0_H_4clR6p5lPC6hFnf5HJ-VwbR5PvWze12tK3L9I4vuZj3rN3LR2FnUZ-PrA3tlhiiy01hVbxq2V2v2OM95gtvsK0daulqhN_7n4fld8qC4h5xmLr2DlQv-BMFmDsNZxLFG_wUb4zieweTn6W2GtyieAJI3LFKa8QWUk6AOkzjMkxHcZ7U2iCRDVMLsu6NLb2fxeqj-x0_8vJ7ihoazgEGplJHFAFGWEEl2bAHVKJVCRxprgQHG2pVEbWaGVTOZRacumSgXUDrqnIoLA6ojjhFbZQlIVdZRBJPkhciibB0MVZaIbCZQrRVeJZP-Q867Fgvoe5bhOcU52NWd6kZo5yWuW8W-Ue2-z6_2hSe_y1Z38uEnmr4lWOk8kygYQ56rHI7-0_3pKPJ8fTrvXpfwZ9Zm8jqj_sr4D6bKG-vrFrSIpqte4F_wHErAdk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOcCFlpdYaIsPlTilzcZ5eI8VpdpCul2ttsAt8rMFVgnqpkL01BtXfiO_hBnn0RYJIUFuluzIsWc83zgz3wBsIQZIU2vDIFGaB7EMNZ6DTgZoHZzJyBFSlOB8OEnHx_GbD0kXTUi5MA0_RH_hRprhz2tScLqQ3rliDV0gQEUHj4Ig0SbehjtU1pvo8_dmPYNUgo9PMBIpD9DZCzvexjDauTn-pl26ApvXIau3OfuroLrZNqEmn7fPa7WtL34jcvyvz1mD-y0iZbuNCD2AW7Z8CKstOmWt7i8fwfddY3zQbHnCZm1kLRWe-Hn5Y1J9XFqGZs9YbB05x9Q39k6WzNgz9l6ihDOf6LuQCPDZ_GuFvaanaD_ZmKJxqk9oXElAGCJollNsOsv3ZqzJE9VselrVlbG1_8GwfAzH-6_nr8ZBW8Yh0AhO4oCKyAgjuDRD7hBNpCKJM8WF4OhOpTKyRiubypHUkkuXDK0bck11BoXVEaUKP4GVsirtU2CR5MPEpegVjFychWYkXKbQwEo87kecZwMIuk0sdMtxTqU2FkXDzhwVtMpFv8oDeNn3_9Kwe_yx53onE0Wr5csCJ5NlAjFzNIDIb-5f3lLk06NZ33r2L4NewN3x_DAv8oPJ2-dwL6JyxP5GaB1W6rNzu4EYqVabXgt-ATD0C4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAXylNdKDAHJE5ps3HiOMeKZbXQZbtatdBb5PjR1yqpuqkQnLj12t_IL2HsZNOHhJAgN0t25Ngz_r5x5gHwljgA58aEQVIoFsQyVHQOWhkQOlidOkOocAHOnyd8tBd_2k_2r0XxN_khugs3pxn-vHYKfqrt5lXS0DnxU7LvnA8kQeJduBfzMHPFGwazLoFUQo-PLxKcBWTrhcu0jWG0eXP8TVi64prXGauHnOEqyOVkG0-Tk43zuthQP27lcfyfr3kED1s-iluNAD2GO6Z8AqstN8VW8xdP4WJLa-8yWx7grPWrdWUnfv28nFRHC4MEetpQa8daLL7jF1miNmf4VZJ8ow_znUui97j7raJe00NCTxw5X5zqmKDViQcSf8ax80zH8WCGTZSowulhVVfa1P73wuIZ7A0_7L4fBW0Rh0ARNYkDV0JGaMGk7jNLXIKLJE4LJgQjY4rLyGhVGC4zqSSTNukb22fKVRkURkUuUPg5rJRVadYAI8n6ieVkE2Q2TkOdCZsWBK-SDvuMsbQHwXIPc9VmOHeFNuZ5k5s5yt0q590q9-Bd1_-0ye3xx57rS5HIWx1f5DSZNBXEmKMeRH5v__KWfDzdmXWtF_8y6A3cnw6G-fjjZPslPIhcLWJ_HbQOK_XZuXlFBKkuXnsd-A0Jfwov
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+Responsivity%E2%80%90Noise+Trade%E2%80%90Off+by+Van+der+Waals+Multilayer+Two%E2%80%90Phase+Heterojunction+for+Large+LDR+Organic+Photodetectors&rft.jtitle=Laser+%26+photonics+reviews&rft.au=He%2C+Meiyu&rft.au=Han%2C+Jiayue&rft.au=Li%2C+Chunyu&rft.au=Han%2C+Chao&rft.date=2025-01-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=2&rft_id=info:doi/10.1002%2Flpor.202400554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202400554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon