Tuning Molecular Chromophores of Isoreticular Covalent Organic Frameworks for Visible Light‐Induced Hydrogen Generation

The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[c]‐[1,2,5]th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 44
Main Authors Li, Wen, Ding, Xu, Yu, Baoqiu, Wang, Hailong, Gao, Zhuo, Wang, Xinxin, Liu, Xiaolin, Wang, Kang, Jiang, Jianzhuang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202207394

Cover

Loading…
Abstract The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[c]‐[1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde and 5,5″‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)diisophthalaldehyde, with p‐phenylenediamine and benzidine, respectively. Comprehensive studies of powder X‐ray diffraction, theoretical simulation, and pore size distribution disclose their isoreticular 2D dual porous structures. In contrast to benzo[c][1,2,5]thiadiazole‐based chromophore, employment of naphtho[2,3‐c][1,2,5]thiadiazole‐based tetraaldehyde enables enlarged conjugation systems for USTB‐9 and USTB‐10, rather than USTB‐7 and USTB‐8. This, in combination with the longer benzidine unit, endows USTB‐10 with a porous structure with bigger pore size than that of USTB‐9, resulting in the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 with the help of a Pt cocatalyst. Experimental and theoretical studies reveal the outstanding photocatalytic activity for USTB‐10 among the four COFs associated with the narrowed bandgap and increased charge‐carrier separation efficiency. The photocatalytic activities of a series of four isoreticular dual porous covalent organic frameworks toward hydrogen evolution reaction are adjusted by the direct change of bandgap and charge‐carrier separation efficiency by modular copolymerization strategy, and USTB‐10 exhibits the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 among these four materials.
AbstractList The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[c]‐[1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde and 5,5″‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)diisophthalaldehyde, with p‐phenylenediamine and benzidine, respectively. Comprehensive studies of powder X‐ray diffraction, theoretical simulation, and pore size distribution disclose their isoreticular 2D dual porous structures. In contrast to benzo[c][1,2,5]thiadiazole‐based chromophore, employment of naphtho[2,3‐c][1,2,5]thiadiazole‐based tetraaldehyde enables enlarged conjugation systems for USTB‐9 and USTB‐10, rather than USTB‐7 and USTB‐8. This, in combination with the longer benzidine unit, endows USTB‐10 with a porous structure with bigger pore size than that of USTB‐9, resulting in the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 with the help of a Pt cocatalyst. Experimental and theoretical studies reveal the outstanding photocatalytic activity for USTB‐10 among the four COFs associated with the narrowed bandgap and increased charge‐carrier separation efficiency.
The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[ c ]‐[1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde and 5,5″‐(naphtho[2,3‐ c ][1,2,5]thiadiazole‐4,9‐diyl)diisophthalaldehyde, with p ‐phenylenediamine and benzidine, respectively. Comprehensive studies of powder X‐ray diffraction, theoretical simulation, and pore size distribution disclose their isoreticular 2D dual porous structures. In contrast to benzo[ c ][1,2,5]thiadiazole‐based chromophore, employment of naphtho[2,3‐ c ][1,2,5]thiadiazole‐based tetraaldehyde enables enlarged conjugation systems for USTB‐9 and USTB‐10, rather than USTB‐7 and USTB‐8. This, in combination with the longer benzidine unit, endows USTB‐10 with a porous structure with bigger pore size than that of USTB‐9, resulting in the highest photocatalytic hydrogen production rate of 21.8 mmol g −1 h −1 with the help of a Pt cocatalyst. Experimental and theoretical studies reveal the outstanding photocatalytic activity for USTB‐10 among the four COFs associated with the narrowed bandgap and increased charge‐carrier separation efficiency.
The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered materials. Herein, four COFs, USTB‐7–USTB‐10, are prepared from the solvothermal reaction of photoactive tetraaldehydes, 5,5″‐(benzo[c]‐[1,2,5]thiadiazole‐4,7‐diyl)diisophthalaldehyde and 5,5″‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)diisophthalaldehyde, with p‐phenylenediamine and benzidine, respectively. Comprehensive studies of powder X‐ray diffraction, theoretical simulation, and pore size distribution disclose their isoreticular 2D dual porous structures. In contrast to benzo[c][1,2,5]thiadiazole‐based chromophore, employment of naphtho[2,3‐c][1,2,5]thiadiazole‐based tetraaldehyde enables enlarged conjugation systems for USTB‐9 and USTB‐10, rather than USTB‐7 and USTB‐8. This, in combination with the longer benzidine unit, endows USTB‐10 with a porous structure with bigger pore size than that of USTB‐9, resulting in the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 with the help of a Pt cocatalyst. Experimental and theoretical studies reveal the outstanding photocatalytic activity for USTB‐10 among the four COFs associated with the narrowed bandgap and increased charge‐carrier separation efficiency. The photocatalytic activities of a series of four isoreticular dual porous covalent organic frameworks toward hydrogen evolution reaction are adjusted by the direct change of bandgap and charge‐carrier separation efficiency by modular copolymerization strategy, and USTB‐10 exhibits the highest photocatalytic hydrogen production rate of 21.8 mmol g−1 h−1 among these four materials.
Author Jiang, Jianzhuang
Gao, Zhuo
Wang, Kang
Liu, Xiaolin
Wang, Hailong
Yu, Baoqiu
Wang, Xinxin
Ding, Xu
Li, Wen
Author_xml – sequence: 1
  givenname: Wen
  surname: Li
  fullname: Li, Wen
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Xu
  surname: Ding
  fullname: Ding, Xu
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Baoqiu
  surname: Yu
  fullname: Yu, Baoqiu
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Hailong
  surname: Wang
  fullname: Wang, Hailong
  email: hlwang@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Zhuo
  surname: Gao
  fullname: Gao, Zhuo
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Xinxin
  surname: Wang
  fullname: Wang, Xinxin
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Xiaolin
  surname: Liu
  fullname: Liu, Xiaolin
  organization: University of Science and Technology Beijing
– sequence: 8
  givenname: Kang
  surname: Wang
  fullname: Wang, Kang
  email: kangwang@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 9
  givenname: Jianzhuang
  orcidid: 0000-0002-4263-9211
  surname: Jiang
  fullname: Jiang, Jianzhuang
  email: jianzhuang@ustb.edu.cn
  organization: University of Science and Technology Beijing
BookMark eNqFkM9OwkAQxjcGExG9et7EM7i7Ld32SFD-JBAuaLw12-20LJZd3G0lvfkIPqNPYhGCiYnxNN9kvt_M5LtELW00IHRDSY8Swu5Emm16jDBGuBf5Z6hNAxp0PcLC1knT5wt06dyaEMq557dRvay00jmemwJkVQiLhytrNma7MhYcNhmeukaV6jg0b6IAXeKFzYVWEo-s2MDO2BeHM2Pxk3IqKQDPVL4qP98_pjqtJKR4UqfW5KDxGDRYUSqjr9B5JgoH18faQY-jh-Vw0p0txtPhYNaVHuV-108CiKIg8RII_CSjPKFpwJqGkSQCX4acp5xFUtA-IUFf8shLs4gTQgBSEfpeB90e9m6tea3AlfHaVFY3J2PWgJwSL2SNyz-4pDXOWchiqcrvP0srVBFTEu9Djvchx6eQG6z3C9tatRG2_huIDsBOFVD_444H96P5D_sF-NiUqQ
CitedBy_id crossref_primary_10_1002_adma_202305313
crossref_primary_10_1002_adfm_202316546
crossref_primary_10_1002_aenm_202303638
crossref_primary_10_1016_j_apcatb_2025_125071
crossref_primary_10_1021_acscatal_3c04145
crossref_primary_10_1039_D4TC02938K
crossref_primary_10_1039_D3CC01970E
crossref_primary_10_1007_s12274_024_6509_5
crossref_primary_10_1002_ange_202424110
crossref_primary_10_1039_D2TC05258J
crossref_primary_10_1002_anie_202313520
crossref_primary_10_1002_anie_202424110
crossref_primary_10_1021_acsmaterialslett_4c02312
crossref_primary_10_1039_D4EE00520A
crossref_primary_10_3390_catal13050850
crossref_primary_10_1002_marc_202200719
crossref_primary_10_1002_ange_202311082
crossref_primary_10_1038_s41467_025_57166_1
crossref_primary_10_1016_j_seppur_2024_129809
crossref_primary_10_1002_adfm_202401562
crossref_primary_10_1002_agt2_669
crossref_primary_10_1002_smll_202405887
crossref_primary_10_1002_ange_202313520
crossref_primary_10_1016_j_cej_2024_154472
crossref_primary_10_1039_D4TC02995J
crossref_primary_10_1002_adhm_202303842
crossref_primary_10_1002_advs_202308535
crossref_primary_10_1021_acs_inorgchem_4c05494
crossref_primary_10_1039_D3QM00188A
crossref_primary_10_1002_anie_202311082
crossref_primary_10_1002_adfm_202422291
crossref_primary_10_1002_adfm_202415629
Cites_doi 10.1021/acscatal.9b01951
10.1002/anie.202115655
10.1002/adma.202109203
10.1021/cr5001892
10.1002/chem.201803621
10.1016/j.cclet.2020.03.076
10.1038/238037a0
10.1002/anie.201510542
10.1002/advs.202201134
10.1021/jacs.7b07489
10.1021/jacs.7b07918
10.1021/jacs.8b08452
10.1002/anie.202114071
10.1002/anie.201806862
10.1002/anie.201801112
10.1246/cl.200834
10.1039/C4SC00016A
10.1021/acs.joc.7b00722
10.1038/s41563-019-0591-1
10.1002/anie.201914424
10.1002/anie.202000723
10.1039/D0CS00278J
10.1016/j.cclet.2021.04.012
10.1038/s41467-021-21527-3
10.1002/asia.201800506
10.1016/j.apcatb.2019.01.088
10.1021/jacs.0c05596
10.1039/D0CC05222A
10.1002/aenm.201500010
10.1021/jacs.9b08017
10.1038/s41557-018-0141-5
10.1039/D1CC03219D
10.1021/jacs.6b07714
10.1016/j.cclet.2020.04.018
10.1021/acs.macromol.7b00410
10.1016/j.cclet.2019.08.026
10.1002/anie.202016618
10.1021/jacs.2c02173
10.1021/acs.accounts.5b00369
10.1039/D0TA03749D
10.1021/jacs.0c09727
10.1016/j.mattod.2020.07.003
10.1016/j.apcatb.2019.118271
10.1038/s41570-017-0056
10.1002/anie.201908703
10.1007/s10118-021-2577-0
10.1002/anie.201505581
10.1016/j.rser.2017.08.020
10.1002/anie.200705710
10.1021/jacs.5b09487
10.1002/anie.202006925
10.1021/ja062306x
10.1016/j.apcatb.2020.118586
10.1038/nphoton.2012.175
10.1016/j.apcatb.2021.120214
10.1021/acsami.1c04880
10.1039/D1TA01074C
10.1021/jacs.9b06219
10.1039/c0cc04057f
10.1016/j.trechm.2021.03.008
10.1002/adma.202101026
10.1002/cssc.201902668
10.1021/acsmaterialslett.9b00153
10.1002/anie.201206817
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202207394
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202207394
ADFM202207394
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: FRF‐BD‐20‐14A
– fundername: University of Science and Technology Beijing
– fundername: National Natural Science Foundation of China
  funderid: 22175020; 22131005; 21631003; 21871024
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3174-4b6e996b3be64bf17b1d62be620b9e4c877d729ca150065c793df97000eeda843
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 05:02:22 EDT 2025
Tue Jul 01 00:30:32 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Sun Jul 06 04:45:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-4b6e996b3be64bf17b1d62be620b9e4c877d729ca150065c793df97000eeda843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4263-9211
PQID 2729710382
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2729710382
crossref_citationtrail_10_1002_adfm_202207394
crossref_primary_10_1002_adfm_202207394
wiley_primary_10_1002_adfm_202207394_ADFM202207394
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1
2017; 82
2019; 58
2019; 247
2018; 81
2020; 59
2020; 13
2020; 56
2020; 19
2020; 8
2015; 48
2021; 32
2014; 5
2021; 33
2015; 137
2021; 39
2013; 52
2022; 34
2020; 49
2006; 128
1998; 13
2021; 9
2019; 9
2015; 5
2018; 140
2021; 3
2020; 262
2020; 40
2020; 142
2019; 1
2020; 266
2021; 50
2019; 141
1972; 238
2014; 114
2017; 139
2018; 24
2016; 55
2022; 144
2017; 50
2021; 57
2021; 13
2021; 12
2010; 46
2020; 31
2022
2022; 61
2022; 9
2008; 47
2021; 293
2016; 138
2012; 6
2021; 60
2018; 10
2018; 57
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
Ha S. K. (e_1_2_9_41_1) 1998; 13
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
Sun L. (e_1_2_9_60_1) 2022
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 47
  start-page: 3450
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 136
  year: 1998
  publication-title: Int. J. Polym. Sci.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 247
  start-page: 70
  year: 2019
  publication-title: Appl. Catal., B
– volume: 262
  year: 2020
  publication-title: Appl. Catal., B
– volume: 144
  start-page: 6594
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 511
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 32
  start-page: 3613
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 50
  start-page: 676
  year: 2021
  publication-title: Chem. Lett.
– volume: 3
  start-page: 431
  year: 2021
  publication-title: Trends Chem.
– volume: 1
  start-page: 203
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 46
  start-page: 8932
  year: 2010
  publication-title: Chem. Commun.
– volume: 9
  start-page: 9438
  year: 2019
  publication-title: ACS Catal.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 57
  start-page: 8316
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 2789
  year: 2014
  publication-title: Chem. Sci.
– volume: 1
  start-page: 0056
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  start-page: 9088
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 394
  year: 2020
  publication-title: ChemSusChem
– volume: 114
  start-page: 9919
  year: 2014
  publication-title: Chem. Rev.
– volume: 49
  start-page: 4135
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 5414
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 559
  year: 2020
  publication-title: Nat. Mater.
– volume: 128
  start-page: 8120
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 82
  start-page: 7783
  year: 2017
  publication-title: J. Org. Chem.
– volume: 10
  start-page: 1180
  year: 2018
  publication-title: Nat. Chem.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 57
  year: 2021
  publication-title: Chem. Commun.
– volume: 39
  start-page: 849
  year: 2021
  publication-title: Chin. J. Polym. Sci.
– volume: 55
  start-page: 1792
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 48
  start-page: 3053
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 50
  start-page: 2714
  year: 2017
  publication-title: Macromolecules
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 293
  year: 2021
  publication-title: Appl. Catal., B
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 6
  start-page: 511
  year: 2012
  publication-title: Nat. Photonics
– volume: 12
  start-page: 1354
  year: 2021
  publication-title: Nat. Commun.
– volume: 40
  start-page: 160
  year: 2020
  publication-title: Mater. Today
– volume: 59
  start-page: 6007
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  start-page: 328
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 2435
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 81
  start-page: 536
  year: 2018
  publication-title: Renew. Sustainable Energy Rev.
– volume: 24
  year: 2018
  publication-title: Chem. – Eur. J.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1674
  year: 2018
  publication-title: Chem. Asian J.
– volume: 60
  start-page: 9642
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  start-page: 988
  year: 2020
  publication-title: Chin. Chem. Lett.
– volume: 266
  year: 2020
  publication-title: Appl. Catal., B
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_9_63_1
  doi: 10.1021/acscatal.9b01951
– ident: e_1_2_9_38_1
  doi: 10.1002/anie.202115655
– volume: 13
  start-page: 136
  year: 1998
  ident: e_1_2_9_41_1
  publication-title: Int. J. Polym. Sci.
– ident: e_1_2_9_20_1
  doi: 10.1002/adma.202109203
– ident: e_1_2_9_10_1
  doi: 10.1021/cr5001892
– ident: e_1_2_9_16_1
  doi: 10.1002/chem.201803621
– ident: e_1_2_9_8_1
  doi: 10.1016/j.cclet.2020.03.076
– ident: e_1_2_9_9_1
  doi: 10.1038/238037a0
– ident: e_1_2_9_19_1
  doi: 10.1002/anie.201510542
– ident: e_1_2_9_7_1
  doi: 10.1002/advs.202201134
– ident: e_1_2_9_2_1
  doi: 10.1021/jacs.7b07489
– ident: e_1_2_9_34_1
  doi: 10.1021/jacs.7b07918
– ident: e_1_2_9_32_1
  doi: 10.1021/jacs.8b08452
– ident: e_1_2_9_29_1
  doi: 10.1002/anie.202114071
– ident: e_1_2_9_61_1
  doi: 10.1002/anie.201806862
– ident: e_1_2_9_51_1
  doi: 10.1002/anie.201801112
– ident: e_1_2_9_37_1
  doi: 10.1246/cl.200834
– ident: e_1_2_9_45_1
  doi: 10.1039/C4SC00016A
– ident: e_1_2_9_65_1
  doi: 10.1021/acs.joc.7b00722
– ident: e_1_2_9_25_1
  doi: 10.1038/s41563-019-0591-1
– ident: e_1_2_9_49_1
  doi: 10.1002/anie.201914424
– ident: e_1_2_9_47_1
  doi: 10.1002/anie.202000723
– ident: e_1_2_9_4_1
  doi: 10.1039/D0CS00278J
– ident: e_1_2_9_11_1
  doi: 10.1016/j.cclet.2021.04.012
– ident: e_1_2_9_27_1
  doi: 10.1038/s41467-021-21527-3
– ident: e_1_2_9_52_1
  doi: 10.1002/asia.201800506
– ident: e_1_2_9_14_1
  doi: 10.1016/j.apcatb.2019.01.088
– ident: e_1_2_9_33_1
  doi: 10.1021/jacs.0c05596
– start-page: e202204326
  year: 2022
  ident: e_1_2_9_60_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_9_54_1
  doi: 10.1039/D0CC05222A
– ident: e_1_2_9_13_1
  doi: 10.1002/aenm.201500010
– ident: e_1_2_9_56_1
  doi: 10.1021/jacs.9b08017
– ident: e_1_2_9_44_1
  doi: 10.1038/s41557-018-0141-5
– ident: e_1_2_9_43_1
  doi: 10.1039/D1CC03219D
– ident: e_1_2_9_39_1
  doi: 10.1021/jacs.6b07714
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cclet.2020.04.018
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.macromol.7b00410
– ident: e_1_2_9_6_1
  doi: 10.1016/j.cclet.2019.08.026
– ident: e_1_2_9_64_1
  doi: 10.1002/anie.202016618
– ident: e_1_2_9_36_1
  doi: 10.1021/jacs.2c02173
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.accounts.5b00369
– ident: e_1_2_9_22_1
  doi: 10.1039/D0TA03749D
– ident: e_1_2_9_26_1
  doi: 10.1021/jacs.0c09727
– ident: e_1_2_9_3_1
  doi: 10.1016/j.mattod.2020.07.003
– ident: e_1_2_9_30_1
  doi: 10.1016/j.apcatb.2019.118271
– ident: e_1_2_9_57_1
  doi: 10.1038/s41570-017-0056
– ident: e_1_2_9_66_1
  doi: 10.1002/anie.201908703
– ident: e_1_2_9_35_1
  doi: 10.1007/s10118-021-2577-0
– ident: e_1_2_9_21_1
  doi: 10.1002/anie.201505581
– ident: e_1_2_9_15_1
  doi: 10.1016/j.rser.2017.08.020
– ident: e_1_2_9_17_1
  doi: 10.1002/anie.200705710
– ident: e_1_2_9_58_1
  doi: 10.1021/jacs.5b09487
– ident: e_1_2_9_28_1
  doi: 10.1002/anie.202006925
– ident: e_1_2_9_42_1
  doi: 10.1021/ja062306x
– ident: e_1_2_9_62_1
  doi: 10.1016/j.apcatb.2020.118586
– ident: e_1_2_9_1_1
  doi: 10.1038/nphoton.2012.175
– ident: e_1_2_9_12_1
  doi: 10.1016/j.apcatb.2021.120214
– ident: e_1_2_9_55_1
  doi: 10.1021/acsami.1c04880
– ident: e_1_2_9_53_1
  doi: 10.1039/D1TA01074C
– ident: e_1_2_9_48_1
  doi: 10.1021/jacs.9b06219
– ident: e_1_2_9_18_1
  doi: 10.1039/c0cc04057f
– ident: e_1_2_9_46_1
  doi: 10.1016/j.trechm.2021.03.008
– ident: e_1_2_9_23_1
  doi: 10.1002/adma.202101026
– ident: e_1_2_9_24_1
  doi: 10.1002/cssc.201902668
– ident: e_1_2_9_59_1
  doi: 10.1021/acsmaterialslett.9b00153
– ident: e_1_2_9_50_1
  doi: 10.1002/anie.201206817
SSID ssj0017734
Score 2.5584779
Snippet The functions of covalent organic frameworks (COFs) can be tailored by covalently reticulating advanced molecular modules into well‐defined porous ordered...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Catalytic activity
Charge efficiency
charge‐carrier separation
Chromophores
Conjugation
Covalence
covalent organic frameworks
Current carriers
hydrogen evolution reaction
Hydrogen production
Materials science
molecular chromophores
Phenylenediamine
Photocatalysis
photocatalytic activity
Pore size distribution
Porous materials
Thiadiazoles
Title Tuning Molecular Chromophores of Isoreticular Covalent Organic Frameworks for Visible Light‐Induced Hydrogen Generation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202207394
https://www.proquest.com/docview/2729710382
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQJxj4RxQK8oDEFGhcx27GCqgKogyoRd0i_0UgoKloO8DEI_CMPAl3cRMKEkKCLVbsyLHv7M_nu-8IOQhFvSlTzoPIWBbwSEdBrIQKUhG5WGqneG4a6F6JTp9fDKLBXBS_54coDW6oGfl6jQqu9Pj4kzRU2RQjyRnDuyYkBEWHLURF1yV_VCilv1YWITp4hYOCtbHOjr82_7orfULNecCa7zjtFaKKvnpHk_uj6UQfmZdvNI7_-ZlVsjyDo7Tl5WeNLLjhOlmaIyncIM-9KdpOaLdIpEuRUPcxG91mcFSnWUrPxz4W0r_MQHZhJ6M-ytPQduH-NaYAkOnNHSjhg6OXaBV4f33D3CHGWdp5tk8ZSDP1RNgoL5uk3z7rnXSCWcKGwAAM4QHXwsH5STe0E1ynodShFQwKrK5jx01TSgtg3ihAoQB9DKwNNo0lrMqwU6smb2yRyjAbum1CLUvjppYKaqVcGJD3UFpnkS-eWReaKgmKCUvMjM0ck2o8JJ6HmSU4pEk5pFVyWNYfeR6PH2vWivlPZvo8Thh0WyKXPKsSlk_kL19JWqftblna-UujXbKIz95zsEYqk6ep2wMENNH7uZR_AN4SAFY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH-CcRg7MPZPFAb4gMQpXeM5dnOc6KIOmh6mduotiv9EoI1mWtvDduIj8Bn5JLwXN2mLNCHB0YkdOfZ79s_P7_0ewIdQdrqqECKIjOWBiHQUxLnMg0JGLlba5aIyDaRD2R-Lz5Oo9iakWBjPD9EY3EgzqvWaFJwM0icr1tDcFhRKzjldNomn8IzSepNu9i4bBqlQKX-xLENy8QonNW9jh59stt_cl1Zgcx2yVntOsgu67q13NbluL-a6bR7-IHL8r995CS-WiJSdeRHagyduug87azyFB3A_WpD5hKV1Ll1GnLrfy9uvJZ7WWVmwi5kPh_QvSxRf3MyYD_Q0LKk9wGYMMTK7-oZ6eOPYgAwDv378pPQhxlnWv7d3JQo081zYJDKHME7OR5_6wTJnQ2AQiYhAaOnwCKVPtZNCF6HSoZUcC7yjYydMVymLeN7kCEQR_RhcHmwRK1yYcbPOu-L0CLam5dS9AmZ5EXe1yrFWIaRBkQ-VdZYo47l1oWlBUM9YZpaE5pRX4ybzVMw8oyHNmiFtwcem_q2n8ni05nEtANlSpWcZx24ropPnLeDVTP7lK9lZL0mb0ut_afQetvujdJANLoZf3sBzeu4dCY9ha363cG8REM31u0rkfwPVhwRv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8NJqHxwMb-iG5s-GHSngKNcezmEY1FZbQVmmDqWxT_E9NYU9H2gT3xEfiMfJLdxU3aIk2TxmMSO3HsO_vn893vAD7Gst1RXogoMZZHItFJlBayiLxMXKq0K0RlGugPZPdCfB0mw6Uo_sAP0RjcSDOq-ZoUfGz9wYI0tLCeIsk5p7MmsQZPBX2WYNG3hkAqViqcK8uYPLziYU3b2OYHq_VXl6UF1lxGrNWSkz2Hom5s8DT5uT-b6n3z-wGP42P-5gVszfEoOwoCtA1P3OglbC6xFL6Cm_MZGU9Yv86ky4hR91c5vixxr85Kz04mIRgyPCxReHEpYyHM07Cs9v-aMETI7PsP1MIrx3pkFri_vaPkIcZZ1r2x1yWKMwtM2CQwr-Ei-3L-uRvNMzZEBnGIiISWDjdQ-lA7KbSPlY6t5HjB2zp1wnSUsojmTYEwFLGPwcnB-lThtIxLddERh29gfVSO3A4wy33a0arAUl5IgwIfK-ssEcZz62LTgqgesNzM6cwpq8ZVHoiYeU5dmjdd2oJPTflxIPL4a8ndevzzuUJPco7NVkQmz1vAq4H8x1vyo-Os31y9_Z9Ke7BxdpzlvZPB6Tt4RreDF-EurE-vZ-49oqGp_lAJ_B_ibQMn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Molecular+Chromophores+of+Isoreticular+Covalent+Organic+Frameworks+for+Visible+Light%E2%80%90Induced+Hydrogen+Generation&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Wen&rft.au=Ding%2C+Xu&rft.au=Yu%2C+Baoqiu&rft.au=Wang%2C+Hailong&rft.date=2022-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.202207394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202207394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon