Tuning Molecular Chromophores of Isoreticular Covalent Organic Frameworks for Visible Light‐Induced Hydrogen Generation
The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[c]‐[1,2,5]th...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 44 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202207394 |
Cover
Loading…
Abstract | The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[c]‐[1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde and 5,5″‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)diisophthalaldehyde, with p‐phenylenediamine and benzidine, respectively. Comprehensive studies of powder X‐ray diffraction, theoretical simulation, and pore size distribution disclose their isoreticular 2D dual porous structures. In contrast to benzo[c][1,2,5]thiadiazole‐based chromophore, employment of naphtho[2,3‐c][1,2,5]thiadiazole‐based tetraaldehyde enables enlarged conjugation systems for USTB‐9 and USTB‐10, rather than USTB‐7 and USTB‐8. This, in combination with the longer benzidine unit, endows USTB‐10 with a porous structure with bigger pore size than that of USTB‐9, resulting in the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 with the help of a Pt cocatalyst. Experimental and theoretical studies reveal the outstanding photocatalytic activity for USTB‐10 among the four COFs associated with the narrowed bandgap and increased charge‐carrier separation efficiency.
The photocatalytic activities of a series of four isoreticular dual porous covalent organic frameworks toward hydrogen evolution reaction are adjusted by the direct change of bandgap and charge‐carrier separation efficiency by modular copolymerization strategy, and USTB‐10 exhibits the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 among these four materials. |
---|---|
AbstractList | The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[c]‐[1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde and 5,5″‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)diisophthalaldehyde, with p‐phenylenediamine and benzidine, respectively. Comprehensive studies of powder X‐ray diffraction, theoretical simulation, and pore size distribution disclose their isoreticular 2D dual porous structures. In contrast to benzo[c][1,2,5]thiadiazole‐based chromophore, employment of naphtho[2,3‐c][1,2,5]thiadiazole‐based tetraaldehyde enables enlarged conjugation systems for USTB‐9 and USTB‐10, rather than USTB‐7 and USTB‐8. This, in combination with the longer benzidine unit, endows USTB‐10 with a porous structure with bigger pore size than that of USTB‐9, resulting in the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 with the help of a Pt cocatalyst. Experimental and theoretical studies reveal the outstanding photocatalytic activity for USTB‐10 among the four COFs associated with the narrowed bandgap and increased charge‐carrier separation efficiency. The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[ c ]‐[1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde and 5,5″‐(naphtho[2,3‐ c ][1,2,5]thiadiazole‐4,9‐diyl)diisophthalaldehyde, with p ‐phenylenediamine and benzidine, respectively. Comprehensive studies of powder X‐ray diffraction, theoretical simulation, and pore size distribution disclose their isoreticular 2D dual porous structures. In contrast to benzo[ c ][1,2,5]thiadiazole‐based chromophore, employment of naphtho[2,3‐ c ][1,2,5]thiadiazole‐based tetraaldehyde enables enlarged conjugation systems for USTB‐9 and USTB‐10, rather than USTB‐7 and USTB‐8. This, in combination with the longer benzidine unit, endows USTB‐10 with a porous structure with bigger pore size than that of USTB‐9, resulting in the highest photocatalytic hydrogen production rate of 21.8 mmol g −1 h −1 with the help of a Pt cocatalyst. Experimental and theoretical studies reveal the outstanding photocatalytic activity for USTB‐10 among the four COFs associated with the narrowed bandgap and increased charge‐carrier separation efficiency. The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[c]‐[1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde and 5,5″‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)diisophthalaldehyde, with p‐phenylenediamine and benzidine, respectively. Comprehensive studies of powder X‐ray diffraction, theoretical simulation, and pore size distribution disclose their isoreticular 2D dual porous structures. In contrast to benzo[c][1,2,5]thiadiazole‐based chromophore, employment of naphtho[2,3‐c][1,2,5]thiadiazole‐based tetraaldehyde enables enlarged conjugation systems for USTB‐9 and USTB‐10, rather than USTB‐7 and USTB‐8. This, in combination with the longer benzidine unit, endows USTB‐10 with a porous structure with bigger pore size than that of USTB‐9, resulting in the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 with the help of a Pt cocatalyst. Experimental and theoretical studies reveal the outstanding photocatalytic activity for USTB‐10 among the four COFs associated with the narrowed bandgap and increased charge‐carrier separation efficiency. The photocatalytic activities of a series of four isoreticular dual porous covalent organic frameworks toward hydrogen evolution reaction are adjusted by the direct change of bandgap and charge‐carrier separation efficiency by modular copolymerization strategy, and USTB‐10 exhibits the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 among these four materials. |
Author | Jiang, Jianzhuang Gao, Zhuo Wang, Kang Liu, Xiaolin Wang, Hailong Yu, Baoqiu Wang, Xinxin Ding, Xu Li, Wen |
Author_xml | – sequence: 1 givenname: Wen surname: Li fullname: Li, Wen organization: University of Science and Technology Beijing – sequence: 2 givenname: Xu surname: Ding fullname: Ding, Xu organization: University of Science and Technology Beijing – sequence: 3 givenname: Baoqiu surname: Yu fullname: Yu, Baoqiu organization: University of Science and Technology Beijing – sequence: 4 givenname: Hailong surname: Wang fullname: Wang, Hailong email: hlwang@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 5 givenname: Zhuo surname: Gao fullname: Gao, Zhuo organization: University of Science and Technology Beijing – sequence: 6 givenname: Xinxin surname: Wang fullname: Wang, Xinxin organization: University of Science and Technology Beijing – sequence: 7 givenname: Xiaolin surname: Liu fullname: Liu, Xiaolin organization: University of Science and Technology Beijing – sequence: 8 givenname: Kang surname: Wang fullname: Wang, Kang email: kangwang@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 9 givenname: Jianzhuang orcidid: 0000-0002-4263-9211 surname: Jiang fullname: Jiang, Jianzhuang email: jianzhuang@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNqFkM9OwkAQxjcGExG9et7EM7i7Ld32SFD-JBAuaLw12-20LJZd3G0lvfkIPqNPYhGCiYnxNN9kvt_M5LtELW00IHRDSY8Swu5Emm16jDBGuBf5Z6hNAxp0PcLC1knT5wt06dyaEMq557dRvay00jmemwJkVQiLhytrNma7MhYcNhmeukaV6jg0b6IAXeKFzYVWEo-s2MDO2BeHM2Pxk3IqKQDPVL4qP98_pjqtJKR4UqfW5KDxGDRYUSqjr9B5JgoH18faQY-jh-Vw0p0txtPhYNaVHuV-108CiKIg8RII_CSjPKFpwJqGkSQCX4acp5xFUtA-IUFf8shLs4gTQgBSEfpeB90e9m6tea3AlfHaVFY3J2PWgJwSL2SNyz-4pDXOWchiqcrvP0srVBFTEu9Djvchx6eQG6z3C9tatRG2_huIDsBOFVD_444H96P5D_sF-NiUqQ |
CitedBy_id | crossref_primary_10_1002_adma_202305313 crossref_primary_10_1002_adfm_202316546 crossref_primary_10_1002_aenm_202303638 crossref_primary_10_1016_j_apcatb_2025_125071 crossref_primary_10_1021_acscatal_3c04145 crossref_primary_10_1039_D4TC02938K crossref_primary_10_1039_D3CC01970E crossref_primary_10_1007_s12274_024_6509_5 crossref_primary_10_1002_ange_202424110 crossref_primary_10_1039_D2TC05258J crossref_primary_10_1002_anie_202313520 crossref_primary_10_1002_anie_202424110 crossref_primary_10_1021_acsmaterialslett_4c02312 crossref_primary_10_1039_D4EE00520A crossref_primary_10_3390_catal13050850 crossref_primary_10_1002_marc_202200719 crossref_primary_10_1002_ange_202311082 crossref_primary_10_1038_s41467_025_57166_1 crossref_primary_10_1016_j_seppur_2024_129809 crossref_primary_10_1002_adfm_202401562 crossref_primary_10_1002_agt2_669 crossref_primary_10_1002_smll_202405887 crossref_primary_10_1002_ange_202313520 crossref_primary_10_1016_j_cej_2024_154472 crossref_primary_10_1039_D4TC02995J crossref_primary_10_1002_adhm_202303842 crossref_primary_10_1002_advs_202308535 crossref_primary_10_1021_acs_inorgchem_4c05494 crossref_primary_10_1039_D3QM00188A crossref_primary_10_1002_anie_202311082 crossref_primary_10_1002_adfm_202422291 crossref_primary_10_1002_adfm_202415629 |
Cites_doi | 10.1021/acscatal.9b01951 10.1002/anie.202115655 10.1002/adma.202109203 10.1021/cr5001892 10.1002/chem.201803621 10.1016/j.cclet.2020.03.076 10.1038/238037a0 10.1002/anie.201510542 10.1002/advs.202201134 10.1021/jacs.7b07489 10.1021/jacs.7b07918 10.1021/jacs.8b08452 10.1002/anie.202114071 10.1002/anie.201806862 10.1002/anie.201801112 10.1246/cl.200834 10.1039/C4SC00016A 10.1021/acs.joc.7b00722 10.1038/s41563-019-0591-1 10.1002/anie.201914424 10.1002/anie.202000723 10.1039/D0CS00278J 10.1016/j.cclet.2021.04.012 10.1038/s41467-021-21527-3 10.1002/asia.201800506 10.1016/j.apcatb.2019.01.088 10.1021/jacs.0c05596 10.1039/D0CC05222A 10.1002/aenm.201500010 10.1021/jacs.9b08017 10.1038/s41557-018-0141-5 10.1039/D1CC03219D 10.1021/jacs.6b07714 10.1016/j.cclet.2020.04.018 10.1021/acs.macromol.7b00410 10.1016/j.cclet.2019.08.026 10.1002/anie.202016618 10.1021/jacs.2c02173 10.1021/acs.accounts.5b00369 10.1039/D0TA03749D 10.1021/jacs.0c09727 10.1016/j.mattod.2020.07.003 10.1016/j.apcatb.2019.118271 10.1038/s41570-017-0056 10.1002/anie.201908703 10.1007/s10118-021-2577-0 10.1002/anie.201505581 10.1016/j.rser.2017.08.020 10.1002/anie.200705710 10.1021/jacs.5b09487 10.1002/anie.202006925 10.1021/ja062306x 10.1016/j.apcatb.2020.118586 10.1038/nphoton.2012.175 10.1016/j.apcatb.2021.120214 10.1021/acsami.1c04880 10.1039/D1TA01074C 10.1021/jacs.9b06219 10.1039/c0cc04057f 10.1016/j.trechm.2021.03.008 10.1002/adma.202101026 10.1002/cssc.201902668 10.1021/acsmaterialslett.9b00153 10.1002/anie.201206817 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202207394 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202207394 ADFM202207394 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: FRF‐BD‐20‐14A – fundername: University of Science and Technology Beijing – fundername: National Natural Science Foundation of China funderid: 22175020; 22131005; 21631003; 21871024 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3174-4b6e996b3be64bf17b1d62be620b9e4c877d729ca150065c793df97000eeda843 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 05:02:22 EDT 2025 Tue Jul 01 00:30:32 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Sun Jul 06 04:45:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-4b6e996b3be64bf17b1d62be620b9e4c877d729ca150065c793df97000eeda843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4263-9211 |
PQID | 2729710382 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2729710382 crossref_citationtrail_10_1002_adfm_202207394 crossref_primary_10_1002_adfm_202207394 wiley_primary_10_1002_adfm_202207394_ADFM202207394 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 1 2017; 82 2019; 58 2019; 247 2018; 81 2020; 59 2020; 13 2020; 56 2020; 19 2020; 8 2015; 48 2021; 32 2014; 5 2021; 33 2015; 137 2021; 39 2013; 52 2022; 34 2020; 49 2006; 128 1998; 13 2021; 9 2019; 9 2015; 5 2018; 140 2021; 3 2020; 262 2020; 40 2020; 142 2019; 1 2020; 266 2021; 50 2019; 141 1972; 238 2014; 114 2017; 139 2018; 24 2016; 55 2022; 144 2017; 50 2021; 57 2021; 13 2021; 12 2010; 46 2020; 31 2022 2022; 61 2022; 9 2008; 47 2021; 293 2016; 138 2012; 6 2021; 60 2018; 10 2018; 57 2018; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 Ha S. K. (e_1_2_9_41_1) 1998; 13 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 Sun L. (e_1_2_9_60_1) 2022 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 47 start-page: 3450 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 136 year: 1998 publication-title: Int. J. Polym. Sci. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 247 start-page: 70 year: 2019 publication-title: Appl. Catal., B – volume: 262 year: 2020 publication-title: Appl. Catal., B – volume: 144 start-page: 6594 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 511 year: 2021 publication-title: Chin. Chem. Lett. – volume: 32 start-page: 3613 year: 2021 publication-title: Chin. Chem. Lett. – volume: 50 start-page: 676 year: 2021 publication-title: Chem. Lett. – volume: 3 start-page: 431 year: 2021 publication-title: Trends Chem. – volume: 1 start-page: 203 year: 2019 publication-title: ACS Mater. Lett. – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 46 start-page: 8932 year: 2010 publication-title: Chem. Commun. – volume: 9 start-page: 9438 year: 2019 publication-title: ACS Catal. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 57 start-page: 8316 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 2789 year: 2014 publication-title: Chem. Sci. – volume: 1 start-page: 0056 year: 2017 publication-title: Nat. Rev. Chem. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 59 start-page: 9088 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 394 year: 2020 publication-title: ChemSusChem – volume: 114 start-page: 9919 year: 2014 publication-title: Chem. Rev. – volume: 49 start-page: 4135 year: 2020 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 5414 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 559 year: 2020 publication-title: Nat. Mater. – volume: 128 start-page: 8120 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 7783 year: 2017 publication-title: J. Org. Chem. – volume: 10 start-page: 1180 year: 2018 publication-title: Nat. Chem. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 57 year: 2021 publication-title: Chem. Commun. – volume: 39 start-page: 849 year: 2021 publication-title: Chin. J. Polym. Sci. – volume: 55 start-page: 1792 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 48 start-page: 3053 year: 2015 publication-title: Acc. Chem. Res. – volume: 50 start-page: 2714 year: 2017 publication-title: Macromolecules – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 293 year: 2021 publication-title: Appl. Catal., B – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 6 start-page: 511 year: 2012 publication-title: Nat. Photonics – volume: 12 start-page: 1354 year: 2021 publication-title: Nat. Commun. – volume: 40 start-page: 160 year: 2020 publication-title: Mater. Today – volume: 59 start-page: 6007 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 32 start-page: 328 year: 2021 publication-title: Chin. Chem. Lett. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 2435 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 81 start-page: 536 year: 2018 publication-title: Renew. Sustainable Energy Rev. – volume: 24 year: 2018 publication-title: Chem. – Eur. J. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1674 year: 2018 publication-title: Chem. Asian J. – volume: 60 start-page: 9642 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 31 start-page: 988 year: 2020 publication-title: Chin. Chem. Lett. – volume: 266 year: 2020 publication-title: Appl. Catal., B – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_9_63_1 doi: 10.1021/acscatal.9b01951 – ident: e_1_2_9_38_1 doi: 10.1002/anie.202115655 – volume: 13 start-page: 136 year: 1998 ident: e_1_2_9_41_1 publication-title: Int. J. Polym. Sci. – ident: e_1_2_9_20_1 doi: 10.1002/adma.202109203 – ident: e_1_2_9_10_1 doi: 10.1021/cr5001892 – ident: e_1_2_9_16_1 doi: 10.1002/chem.201803621 – ident: e_1_2_9_8_1 doi: 10.1016/j.cclet.2020.03.076 – ident: e_1_2_9_9_1 doi: 10.1038/238037a0 – ident: e_1_2_9_19_1 doi: 10.1002/anie.201510542 – ident: e_1_2_9_7_1 doi: 10.1002/advs.202201134 – ident: e_1_2_9_2_1 doi: 10.1021/jacs.7b07489 – ident: e_1_2_9_34_1 doi: 10.1021/jacs.7b07918 – ident: e_1_2_9_32_1 doi: 10.1021/jacs.8b08452 – ident: e_1_2_9_29_1 doi: 10.1002/anie.202114071 – ident: e_1_2_9_61_1 doi: 10.1002/anie.201806862 – ident: e_1_2_9_51_1 doi: 10.1002/anie.201801112 – ident: e_1_2_9_37_1 doi: 10.1246/cl.200834 – ident: e_1_2_9_45_1 doi: 10.1039/C4SC00016A – ident: e_1_2_9_65_1 doi: 10.1021/acs.joc.7b00722 – ident: e_1_2_9_25_1 doi: 10.1038/s41563-019-0591-1 – ident: e_1_2_9_49_1 doi: 10.1002/anie.201914424 – ident: e_1_2_9_47_1 doi: 10.1002/anie.202000723 – ident: e_1_2_9_4_1 doi: 10.1039/D0CS00278J – ident: e_1_2_9_11_1 doi: 10.1016/j.cclet.2021.04.012 – ident: e_1_2_9_27_1 doi: 10.1038/s41467-021-21527-3 – ident: e_1_2_9_52_1 doi: 10.1002/asia.201800506 – ident: e_1_2_9_14_1 doi: 10.1016/j.apcatb.2019.01.088 – ident: e_1_2_9_33_1 doi: 10.1021/jacs.0c05596 – start-page: e202204326 year: 2022 ident: e_1_2_9_60_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_9_54_1 doi: 10.1039/D0CC05222A – ident: e_1_2_9_13_1 doi: 10.1002/aenm.201500010 – ident: e_1_2_9_56_1 doi: 10.1021/jacs.9b08017 – ident: e_1_2_9_44_1 doi: 10.1038/s41557-018-0141-5 – ident: e_1_2_9_43_1 doi: 10.1039/D1CC03219D – ident: e_1_2_9_39_1 doi: 10.1021/jacs.6b07714 – ident: e_1_2_9_5_1 doi: 10.1016/j.cclet.2020.04.018 – ident: e_1_2_9_40_1 doi: 10.1021/acs.macromol.7b00410 – ident: e_1_2_9_6_1 doi: 10.1016/j.cclet.2019.08.026 – ident: e_1_2_9_64_1 doi: 10.1002/anie.202016618 – ident: e_1_2_9_36_1 doi: 10.1021/jacs.2c02173 – ident: e_1_2_9_31_1 doi: 10.1021/acs.accounts.5b00369 – ident: e_1_2_9_22_1 doi: 10.1039/D0TA03749D – ident: e_1_2_9_26_1 doi: 10.1021/jacs.0c09727 – ident: e_1_2_9_3_1 doi: 10.1016/j.mattod.2020.07.003 – ident: e_1_2_9_30_1 doi: 10.1016/j.apcatb.2019.118271 – ident: e_1_2_9_57_1 doi: 10.1038/s41570-017-0056 – ident: e_1_2_9_66_1 doi: 10.1002/anie.201908703 – ident: e_1_2_9_35_1 doi: 10.1007/s10118-021-2577-0 – ident: e_1_2_9_21_1 doi: 10.1002/anie.201505581 – ident: e_1_2_9_15_1 doi: 10.1016/j.rser.2017.08.020 – ident: e_1_2_9_17_1 doi: 10.1002/anie.200705710 – ident: e_1_2_9_58_1 doi: 10.1021/jacs.5b09487 – ident: e_1_2_9_28_1 doi: 10.1002/anie.202006925 – ident: e_1_2_9_42_1 doi: 10.1021/ja062306x – ident: e_1_2_9_62_1 doi: 10.1016/j.apcatb.2020.118586 – ident: e_1_2_9_1_1 doi: 10.1038/nphoton.2012.175 – ident: e_1_2_9_12_1 doi: 10.1016/j.apcatb.2021.120214 – ident: e_1_2_9_55_1 doi: 10.1021/acsami.1c04880 – ident: e_1_2_9_53_1 doi: 10.1039/D1TA01074C – ident: e_1_2_9_48_1 doi: 10.1021/jacs.9b06219 – ident: e_1_2_9_18_1 doi: 10.1039/c0cc04057f – ident: e_1_2_9_46_1 doi: 10.1016/j.trechm.2021.03.008 – ident: e_1_2_9_23_1 doi: 10.1002/adma.202101026 – ident: e_1_2_9_24_1 doi: 10.1002/cssc.201902668 – ident: e_1_2_9_59_1 doi: 10.1021/acsmaterialslett.9b00153 – ident: e_1_2_9_50_1 doi: 10.1002/anie.201206817 |
SSID | ssj0017734 |
Score | 2.5584779 |
Snippet | The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Catalytic activity Charge efficiency charge‐carrier separation Chromophores Conjugation Covalence covalent organic frameworks Current carriers hydrogen evolution reaction Hydrogen production Materials science molecular chromophores Phenylenediamine Photocatalysis photocatalytic activity Pore size distribution Porous materials Thiadiazoles |
Title | Tuning Molecular Chromophores of Isoreticular Covalent Organic Frameworks for Visible Light‐Induced Hydrogen Generation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202207394 https://www.proquest.com/docview/2729710382 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQJxj4RxQK8oDEFGhcx27GCqgKogyoRd0i_0UgoKloO8DEI_CMPAl3cRMKEkKCLVbsyLHv7M_nu-8IOQhFvSlTzoPIWBbwSEdBrIQKUhG5WGqneG4a6F6JTp9fDKLBXBS_54coDW6oGfl6jQqu9Pj4kzRU2RQjyRnDuyYkBEWHLURF1yV_VCilv1YWITp4hYOCtbHOjr82_7orfULNecCa7zjtFaKKvnpHk_uj6UQfmZdvNI7_-ZlVsjyDo7Tl5WeNLLjhOlmaIyncIM-9KdpOaLdIpEuRUPcxG91mcFSnWUrPxz4W0r_MQHZhJ6M-ytPQduH-NaYAkOnNHSjhg6OXaBV4f33D3CHGWdp5tk8ZSDP1RNgoL5uk3z7rnXSCWcKGwAAM4QHXwsH5STe0E1ynodShFQwKrK5jx01TSgtg3ihAoQB9DKwNNo0lrMqwU6smb2yRyjAbum1CLUvjppYKaqVcGJD3UFpnkS-eWReaKgmKCUvMjM0ck2o8JJ6HmSU4pEk5pFVyWNYfeR6PH2vWivlPZvo8Thh0WyKXPKsSlk_kL19JWqftblna-UujXbKIz95zsEYqk6ep2wMENNH7uZR_AN4SAFY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH-CcRg7MPZPFAb4gMQpXeM5dnOc6KIOmh6mduotiv9EoI1mWtvDduIj8Bn5JLwXN2mLNCHB0YkdOfZ79s_P7_0ewIdQdrqqECKIjOWBiHQUxLnMg0JGLlba5aIyDaRD2R-Lz5Oo9iakWBjPD9EY3EgzqvWaFJwM0icr1tDcFhRKzjldNomn8IzSepNu9i4bBqlQKX-xLENy8QonNW9jh59stt_cl1Zgcx2yVntOsgu67q13NbluL-a6bR7-IHL8r995CS-WiJSdeRHagyduug87azyFB3A_WpD5hKV1Ll1GnLrfy9uvJZ7WWVmwi5kPh_QvSxRf3MyYD_Q0LKk9wGYMMTK7-oZ6eOPYgAwDv378pPQhxlnWv7d3JQo081zYJDKHME7OR5_6wTJnQ2AQiYhAaOnwCKVPtZNCF6HSoZUcC7yjYydMVymLeN7kCEQR_RhcHmwRK1yYcbPOu-L0CLam5dS9AmZ5EXe1yrFWIaRBkQ-VdZYo47l1oWlBUM9YZpaE5pRX4ybzVMw8oyHNmiFtwcem_q2n8ni05nEtANlSpWcZx24ropPnLeDVTP7lK9lZL0mb0ut_afQetvujdJANLoZf3sBzeu4dCY9ha363cG8REM31u0rkfwPVhwRv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8NJqHxwMb-iG5s-GHSngKNcezmEY1FZbQVmmDqWxT_E9NYU9H2gT3xEfiMfJLdxU3aIk2TxmMSO3HsO_vn893vAD7Gst1RXogoMZZHItFJlBayiLxMXKq0K0RlGugPZPdCfB0mw6Uo_sAP0RjcSDOq-ZoUfGz9wYI0tLCeIsk5p7MmsQZPBX2WYNG3hkAqViqcK8uYPLziYU3b2OYHq_VXl6UF1lxGrNWSkz2Hom5s8DT5uT-b6n3z-wGP42P-5gVszfEoOwoCtA1P3OglbC6xFL6Cm_MZGU9Yv86ky4hR91c5vixxr85Kz04mIRgyPCxReHEpYyHM07Cs9v-aMETI7PsP1MIrx3pkFri_vaPkIcZZ1r2x1yWKMwtM2CQwr-Ei-3L-uRvNMzZEBnGIiISWDjdQ-lA7KbSPlY6t5HjB2zp1wnSUsojmTYEwFLGPwcnB-lThtIxLddERh29gfVSO3A4wy33a0arAUl5IgwIfK-ssEcZz62LTgqgesNzM6cwpq8ZVHoiYeU5dmjdd2oJPTflxIPL4a8ndevzzuUJPco7NVkQmz1vAq4H8x1vyo-Os31y9_Z9Ke7BxdpzlvZPB6Tt4RreDF-EurE-vZ-49oqGp_lAJ_B_ibQMn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Molecular+Chromophores+of+Isoreticular+Covalent+Organic+Frameworks+for+Visible+Light%E2%80%90Induced+Hydrogen+Generation&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Wen&rft.au=Ding%2C+Xu&rft.au=Yu%2C+Baoqiu&rft.au=Wang%2C+Hailong&rft.date=2022-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.202207394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202207394 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |